JPH11209341A - Production of mercaptocarboxylic acid - Google Patents
Production of mercaptocarboxylic acidInfo
- Publication number
- JPH11209341A JPH11209341A JP4614498A JP4614498A JPH11209341A JP H11209341 A JPH11209341 A JP H11209341A JP 4614498 A JP4614498 A JP 4614498A JP 4614498 A JP4614498 A JP 4614498A JP H11209341 A JPH11209341 A JP H11209341A
- Authority
- JP
- Japan
- Prior art keywords
- organic solvent
- acid
- mercaptocarboxylic
- layer
- reaction solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は高収率でメルカプトカル
ボン酸類の製造するとともに高純度、高収率で副生物を
回収する方法に関する。メルカプトカルボン酸類は分子
内に存在するメルカプト基とカルボキシル基により、反
応性に富み、有機溶媒にも水にもよく溶解する特徴を有
し、農薬、医薬をはじめとする有機合成品の原料とし
て、また、塩化ビニルの安定剤、エポキシ樹脂やアクリ
ル酸エステルポリマーの架橋剤、プラスチックレンズモ
ノマーなどの原料として有用な化合物である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing mercaptocarboxylic acids with high yield and recovering by-products with high purity and high yield. Mercaptocarboxylic acids are rich in reactivity due to the mercapto group and carboxyl group present in the molecule, have the characteristic of being well soluble in organic solvents and water, and are used as a raw material for organic synthetic products such as agricultural chemicals and pharmaceuticals. Further, it is a compound useful as a raw material such as a stabilizer for vinyl chloride, a crosslinking agent for an epoxy resin or an acrylate polymer, and a plastic lens monomer.
【0002】[0002]
【従来の技術】メルカプトカルボン酸の製造法として
は、一般的には、不飽和ニトリル類からメルカプトニト
リル類を得、次いで、メルカプトニトリル類を加水分解
する方法が知られている。2. Description of the Related Art As a method for producing mercaptocarboxylic acids, it is generally known to obtain mercaptonitrile from unsaturated nitriles and then hydrolyze the mercaptonitrile.
【0003】例えば、特開昭58−198460号公報
では所定の条件下にアクリロニトリルを水硫化ナトリウ
ム水溶液に加え、得られたβ−メルカプトプロピオニト
リルのナトリウム塩を塩酸で中和、加水分解することに
よりβ−メルカプトプロピオン酸を得る方法が提案され
ている。ここでは、副生物であるチオジプロピオン酸の
生成を抑えてβ−メルカプトプロピオン酸を収率よく得
ることができるとされている。しかし、この方法では、
中和加水分解により食塩と塩化アンモニウムの混合液が
できるため、水溶液は有効利用できず、また、廃水処理
が困難である。For example, in Japanese Patent Application Laid-Open No. 58-198460, acrylonitrile is added to an aqueous solution of sodium bisulfide under predetermined conditions, and the resulting sodium salt of β-mercaptopropionitrile is neutralized and hydrolyzed with hydrochloric acid. A method for obtaining β-mercaptopropionic acid has been proposed. Here, it is stated that β-mercaptopropionic acid can be obtained with high yield while suppressing the production of thiodipropionic acid as a by-product. But with this method,
Since a mixed solution of salt and ammonium chloride is formed by the neutralization hydrolysis, the aqueous solution cannot be used effectively, and wastewater treatment is difficult.
【0004】また、特開平4−305563号公報によ
ればβ−メルカプトニトリル類のアルカリ塩を水酸化ア
ルカリ水溶液中に加えて加水分解することによりβ−メ
ルカプトプロピオン酸を得る方法が提案されている。こ
こでは、副生物であるチオジプロピオン酸の生成を抑え
てβ−メルカプトプロピオン酸を極めて高収率で得るこ
とができるとされているが、加水分解反応時の滴下方
法、温度、時間などが厳しく制限されており、また、反
応に長時間を要し、実際の工業化には不適切であるなど
の問題点を有している。According to Japanese Patent Application Laid-Open No. 4-305563, there is proposed a method for obtaining β-mercaptopropionic acid by adding an alkali salt of β-mercaptonitrile to an aqueous alkali hydroxide solution and hydrolyzing it. . Here, it is said that β-mercaptopropionic acid can be obtained in an extremely high yield by suppressing the generation of thiodipropionic acid as a by-product.However, the dropping method, temperature, time, and the like during the hydrolysis reaction are described as follows. It is severely restricted, and has a problem that the reaction requires a long time and is not suitable for actual industrialization.
【0005】さらに、特開昭63−6545号公報によ
れば、硫化ナトリウムと遊離の水酸化ナトリウムに、撹
拌下アクリロニトリルを滴下して反応させ、さらに反応
溶液を加熱して比較的短時間に加水分解し、この間に生
じるアンモニアガスを水に吸収して回収し、硫酸で中和
後、副生成物としてほぼ純粋の芒硝を得ることができる
とされているが、この方法では、過酷な条件で反応を行
うため、不純物の生成が多く、目的とするβ−メルカプ
トプロピオン酸の収率は不十分である。また、窒素化合
物の環境への影響から芒硝中の硫酸アンモニウムの量が
厳しく規制されているが、この方法ではアンモニアの系
外への除去が不完全であり、得られる芒硝にはかなりの
硫酸アンモニウムが含まれており、さらに高純度化が望
まれている。Further, according to JP-A-63-6545, acrylonitrile is dropped and reacted with sodium sulfide and free sodium hydroxide with stirring, and the reaction solution is further heated by heating in a relatively short time. It is said that ammonia gas generated during the decomposition is absorbed by water and collected, and after neutralization with sulfuric acid, almost pure sodium sulfate can be obtained as a by-product.However, in this method, under severe conditions, Since the reaction is performed, many impurities are generated, and the yield of the target β-mercaptopropionic acid is insufficient. In addition, although the amount of ammonium sulfate in sodium sulfate is strictly regulated due to the environmental effects of nitrogen compounds, the removal of ammonia out of the system is incomplete with this method, and the resulting sodium sulfate contains considerable ammonium sulfate. And higher purification is desired.
