[go: up one dir, main page]

JPH11216490A - Organic wastewater treatment equipment - Google Patents

Organic wastewater treatment equipment

Info

Publication number
JPH11216490A
JPH11216490A JP10325083A JP32508398A JPH11216490A JP H11216490 A JPH11216490 A JP H11216490A JP 10325083 A JP10325083 A JP 10325083A JP 32508398 A JP32508398 A JP 32508398A JP H11216490 A JPH11216490 A JP H11216490A
Authority
JP
Japan
Prior art keywords
water
filtration
aerobic
treatment chamber
anaerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10325083A
Other languages
Japanese (ja)
Inventor
Takeshi Shinoda
猛 篠田
Yutaka Okuno
裕 奥野
Naoki Okuma
直紀 大熊
Toru Aoi
透 青井
Shoko Motomura
勝公 元村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Hitachi Plant Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd, Hitachi Plant Engineering and Construction Co Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP10325083A priority Critical patent/JPH11216490A/en
Publication of JPH11216490A publication Critical patent/JPH11216490A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D33/00Filters with filtering elements which move during the filtering operation
    • B01D33/15Filters with filtering elements which move during the filtering operation with rotary plane filtering surfaces
    • B01D33/21Filters with filtering elements which move during the filtering operation with rotary plane filtering surfaces with hollow filtering discs transversely mounted on a hollow rotary shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D33/00Filters with filtering elements which move during the filtering operation
    • B01D33/35Filters with filtering elements which move during the filtering operation with multiple filtering elements characterised by their mutual disposition
    • B01D33/37Filters with filtering elements which move during the filtering operation with multiple filtering elements characterised by their mutual disposition in parallel connection

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

(57)【要約】 【課題】処理能力の向上、運転動力の低減を図ることが
でき、且つ装置外に抜き出される処理水に微生物が同伴
されることなく、微生物は嫌気性処理室に戻される。 【解決手段】有機性廃水を好気性処理室24で好気性微
生物により好気的処理し、その処理水を好気性処理室か
ら濾過容器12Aに流入させて濾過部材12Dで膜濾過
してから集水回転軸12Eを介して装置外に抜き出す。
そして、濾過容器12A内で濃縮された濃縮液を嫌気性
処理室22に戻すようにした。これにより、処理水中の
嫌気性微生物や好気性微生物は、回転平膜分離機12の
濾過部材12Dで濾過分離される。従って、微生物は処
理水に同伴して装置外に流出することなく、濃縮液と一
緒に嫌気性処理室22に戻され、処理水のみが装置外に
抜き出される。
(57) [Summary] [Problem] It is possible to improve the processing capacity and reduce the driving power, and the microorganisms are returned to the anaerobic treatment chamber without the microorganisms accompanying the treated water drawn out of the apparatus. It is. SOLUTION: An organic wastewater is aerobically treated by an aerobic microorganism in an aerobic treatment chamber 24, and the treated water is allowed to flow from the aerobic treatment chamber into a filtration vessel 12A, collected by a membrane through a filtration member 12D, and collected. Pull out the device via the water rotary shaft 12E.
Then, the concentrated liquid concentrated in the filtration container 12A was returned to the anaerobic treatment chamber 22. Thereby, the anaerobic microorganisms and aerobic microorganisms in the treated water are separated by filtration by the filtration member 12D of the rotary flat membrane separator 12. Therefore, the microorganisms are returned to the anaerobic treatment chamber 22 together with the concentrated liquid without flowing out of the apparatus together with the treated water, and only the treated water is extracted outside the apparatus.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は有機性廃水の処理装
置に係わり、特に、し尿又は食品加工工場からの廃水の
ように高濃度に有機物を含有する有機性廃水を、生物化
学処理と膜濾過とを組み合わせて処理する有機性廃水の
処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic wastewater treatment apparatus, and more particularly, to a biochemical treatment and membrane filtration of an organic wastewater containing a high concentration of organic matter such as human waste or wastewater from a food processing plant. And an organic wastewater treatment apparatus for treating the wastewater in combination.

【0002】[0002]

【従来の技術】し尿廃水等のように高濃度に有機物を含
む廃水を活性汚泥によって生物化学的に処理し、処理水
を限外濾過膜又は精密濾過膜を用いた分離機で固体成分
を含む濃縮液と濾過した透過水に分離する処理法、所
謂、生物化学反応槽と膜分離機とを組み合わせた処理法
は比較的少ない工程で高度処理水を得ることができるこ
とから注目されている。そして、従来の有機性廃水の処
理装置に設けられている分離機としては、内径が11〜15
mmの管状膜、又は流路幅が1〜3 mmの平膜を耐圧容
器内に配設し、被処理水を循環ポンプによって膜表面流
速が2〜3 m/s、加圧力が数kg/cm2 になるよう
に耐圧容器内に加圧供給し、被処理水の濃度分極を抑制
して加圧濾過するタイプの分離機であった。
2. Description of the Related Art Wastewater containing organic matter at a high concentration such as human wastewater is biochemically treated with activated sludge, and the treated water contains solid components in a separator using an ultrafiltration membrane or a microfiltration membrane. A treatment method for separating a concentrated liquid and filtered permeated water, a so-called treatment method combining a biochemical reaction tank and a membrane separator, has attracted attention because highly treated water can be obtained in relatively few steps. And as a separator provided in a conventional organic wastewater treatment apparatus, the inner diameter is 11 to 15
mm or a flat membrane having a channel width of 1 to 3 mm is disposed in a pressure vessel, and the water to be treated is circulated by a circulating pump at a membrane surface flow rate of 2 to 3 m / s and a pressing force of several kg / s. The separator was of a type in which the pressure was supplied into a pressure vessel to a pressure of 2 cm 2, and the concentration polarization of the water to be treated was suppressed while filtering under pressure.

【0003】また、し尿廃水の場合、トイレットペーパ
に由来する繊維成分及びビニール等の固形物が多く含有
されている為、生物化学反応槽の前段に設けられた破砕
機で固形物を破砕した後、前処理除渣装置で除渣してい
る。しかし、除渣された処理液中にはなおも粗繊維分が
数千ppmの繊維物質が溶解しており、これが生物化学
的処理を受ける間に集塊し、数mm〜数cmの大きさの
綿屑状の固形物に成長し、管状膜や平膜の流路閉塞の原
因になる。そこで、生物化学反応槽と分離機との間にス
トレーナ及び付属配管を設け、綿屑状の固形物を除去し
ていた。
[0003] Further, since human wastewater contains a large amount of fiber components derived from toilet paper and solids such as vinyl, the solids are crushed by a crusher provided in the preceding stage of the biochemical reaction tank. , And removes the residue with a pretreatment remover. However, in the treated liquid from which the residue has been removed, a fiber substance having a crude fiber content of several thousand ppm is still dissolved, and this is agglomerated while undergoing the biochemical treatment, and has a size of several mm to several cm. Grows into a cotton-like solid material, which causes blockage of the flow path of the tubular membrane or flat membrane. Therefore, a strainer and an attached pipe were provided between the biochemical reaction tank and the separator to remove lint-like solids.

