JPH11210477A - Intake air temperature controlling device for cylinder injection type engine incorporating supercharger - Google Patents
Intake air temperature controlling device for cylinder injection type engine incorporating superchargerInfo
- Publication number
- JPH11210477A JPH11210477A JP10016178A JP1617898A JPH11210477A JP H11210477 A JPH11210477 A JP H11210477A JP 10016178 A JP10016178 A JP 10016178A JP 1617898 A JP1617898 A JP 1617898A JP H11210477 A JPH11210477 A JP H11210477A
- Authority
- JP
- Japan
- Prior art keywords
- combustion
- intercooler
- intake air
- intake
- supercharger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Supercharger (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、燃焼形態に応じて
燃焼室へ供給する吸入空気の温度を可変設定する過給機
付き筒内噴射エンジンの吸気温度制御装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake air temperature control apparatus for a direct injection engine with a supercharger, which variably sets the temperature of intake air supplied to a combustion chamber according to a combustion mode.
【0002】[0002]
【従来の技術】周知のように、ガソリン用筒内噴射エン
ジンの燃焼は、燃料を燃焼室内に直接噴射するため、吸
気温度の影響を強く受けやすい。例えば、燃焼改善率の
高い成層燃焼では、吸気温度を高く設定することで、圧
縮空気温度が高くなり、燃料霧化が促進されるため、燃
焼安定性が良好となり、HC,COの排出量が低減され
る。一方、パワーが要求される運転領域では、燃焼形態
が均一燃焼となるため、吸入空気温度を下げることによ
り充填効率を高くし、高いエンジン出力特性を得る。2. Description of the Related Art As is well known, the combustion of a gasoline direct injection engine is easily affected by the intake air temperature because fuel is directly injected into a combustion chamber. For example, in stratified charge combustion with a high combustion improvement rate, setting the intake air temperature high increases the compressed air temperature and promotes fuel atomization, thereby improving combustion stability and reducing HC and CO emissions. Reduced. On the other hand, in the operation region where power is required, since the combustion mode is uniform combustion, the charging efficiency is increased by lowering the intake air temperature, and high engine output characteristics are obtained.
【0003】尚、筒内噴射エンジンの燃焼形態を成層燃
焼と均一燃焼との間で状態に応じて切換える技術につい
ては、本出願人が先に提出した、特開平7−16692
7号公報に詳述されているため、ここでの説明は省略す
る。A technique for switching the combustion mode of a direct injection engine between stratified combustion and uniform combustion in accordance with the state is disclosed in Japanese Patent Application Laid-Open No. Hei 7-16692, filed earlier by the present applicant.
Since it is described in detail in Japanese Patent Publication No. 7, the description here is omitted.
【0004】[0004]
【発明が解決しようとする課題】しかし、筒内噴射エン
ジンに過給機が併設されているものでは、均一燃焼時の
吸気温度を下げるためにインタークーラを併設している
ものが多く、成層燃焼であっても、上記インタークーラ
により吸入空気の温度が下げられてしまい、燃焼改善率
をより高めることができない。However, many of the direct injection engines provided with a supercharger also have an intercooler for lowering the intake air temperature during uniform combustion. However, the temperature of the intake air is lowered by the intercooler, and the combustion improvement rate cannot be further increased.
【0005】特に、上記インタークーラは暖機運転の際
の吸入空気の温度をも下げてしまうため、暖機運転時に
は成層燃焼の運転可能領域が狭くなり、燃焼改善率が低
くなるばかりか、燃費が悪くなってしまう。In particular, since the intercooler also lowers the temperature of intake air during warm-up operation, the operable area of stratified combustion is narrowed during warm-up operation, so that not only the combustion improvement rate is reduced, but also fuel efficiency is reduced. Gets worse.
【0006】本発明は、上記事情に鑑み、成層燃焼によ
る運転可能領域が広くなり、燃費が改善されるばかりで
なく、燃焼改善率をより高めることのできる過給機付き
筒内噴射エンジンの吸気温度制御装置を提供することを
目的とする。In view of the above circumstances, the present invention has a wide operable region by stratified combustion, which not only improves the fuel efficiency, but also increases the combustion improvement rate of the in-cylinder injection engine with a supercharger. It is an object to provide a temperature control device.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するため
本発明による第1の過給機付き筒内噴射エンジンの吸気
温度制御装置は、吸気通路に過給機とインタークーラと
を備え、又インジェクタが燃焼室に直接臨まされている
ものにおいて、上記吸気通路に上記インタークーラの上
流と下流とを連通するバイパス通路が接続されていると
共に、燃焼形態が成層燃焼時には吸入空気を上記バイパ
ス通路へ導き、均一燃焼時には上記吸入空気を上記イン
タークーラ方向へ導く流路切換え弁を設けたことを特徴
とする。According to a first aspect of the present invention, there is provided a first direct-injection engine with a supercharger having a supercharger and an intercooler in an intake passage. When the injector is directly facing the combustion chamber, a bypass passage communicating the upstream and downstream of the intercooler is connected to the intake passage. A flow path switching valve is provided for guiding the intake air toward the intercooler during uniform combustion.