【0006】[0006]
【発明が解決しようとする課題】本発明者らは不飽和ニ
トリルと水硫化アルカリの反応、及び、その反応液の加
水分解によるメルカプトカルボン酸類の製法について検
討した結果、反応、加水分解、副生物分離、精製等の各
工程の条件、及び、方法を改良することにより、従来公
知の方法の問題点を解決し、高収率で目的物を得、副生
物を高純度品として回収できることを知った。The present inventors have studied the reaction of unsaturated nitrile with alkali hydrosulfide and the production of mercaptocarboxylic acids by hydrolysis of the reaction solution. By improving the conditions of each step such as separation and purification, and the method, it is possible to solve the problems of the conventionally known methods, obtain the target product in high yield, and recover by-products as high-purity products. Was.
【0007】従来公知の塩酸、硫酸などの鉱酸水溶液に
よる加水分解では、その反応条件が加熱還流条件である
など、比較的高温を要するため、目的とするメルカプト
カルボン酸類の収率が著しく低下し、目的としない副生
物が多く生成する。In the conventionally known hydrolysis with an aqueous solution of a mineral acid such as hydrochloric acid or sulfuric acid, a relatively high temperature is required, for example, the reaction conditions are heating and refluxing conditions, and the yield of the desired mercaptocarboxylic acid is remarkably reduced. In addition, many undesired by-products are produced.
【0008】また、無機塩基による加水分解反応につい
ても従来の方法では100℃以上の高温で行われてお
り、メルカプトニトリル類のα−活性水素の存在により
硫化水素が脱離して不飽和ニトリル類が生成し、この不
飽和ニトリル類がメルカプトニトリル類と反応して、結
果的にチオジカルボン酸類となる等の副反応が起こりや
すいという欠点を有している。In the conventional method, the hydrolysis reaction with an inorganic base is carried out at a high temperature of 100 ° C. or more, and the presence of α-active hydrogen of mercaptonitrile releases hydrogen sulfide to form unsaturated nitrile. The unsaturated nitriles formed have a drawback that they are liable to react with mercaptonitrile, resulting in thiodicarboxylic acids and other side reactions.
【0009】従って、不飽和ニトリルと水硫化アルカリ
を原料としてメルカプトカルボン酸類を高収率で得るた
めには、チオジカルボン酸類等の副反応生成物の生成を
抑えることが大きな課題である。Therefore, in order to obtain mercaptocarboxylic acids in high yield from unsaturated nitriles and alkali hydrosulfides, it is a major problem to suppress the formation of by-products such as thiodicarboxylic acids.
【0010】[0010]
【課題を解決するための手段】本発明者らは、加水分解
反応時にメルカプトカルボン酸類のみを高収率で得るた
めに不飽和ニトリルと水硫化アルカリとの反応、及び、
該反応液の塩基性加水分解反応について鋭意検討した結
果、特定の条件下で反応することによりチオジカルボン
酸類の副生を抑え、メルカプトカルボン酸類を高収率で
得ることができることを見出した。In order to obtain only a high yield of mercaptocarboxylic acids during the hydrolysis reaction, the present inventors have conducted a reaction between unsaturated nitrile and alkali hydrosulfide, and
As a result of intensive studies on the basic hydrolysis reaction of the reaction solution, it was found that by reacting under specific conditions, by-products of thiodicarboxylic acids were suppressed and mercaptocarboxylic acids could be obtained in high yield.
【0011】また、水硫化アルカリと無機塩基を一括混
合した溶液に不飽和ニトリルを加えて反応するのではな
く、まず、水硫化アルカリと不飽和ニトリルとを反応さ
せた後、無機塩基により加水分解することにより、安定
に高収率にてメルカプトカルボン酸類を得ることのでき
ることを知った。Rather than reacting by adding unsaturated nitrile to a solution in which alkali hydrosulfide and an inorganic base are mixed at once, first, alkali hydrosulfide and unsaturated nitrile are reacted and then hydrolyzed by an inorganic base. By doing so, it has been found that mercaptocarboxylic acids can be stably obtained in high yield.
【0012】さらに、反応系を減圧とし、反応で生成し
たアンモニアを反応系外に除去、水に吸収させて回収す
ることで、高純度のアンモニア水を得ることができ、ま
た、メルカプトカルボン酸類のアルカリ塩を酸にて中
和、分液して油層と水層を分離後、水層中に溶存してい
るメルカプトカルボン酸類を有機溶媒にて抽出してメル
カプトカルボン酸類を得ることで、抽出後の水層から有
機化合物、及び、窒素化合物をほとんど含まない高純度
の無機塩水溶液を得ることができることを知り、本発明
を完成した。Further, by reducing the pressure of the reaction system and removing the ammonia produced by the reaction outside the reaction system, absorbing the ammonia into water and recovering it, high-purity ammonia water can be obtained. After the alkali salt is neutralized with an acid and separated to separate an oil layer and an aqueous layer, the mercaptocarboxylic acids dissolved in the aqueous layer are extracted with an organic solvent to obtain mercaptocarboxylic acids. It was found that a high-purity aqueous solution of an inorganic salt containing almost no organic compound and no nitrogen compound can be obtained from the aqueous layer, and completed the present invention.