【0004】また、生物化学的に処理した処理水を分離
機で濾過した透過水にはまだ色度成分等が含まれている
為、前記分離機で1次濾過した1次透過水に無機系凝集
剤を添加した後、再び管状膜又は平膜を用いた分離機で
2次濾過して2次透過水を得ることにより再生水を製造
していた。
[0004] Further, since permeated water obtained by filtering biochemically treated water by a separator still contains chromaticity components, etc., the primary permeated water filtered through the separator by the primary filtration is used as an inorganic system. After adding the flocculant, secondary filtration was performed again with a separator using a tubular membrane or a flat membrane to obtain secondary permeated water, thereby producing regenerated water.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
有機性廃水の処理装置には以下の欠点がある。 (1)従来の処理装置の分離機に用いられている管状膜
又は平膜は固定式である為、膜面に汚れが付着し易いと
いう欠点がある。また、膜の外面に透過圧以上の圧力
(数kg/cm2 )を加える為、膜面上に汚れが堆積し
易いという欠点がある。特に、し尿廃水のように有機物
を多く含む廃水の場合は膜の汚れが顕著になり透過水の
透過流束が低下する為、濾過効率が悪くなる。この結
果、透過流束を回復させる為に化学薬品による洗浄を頻
繁に行う必要がある。 (2)前記管状膜又は平膜は固定式である為、濃度分極
を抑制して濾過効率を上げるには被処理水の膜表面流速
が2〜3 m/s、加圧力が数kg/cm2 になるように
循環ポンプで被処理水を耐圧容器内に供給する必要があ
る。従って、極めて大きなポンプ動力を必要とすると共
に、耐圧容器を必要とする為、生物化学反応槽との一体
構造にできないという欠点がある。 (3)生物化学反応槽と分離機との間にストレーナを設
け、有機物等の固形物を除去してから1次濾過している
ものの、分離機は内径が11〜15mmの管状膜、又は流路
幅が1〜3 mmの平膜を濾過容器内に設けた構造で流路
が閉塞系で狭い為、高濃度に有機物を含む廃水の場合に
は流れが停滞したり、流れ抵抗が著しく増大したりす
る。この結果、濾過性能が低下すると共に、循環ポンプ
動力の負荷が更に大きくなる欠点がある。また、このよ
うに、固形物に影響され易い欠点は、前記した分離機を
生物化学反応槽との一体構造にできないもう一つの要因
になっている。
However, the conventional organic wastewater treatment apparatus has the following disadvantages. (1) Since the tubular membrane or flat membrane used in the separator of the conventional processing apparatus is of a fixed type, there is a disadvantage that dirt easily adheres to the membrane surface. In addition, since a pressure (several kg / cm 2 ) or higher than the permeation pressure is applied to the outer surface of the film, there is a disadvantage that dirt easily accumulates on the film surface. In particular, in the case of wastewater containing a large amount of organic matter, such as human wastewater, the membrane becomes contaminated and the permeation flux of the permeated water is reduced, so that the filtration efficiency is deteriorated. As a result, frequent cleaning with chemicals is required to restore the permeate flux. (2) Since the tubular membrane or the flat membrane is of a fixed type, in order to suppress concentration polarization and increase filtration efficiency, the membrane surface flow rate of the water to be treated is 2-3 m / s, and the pressure is several kg / cm. It is necessary to supply the water to be treated into the pressure vessel with a circulation pump so that the pressure becomes 2 . Therefore, there is a drawback that an extremely large pump power is required and a pressure-resistant container is required, so that it cannot be integrated with a biochemical reaction tank. (3) Although a strainer is provided between the biochemical reaction tank and the separator to remove solids such as organic substances and then perform primary filtration, the separator is a tubular membrane having an inner diameter of 11 to 15 mm or a flow filter. A flat membrane with a channel width of 1 to 3 mm is provided inside the filtration vessel, and the flow path is narrow due to a closed system, so in the case of wastewater containing high concentrations of organic matter, the flow stagnates and the flow resistance increases significantly. Or As a result, there is a disadvantage that the filtration performance is reduced and the load of the circulating pump power is further increased. In addition, such a disadvantage that the separator is easily affected by the solid matter is another factor that makes the above-mentioned separator not integral with the biochemical reaction tank.

【0006】このように、固形物に影響され易い欠点
は、色度成分等を除去する2次濾過の場合も同様であ
る。即ち、1次透過水は凝集剤の添加により生成したフ
ロックを含有しており、このフロック濃度が所定濃度
(通常1.5%)以上になると被処理水の粘性が大きく
なる特性がある為、膜の前記流路の流れ抵抗が更に大き
くなり、濾過性能が一層低下するという欠点がある。こ
の結果、濃縮液のフロック濃度を1%程度にしか高める
ことができないので、余剰汚泥から遠心脱水されて生物
化学処理槽に戻される水量が多くなる為、循環液量が高
くなり、処理装置の処理能力が上がらないという問題が
ある。また、2次濾過での膜表面流速が2〜3m/sに
なるように被処理水を供給し、且つ、フロック濃度を1
%程度に抑えるためには透過水量の透過率(被処理水の
供給量に対する透過水量の比率)が2〜5%程度になる
ようにしなければならない。その結果、膜循環ラインの
循環量が大きくなるので、循環ポンプの運転動力費が高
くなる。更に、2次濾過においても膜の濾過性能を回復
させるために、凝集剤を溶解させる化学薬品による洗浄
操作を頻繁に行う必要がある。 (4)膜で濾過される被処理水の温度と前記透過率との
関係は、被処理水の水温が1°C上昇すると約2.5%
増加する。例えば、生物化学反応槽で処理された処理水
の水温を20〜35℃とすると、従来の有機性廃水の処
理装置の場合、生物化学反応槽と分離機との間にストレ
ーナ及びこれに付帯する配管等を設ける必要がある為、
処理装置のラインが長くなり生物化学反応槽での温かい
処理水が分離機に供給される時には水温が数度以上低下
する。この結果、水温の低下分だけ透過率が減少するの
で、分離機の濾過能力が上がりにくいという欠点があ
る。
[0006] As described above, the drawback of being easily affected by solid matter is the same in the case of secondary filtration for removing chromaticity components and the like. That is, the primary permeated water contains floc generated by the addition of a flocculant, and when the floc concentration exceeds a predetermined concentration (normally 1.5%), the viscosity of the water to be treated is increased. There is a disadvantage that the flow resistance of the flow path of the membrane is further increased, and the filtration performance is further reduced. As a result, the floc concentration of the concentrated solution can be increased only to about 1%, and the amount of water that is centrifugally dewatered from the excess sludge and returned to the biochemical treatment tank increases. There is a problem that the processing capacity does not increase. Further, the water to be treated is supplied so that the membrane surface flow rate in the secondary filtration is 2-3 m / s, and the floc concentration is 1
%, The transmittance of the amount of permeated water (the ratio of the amount of permeated water to the amount of water to be treated) must be about 2 to 5%. As a result, the circulation amount of the membrane circulation line increases, and the operating power cost of the circulation pump increases. Furthermore, in the secondary filtration, in order to recover the filtration performance of the membrane, it is necessary to frequently perform a washing operation with a chemical agent that dissolves the flocculant. (4) The relationship between the temperature of the water to be treated filtered by the membrane and the transmittance is about 2.5% when the temperature of the water to be treated rises by 1 ° C.
To increase. For example, assuming that the temperature of the treated water treated in the biochemical reaction tank is 20 to 35 ° C., in the case of a conventional organic wastewater treatment apparatus, a strainer is provided between the biochemical reaction tank and the separator and is attached thereto. Because it is necessary to provide piping,
When the processing equipment line becomes longer and warm treated water in the biochemical reactor is supplied to the separator, the water temperature drops by several degrees or more. As a result, the transmittance is reduced by an amount corresponding to the decrease in the water temperature, so that there is a disadvantage that the filtration capacity of the separator is hardly increased.