【0008】第2の過給機付き筒内噴射エンジンの吸気
温度制御装置は、吸気通路に過給機とインタークーラと
を備え、又インジェクタが燃焼室に直接臨まされている
ものにおいて、上記吸気通路に上記インタークーラの上
流と下流とを連通するバイパス通路が接続されていると
共に、燃焼形態が成層燃焼で且つ暖機運転が完了してい
るときには吸入空気を上記バイパス通路へ導き、均一燃
焼時或いは暖機運転中は上記吸入空気を上記インターク
ーラ方向へ導く流路切換え弁を設けたことを特徴とす
る。[0008] A second intake temperature control apparatus for a direct injection engine with a supercharger includes a supercharger and an intercooler in an intake passage, and an injector directly facing a combustion chamber. A bypass passage connecting the upstream and downstream of the intercooler is connected to the passage, and when the combustion mode is stratified combustion and the warm-up operation is completed, the intake air is guided to the bypass passage so as to perform uniform combustion. Alternatively, a flow path switching valve for guiding the intake air toward the intercooler during the warm-up operation is provided.
【0009】第1の過給機付き筒内噴射エンジンの吸気
温度制御装置では、燃焼形態が成層燃焼時には、流路切
換え弁によりインタークーラをバイパスするバイパス通
路を通して吸入空気を燃焼室へ導き、又、燃焼形態が均
一燃焼時には、上記流路切換え弁により上記インターク
ーラを通過した後の吸入空気を燃焼室へ導く。In the first intake temperature control apparatus for a direct injection engine with a supercharger, when the combustion mode is stratified combustion, the intake air is guided to the combustion chamber through a bypass passage bypassing an intercooler by a flow path switching valve. When the combustion mode is uniform, the intake air that has passed through the intercooler is guided to the combustion chamber by the flow path switching valve.
【0010】第2の過給機付き筒内噴射エンジンの吸気
温度制御装置では、燃焼形態が成層燃焼時、或いは暖機
運転中のときは、流路切換え弁によりインタークーラを
バイパスするバイパス通路を通して吸入空気を燃焼室へ
導き、又、暖機運転が完了し、且つ燃焼形態が均一燃焼
のときは、上記流路切換え弁により上記インタークーラ
を通過した後の吸入空気を燃焼室へ導く。In the second intake air temperature control apparatus for a direct injection engine with a supercharger, when the combustion mode is a stratified charge combustion or a warm-up operation, the flow passage switching valve passes through a bypass passage that bypasses an intercooler. The intake air is guided to the combustion chamber, and when the warm-up operation is completed and the combustion mode is uniform combustion, the intake air after passing through the intercooler is guided to the combustion chamber by the flow path switching valve.
【0011】[0011]
【発明の実施の形態】以下、図面に基づいて本発明の一
実施の形態を説明する。図1〜図5に本発明の第1実施
の形態を示す。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. 1 to 5 show a first embodiment of the present invention.
【0012】図1、図2の符号1は過給機付き筒内噴射
エンジンで、この筒内噴射エンジン1の吸気ポート1a
が吸気マニホルド2を介してエアーチャンバ3に集合さ
れており、このエアーチャンバ3の上流に吸気通路4が
連通されている。Reference numeral 1 in FIGS. 1 and 2 denotes an in-cylinder injection engine with a supercharger, and an intake port 1a of the in-cylinder injection engine 1.
Are collected in an air chamber 3 via an intake manifold 2, and an intake passage 4 is communicated upstream of the air chamber 3.
【0013】この吸気通路4の空気取り入れ口にはエア
ークリーナ5が取付けられており、又、この吸気通路4
の中途にターボ過給機6のコンプレッサ6aが介装され
ている。又、このターボ過給機6のタービン6bが、上
記エンジン1の排気ポート1bに排気マニホルド7を介
して連通する排気通路8に介装されている。尚、符号9
は触媒、10はマフラである。An air cleaner 5 is attached to an air intake of the intake passage 4.