【0013】本発明に使用される一般式(1)で表され
る不飽和ニトリルとしては、アクリロニトリル、2−フ
ェニルプロペンニトリル、3−ブテンニトリル、5−ペ
ンテンニトリル、3−フェニルプロペンニトリル、2−
メチル−3−フェニルプロペンニトリル、3−フェニル
−3−ブテンニトリル、2−エチル−5−ヘキセンニト
リル、2−メチル−4−ペンテンニトリル、2−メチル
−3−ブテンニトリル等が挙げられる。The unsaturated nitrile represented by the general formula (1) used in the present invention includes acrylonitrile, 2-phenylpropenenitrile, 3-butenenitrile, 5-pentenenitrile, 3-phenylpropenenitrile,
Examples thereof include methyl-3-phenylpropenenitrile, 3-phenyl-3-butenenitrile, 2-ethyl-5-hexenenitrile, 2-methyl-4-pentenenitrile, and 2-methyl-3-butenenitrile.
【0014】以下、本発明について詳細に説明するが、
説明を簡単にするために不飽和ニトリルとしてアクリロ
ニトリルを使用してβ−メルカプトプロピオン酸を製造
する場合を代表例として述べる。Hereinafter, the present invention will be described in detail.
For the sake of simplicity, a case where β-mercaptopropionic acid is produced using acrylonitrile as an unsaturated nitrile will be described as a typical example.
【0015】本発明において使用される水硫化アルカリ
としては、例えば、水硫化ナトリウム、水硫化カリウ
ム、水硫化カルシウム等が挙げられる。また、硫黄や多
硫化アルカリ、例えば多硫化ナトリウム、多硫化カリウ
ム、多硫化カルシウム等が挙げられる。The alkali hydrosulfide used in the present invention includes, for example, sodium hydrosulfide, potassium hydrosulfide, calcium hydrosulfide and the like. In addition, sulfur and alkali polysulfide, for example, sodium polysulfide, potassium polysulfide, calcium polysulfide and the like can be mentioned.
【0016】水硫化アルカリや多硫化アルカリの使用量
は不飽和ニトリルに対して、1.0〜2.0倍モルが好
ましい。1.0倍モル以下ではチオジニトリル類が多量
に副生し、2.0倍モルより多い使用は反応後の中和に
要する酸の使用量も増加し不経済となる。The amount of alkali hydrogen sulfide or alkali polysulfide used is preferably 1.0 to 2.0 times mol of the unsaturated nitrile. If the molar ratio is less than 1.0, the amount of thiodinitrile is by-produced in a large amount. If the molar ratio exceeds 2.0, the amount of acid required for neutralization after the reaction is increased, which is uneconomical.
【0017】また、本発明において使用される無機塩基
とは一般的にアルカリ金属水酸化物・炭酸塩・炭酸水素
塩を言い、例えば、水酸化ナトリウム、水酸化カリウ
ム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウ
ム、炭酸水素カリウム等が使用される。系内において無
機塩基を生成することもできる化合物も本発明の無機塩
基の範疇に含まれる。例えば、硫化アルカリや硫化アル
カリと硫黄の混合物などは系内の水と反応してアルカリ
金属水酸化物を生成しうるので本発明の範疇に含まれ
る。これらのうち反応速度論的観点からアルカリ金属水
酸化物が好ましく用いられ、その使用量は不飽和ニトリ
ルに対して、1.0〜2.0倍モルが好ましい。1.0
倍モル以下では未反応のメルカプトニトリルが残留し、
2.0倍モルより多い使用は反応後の中和に要する酸の
使用量も増加し不経済となる。The inorganic base used in the present invention generally means an alkali metal hydroxide / carbonate / bicarbonate, for example, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, carbonate Sodium hydrogen, potassium hydrogen carbonate and the like are used. Compounds capable of forming an inorganic base in the system are also included in the category of the inorganic base of the present invention. For example, an alkali sulfide or a mixture of an alkali sulfide and sulfur is included in the scope of the present invention because it can react with water in the system to generate an alkali metal hydroxide. Of these, alkali metal hydroxides are preferably used from the viewpoint of reaction kinetics, and the amount of the alkali metal hydroxide is preferably 1.0 to 2.0 moles per mole of the unsaturated nitrile. 1.0
At less than twice the mole, unreacted mercaptonitrile remains,
Use of more than 2.0 moles increases the amount of acid used for neutralization after the reaction, which is uneconomical.
【0018】加水分解の際に、不飽和ニトリルと水硫化
アルカリとの反応で得られた反応液と無機塩基水溶液と
を一括混合しても、無機塩基水溶液を該反応液に滴下し
ても、該反応液を無機塩基水溶液に滴下してもよいが、
生産性や操作性の観点から、該反応液と無機塩基水溶液
とを一括混合するか無機塩基水溶液を該反応液に滴下す
るのが好ましい。In the hydrolysis, the reaction solution obtained by the reaction of the unsaturated nitrile with the alkali hydrosulfide and the aqueous solution of the inorganic base may be mixed at once, or the aqueous solution of the inorganic base may be added dropwise to the reaction solution. The reaction solution may be added dropwise to the aqueous inorganic base solution,
From the viewpoint of productivity and operability, it is preferable that the reaction solution and the aqueous inorganic base solution are mixed at once or the aqueous inorganic base solution is dropped into the reaction solution.
【0019】加水分解反応は100℃以下、好ましくは
45℃〜80℃、より好ましくは60℃〜80℃で行
う。45℃以下では反応は十分に進まず未反応のメルカ
プトニトリル類が残留し、80℃より高い温度では加水
分解と同時にチオジカルボン酸類などが副生し、好まし
くない。また、加水分解時間は1時間〜6時間が好まし
く、2時間〜4時間がより好ましい。1時間以下では安
定に高収率で目的とするメルカプトカルボン酸類を得る
ことができないことがあり、また、6時間以上反応して
も特に効果は見られず生産性の面から好ましくない。The hydrolysis is carried out at a temperature of 100 ° C. or lower, preferably 45 ° C. to 80 ° C., more preferably 60 ° C. to 80 ° C. At a temperature lower than 45 ° C., the reaction does not proceed sufficiently, and unreacted mercaptonitrile remains. At a temperature higher than 80 ° C., thiodicarboxylic acids and the like are produced as by-products simultaneously with hydrolysis, which is not preferable. The hydrolysis time is preferably 1 hour to 6 hours, more preferably 2 hours to 4 hours. If the time is less than 1 hour, the desired mercaptocarboxylic acid may not be stably obtained in a high yield, and even if the reaction is carried out for 6 hours or more, no particular effect is observed, which is not preferable in terms of productivity.