【0007】以上のように生物化学反応処理と膜濾過と
を組み合わせた処理法は少ない工程で高度処理水が得ら
れることから注目されているが、上記の欠点がある為に
満足すべきものではなかった。本発明はこのような事情
に鑑みてなされたもので、被処理水中に含まれる有機物
等の固体成分による目詰まり等のトラブルが少なく、且
つ処理能力を向上できると共に運転動力を小さくでき、
更には小型化できるので、経済性に優れた有機性廃水の
処理装置を提供することを目的とする。
As described above, the treatment method combining the biochemical reaction treatment and the membrane filtration has attracted attention because highly treated water can be obtained in a small number of steps, but is not satisfactory because of the above-mentioned drawbacks. Was. The present invention has been made in view of such circumstances, less trouble such as clogging due to solid components such as organic substances contained in the water to be treated, and can improve the processing capacity and can reduce the driving power,
Further, the present invention aims to provide an organic wastewater treatment apparatus that is economical because it can be downsized.

【0008】[0008]

【課題を解決する為の手段】本発明は、前記目的を達成
する為に、嫌気性微生物により嫌気的処理を行う嫌気性
処理室、及び好気性微生物により好気的処理を行う好気
性処理室を備え、有機性廃水が前記嫌気性処理室、前記
好気性処理室の順に流れる生物化学反応槽と、前記好気
性処理室に連通する流入口と前記嫌気性処理室に連通す
る流出口を有する濾過容器内に、円板状の複数枚の濾過
部材を所定間隔で並設した中空の集水回転軸を配設した
回転平膜分離機と、から成り、前記好気性処理室で好気
的処理された処理水を前記濾過容器に流入させ、前記濾
過容器内の処理水を前記濾過部材で膜濾過してから前記
集水回転軸を介して装置外に抜き出すと共に濾過容器内
で濃縮された濃縮液を前記嫌気性処理室に戻すことを特
徴とする。
In order to achieve the above objects, the present invention provides an anaerobic treatment chamber for performing anaerobic treatment with anaerobic microorganisms and an aerobic treatment chamber for performing aerobic treatment with aerobic microorganisms. A biochemical reaction tank in which organic wastewater flows in the order of the anaerobic treatment chamber and the aerobic treatment chamber, an inlet communicating with the aerobic treatment chamber, and an outlet communicating with the anaerobic treatment chamber. A rotating flat membrane separator provided with a hollow water collecting rotating shaft in which a plurality of disc-shaped filtering members are juxtaposed at predetermined intervals in a filtration vessel, and aerobic in the aerobic treatment chamber. The treated water was allowed to flow into the filtration container, and the treated water in the filtration container was subjected to membrane filtration by the filtration member, then extracted outside the device via the water collecting rotation shaft, and concentrated in the filtration container. The concentrate is returned to the anaerobic treatment chamber.

【0009】本発明の請求項1によれば、有機性廃水を
好気性処理室で好気性微生物により好気的処理し、その
処理水を好気性処理室から濾過容器に流入させて濾過部
材で膜濾過してから集水回転軸を介して装置外に抜き出
す。そして、濾過容器内で濃縮された濃縮液を嫌気性処
理室に戻すようにした。これにより、処理水中の嫌気性
微生物や好気性微生物は、回転平膜分離機の濾過部材で
濾過分離される。従って、微生物は処理水に同伴して装
置外に流出することなく、濃縮液と一緒に嫌気性処理室
に戻され、処理水のみが装置外に抜き出される。
According to the first aspect of the present invention, the organic wastewater is aerobically treated by the aerobic microorganisms in the aerobic treatment chamber, and the treated water is allowed to flow from the aerobic treatment chamber into the filtration vessel and to be filtered by the filtering member. After membrane filtration, it is drawn out of the apparatus via the water collecting rotary shaft. Then, the concentrated liquid concentrated in the filtration container was returned to the anaerobic treatment chamber. As a result, the anaerobic microorganisms and aerobic microorganisms in the treated water are separated by filtration through the filtration member of the rotary flat membrane separator. Therefore, the microorganisms are returned to the anaerobic treatment chamber together with the concentrated liquid without flowing out of the apparatus together with the treated water, and only the treated water is extracted outside the apparatus.

【0010】更に、本発明の請求項2によれば、好気性
処理室内に空気吹込管を設け、該空気吹込管からのエア
により好気性処理室内の水面を上昇させることにより前
記処理水を前記濾過容器内に越流させると共に、後から
越流してくる処理水で押して前記濾過容器内の濃縮液を
前記嫌気性処理室に戻すようにした。従って、好気性処
理室を好気性にするためのエアで処理水を好気性処理室
から嫌気性処理室に循環させることができるので、循環
のための例えばポンプ等の駆動源を必要としない。
According to a second aspect of the present invention, an air blowing pipe is provided in the aerobic processing chamber, and the water from the air blowing pipe is used to raise the water level in the aerobic processing chamber so that the treated water is discharged. The concentrated liquid in the filtration container was returned to the anaerobic treatment chamber by pushing with the treated water which overflowed later, while flowing into the filtration container. Accordingly, the treated water can be circulated from the aerobic treatment chamber to the anaerobic treatment chamber with air for making the aerobic treatment chamber aerobic, so that a drive source such as a pump for circulation is not required.

【0011】[0011]

【発明の実施の形態】以下添付図面に従って本発明に係
る有機性廃水の処理装置の好ましい実施の形態について
詳説する。図1に本発明の有機性廃水の処理装置の第1
の実施の形態の構成を示すように、主として生物化学反
応槽10、第1の回転平膜分離機12、凝集剤添加装置
14、2系統並列に設けられた第2の回転平膜分離機1
6、16で構成されており、以下に詳細を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of an organic wastewater treatment apparatus according to the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 shows the first embodiment of the organic wastewater treatment apparatus of the present invention.
As shown in the configuration of the embodiment, mainly, a biochemical reaction tank 10, a first rotary flat membrane separator 12, a flocculant adding device 14, and a second rotary flat membrane separator 1 provided in parallel with two systems
6 and 16, and the details will be described below.