The compressor 6a of the turbocharger 6 is interposed midway. Further, a turbine 6 b of the turbocharger 6 is provided in an exhaust passage 8 that communicates with an exhaust port 1 b of the engine 1 via an exhaust manifold 7. Note that reference numeral 9
Is a catalyst and 10 is a muffler.
【0014】又、上記吸気通路4の上記エアーチャンバ
3の上流にスロットル弁11が介装されており、このス
ロットル弁11の上流にインタークーラ12が介装され
ている。更に、上記吸気通路4には、上記インタークー
ラ12の上流と下流とを連通するバイパス通路13が接
続されている。A throttle valve 11 is provided upstream of the air chamber 3 in the intake passage 4, and an intercooler 12 is provided upstream of the throttle valve 11. Further, a bypass passage 13 that connects the upstream and downstream of the intercooler 12 is connected to the intake passage 4.
【0015】上記吸気通路4の上記バイパス通路13の
分岐口に流路切換え弁14が配設されている。この流路
切換え弁14は、吸入空気の流路を上記インタークーラ
12側と上記バイパス通路13とに選択的に切換えるも
ので、通電(ON)時は、図1に示すように上記バイパ
ス通路13を開き、又、非通電(OFF)時は、図2に
示すようにインタークーラ12側を開く。又、図3に示
すように、上記エンジン1に形成された各気筒の燃焼室
1aに筒内噴射用高圧インジェクタ15が臨まされてい
る。A passage switching valve 14 is provided at a branch of the bypass passage 13 of the intake passage 4. The flow path switching valve 14 selectively switches the flow path of the intake air between the intercooler 12 and the bypass passage 13, and when energized (ON), as shown in FIG. When the power is off (OFF), the intercooler 12 is opened as shown in FIG. As shown in FIG. 3, the in-cylinder high-pressure injector 15 faces the combustion chamber 1a of each cylinder formed in the engine 1.
【0016】上記流路切換え弁14の切換え動作は、図
4に示す制御装置(ECU)21で制御される。この制
御装置21の入力側には、エンジン運転状態検出手段と
してクランク角センサ22、負荷検出手段23、冷却水
温センサ24等が接続されており、出力側に上記流路切
換え弁14が接続されている。尚、上記負荷検出手段2
3としては、スロットル開度センサ、吸入空気量センサ
等があり、又、上記スロットル開度センサ、或いは上記
吸入空気量センサに代えてアクセル開度センサ、或いは
吸気管圧力センサを用いても良い。The switching operation of the flow path switching valve 14 is controlled by a control device (ECU) 21 shown in FIG. An input side of the control device 21 is connected to a crank angle sensor 22, a load detection unit 23, a cooling water temperature sensor 24, and the like as engine operating state detecting means, and the output side is connected to the flow path switching valve 14. I have. The load detecting means 2
As 3, there are a throttle opening sensor, an intake air amount sensor, and the like, and an accelerator opening sensor or an intake pipe pressure sensor may be used instead of the throttle opening sensor or the intake air amount sensor.
【0017】以下、上記制御装置21で実行される流路
切換え弁制御ルーチンについて、図5に示すフローチャ
ートに従って説明する。先ず、ステップS1で、クラン
ク角センサ22の出力信号に基づいて算出したエンジン
回転数と、負荷検出手段23からの出力信号に基づいて
算出したスロットル開度、吸入空気量等、エンジン負荷
を示すパラメータとに基づき、エンジンの運転状態を調
べる。Hereinafter, a flow path switching valve control routine executed by the control device 21 will be described with reference to a flowchart shown in FIG. First, in step S1, the engine speed calculated based on the output signal of the crank angle sensor 22, and the parameters indicating the engine load, such as the throttle opening and the intake air amount calculated based on the output signal from the load detecting means 23. Based on the above, the operating state of the engine is checked.
【0018】次いで、ステップS2で、上記運転状態に
基づき燃焼形態が成層燃焼か、均一燃焼かを判定する。Next, in step S2, it is determined whether the combustion mode is stratified combustion or uniform combustion based on the operation state.
【0019】そして、成層燃焼のときは、ステップS3
へ進み、流路切換え弁14をON動作させ、ルーチンを
抜ける。In the case of stratified combustion, step S3
Then, the flow path switching valve 14 is turned ON to exit the routine.