【0020】加水分解反応後、反応溶液中には加水分解
で生じたアンモニアが溶存している。アンモニアの存在
は中和の際にアンモニウム塩を副生させる原因となり、
高純度芒硝等の無機塩基の商品価値を著しく低下させる
だけでなく、アンモニウム塩を含有することで公害処理
は煩雑になり、極めて不経済である。After the hydrolysis reaction, ammonia produced by the hydrolysis is dissolved in the reaction solution. The presence of ammonia causes ammonium salts to be by-produced during neutralization,
Not only does the commercial value of inorganic bases such as high-purity sodium sulfate are significantly reduced, but the inclusion of ammonium salts makes pollution treatment complicated and extremely uneconomical.
【0021】従って、加水分解反応後、反応系から生成
したアンモニアを反応系外に除去、回収する必要があ
る。アンモニアの除去には、不活性気体の反応溶液中へ
のバブリングや系を減圧とすることが好ましく、反応溶
液中の溶存濃度が1000ppm以下、好ましくは10
0ppm以下になるまでアンモニアを除去する。除去さ
れるアンモニアは水に吸収させることで、高純度、高濃
度のアンモニア水を容易に得ることができる。Therefore, after the hydrolysis reaction, it is necessary to remove and recover ammonia generated from the reaction system outside the reaction system. For removing ammonia, it is preferable to bubbling the inert gas into the reaction solution or to reduce the pressure of the system, and the dissolved concentration in the reaction solution is 1000 ppm or less, preferably 10 ppm or less.
Ammonia is removed until it becomes 0 ppm or less. By removing the removed ammonia with water, high-purity, high-concentration ammonia water can be easily obtained.
【0022】アンモニアを回収した後、反応溶液中にお
いてメルカプトカルボン酸類はアルカリ金属塩として存
在する。したがって、メルカプトカルボン酸類の単離は
まず酸を加えて中和、分液し、油層を蒸留するという一
般的方法で行うことができる。中和に使用する鉱酸とし
ては塩酸、硫酸、リン酸などが用いられる。After recovering the ammonia, the mercaptocarboxylic acids are present as alkali metal salts in the reaction solution. Accordingly, mercaptocarboxylic acids can be isolated by a general method of first adding an acid, neutralizing and separating, and distilling an oil layer. As mineral acids used for neutralization, hydrochloric acid, sulfuric acid, phosphoric acid and the like are used.
【0023】中和後得られる水層には、メルカプトカル
ボン酸類が溶存しているため、水層から有機溶媒により
抽出し、有機層は、例えば、減圧蒸留により留去し目的
とするメルカプトカルボン酸類を得ることができる。ま
た、中和後の反応液を一括して有機溶媒で抽出し、有機
溶媒からメルカプトカルボン酸類を得ることもできる。
ここで使用される有機溶媒としては、酢酸エチル、酢酸
ブチル、クロロホルム、ジクロロメタン、ジエチルエー
テル、イソプロピルエーテル、メチルエチルケトン、イ
ソブチルケトン等が用いられ、酢酸エチル、酢酸ブチル
等が好ましく用いられる。Since the mercaptocarboxylic acid is dissolved in the aqueous layer obtained after the neutralization, the mercaptocarboxylic acid is extracted from the aqueous layer with an organic solvent. Can be obtained. Alternatively, the reaction solution after the neutralization may be collectively extracted with an organic solvent to obtain a mercaptocarboxylic acid from the organic solvent.
As the organic solvent used here, ethyl acetate, butyl acetate, chloroform, dichloromethane, diethyl ether, isopropyl ether, methyl ethyl ketone, isobutyl ketone and the like are used, and ethyl acetate and butyl acetate are preferably used.
【0024】また、抽出後に得られる溶液は高濃度の芒
硝、あるいは、食塩などの無機塩水溶液であり、例え
ば、高純度の芒硝水溶液として使用できる。また、高濃
度の芒硝液から結晶を析出させれば、析出した結晶は非
常に高純度の芒硝として使用できる。さらに、廃液もほ
とんど有機物や窒素化合物を含まないことから、環境へ
の影響もなく公害処理も非常に簡便で経済的である。The solution obtained after the extraction is a high-concentration sodium sulfate or an aqueous solution of an inorganic salt such as salt, and can be used, for example, as a high-purity sodium sulfate aqueous solution. If crystals are precipitated from a high-concentration sodium sulfate solution, the precipitated crystals can be used as very high-purity sodium sulfate. Furthermore, since the waste liquid contains almost no organic substances or nitrogen compounds, the pollution treatment is very simple and economical without affecting the environment.
【0025】[0025]
【実施例】以下、実施例、及び比較例により本発明を詳
しく説明するが、本発明はこれら実施例のみになんら限
定されるものではない。EXAMPLES The present invention will be described below in detail with reference to examples and comparative examples, but the present invention is not limited to these examples.