【0012】生物化学反応槽10の上部には原水流入管
18が配設され、高濃度に有機性不純物を含有する廃水
が原水流入管18を通り生物化学反応槽10に供給され
るようになっている。また、生物化学反応槽10内は、
下側に液の連通口を有する仕切板20により嫌気性処理
室22と好気性処理室24とに区分けされていると共
に、嫌気性処理室22の底部には、衝立26が水面28
の略半分の高さに立設されている。また、嫌気性処理室
22の底部には攪拌機30、30が設けられ、一方、好
気性処理室24の底部には空気吹込管32が配設されて
いる。これにより、原水流入管18から生物化学反応槽
10に供給された有機性廃水は嫌気性処理室22におい
て緩やかに攪拌されながら嫌気性微生物により嫌気的処
理が行われ、好気性処理室24において曝気された状態
で好気性微生物による好気的処理が行われる。
A raw water inflow pipe 18 is provided at an upper portion of the biochemical reaction tank 10, and wastewater containing a high concentration of organic impurities is supplied to the biochemical reaction tank 10 through the raw water inflow pipe 18. ing. In addition, the inside of the biochemical reaction tank 10
An anaerobic treatment chamber 22 and an aerobic treatment chamber 24 are divided by a partition plate 20 having a liquid communication port on the lower side, and a partition 26 has a water surface 28 at the bottom of the anaerobic treatment chamber 22.
It is erected at about half the height of. Further, agitators 30 and 30 are provided at the bottom of the anaerobic processing chamber 22, while an air blowing pipe 32 is provided at the bottom of the aerobic processing chamber 24. As a result, the organic wastewater supplied from the raw water inlet pipe 18 to the biochemical reaction tank 10 is anaerobically treated by the anaerobic microorganisms while being gently stirred in the anaerobic treatment chamber 22, and aerated in the aerobic treatment chamber 24. The aerobic treatment by the aerobic microorganisms is performed in the state which was performed.

【0013】また、前記嫌気性処理室22の水面28近
傍に第1の回転平膜分離機12の第1濾過容器12Aが
設けられ、その一側面が前記仕切板20と兼用するよう
になっている。そして、前記仕切板20の水面34位置
には制御堰36が形成され、空気吹込管32からの吹き
込み空気により好気性処理室24の水面34が上昇する
ことによって、制御堰36を開けると好気的処理された
処理水が第1の濾過容器12A内に溢流するようになっ
ている。また、前記第1濾過容器12Aの底部には濃縮
液を生物化学反応槽10に戻す戻し配管12Bが配設さ
れ、この戻し配管12Bには戻し量を調節するバルブ1
2Cが設けられている。また、前記第1濾過容器12A
内には、第1濾過容器12A内に流入した処理水に浸漬
するように、円板状の複数枚の濾過部材12Dを所定間
隔で並設した中空の集水回転軸12Eが2本並列に配設
され、前記集水回転軸12Eは第1濾過容器12Aに支
持されている。そして、前記集水回転軸12Eの一端側
が図示しないモータに連結され、回転周速度2.2m/
sで回転するようになっている。一方、集水回転軸12
Eの他端側は1次透過水用配管38に繋がり、透過水を
第1濾過容器12A外に導くようになっている。また、
前記濾過部材12Dは、透水性の円板状ディスク表面に
分画分子量750000のポリスルフォン系の濾過膜が
纏着されている。これにより、好気性処理室24で処理
された処理水は制御堰36から第1濾過容器12A内に
溢流し、濾過部材12Dで濾過されて1次透過水が得ら
れる一方、濃縮液は後から溢流してくる処理水に押され
て戻り配管12Bを介して生物化学反応槽10に戻され
る。
A first filtration vessel 12A of the first rotary flat membrane separator 12 is provided near the water surface 28 of the anaerobic treatment chamber 22. One side of the first filtration vessel 12A also serves as the partition plate 20. I have. A control weir 36 is formed at the position of the water surface 34 of the partition plate 20, and when the control surface 36 is opened by raising the water surface 34 of the aerobic treatment chamber 24 by the air blown from the air blowing pipe 32. The target treated water overflows into the first filtration container 12A. A return pipe 12B for returning the concentrated liquid to the biochemical reaction tank 10 is provided at the bottom of the first filtration container 12A, and a valve 1 for adjusting the return amount is provided in the return pipe 12B.
2C is provided. In addition, the first filtration container 12A
Inside, two hollow water collecting rotating shafts 12E in which a plurality of disk-shaped filtering members 12D are arranged at predetermined intervals so as to be immersed in the treated water flowing into the first filtering container 12A, are arranged in parallel. The water collecting rotary shaft 12E is provided, and is supported by the first filtration container 12A. One end of the water collecting rotating shaft 12E is connected to a motor (not shown), and has a rotational peripheral speed of 2.2 m / m.
It rotates in s. On the other hand, the collecting rotary shaft 12
The other end of E is connected to the primary permeated water pipe 38 so as to guide the permeated water out of the first filtration container 12A. Also,
The filtration member 12D has a polysulfone-based filtration membrane having a molecular weight cutoff of 750,000 attached to the surface of a water-permeable disc-shaped disk. Thereby, the treated water treated in the aerobic treatment chamber 24 overflows from the control weir 36 into the first filtration container 12A and is filtered by the filtration member 12D to obtain the primary permeated water, while the concentrated liquid is removed later. It is pushed by the overflowing treated water and returned to the biochemical reaction tank 10 via the return pipe 12B.

【0014】また、1次透過水用配管38は第1の引抜
きポンプ40を介して凝集剤添加装置14の混合容器1
4Aの入口に繋がっている。この凝集剤添加装置14
は、前記混合容器14A、凝集剤添加ポンプ14B、ア
ルカリ添加ポンプ14Cとから構成され、凝集剤添加ポ
ンプ14Bから例えば塩化第2鉄の無機系凝集剤が添加
され、アルカリ添加ポンプ14Cから例えば水酸化ナト
リウム溶液のアルカリ剤が添加され、混合容器14A内
で1次透過水と混合されるようになっている。また、前
記混合容器14A出口から延びた1次透過水供給用配管
42は切換弁44で2方に分岐され、分岐された夫々の
1次透過水供給用配管42は2系統並列に設けられた第
2の回転平膜分離機16、16の第2濾過容器16Aに
繋がっている。前記第2濾過容器16Aは圧力容器で形
成され、その内部に第1の回転平膜分離機12と同様に
集水回転軸16Bに配設された濾過部材16C等のエレ
メントが収納されている。また、夫々の集水回転軸16
Bは夫々の2次透過水放流管46に繋がり、夫々の2次
透過水放流管46は弁48を介して合流した後、第2の
引抜きポンプ50を介して図示しない2次透過水貯留タ
ンクに繋がっている。また、夫々の第2濾過容器16A
の底部には濃縮液の抜出し配管52が設けられ、抜出し
配管52は弁54を介して図示しない余剰汚泥脱水装置
に繋がっている。
The primary permeated water pipe 38 is connected to the mixing vessel 1 of the flocculant adding device 14 through a first drawing pump 40.
It is connected to the entrance of 4A. This coagulant adding device 14
Is composed of the mixing vessel 14A, the coagulant addition pump 14B, and the alkali addition pump 14C. An inorganic coagulant such as ferric chloride is added from the coagulant addition pump 14B. An alkali agent of a sodium solution is added and mixed with the primary permeated water in the mixing vessel 14A. The primary permeated water supply pipe 42 extending from the outlet of the mixing vessel 14A is branched in two directions by a switching valve 44, and each of the branched primary permeated water supply pipes 42 is provided in parallel with two systems. The second rotary flat membrane separators 16 are connected to a second filtration container 16A. The second filtration vessel 16A is formed of a pressure vessel, and contains therein an element such as a filtration member 16C disposed on a water collection rotating shaft 16B, similarly to the first rotary flat membrane separator 12. In addition, each water collecting rotary shaft 16
B is connected to each of the secondary permeate discharge pipes 46, and the respective secondary permeate discharge pipes 46 join via a valve 48, and then are connected to a secondary permeate storage tank (not shown) via a second drawing pump 50. Is connected to. In addition, each second filtration container 16A
Is provided at the bottom of the pipe, and the drain pipe 52 is connected to an excess sludge dewatering device (not shown) via a valve 54.