【0020】すると、図1に示すように、上記流路切換
え弁14がインタークーラ12の上流を閉塞すると共
に、バイパス通路13を開口し、従って、吸気通路4に
導入された吸入空気は、バイパス通路13を通り、上記
インタークーラ12をバイパスしてスロットル弁11の
上流に導かれる。その結果、吸入空気はインタークーラ
12にて冷却されなかった分、燃焼室1aへ供給される
吸気温度の低下が抑制され、良好な燃焼を得ることがで
き、排気エミッションの低減が図れるばかりでなく、ト
ルクショックの発生を回避することができ、ドライバビ
リティが向上する。Then, as shown in FIG. 1, the flow path switching valve 14 closes the upstream of the intercooler 12 and opens the bypass passage 13, so that the intake air introduced into the intake passage 4 Through the passage 13, the air is guided to the upstream of the throttle valve 11, bypassing the intercooler 12. As a result, since the intake air is not cooled by the intercooler 12, a decrease in the temperature of the intake air supplied to the combustion chamber 1a is suppressed, good combustion can be obtained, and not only exhaust emission can be reduced. Thus, occurrence of torque shock can be avoided, and drivability is improved.
【0021】又、上記ステップS2で均一燃焼と判定し
たときは、ステップS4へ進み、上記流路切換え弁14
をOFF動作させて、ルーチンを抜ける。If it is determined in step S2 that the combustion is uniform, the process proceeds to step S4, where the flow path switching valve 14
Is turned off to exit the routine.
【0022】すると、図2に示すように、上記流路切換
え弁14がバイパス通路13を遮断し、吸入空気をイン
タークーラ12の方向へ導く。その結果、燃焼室1aに
はインタークーラ12により吸気温度の低下した空気が
供給され、その分、充填効率が高くなり、高出力が得ら
れる。Then, as shown in FIG. 2, the flow path switching valve 14 shuts off the bypass passage 13 and guides the intake air toward the intercooler 12. As a result, the air having a reduced intake air temperature is supplied to the combustion chamber 1a by the intercooler 12, and accordingly, the charging efficiency is increased and a high output is obtained.
【0023】図6に本発明の第2実施の形態を示す。本
実施の形態では、暖機運転中においても吸入空気をバイ
パス通路13を通して燃焼室1aへ供給しようとするも
のである。即ち、ステップS1で、エンジン運転状態を
検出し、次いで、ステップS11で冷却水温センサ24
の出力信号に基づいて算出した冷却水温Twと、暖機完
了温度Twoとを比較し、Tw≧Twoの暖機運転完了
のときは、ステップS2へ進み、燃焼形態を判定する。
又、Tw<Twoの暖機運転中のときは、ステップS3
へ進む。FIG. 6 shows a second embodiment of the present invention. In the present embodiment, the intake air is to be supplied to the combustion chamber 1a through the bypass passage 13 even during the warm-up operation. That is, in step S1, the engine operating state is detected, and then in step S11, the cooling water temperature sensor 24
Is compared with the warm-up completion temperature Two. If the warm-up operation of Tw ≧ Two is completed, the process proceeds to step S2 to determine the combustion mode.
When the warm-up operation of Tw <Two is being performed, step S3
Proceed to.
【0024】従って、本実施の形態では、暖機運転中、
或いは暖機運転完了後の燃焼形態が均一燃焼のとき、流
路切換え弁14をON動作させて、吸入空気をバイパス
通路13を通して燃焼室1aへ供給する。その結果、暖
機運転中の吸気温度が、インタークーラ12により低下
されることがなくなり、暖機運転中の成層燃焼による運
転可能領域が拡大し、燃費を向上させることができるば
かりでなく、暖機時間の短縮化を促進することができ
る。Therefore, in this embodiment, during the warm-up operation,
Alternatively, when the combustion mode after the completion of the warm-up operation is uniform combustion, the flow path switching valve 14 is turned ON to supply the intake air to the combustion chamber 1a through the bypass passage 13. As a result, the intake air temperature during the warm-up operation is not reduced by the intercooler 12, and the operable region by the stratified combustion during the warm-up operation is expanded, so that not only the fuel efficiency can be improved, but also the warm-up can be improved. Shortening of machine time can be promoted.
【0025】尚、本発明は、上記実施の形態に限るもの
ではなく、例えば、燃焼形態を高圧用インジェクタ15
に対する燃料噴射パルス幅で判定するようにしても良
い。又、暖機運転中か否かは、冷却水温以外に油温、或
いは排気温度等に基づいて判定するようにしても良い。The present invention is not limited to the above-described embodiment. For example, the combustion mode is changed to the high-pressure injector 15.