【0026】実施例1 アクリロニトリル(33.2g)を、45℃に保った3
7%水硫化ナトリウム水溶液(130g)中に撹拌しな
がら45℃で2時間で滴下した後、同温度で1時間撹拌
した。1時間後、48%水酸化ナトリウム水溶液(70
g)を45℃〜50℃で撹拌しながら30分で滴下し
た。滴下終了後、80℃まで昇温し、同温度で2時間撹
拌した。さらに、反応系を減圧し、同温度で3時間、脱
アンモニアを行った。ここで、回収率99.9%で5
2.6gのアンモニア水を得た。反応溶液を室温まで冷
却後、62.5%硫酸(150g)で中和し、酢酸エチ
ル200mLで2回抽出した。抽出液を合わせ、溶媒を
減圧で除去した。高速液体クロマトグラフィーによる分
析の結果、β−メルカプトプロピオン酸が収率85%、
チオジプロピオン酸が12%で生成していた。Example 1 Acrylonitrile (33.2 g) was kept at 45 ° C.
The resulting mixture was added dropwise to a 7% aqueous sodium hydrosulfide solution (130 g) at 45 ° C. for 2 hours with stirring, and then stirred at the same temperature for 1 hour. After 1 hour, a 48% aqueous sodium hydroxide solution (70%
g) was added dropwise over 30 minutes while stirring at 45 ° C to 50 ° C. After completion of the dropwise addition, the temperature was raised to 80 ° C., and the mixture was stirred at the same temperature for 2 hours. Further, the pressure of the reaction system was reduced, and deammonification was performed at the same temperature for 3 hours. Here, at a recovery rate of 99.9%, 5
2.6 g of aqueous ammonia was obtained. After cooling the reaction solution to room temperature, it was neutralized with 62.5% sulfuric acid (150 g) and extracted twice with 200 mL of ethyl acetate. The extracts were combined and the solvent was removed under reduced pressure. As a result of analysis by high performance liquid chromatography, the yield of β-mercaptopropionic acid was 85%,
Thiodipropionic acid was formed at 12%.
【0027】比較例1 アクリロニトリル(33.2g)を、45℃に保った3
7%水硫化ナトリウム水溶液(130g)中に撹拌しな
がら45℃で2時間で滴下した後、同温度で1時間撹拌
した。1時間後、48%水酸化ナトリウム水溶液(7
1.5g)を45℃〜50℃で撹拌しながら30分で滴
下した。滴下終了後、同温度で2時間撹拌した。反応溶
液を室温まで冷却後、62.5%硫酸(150g)で中
和し、酢酸エチル200mLで2回抽出した。抽出液を
合わせ、溶媒を減圧で除去した。高速液体クロマトグラ
フィーによる分析の結果、β−メルカプトプロピオン酸
が収率56%と著しく低く、また、チオジプロピオン酸
が収率8%と未知化合物が多量に副生していた。Comparative Example 1 Acrylonitrile (33.2 g) was maintained at 45 ° C.
The resulting mixture was added dropwise to a 7% aqueous sodium hydrosulfide solution (130 g) at 45 ° C. for 2 hours with stirring, and then stirred at the same temperature for 1 hour. One hour later, a 48% aqueous sodium hydroxide solution (7
1.5 g) was added dropwise over 30 minutes while stirring at 45-50 ° C. After completion of the dropwise addition, the mixture was stirred at the same temperature for 2 hours. After cooling the reaction solution to room temperature, it was neutralized with 62.5% sulfuric acid (150 g) and extracted twice with 200 mL of ethyl acetate. The extracts were combined and the solvent was removed under reduced pressure. As a result of analysis by high performance liquid chromatography, the yield of β-mercaptopropionic acid was remarkably low at 56%, and the yield of thiodipropionic acid was 8%.
【0028】比較例3 アクリロニトリル(33.2g)を、45℃に保った3
7%水硫化ナトリウム水溶液(130g)中に撹拌しな
がら45℃で2時間で滴下した後、同温度で1時間撹拌
した。1時間後、48%水酸化ナトリウム水溶液(7
1.5g)を45℃〜50℃で撹拌しながら30分で滴
下した。滴下終了後、80℃まで昇温し、同温度で2時
間撹拌した。その後、さらに120℃まで昇温し、同温
度で2時間撹拌した。反応溶液を室温まで冷却後、6
2.5%硫酸(150g)で中和し、酢酸エチル200
mLで2回抽出した。抽出液を合わせ、溶媒を減圧で除
去した。高速液体クロマトグラフィーによる分析の結
果、β−メルカプトプロピオン酸が収率73%で得られ
たと同時に、チオジプロピオン酸が収率19%と未知化
合物が多量に副生していた。Comparative Example 3 Acrylonitrile (33.2 g) was maintained at 45 ° C.
The resulting mixture was added dropwise to a 7% aqueous sodium hydrosulfide solution (130 g) at 45 ° C. for 2 hours with stirring, and then stirred at the same temperature for 1 hour. One hour later, a 48% aqueous sodium hydroxide solution (7
1.5 g) was added dropwise over 30 minutes while stirring at 45-50 ° C. After completion of the dropwise addition, the temperature was raised to 80 ° C., and the mixture was stirred at the same temperature for 2 hours. Thereafter, the temperature was further raised to 120 ° C., and the mixture was stirred at the same temperature for 2 hours. After cooling the reaction solution to room temperature, 6
Neutralized with 2.5% sulfuric acid (150 g),
Extracted twice with mL. The extracts were combined and the solvent was removed under reduced pressure. As a result of analysis by high performance liquid chromatography, β-mercaptopropionic acid was obtained in a yield of 73%, and thiodipropionic acid was in a yield of 19%.