【0015】また、前記第1及び第2の引抜きポンプ4
0、50にはON−OFF手段が設けられ、前記第1及
び第2の回転平膜分離機12、14の透過水の引抜きを
間欠的に行うようになっている。次に、上記の如く構成
された本発明の有機性廃水の処理装置の作用について説
明する。
Further, the first and second drawing pumps 4
ON and OFF means are provided at 0 and 50, and the first and second rotary flat membrane separators 12 and 14 are adapted to intermittently withdraw permeated water. Next, the operation of the organic wastewater treatment apparatus of the present invention configured as described above will be described.

【0016】先ず、本発明の有機性廃水の処理装置に使
用した回転平膜分離機の作用について説明する。図2に
示すように第1の回転平膜分離機12の例で説明する
と、円板状の複数枚の濾過部材12Dを所定間隔で並設
した中空の集水回転軸12Eが複数並列に設けられてい
ると共に、夫々の濾過部材12D同志が互いに交差する
構造にして、隣接する濾過部材12D同志が交差した状
態で回転するようにした。これにより、濾過部材12D
表面に急速な液の流れと乱流とが発生して被処理水の濃
度分極が抑制されるので、従来の分離機のように膜表面
流速を与える為の循環ポンプやその配管系統を必要とせ
ず、濾過部材12D内部を第1の引抜きポンプ40で負
圧にするだけで、被処理水は濾過部材12Dで効率的に
濾過することができる。また、乱流の発生により濾過部
材12Dに付着した汚れを効果的に除去されると共に、
濾過部材12D間に入り込む固形物を強制的に排除する
ことができるので、固形物による目詰まり等のトラブル
が少なくなり長時間にわたって透過流束の低下を抑制さ
せることができる。
First, the operation of the rotary flat membrane separator used in the organic wastewater treatment apparatus of the present invention will be described. Referring to the example of the first rotary flat membrane separator 12 as shown in FIG. 2, a plurality of hollow water collecting rotary shafts 12E in which a plurality of disk-shaped filtration members 12D are arranged at predetermined intervals are provided in parallel. In addition, each of the filtering members 12D is configured to intersect with each other so that the adjacent filtering members 12D rotate while intersecting with each other. Thereby, the filtering member 12D
Since a rapid liquid flow and turbulent flow occur on the surface and the concentration polarization of the water to be treated is suppressed, a circulating pump and a piping system for giving the membrane surface flow velocity like a conventional separator are required. Instead, the water to be treated can be efficiently filtered by the filter member 12D only by making the inside of the filter member 12D negative pressure by the first drawing pump 40. In addition, dirt attached to the filtering member 12D due to the generation of turbulence is effectively removed, and
Since solids entering between the filtering members 12D can be forcibly removed, troubles such as clogging by the solids can be reduced, and a decrease in permeation flux can be suppressed for a long time.

【0017】そして、本発明の有機性廃水の処理装置と
して、従来の管状膜や平膜を使用した分離機のように膜
表面流速や加圧の為の循環ポンプや加圧容器を必要とせ
ず、且つ固形物による目詰まり等のトラブルが少ない回
転平膜分離機を採用したことにより、本発明の処理装置
は次の作用を生ずる。即ち、原水流入管18から約25
0m3 容量の生物化学反応槽10に供給された有機性廃
水は、先ず嫌気性処理室22で嫌気性微生物により嫌気
的処理される。続いて好気性処理室24により好気性微
生物により好気的処理された処理水は、空気吹込管32
からの吹き込み空気により好気性処理室24の水面が上
昇することによって、制御堰36を通って第1の回転平
膜分離機12の第1濾過容器12Aに供給される。第1
濾過容器12Aに供給された処理水は、回転する濾過部
材12Dにより濾過処理されて1次透過水が得られる一
方、濃縮液は後から溢流してくる処理水に押されて戻り
配管12Bを介して生物化学反応槽10に戻される。こ
のように、第1の回転平膜分離機12を生物化学反応槽
10内に設け、生物化学反応槽10内の処理水の流動に
よって前記処理水が前記第1濾過容器12Aに流入する
と共に第1濾過容器12A内で濃縮された濃縮液が生物
化学反応槽10に流出するようにしたので、処理装置全
体を小型化できると共に、従来の処理装置のように循環
ポンプを必要としないので運転動力を低減させることが
できる。また、生物化学反応槽10での反応熱による温
かい水温のまま処理水を濾過できるので、濾過効率を上
げることができる。
The organic wastewater treatment apparatus of the present invention does not require a circulating pump or a pressurized vessel for the membrane surface flow rate or pressurization unlike a conventional separator using a tubular membrane or a flat membrane. The use of the rotary flat membrane separator which causes less troubles such as clogging by solids causes the processing apparatus of the present invention to provide the following effects. That is, about 25 from the raw water inflow pipe 18
The organic wastewater supplied to the biochemical reaction tank 10 having a capacity of 0 m 3 is first anaerobically treated by anaerobic microorganisms in the anaerobic treatment chamber 22. Subsequently, the treated water aerobically treated by the aerobic microorganisms in the aerobic treatment chamber 24 is supplied to the air blowing pipe 32.
When the water level of the aerobic treatment chamber 24 rises due to the air blown from the tank, the water is supplied to the first filtration vessel 12A of the first rotary flat membrane separator 12 through the control weir 36. First
The treated water supplied to the filtration container 12A is filtered by the rotating filtration member 12D to obtain primary permeated water, while the concentrated liquid is pushed by the treated water overflowing later and is returned via the return pipe 12B. And returned to the biochemical reactor 10. As described above, the first rotary flat membrane separator 12 is provided in the biochemical reaction tank 10, and the treated water flows into the first filtration container 12 </ b> A by the flow of the treated water in the biochemical reaction tank 10. 1. Since the concentrated liquid concentrated in the filtration vessel 12A is caused to flow out to the biochemical reaction tank 10, the entire processing apparatus can be reduced in size, and the operating power is not required because a circulation pump is not required unlike the conventional processing apparatus. Can be reduced. Further, since the treated water can be filtered while keeping the warm water temperature due to the heat of reaction in the biochemical reaction tank 10, the filtration efficiency can be increased.

【0018】次に、第1の回転平膜分離機12で濾過さ
れた1次透過水は、第1の引抜きポンプ40で引き抜か
れた後、1次透過水用配管38を通って混合容器14A
に供給され、この混合容器14Aで凝集剤添加ポンプ1
4Bから塩化第2鉄の無機系凝集剤が添加されると共
に、アルカリ添加ポンプ14CからPH調整の為の水酸
化ナトリウム溶液が添加された後、直ちに第2の回転平
膜分離機16に供給される。即ち、凝集剤及び水酸化ナ
トリウムの添加された1次透過水は、第2の回転平膜分
離機の濾過部材が回転することにより充分に攪拌混合さ
れるので、混合容器14Aで長い滞留時間を取る必要が
ない。これにより、1次透過水の温かい水温を維持した
まま濾過できるので、2次濾過処理での濾過効率を上げ
ることができる。
Next, the primary permeated water filtered by the first rotary flat membrane separator 12 is drawn by a first drawing pump 40, and then passes through a primary permeated water pipe 38 to mix the mixing vessel 14A.
And the mixing agent 14A is supplied to the mixing vessel 14A.
After the addition of the ferric chloride inorganic coagulant from 4B and the addition of sodium hydroxide solution for pH adjustment from the alkali addition pump 14C, it is immediately supplied to the second rotary flat membrane separator 16. You. That is, the primary permeated water to which the coagulant and sodium hydroxide are added is sufficiently stirred and mixed by the rotation of the filter member of the second rotary flat membrane separator, so that a long residence time in the mixing vessel 14A is obtained. No need to take. As a result, the filtration can be performed while maintaining the warm water temperature of the primary permeated water, so that the filtration efficiency in the secondary filtration treatment can be increased.