May be determined by the fuel injection pulse width with respect to. Further, whether or not the engine is being warmed up may be determined based on oil temperature, exhaust temperature, or the like in addition to the cooling water temperature.
【0026】[0026]
【発明の効果】以上、説明したように本発明によれば、
成層燃焼時の吸入空気をインタークーラを通さずに供給
することができるので、成層燃焼時の吸気温度が低下さ
れることがなく、良好な燃焼を得ることができ、その
分、成層燃焼による運転可能領域が広くなり、燃費が改
善されるばかりでなく、燃焼改善率をより高めることが
できるばかりでなく、排気エミッション、及びトルクシ
ョックが低減され、ドライバビリティが向上する。As described above, according to the present invention,
Since the intake air at the time of stratified combustion can be supplied without passing through the intercooler, the intake air temperature at the time of stratified combustion is not reduced, and good combustion can be obtained. The possible region is widened, and not only the fuel efficiency is improved, but also the combustion improvement rate can be further increased, and the exhaust emission and the torque shock are reduced, and the drivability is improved.
【0027】又、暖機運転中も吸入空気をインタークー
ラを通さずに供給することで、暖機運転中の成層燃焼に
よる運転領域を広げることかでき、燃費向上を図ること
ができると共に、暖機時間の短縮化を促進することがで
きる。Further, by supplying the intake air without passing through the intercooler even during the warm-up operation, it is possible to widen the operating range due to the stratified combustion during the warm-up operation, thereby improving the fuel efficiency and improving the warm-up. Shortening of machine time can be promoted.
【図1】第1実施の形態による成層燃焼時の過給機付き
筒内噴射エンジンの全体概略図FIG. 1 is an overall schematic diagram of a direct injection engine with a supercharger during stratified combustion according to a first embodiment.
【図2】同、均一燃焼時の過給機付き筒内噴射エンジン
の全体概略図FIG. 2 is an overall schematic diagram of a direct injection engine with a supercharger during uniform combustion.
【図3】同、燃焼室の拡大図FIG. 3 is an enlarged view of the same combustion chamber.
【図4】同、制御装置の構成図FIG. 4 is a configuration diagram of the control device.
【図5】同、流路切換え制御ルーチンを示すフローチャ
ートFIG. 5 is a flowchart showing a flow path switching control routine.
【図6】第2実施の形態による流路切換え制御ルーチン
を示すフローチャートFIG. 6 is a flowchart showing a flow path switching control routine according to a second embodiment;
1…筒内噴射エンジン 1a…燃焼室 4…吸気通路 6…過給機(ターボ過給機) 12…インタークーラ 13…バイパス通路 14…流路切換え弁 15…インジェクタ DESCRIPTION OF SYMBOLS 1 ... In-cylinder injection engine 1a ... Combustion chamber 4 ... Intake passage 6 ... Supercharger (turbocharger) 12 ... Intercooler 13 ... Bypass passage 14 ... Flow switching valve 15 ... Injector
Claims (2)
え、又インジェクタが燃焼室に直接臨まされている過給
機付き筒内噴射エンジンにおいて、 上記吸気通路に上記インタークーラの上流と下流とを連
通するバイパス通路が接続されていると共に、 燃焼形態が成層燃焼時には吸入空気を上記バイパス通路
へ導き、均一燃焼時には上記吸入空気を上記インターク
ーラ方向へ導く流路切換え弁を設けたことを特徴とする
過給機付き筒内噴射エンジンの吸気温度制御装置。1. An in-cylinder injection engine with a supercharger having a supercharger and an intercooler in an intake passage and an injector directly facing a combustion chamber, wherein an upstream and a downstream of the intercooler are provided in the intake passage. And a flow path switching valve that guides intake air to the bypass passage when the combustion mode is stratified combustion and guides the intake air toward the intercooler when uniform combustion is performed. An intake air temperature control device for a direct injection engine with a supercharger.
え、又インジェクタが燃焼室に直接臨まされている過給
機付き筒内噴射エンジンにおいて、 上記吸気通路に上記インタークーラの上流と下流とを連
通するバイパス通路が接続されていると共に、 燃焼形態が成層燃焼で且つ暖機運転が完了しているとき
には吸入空気を上記バイパス通路へ導き、均一燃焼時或
いは暖機運転中は上記吸入空気を上記インタークーラ方
向へ導く流路切換え弁を設けたことを特徴とする過給機
付き筒内噴射エンジンの吸気温度制御装置。2. An in-cylinder injection engine with a supercharger having a supercharger and an intercooler in an intake passage and an injector directly facing a combustion chamber, wherein an upstream and a downstream of the intercooler are provided in the intake passage. When the combustion mode is stratified combustion and the warm-up operation has been completed, the intake air is guided to the bypass passage. During uniform combustion or during the warm-up operation, the intake air And a flow path switching valve for guiding the pressure in the direction of the intercooler.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10016178A JPH11210477A (en) | 1998-01-28 | 1998-01-28 | Intake air temperature controlling device for cylinder injection type engine incorporating supercharger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10016178A JPH11210477A (en) | 1998-01-28 | 1998-01-28 | Intake air temperature controlling device for cylinder injection type engine incorporating supercharger |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11210477A true JPH11210477A (en) | 1999-08-03 |
Family
ID=11909267
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10016178A Pending JPH11210477A (en) | 1998-01-28 | 1998-01-28 | Intake air temperature controlling device for cylinder injection type engine incorporating supercharger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11210477A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6622710B2 (en) | 2000-12-08 | 2003-09-23 | Nissan Motor Co., Ltd. | Internal combustion engine |
KR20040022523A (en) * | 2002-09-09 | 2004-03-16 | 현대자동차주식회사 | Bypassing apparatus for inter cooler |
JP2012136957A (en) * | 2010-12-24 | 2012-07-19 | Isuzu Motors Ltd | Internal combustion engine and egr method therefor |
EP3225805A1 (en) | 2016-03-28 | 2017-10-04 | Toyota Jidosha Kabushiki Kaisha | Internal combustion engine |
-
1998
- 1998-01-28 JP JP10016178A patent/JPH11210477A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6622710B2 (en) | 2000-12-08 | 2003-09-23 | Nissan Motor Co., Ltd. | Internal combustion engine |
KR20040022523A (en) * | 2002-09-09 | 2004-03-16 | 현대자동차주식회사 | Bypassing apparatus for inter cooler |
JP2012136957A (en) * | 2010-12-24 | 2012-07-19 | Isuzu Motors Ltd | Internal combustion engine and egr method therefor |
EP3225805A1 (en) | 2016-03-28 | 2017-10-04 | Toyota Jidosha Kabushiki Kaisha | Internal combustion engine |
US10036307B2 (en) | 2016-03-28 | 2018-07-31 | Toyota Jidosha Kabushiki Kaisha | Internal combustion engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101535619B (en) | Internal combustion engine and internal combustion engine control method | |
US6637204B2 (en) | Device and method for the heating of a catalytic converter for a supercharged internal combustion engine | |
US7178327B2 (en) | Internal combustion engine and control method thereof | |
US6519931B2 (en) | Direct gasoline injection type spark igniting internal combustion engine with turbocharger and the engine control method | |
US4738110A (en) | Diesel engine equipped with a mechanically driven charger | |
US7532971B2 (en) | Engine control apparatus | |
JP5904290B2 (en) | Turbocharged engine | |
US8813493B2 (en) | Supercharger control device for an internal combustion engine | |
JPH0323327A (en) | Supercharging type gasoline internal combustion engine | |
JPH0622554U (en) | Engine exhaust gas recirculation system | |
JPH10196463A (en) | Exhaust gas recirculation device | |
JP4736969B2 (en) | Diesel engine control device | |
JP4031227B2 (en) | Exhaust gas recirculation device for in-cylinder injection engine with supercharger | |
JPH11210477A (en) | Intake air temperature controlling device for cylinder injection type engine incorporating supercharger | |
JPH07269416A (en) | Egr control device for fuel injection type engine | |
JP2019173578A (en) | Engine control device | |
JP2002188522A (en) | EGR control device for turbocharged engine | |
JP2010168924A (en) | Control device of internal combustion engine | |
JP2005009437A (en) | Control device for multi-cylinder internal combustion engine | |
JP3371324B2 (en) | Exhaust gas recirculation device | |
JPH0586847A (en) | Exhaust emission control device for engine having mechanical supercharger | |
JP2002188524A (en) | EGR control device for turbocharged engine | |
JPH07166916A (en) | Idling controller for in-cylinder direct injection type engine | |
JP2574089Y2 (en) | Assist air system for supercharged internal combustion engine | |
JPH0639050Y2 (en) | Intake device for multi-cylinder internal combustion engine |