【0029】比較例4 37%水硫化ナトリウム水溶液(130g)と48%水
酸化ナトリウム水溶液(71.5g)を一括混合し、こ
こにアクリロニトリルを40〜45℃で撹拌しながら2
時間で滴下した後、同温度で4時間撹拌した。その後、
120℃まで3時間かけて昇温し、同温度で30分撹拌
した。ここで、回収率50.0%で47.2gのアンモ
ニア水を得た。反応溶液を室温まで冷却後、62.5%
硫酸(150g)で中和し、酢酸エチル200mLで2
回抽出した。抽出液を合わせ、溶媒を減圧で除去した。
高速液体クロマトグラフィーによる分析の結果、β−メ
ルカプトプロピオン酸が収率69%で得られたと同時
に、チオジプロピオン酸が収率24%と多量に副生して
いた。Comparative Example 4 A 37% aqueous sodium hydrosulfide solution (130 g) and a 48% aqueous sodium hydroxide solution (71.5 g) were mixed at once, and acrylonitrile was stirred at 40 to 45 ° C. for 2 hours.
After dropwise addition over time, the mixture was stirred at the same temperature for 4 hours. afterwards,
The temperature was raised to 120 ° C. over 3 hours, and the mixture was stirred at the same temperature for 30 minutes. Here, 47.2 g of aqueous ammonia was obtained at a recovery rate of 50.0%. After cooling the reaction solution to room temperature, 62.5%
Neutralize with sulfuric acid (150 g) and add 200 mL of ethyl acetate.
Extracted times. The extracts were combined and the solvent was removed under reduced pressure.
As a result of analysis by high performance liquid chromatography, β-mercaptopropionic acid was obtained in a yield of 69%, and thiodipropionic acid was by-produced in a large amount of 24%.
【0030】[0030]
【発明の効果】以上のように、本発明に従って、水硫化
アルカリ水溶液と不飽和ニトリル類を反応させ、次い
で、無機塩基を加えて45℃〜80℃で加水分解反応を
行うことにより、安定して高収率にてメルカプトカルボ
ン酸類を得ることができる。加水分解反応後、反応系か
ら生成したアンモニアを反応系外に反応溶液中の溶存濃
度が1000ppm以下になるまでアンモニアを除去、
除去されるアンモニアを水に吸収させて回収すること
で、高純度、高濃度のアンモニア水を容易に得ることが
できる。さらに、アンモニアを回収した後、酸を加えて
中和、分液後、油層を濃縮後蒸留してメルカプトカルボ
ン酸類を得ることができる。中和・分液時に得られる水
層は高濃度の芒硝液等の無機塩基水溶液であり、例え
ば、この高濃度の芒硝液から結晶を析出させれば、析出
した結晶は高純度の芒硝として使用できる。さらに、廃
液もほとんど有機物を含まないことから、環境への影響
もなく公害処理も非常に簡便で経済的である。As described above, according to the present invention, a stable reaction is obtained by reacting an aqueous solution of an alkali hydrosulfide with an unsaturated nitrile, and then adding an inorganic base to carry out a hydrolysis reaction at 45 ° C to 80 ° C. Thus, mercaptocarboxylic acids can be obtained in high yield. After the hydrolysis reaction, remove the ammonia generated from the reaction system to the outside of the reaction system until the dissolved concentration in the reaction solution becomes 1000 ppm or less,
High-purity, high-concentration aqueous ammonia can be easily obtained by absorbing and removing the removed ammonia in water. Further, after recovering the ammonia, an acid is added for neutralization and separation, and then the oil layer is concentrated and distilled to obtain mercaptocarboxylic acids. The aqueous layer obtained at the time of neutralization and liquid separation is an aqueous solution of an inorganic base such as a high-concentration sodium sulfate solution.For example, if crystals are precipitated from this high-concentration sodium sulfate solution, the precipitated crystals are used as high-purity sodium sulfate. it can. Furthermore, since the waste liquid contains almost no organic matter, the pollution treatment is very simple and economical without affecting the environment.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹綱 啓尚 大阪府堺市戎島町5丁1番地 堺化学工業 株式会社中央研究所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Hironao Taketsuna 5-1-1 Ebisshima-cho, Sakai-shi, Osaka Sakai Chemical Industry Co., Ltd.
Claims (9)
またはフェニル基、nは0〜3の整数を表す。〕で示さ
れる不飽和ニトリルと水硫化アルカリとを反応させて; b.該反応液と無機塩基を混合、加熱し、生成したアン
モニアを反応系外に除去; c.次いで、得られた反応液を酸にて中和後、分液して
メルカプトプロピオン酸類からなる油層を分離し、さら
に、水層中に溶存しているメルカプトカルボン酸類を有
機溶媒にて抽出してメルカプトカルボン酸類を含む有機
溶媒層を分離し、有機溶媒層、及び、または油層からメ
ルカプトカルボン酸を回収するか、または、中和液を有
機溶媒で抽出してメルカプトカルボン酸を含む有機溶媒
層を分離し、有機溶媒暦からメルカプトカルボン酸を
得; d.抽出後の水層から高純度の無機塩水溶液を得ること
を特徴とする一般式(2)(化2) 【化2】 〔R1、R2は水素原子、C1〜C3の低級アルキル基
またはフェニル基、nは0〜3の整数を表す。〕で示さ
れるメルカプトカルボン酸類の製造方法。1. A method according to claim 1, General formula (1) [R 1 and R 2 represent a hydrogen atom, a C 1 -C 3 lower alkyl group or a phenyl group, and n represents an integer of 0-3. A) reacting an unsaturated nitrile represented by the formula (1) with an alkali hydrosulfide; The reaction solution and an inorganic base are mixed and heated to remove generated ammonia out of the reaction system; c. Next, after neutralizing the obtained reaction solution with an acid, liquid separation was performed to separate an oil layer composed of mercaptopropionic acids, and further, mercaptocarboxylic acids dissolved in the aqueous layer were extracted with an organic solvent. Separate the organic solvent layer containing