【0019】次に、凝集剤及び水酸化ナトリウムが添加
された1次透過水は、第2の回転平膜分離機16により
濾過された2次透過水が得られると共に、濃縮液は、余
剰汚泥として抜出し配管52から引き抜かれる。この
時、本発明の有機性廃水の処理装置では、第2の回転平
膜分離機16、16を2系統並列に設け、切換弁44で
切り換えて交互に使用するようにしたので、濃縮液を粘
性が高まる濃縮限界まで濃縮させることができる。これ
により、濃縮液の粘性が高まる濃縮限界までフロック濃
度を高めることができるので、濃縮液の濃縮倍率を上げ
ることができ、余剰汚泥の水分濃度を低下させることが
できる。従って、余剰汚泥から遠心脱水されて生物化学
反応槽10に戻される循環水量を少なくすることができ
るので、処理装置の処理能力を上げることができる。
Next, as the primary permeated water to which the coagulant and sodium hydroxide are added, the secondary permeated water filtered by the second rotary flat membrane separator 16 is obtained, and the concentrated liquid is formed of excess sludge. And is withdrawn from the withdrawal pipe 52. At this time, in the organic wastewater treatment apparatus of the present invention, the second rotary flat membrane separators 16, 16 are provided in parallel in two systems, and are switched and used alternately by the switching valve 44. It can be concentrated to the concentration limit where viscosity increases. As a result, the floc concentration can be increased to the concentration limit at which the viscosity of the concentrated solution increases, so that the concentration ratio of the concentrated solution can be increased, and the water concentration of the excess sludge can be reduced. Therefore, the amount of circulating water that is centrifugally dehydrated from the excess sludge and returned to the biochemical reaction tank 10 can be reduced, so that the processing capacity of the processing apparatus can be increased.

【0020】また、本発明の有機性廃水の処理装置は、
前記第1及び第2の引抜きポンプ40、50にON−O
FF手段を設け、前記第1及び第2の回転平膜分離機1
2、16の透過水の引抜きを間欠的に行うようにしたの
で、引抜きポンプをOFFにした時に濾過部材12D、
16C内の負圧が解除され、濾過部材12D、16C内
の透過水が濾過部材12D、16C外部に滲み出るの
で、膜を逆洗することができる。従って、膜面に付着し
た汚れを定期的に且つ自動的に除去することができるの
で、透過流束が一層低下しにくくすることができる。
Further, the organic wastewater treatment apparatus of the present invention comprises:
ON-O is applied to the first and second drawing pumps 40 and 50.
The first and second rotary flat membrane separators 1 provided with FF means;
Since the extraction of the permeated water of 2, 16 was performed intermittently, when the extraction pump was turned off, the filtration member 12D,
Since the negative pressure in 16C is released and the permeated water in filter members 12D and 16C seeps out of filter members 12D and 16C, the membrane can be backwashed. Therefore, the dirt adhering to the membrane surface can be periodically and automatically removed, so that the permeation flux can be further reduced.

【0021】以上のように、本発明の有機性廃水の処理
装置は、従来の有機性廃水の処理装置に比べ処理能力を
著しく向上させることができると共に、運転動力を低減
でき、且つ装置をコンパクト化することができる。ちな
みに、本発明の有機性廃水の処理装置を用いた例とし
て、制御堰36を通る処理水は平均SS濃度10000
ppmで一日当り約150トンあり、1次透過水50ト
ンが得られた。また、1次濃縮液は平均SS濃度150
00ppmで一日当り100トンであった。この結果か
ら明らかなように、透過率(被処理水の供給量に対する
透過水量の比率)は、33%となり極めて高い透過率を
得ることができると共に、濃縮液は1.5倍の濃縮倍率
を得ることができた。そして、生物化学反応槽10で処
理した処理水をストレーナを通さずに第1の回転平膜分
離機12に直接供給したが、固形物に基づくトラブルは
発生しなかった。
As described above, the organic wastewater treatment apparatus of the present invention can significantly improve the treatment capacity as compared with the conventional organic wastewater treatment apparatus, can reduce the driving power, and can reduce the size of the apparatus. Can be Incidentally, as an example using the organic wastewater treatment apparatus of the present invention, the treated water passing through the control weir 36 has an average SS concentration of 10,000.
There were about 150 tons per day in ppm and 50 tons of primary permeate was obtained. The primary concentrated liquid has an average SS concentration of 150
It was 100 tons per day at 00 ppm. As is clear from this result, the transmittance (the ratio of the amount of permeated water to the supply amount of the water to be treated) is 33%, and a very high transmittance can be obtained. I got it. Then, the treated water treated in the biochemical reaction tank 10 was directly supplied to the first rotary flat membrane separator 12 without passing through the strainer, but no trouble based on the solid matter occurred.

【0022】また、2次透過水は一日当り49.25ト
ン得ることができた。このことから分かるように、1次
透過水を略全量濾過することができるので、濃縮液の濃
縮倍率が高くなり余剰汚泥中の水分を極めて低水分にす
ることができた。また、2次透過水の水質(SS、CO
D、TOC、T−N、色度等)は、従来の管状膜を使用
した分離機を具備した有機性廃水の処理装置と同等であ
った。しかも、本発明の有機性廃水の処理装置の生物化
学反応槽10を除く部分の運転動力は、従来の有機性廃
水の処理装置の生物化学反応槽10を除く部分の運転動
力に比べ約30〜35%と半分以下にすることができ
た。更に、第1の回転平膜分離機12及び第2の回転平
膜分離機16ともに膜の化学洗浄回数は従来の管状膜を
使用した分離機に比べ十分の1以下に抑えることができ
た。
Further, 49.25 tons of secondary permeated water could be obtained per day. As can be seen from this, since almost all of the primary permeated water can be filtered, the concentration ratio of the concentrated liquid was increased, and the water content in the excess sludge could be made extremely low. In addition, the quality of the secondary permeate (SS, CO
D, TOC, T-N, chromaticity, etc.) were equivalent to those of a conventional organic wastewater treatment apparatus equipped with a separator using a tubular membrane. Moreover, the operating power of the portion of the organic wastewater treatment apparatus of the present invention except for the biochemical reaction tank 10 is about 30 to 30 times larger than that of the conventional organic wastewater treatment apparatus except for the biochemical reaction tank 10. It was 35%, which was less than half. Further, the number of times of chemical cleaning of the membranes of both the first rotary flat membrane separator 12 and the second rotary flat membrane separator 16 could be suppressed to 1 or less, which is sufficiently smaller than that of the conventional separator using a tubular membrane.

【0023】次に、本発明の有機性廃水の処理方法及び
その装置の第2の実施の形態を説明する。尚、第1の実
施の形態と同じ部材には同符号を付して説明すると共
に、第1の実施の形態と重複する部分の説明は省略す
る。図2はビルから発生する廃水を処理して再生水を得
る装置の断面図を示している。生物化学反応槽10が地
下の基台55上に設置され、第1の回転平膜分離機12
は生物化学処理槽10の側面に取り付けられた架台56
上に設置されている。また、第1の回転平膜分離機12
での濃縮液の一部は濃縮液抜出しポンプ58で生物化学
処理槽10に戻り、一部は弁60から余剰汚泥として系
外に除かれるようになっている。また、第1の引抜きポ
ンプ40で引き抜かれた1次透過水は混合容器14Aで
凝集剤添加ポンプ14Bから塩化第2鉄の無機系凝集剤
が添加されると共に、アルカリ添加ポンプ14CからP
H調整の為の水酸化ナトリウム溶液が添加されて攪拌機
62で短時間攪拌された後、ヘッド差を利用して第2の
回転平膜分離機16に供給される。第2の回転平膜分離
機16に供給された1次透過水は、濾過されて2次透過
水が得られる。また、SS濃度が所定の値に達したとこ
ろで、濃縮液は、余剰汚泥として抜出し配管52から引
き抜かれる。これにより、第2の実施の形態の場合も、
第1の実施の形態と同様の効果を得ることができると共
に、第2の実施の形態の処理装置の分離機部分の機器占
有面積は、従来の平膜を使用した分離機に比べ1/2以
下にすることができ、狭隘なビルの地下に設置するのに
好適である。ちなみに、ヘッド差を利用して第2の回転
平膜分離機16に供給することにより、濾過膜の外面か
ら水柱分に相当する圧力が加わるので、第2の引抜きポ
ンプ50の吸引圧と相まって濾過効率が極めて良くなる
ので、濃縮された濃縮液のSS濃度は30000ppm
以上にまで濃縮させることができ、濃縮倍率としては1
00倍以上にすることができた。尚、濃縮液をすべて引
き抜いた後に1次透過水を満たし、濾過部材16Cを高
速回転すると、濾過膜面の汚れを効果的に除くことがで
きる。
Next, a second embodiment of the method and apparatus for treating organic wastewater of the present invention will be described. The same members as those in the first embodiment are denoted by the same reference numerals, and the description of the same parts as those in the first embodiment will be omitted. FIG. 2 is a sectional view of an apparatus for treating wastewater generated from a building to obtain reclaimed water. The biochemical reactor 10 is installed on an underground base 55, and the first rotary flat membrane separator 12
Is a gantry 56 attached to the side of the biochemical treatment tank 10.
It is installed above. In addition, the first rotary flat membrane separator 12
A part of the concentrated liquid is returned to the biochemical treatment tank 10 by the concentrated liquid discharge pump 58, and a part is removed from the system as excess sludge from the valve 60. The primary permeated water extracted by the first extraction pump 40 is mixed with the ferric chloride inorganic coagulant from the coagulant addition pump 14B in the mixing vessel 14A and the P-water is added from the alkali addition pump 14C.
After a sodium hydroxide solution for adjusting H is added and stirred for a short time by the stirrer 62, the solution is supplied to the second rotary flat membrane separator 16 using a head difference. The primary permeate supplied to the second rotary flat membrane separator 16 is filtered to obtain a secondary permeate. When the SS concentration reaches a predetermined value, the concentrated liquid is extracted from the extraction pipe 52 as excess sludge. Thereby, also in the case of the second embodiment,
The same effect as that of the first embodiment can be obtained, and the equipment occupied area of the separator part of the processing apparatus of the second embodiment is one half that of the conventional separator using a flat membrane. It can be as follows, and is suitable for installation under a narrow building. By the way, by supplying to the second rotary flat membrane separator 16 by utilizing the head difference, a pressure corresponding to the amount of water column is applied from the outer surface of the filtration membrane. Since the efficiency is extremely improved, the SS concentration of the concentrated concentrate is 30,000 ppm.
It can be concentrated to the above, and the concentration ratio is 1
It was more than 00 times. When the primary permeated water is filled after all the concentrated liquid is drawn out and the filtration member 16C is rotated at a high speed, the contamination on the filtration membrane surface can be effectively removed.

【0024】[0024]

【発明の効果】以上説明したように、本発明の有機性廃
水の処理装置によれば、従来の有機性廃水の処理装置に
比べ処理能力を向上させることができると共に、従来の
ように循環ポンプを必要としないので、運転動力を低減
できる。また、装置外に抜き出される処理水に微生物が
同伴されることなく、微生物は嫌気性処理室に戻され
る。
As described above, according to the organic wastewater treatment apparatus of the present invention, the treatment capacity can be improved as compared with the conventional organic wastewater treatment apparatus, and the circulating pump as in the prior art can be improved. , The driving power can be reduced. The microorganisms are returned to the anaerobic treatment chamber without the microorganisms being entrained in the treated water drawn out of the apparatus.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る有機性廃水の処理装置の第1の実
施の形態を説明する構成図
FIG. 1 is a configuration diagram illustrating a first embodiment of an organic wastewater treatment apparatus according to the present invention.

【図2】本発明に係る有機性廃水の処理装置に使用した
回転平膜分離機の要部斜視図
FIG. 2 is a perspective view of a main part of a rotary flat membrane separator used in an organic wastewater treatment apparatus according to the present invention.

【図3】本発明に係る有機性廃水の処理装置の第2の実
施の形態を説明する断面図
FIG. 3 is a cross-sectional view illustrating a second embodiment of the organic wastewater treatment apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

10…生物化学反応槽 12…第1の回転平膜分離機 12A…第1の濾過容器 12D、16C…濾過部材 12E、16C…集水回転軸 14…凝集剤添加装置 14A…混合容器 14B…凝集剤添加ポンプ 14C…アルカリ添加ポンプ 16…第2の回転平膜分離機 18…原水流入管 40…第1の引抜きポンプ 44…切換弁 50…第2の引抜きポンプ DESCRIPTION OF SYMBOLS 10 ... Biochemical reaction tank 12 ... First rotary flat membrane separator 12A ... First filtration container 12D, 16C ... Filter member 12E, 16C ... Water collecting rotary shaft 14 ... Coagulant addition device 14A ... Mixing container 14B ... Coagulation Agent addition pump 14C Alkali addition pump 16 Second rotary flat membrane separator 18 Raw water inflow pipe 40 First draw pump 44 Switching valve 50 Second draw pump

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C02F 1/52 ZAB C02F 1/52 ZABE 9/00 501 9/00 501F 502 502E 502P 503 503C 503D 504 504A 504E (72)発明者 大熊 直紀 東京都千代田区内神田1丁目1番14号 日 立プラント建設株式会社内 (72)発明者 青井 透 東京都千代田区神田錦町2丁目1番地 住 友重機械工業株式会社神田事務所内 (72)発明者 元村 勝公 東京都千代田区神田錦町2丁目1番地 住 友重機械工業株式会社神田事務所内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI C02F 1/52 ZAB C02F 1/52 ZABE 9/00 501 9/00 501F 502 502E 502P 503 503C 503D 504 504A 504E (72) Inventor Naoki Okuma 1-1-14 Uchikanda, Chiyoda-ku, Tokyo Hitachi Plant Construction Co., Ltd. (72) Inventor Toru Aoi 2-1-1 Kandanishikicho, Chiyoda-ku, Tokyo Sumitomo Heavy Industries Kanda Office (72 Inventor Katsuyuki Motomura 2-1-1 Kanda Nishikicho, Chiyoda-ku, Tokyo Sumitomo Tomo Heavy Industries Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】嫌気性微生物により嫌気的処理を行う嫌気
性処理室、及び好気性微生物により好気的処理を行う好
気性処理室を備え、有機性廃水が前記嫌気性処理室、前
記好気性処理室の順に流れる生物化学反応槽と、 前記好気性処理室に連通する流入口と前記嫌気性処理室
に連通する流出口を有する濾過容器内に、円板状の複数
枚の濾過部材を所定間隔で並設した中空の集水回転軸を
配設した回転平膜分離機と、 から成り、前記好気性処理室で好気的処理された処理水
を前記濾過容器に流入させ、前記濾過容器内の処理水を
前記濾過部材で膜濾過してから前記集水回転軸を介して
装置外に抜き出すと共に濾過容器内で濃縮された濃縮液
を前記嫌気性処理室に戻すことを特徴とする有機性廃水
の処理装置。
An anaerobic treatment chamber for performing anaerobic treatment with anaerobic microorganisms, and an aerobic treatment chamber for performing aerobic treatment with aerobic microorganisms, wherein organic wastewater is supplied to the anaerobic treatment chamber, A biochemical reaction tank flowing in the order of the processing chamber, a plurality of disc-shaped filtering members are provided in a filtering container having an inlet communicating with the aerobic processing chamber and an outlet communicating with the anaerobic processing chamber. A rotating flat membrane separator provided with hollow water collecting rotary shafts arranged side by side at intervals; and a treatment water aerobically treated in the aerobic treatment chamber flows into the filtration vessel, and the filtration vessel The organic water is characterized in that the treated water in the inside is subjected to membrane filtration by the filtration member, and then is drawn out of the apparatus through the water collecting rotation shaft, and the concentrated liquid concentrated in the filtration vessel is returned to the anaerobic treatment chamber. Wastewater treatment equipment.
【請求項2】前記好気性処理室内に空気吹込管を設け、
該空気吹込管からのエアにより好気性処理室内の水面を
上昇させることにより、前記処理水を前記流入口を介し
て前記濾過容器内に越流させると共に、後から越流して
くる処理水で押して前記濾過容器内の濃縮液を前記流出
口から前記嫌気性処理室に戻すことを特徴とする請求項
1の有機性廃水の処理装置。
2. An air blowing pipe is provided in the aerobic processing chamber,
By raising the water surface in the aerobic treatment chamber by the air from the air blowing pipe, the treated water is caused to overflow into the filtration container through the inflow port, and is pushed by the treated water that overflows later. 2. The organic wastewater treatment apparatus according to claim 1, wherein the concentrated liquid in the filtration container is returned from the outlet to the anaerobic treatment chamber.
JP10325083A 1993-01-21 1998-11-16 Organic wastewater treatment equipment Pending JPH11216490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10325083A JPH11216490A (en) 1993-01-21 1998-11-16 Organic wastewater treatment equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5008417A JP2916636B2 (en) 1993-01-21 1993-01-21 Method and apparatus for treating organic wastewater
JP10325083A JPH11216490A (en) 1993-01-21 1998-11-16 Organic wastewater treatment equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP5008417A Division JP2916636B2 (en) 1993-01-21 1993-01-21 Method and apparatus for treating organic wastewater

Publications (1)

Publication Number Publication Date
JPH11216490A true JPH11216490A (en) 1999-08-10

Family

ID=11692557

Family Applications (2)

Application Number Title Priority Date Filing Date
JP5008417A Expired - Lifetime JP2916636B2 (en) 1993-01-21 1993-01-21 Method and apparatus for treating organic wastewater
JP10325083A Pending JPH11216490A (en) 1993-01-21 1998-11-16 Organic wastewater treatment equipment

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP5008417A Expired - Lifetime JP2916636B2 (en) 1993-01-21 1993-01-21 Method and apparatus for treating organic wastewater

Country Status (1)

Country Link
JP (2) JP2916636B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1236501A1 (en) * 2001-02-26 2002-09-04 Hitachi Plant Engineering &amp; Construction Co., Ltd. Rotary flat membrane separation apparatus
US6596164B2 (en) 2000-03-27 2003-07-22 Hitachi Plan Engineering & Construction Co., Ltd. Rotary flat membrane separation apparatus
WO2011050825A1 (en) * 2009-11-02 2011-05-05 Kmpt Ag Device for separating fluids

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3565083B2 (en) * 1999-03-31 2004-09-15 Jfeエンジニアリング株式会社 Method and apparatus for treating human wastewater
JP6053658B2 (en) * 2013-10-22 2016-12-27 三菱化工機株式会社 Marine exhaust gas purification apparatus and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596164B2 (en) 2000-03-27 2003-07-22 Hitachi Plan Engineering & Construction Co., Ltd. Rotary flat membrane separation apparatus
EP1236501A1 (en) * 2001-02-26 2002-09-04 Hitachi Plant Engineering &amp; Construction Co., Ltd. Rotary flat membrane separation apparatus
WO2011050825A1 (en) * 2009-11-02 2011-05-05 Kmpt Ag Device for separating fluids

Also Published As

Publication number Publication date
JPH06210298A (en) 1994-08-02
JP2916636B2 (en) 1999-07-05

Similar Documents

Publication Publication Date Title
CN101343132A (en) Treatment method for wastewater of polyvinyl chloride (PVC) anticentripetal mother solution
CN101269903B (en) Further advanced treatment technique and apparatus for sewage water of oil refining
CN105555717A (en) Apparatus and method for treating organic-containing wastewater
CN101215052A (en) Technique and device for treating sewage to reclaimed water
CN104129887A (en) Reclaimed water recycling system based on membrane bioreactor
JP2916636B2 (en) Method and apparatus for treating organic wastewater
JP2001276892A (en) Drain treatment device
CN109437455A (en) The processing equipment and method of secondary clarifier effluent Treated sewage reusing
JP2722108B2 (en) Sewage treatment equipment with hollow fiber membrane bundle
CN201512441U (en) Equipment for treating sewage into reclaimed water
CN206828286U (en) A kind of processing for mixing waste emulsified mixture, retracting device
JP3931279B2 (en) Water purification equipment for suspended solids
JP5269331B2 (en) Waste water treatment equipment
CN206033470U (en) High salt sewage treatment system
JP2928966B2 (en) Coagulation filtration device
JP4549000B2 (en) Water purification equipment for suspended solids
JP3697529B2 (en) Membrane-based wastewater treatment method and water purification apparatus
JPH1119696A (en) Treatment of sludge waste water and water purifier
JP3951373B2 (en) Waste water treatment apparatus and method, water purification treatment facility
CN203960013U (en) A kind of intermediate water reuse system based on membrane bioreactor
JP2514930B2 (en) Membrane separation device with backwash ejector
CN220999464U (en) Waste water tubular membrane treatment device
KR20200087397A (en) Treatment system of waste water using oxidation preprocess
CN217297431U (en) MBR membrane reaction unit with eliminate foam function
JPH0478426A (en) Membrane separating method and device for liquid