mercaptocarboxylic acids, recover the mercaptocarboxylic acid from the organic solvent layer, and / or the oil layer, or extract the neutralized solution with an organic solvent to form an organic solvent layer containing mercaptocarboxylic acid. Separating and obtaining the mercaptocarboxylic acid from the organic solvent calendar; d. General formula (2) wherein an aqueous solution of a high-purity inorganic salt is obtained from the aqueous layer after the extraction. [R 1 and R 2 represent a hydrogen atom, a C 1 -C 3 lower alkyl group or a phenyl group, and n represents an integer of 0-3. ] A method for producing a mercaptocarboxylic acid represented by the formula:
ルと水硫化アルカリとを反応させて; b.該反応液と無機塩基を混合、加熱し、生成したアン
モニアを反応系外に除去、高収率でアンモニアを回収
し; c.次いで、得られた反応液を酸にて中和後、分液して
メルカプトプロピオン酸類からなる油層を分離し、さら
に、水層中に溶存しているメルカプトカルボン酸類を有
機溶媒にて抽出してメルカプトカルボン酸類を含む有機
溶媒層を分離し、有機溶媒暦、及び、または油層からメ
ルカプトカルボン酸を回収するか、または、中和液を有
機溶媒で抽出してメルカプトカルボン酸を含む有機溶媒
層を分離し、有機溶媒層からメルカプトカルボン酸を得
ることを特徴とする一般式(2)で示されるメルカプト
カルボン酸類、及び、アンモニアの製造方法。2. a. Reacting an unsaturated nitrile represented by the general formula (1) with an alkali hydrosulfide; b. Mixing the reaction solution with an inorganic base and heating to remove the generated ammonia out of the reaction system, and recover the ammonia in high yield; c. Next, after neutralizing the obtained reaction solution with an acid, liquid separation was performed to separate an oil layer composed of mercaptopropionic acids, and further, mercaptocarboxylic acids dissolved in the aqueous layer were extracted with an organic solvent. Separate the organic solvent layer containing mercaptocarboxylic acids and recover the organic solvent calendar, and / or the mercaptocarboxylic acid from the oil layer, or extract the neutralized solution with an organic solvent to form an organic solvent layer containing mercaptocarboxylic acid. A method for producing mercaptocarboxylic acids represented by the general formula (2) and ammonia, comprising separating and obtaining a mercaptocarboxylic acid from an organic solvent layer.
ルと水硫化アルカリとを反応させて; b.該反応液と無機塩基を混合、加熱し、生成したアン
モニアを反応系外に除去、高収率でアンモニアを回収
し; c.次いで、得られた反応液を酸にて中和後、分液して
メルカプトプロピオン酸類からなる油層を分離し、さら
に、水暦中に溶存しているメルカプトカルボン酸類を有
機溶媒にて抽出してメルカプトカルボン酸類を含む有機
溶媒層を分離し、有機溶媒層、及び、または油層からメ
ルカプトカルボン酸を回収するか、または、中和液を有
機溶媒で抽出してメルカプトカルボン酸を含む有機溶媒
層を分離し、有機溶媒層からメルカプトカルボン酸を
得、 d.抽出後の水層から高純度の無機塩水溶液を得ること
を特徴とする一般式(2)で示されるメルカプトカルボ
ン酸類の製造方法。3. A method according to claim 1, Reacting an unsaturated nitrile represented by the general formula (1) with an alkali hydrosulfide; b. Mixing the reaction solution with an inorganic base and heating to remove the generated ammonia out of the reaction system, and recover the ammonia in high yield; c. Then, after neutralizing the obtained reaction solution with an acid, liquid separation was performed to separate an oil layer composed of mercaptopropionic acids, and further, mercaptocarboxylic acids dissolved in the lunar calendar were extracted with an organic solvent. Separate the organic solvent layer containing mercaptocarboxylic acids, recover the mercaptocarboxylic acid from the organic solvent layer, and / or the oil layer, or extract the neutralized solution with an organic solvent to form an organic solvent layer containing mercaptocarboxylic acid. Separating to obtain a mercaptocarboxylic acid from the organic solvent layer, d. A method for producing a mercaptocarboxylic acid represented by the general formula (2), wherein an aqueous solution of a high-purity inorganic salt is obtained from the aqueous layer after the extraction.
せて得られる反応液の中に無機塩基を加えた後、100
℃以下で加熱、撹拌を行うことを特徴とする請求項1〜
3の方法。4. An inorganic base is added to a reaction solution obtained by reacting an alkali hydrogen sulfide with an unsaturated nitrile.
The heating and stirring are performed at a temperature of not more than ℃.
Method 3.
せて得られる反応液と無機塩基とを45℃〜80℃で、
1時間〜6時間加熱、撹拌を行うことを特徴とする請求
項1〜4の方法。5. A reaction solution obtained by reacting an alkali hydrosulfide with an unsaturated nitrile and an inorganic base at 45 ° C. to 80 ° C.
5. The method according to claim 1, wherein heating and stirring are performed for 1 hour to 6 hours.
中の溶存濃度が1000ppm以下になるまで反応系外
に除去、アンモニアを回収することを特徴とする請求項
1〜5の方法。6. The method according to claim 1, wherein ammonia produced from the reaction system is removed from the reaction system until the dissolved concentration in the reaction solution becomes 1000 ppm or less, and the ammonia is recovered.
せて得られる反応液と無機塩基とを100℃以下で加
熱、撹拌を行い、生成したアンモニアを反応溶液中の溶
存濃度が1000ppm以下になるまで反応系外に除
去、水に吸収させて回収して高純度のアンモニア水を
得、続いて、該反応液を酸にて中和、分液して油層と水
層とを分離し、さらに、水暦中に溶存しているメルカプ
トカルボン酸類を有機溶媒にて抽出してメルカプトカル
ボン酸類を含む有機溶媒層を分離し、有機溶媒層、及
び、または油層からメルカプトカルボン酸を回収する
か、または、中和液を有機溶媒で抽出してメルカプトカ
ルボン酸を含む有機溶媒層を分離し、有機溶媒層からメ
ルカプトカルボン酸を得ることを特徴とする請求項1〜
6の方法。7. A reaction solution obtained by reacting an alkali hydrogen sulfide with an unsaturated nitrile and an inorganic base are heated and stirred at 100 ° C. or less, and the concentration of the produced ammonia in the reaction solution becomes 1000 ppm or less. Removed outside the reaction system, absorbed in water and collected to obtain high-purity ammonia water, then, the reaction solution was neutralized with an acid, separated to separate an oil layer and an aqueous layer, Extract the mercaptocarboxylic acids dissolved in the water calendar with an organic solvent to separate the organic solvent layer containing the mercaptocarboxylic acids, and recover the mercaptocarboxylic acid from the organic solvent layer, and or the oil layer, or Extracting the neutralized solution with an organic solvent, separating an organic solvent layer containing mercaptocarboxylic acid, and obtaining mercaptocarboxylic acid from the organic solvent layer.
Method 6.
溶液を得ることを特徴とする請求項1〜7の方法。8. The method according to claim 1, wherein the aqueous layer after the extraction is treated to obtain a high-purity aqueous solution of an inorganic salt.
とする請求項1〜8の方法。9. The method according to claim 1, wherein the acid used for neutralization is sulfuric acid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04614498A JP4250780B2 (en) | 1998-01-21 | 1998-01-21 | Method for producing mercaptocarboxylic acids |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04614498A JP4250780B2 (en) | 1998-01-21 | 1998-01-21 | Method for producing mercaptocarboxylic acids |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11209341A true JPH11209341A (en) | 1999-08-03 |
JP4250780B2 JP4250780B2 (en) | 2009-04-08 |
Family
ID=12738784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04614498A Expired - Lifetime JP4250780B2 (en) | 1998-01-21 | 1998-01-21 | Method for producing mercaptocarboxylic acids |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4250780B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120097330A (en) * | 2011-02-24 | 2012-09-03 | 주식회사 케이오씨솔루션 | Preparation method of mercapto-carbonic acid and preparation of carbonic acid ester compound bearing mercapto group using it |
CN111809195A (en) * | 2019-04-12 | 2020-10-23 | 北京工商大学 | Electrochemical Catalytic Oxidative Coupling Synthesis of α-Disulfide Dicarboxylic Acid Compounds |
CN112538035A (en) * | 2020-12-10 | 2021-03-23 | 山西其右建材科技有限公司 | Method for co-producing ammonia water by 3-mercaptopropionic acid |
-
1998
- 1998-01-21 JP JP04614498A patent/JP4250780B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120097330A (en) * | 2011-02-24 | 2012-09-03 | 주식회사 케이오씨솔루션 | Preparation method of mercapto-carbonic acid and preparation of carbonic acid ester compound bearing mercapto group using it |
CN111809195A (en) * | 2019-04-12 | 2020-10-23 | 北京工商大学 | Electrochemical Catalytic Oxidative Coupling Synthesis of α-Disulfide Dicarboxylic Acid Compounds |
CN111809195B (en) * | 2019-04-12 | 2021-12-21 | 北京工商大学 | Electrochemical Catalytic Oxidative Coupling Synthesis of α-Disulfide Dicarboxylic Acid Compounds |
CN112538035A (en) * | 2020-12-10 | 2021-03-23 | 山西其右建材科技有限公司 | Method for co-producing ammonia water by 3-mercaptopropionic acid |
Also Published As
Publication number | Publication date |
---|---|
JP4250780B2 (en) | 2009-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11254639B1 (en) | Cyclic process for producing taurine from monoethanolamine | |
US11161808B1 (en) | Cyclic process for producing taurine from monoethanolamine | |
JP3223586B2 (en) | Method for producing 2,5-bis (mercaptomethyl) -1,4-dithiane | |
US11578036B2 (en) | Cyclic process for producing taurine from monoethanolamine | |
JP4250780B2 (en) | Method for producing mercaptocarboxylic acids | |
JP3836518B2 (en) | Method for producing 3-mercaptopropionitrile and 3-mercaptopropionic acid | |
JP2938208B2 (en) | Method for producing β-mercaptocarboxylic acids | |
JP2001187778A (en) | METHOD FOR PRODUCING beta-MERCAPTOPROPIONIC ACID | |
JPH0366300B2 (en) | ||
JPS6340424B2 (en) | ||
JPH11171850A (en) | Production of butyric ester derivative | |
JP2008074722A (en) | Method for producing 2-amino-5-iodobenzoic acid | |
JPS636545B2 (en) | ||
JP2001058968A (en) | Production of 1,3-di(2-parahydroxyphenyl-2-propyl)benzene | |
US3748355A (en) | Crystallization process for the recovery of alkaline nitrilotriacetates | |
JPH0597782A (en) | Production of bevantolol hydrochloride | |
JPH04145063A (en) | Production of 3-mercaptopropionitrile | |
US20020058820A1 (en) | Process for the preparation of highly pure 5,5' -bi-1H-tetrazolediammonium salts | |
JPS62267253A (en) | Production of alpha-amino acid | |
KR0129408B1 (en) | Process for preparation of 1-hydroxycyclohexylphenyl ketone | |
JP3700876B2 (en) | Process for producing N- (1,1-dimethyl-3-oxobutyl) acrylamide | |
JP2854955B2 (en) | Method for producing 3-mercaptopropionitrile | |
JPS6318942B2 (en) | ||
JPS6318941B2 (en) | ||
JPH05140087A (en) | Purification of cysteamine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050114 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080930 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20081128 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081224 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090106 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120130 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120130 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120130 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120130 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120130 Year of fee payment: 3 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120130 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120130 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130130 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130130 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130130 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |