JPH11199984A - High strength steel sheet excellent in gas cutting - Google Patents
High strength steel sheet excellent in gas cuttingInfo
- Publication number
- JPH11199984A JPH11199984A JP1499598A JP1499598A JPH11199984A JP H11199984 A JPH11199984 A JP H11199984A JP 1499598 A JP1499598 A JP 1499598A JP 1499598 A JP1499598 A JP 1499598A JP H11199984 A JPH11199984 A JP H11199984A
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel sheet
- formula
- viscosity
- strength steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 36
- 239000010959 steel Substances 0.000 title claims abstract description 36
- 238000005520 cutting process Methods 0.000 title abstract description 21
- 229910000640 Fe alloy Inorganic materials 0.000 claims abstract description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 230000001105 regulatory effect Effects 0.000 abstract 5
- 230000001590 oxidative effect Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 18
- 230000000694 effects Effects 0.000 description 5
- 238000003698 laser cutting Methods 0.000 description 3
- 238000010008 shearing Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【発明が属する技術分野】本発明は溶断性に優れた高強
度鋼板に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength steel sheet excellent in fusing property.
【0002】[0002]
【従来の技術】近年、自動車業界においては、燃費向上
のため車体の軽量化や、衝突時の乗員の安全性確保の観
点から高強度鋼板が使用されている。このような高強度
の鋼板を実用化する際の最大の問題点は、切断が極めて
困難なことである。特に、鋼板製造時の先後端の除去、
あるいはユーザーでの素板製造時における切断加工や成
形品への穴あけ加工を行うにあたっては、従来から用い
られている機械的な力を利用するせん断法の適用は、鋼
板の高強度化と共にますます難しい傾向にある。このよ
うな傾向は、自動車用高強度鋼板に限らず、造船用高強
度鋼板においても同様である。2. Description of the Related Art In recent years, high-strength steel sheets have been used in the automobile industry from the viewpoints of reducing the weight of a vehicle body and improving the safety of occupants in the event of a collision in order to improve fuel efficiency. The biggest problem in putting such a high-strength steel sheet to practical use is that cutting is extremely difficult. In particular, removal of the leading and trailing edges during steel plate manufacturing,
In addition, when cutting and drilling holes in molded products at the time of raw sheet production by the user, the application of the shearing method that uses the mechanical force that has been conventionally used is accompanied by the strengthening of the steel sheet. It tends to be difficult. Such a tendency is not limited to high-strength steel sheets for automobiles, but also applies to high-strength steel sheets for shipbuilding.
【0003】せん断法に代わるものとして、熱エネルギ
ー(化学反応熱、アーク熱、エレクトロン、プラズマビ
ーム熱およびレーザービーム熱など)により材料を溝状
に溶融、除去して切断する溶断法がある。この方法によ
れば、せん断法とは異なり高強度厚物鋼板の切断が可能
である。しかも、曲線状の切断が容易であり、また初期
設備投資を抑えることができるなど、多くの長所を有す
る。[0003] As an alternative to the shearing method, there is a fusing method in which a material is melted and removed in a groove shape by thermal energy (chemical reaction heat, arc heat, electron, plasma beam heat, laser beam heat, etc.) and cut. According to this method, a high-strength thick steel plate can be cut unlike the shearing method. In addition, it has many advantages such as easy cutting in a curved shape and reduction in initial equipment investment.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、溶断法
では切断縁にドロス(溶融金属と溶融酸化物の混合物)
が付着しやすいため、成形品の外観を著しく損ねたり、
その剥離が困難な場合にはドロスの除去に大変な労力を
要する。また、このドロスの付着が著しい場合には、閉
曲線切断時に再溶着によって切断片が分離不能となる。
さらに、ドロスの付着が軽度の場合でも、切断精度の低
下は避けられない。このため、溶断法の適用に際して
は、ドロス付着の防止が不可欠である。However, in the fusing method, dross (a mixture of molten metal and molten oxide) is applied to the cutting edge.
Easily adheres to the product, significantly impairing the appearance of the molded product,
When the peeling is difficult, a great effort is required to remove the dross. Further, when the dross adheres remarkably, the cut pieces cannot be separated by re-welding at the time of cutting the closed curve.
Furthermore, even when the dross is slightly attached, a decrease in cutting accuracy cannot be avoided. For this reason, prevention of dross adhesion is indispensable when applying the fusing method.
【0005】ドロス付着の防止については、従来、溶断
時の使用ガスの種類、入熱量、切断速度などの溶断条件
を適正化することで改善が試みられているが、素材の面
からの防止対策が確立されるに至っていない。このた
め、現状では溶断時のドロス・フリーが達成されていな
い。[0005] To prevent the dross from adhering, conventionally, attempts have been made to improve the fusing conditions such as the type of gas used during fusing, the amount of heat input, and the cutting speed. Has not yet been established. For this reason, dross-free at the time of fusing is not achieved at present.
【0006】本発明はかかる問題に鑑みなされたもの
で、溶断時にドロス付着のない、良好な切断面が得られ
る高強度鋼板を提供するものである。The present invention has been made in view of the above problems, and an object of the present invention is to provide a high-strength steel sheet which is free from dross adhesion at the time of fusing and can obtain a good cut surface.
【0007】[0007]
【課題を解決するための手段】本発明者らの観察によれ
ば、溶断の際に鋼板の切断縁にドロスが付着するのは、
溶断条件が不適切なために、ドロスが切断前面から下方
に排出されずに、後方あるいは側方に流出し、板裏面に
回り込み、そのまま凝固するためである。従って、ドロ
スがたとえ後方あるいは側方に流出しても、板裏面から
の離脱性が良好ならば、その付着は起こらないことが堆
測される。According to observations made by the present inventors, dross adheres to the cutting edge of a steel sheet during fusing.
This is because dross is not discharged downward from the cutting front surface but flows backward or to the side, flows around the plate back surface, and solidifies as it is due to inappropriate cutting conditions. Therefore, even if the dross flows backward or to the side, if the detachability from the back surface of the plate is good, it is measured that the adhesion does not occur.
【0008】そこで、本発明者らは、板裏面からの離脱
性に最も影響を及ぼすと考えられる粘性に着目し、種々
の鉄合金および溶断時に生成するであろう種々の酸化物
について高温での粘度を測定し、それらとドロス付着性
についての関係を調査した結果、両者の粘度が特定値以
下になるとドロス付着は全く起こらないことを知見し
た。さらに、溶融鉄合金および溶融酸化物の粘性と各元
素の関係を詳細に解析した結果、後述の式1〜式3を満
足する場合には、前記粘度を確保することができ、ドロ
ス付着を完全に防止できることを見出し、下記の発明を
完成したものである。Therefore, the present inventors focused on the viscosity which is considered to have the greatest influence on the releasability from the back surface of the plate, and examined various iron alloys and various oxides which would be generated at the time of fusing at a high temperature. The viscosities were measured and the relationship between them and dross adhesion was investigated. As a result, it was found that dross adhesion did not occur at all when the viscosities of the two became below a specific value. Furthermore, as a result of analyzing in detail the relationship between the viscosities of the molten iron alloy and the molten oxide and each element, when the following expressions 1 to 3 are satisfied, the viscosity can be ensured, and dross adhesion can be completely prevented. It has been found that the following inventions have been completed.
【0009】すなわち、請求項1にかかる発明は、15
50℃における溶融鉄合金の粘度μFeが6cP以下、同温
度で溶融鉄合金を酸化した際に生成した溶融酸化物の粘
度μOxが150cP以下の特性を有する高強度鋼板であ
る。That is, the invention according to claim 1 has the following features.
This is a high-strength steel sheet having a characteristic that the viscosity μFe of the molten iron alloy at 50 ° C. is 6 cP or less, and the viscosity μOx of the molten oxide generated when the molten iron alloy is oxidized at the same temperature is 150 cP or less.
【0010】また、請求項2にかかる発明は、下記各式
中の元素記号が同元素の含有重量%を示すとき、下記式
1の値が4.3以下、下記式2の値が4.6以下、下記
式3の値が1〜9である請求項1にかかる高強度鋼板で
ある。 式1=5−0.5C−0.2(Si+Mn)−3.4P
−8.5Al+Ti+1.2Nb+0.3(Cr+M
o)+2.7V 式2=1.8Al+1.6Si+1.7(Ti+Nb+
V)+2.1Cr 式3=Mn/SiFurther, in the invention according to claim 2, when the element symbol in each of the following formulas indicates the content% by weight of the same element, the value of the following formula 1 is 4.3 or less, and the value of the following formula 2 is 4. 6. The high-strength steel sheet according to claim 1, wherein the value of Formula 3 below is 1 to 9. Formula 1 = 5-0.5C-0.2 (Si + Mn) -3.4P
−8.5Al + Ti + 1.2Nb + 0.3 (Cr + M
o) + 2.7V Formula 2 = 1.8Al + 1.6Si + 1.7 (Ti + Nb +
V) + 2.1Cr Formula 3 = Mn / Si
【0011】また、請求項3にかかる発明は、重量%
で、C:0.02〜0.30%、Si:0.01〜3.
00%、Mn:0.50〜3.00%、P:0.15%
以下、Al:0.01〜0.07%を含有し、残部Fe
および不可避的不純物からなる請求項1又は2に記載し
た溶断性に優れた高強度鋼板である。[0011] The invention according to claim 3 is characterized in that:
And C: 0.02-0.30%, Si: 0.01-3.
00%, Mn: 0.50 to 3.00%, P: 0.15%
Hereinafter, Al: 0.01 to 0.07% is contained, and the balance Fe
And a high-strength steel sheet having excellent fusing properties according to claim 1 or 2 comprising unavoidable impurities.
【0012】また、請求項4にかかる発明は、成分とし
て、さらにTi:0.25%以下、Nb:0.25%以
下、B:0.005%以下、Cu:1.0%以下、N
i:0.5%以下、Cr:1.0%以下、Mo:0.6
%以下、V:0.4%以下のうちから1種又は2種以上
を有する請求項3に記載した高強度鋼板である。Further, the invention according to claim 4 is characterized in that Ti: 0.25% or less, Nb: 0.25% or less, B: 0.005% or less, Cu: 1.0% or less, N
i: 0.5% or less, Cr: 1.0% or less, Mo: 0.6
% Or less, and V: 0.4% or less.
【0013】前記溶融鉄合金の粘度μFeと溶融酸化物の
粘度μOxとについては、μFe、μOxのいずれか一方でも
前記上限値を超えると、ドロスの粘度が上がり、板裏面
への付着が発生するようになる。[0013] Regarding the viscosity μFe of the molten iron alloy and the viscosity μOx of the molten oxide, if at least one of μFe and μOx exceeds the upper limit, the viscosity of the dross increases, and adhesion to the back surface of the plate occurs. Become like
【0014】種々の成分元素の含有重量とドロスの付着
量との関係を求めて回帰分析を行った結果溶融鉄合金の
粘度は、鋼板を形成する種々の元素のうち溶融鉄の粘性
を変化させる元素の総合的な組み合わせで決まり、前記
式1の値が4.3を越えると1550℃でのμFeが6cP
を越えるようになり、ドロスの付着が発生するようにな
ること、および溶融酸化物の粘度は、鋼板を形成する種
々の元素のうち酸化物形成能の高い元素の総合的な組み
合わせできまり、前記式2の値が4.6を越えると15
50℃での粘度μOxも150cPを越えるようになり、ド
ロスの付着が発生するようになることが明らかになっ
た。また、酸化物形成能が特に高いMnとSiの比を示
す式3が、1未満あるいは9を越える場合も、高融点の
複合酸化物が生成されやすくなるため、やはりドロスの
付着が発生しやくすなる。なお、式1、式2中の各元素
の含有は必須ではなく、含有する場合にその含有量が考
慮されることを意味する。A regression analysis was performed to determine the relationship between the content weights of various component elements and the amount of dross deposited. As a result, the viscosity of the molten iron alloy changed the viscosity of the molten iron among the various elements forming the steel sheet. When the value of Equation 1 exceeds 4.3, μFe at 1550 ° C. becomes 6 cP
And dross adhesion occurs, and the viscosity of the molten oxide is determined by a comprehensive combination of elements having high oxide-forming ability among various elements forming the steel sheet. If the value of equation 2 exceeds 4.6, 15
The viscosity μOx at 50 ° C. also exceeded 150 cP, and it became clear that dross was attached. Also, when the formula 3 showing the ratio of Mn to Si, which has a particularly high oxide-forming ability, is less than 1 or more than 9, a composite oxide having a high melting point is likely to be formed, so that dross adhesion is also likely to occur. Sick. It should be noted that the content of each element in the formulas 1 and 2 is not indispensable, but means that the content is considered when it is contained.
【0015】本発明の高強度鋼板は、引張強度が60kg
f /mm2 以上、特に80kgf /mm2以上のもので効果が
大きいが、80kgf /mm2 以上の強度を有する高強度鋼
板の好適な成分は請求項3および4に記載したとおりで
あり、以下に成分限定理由を説明する。The high-strength steel sheet of the present invention has a tensile strength of 60 kg.
Although the effect is great at f / mm 2 or more, especially at 80 kgf / mm 2 or more, preferred components of the high-strength steel sheet having a strength of 80 kgf / mm 2 or more are as described in claims 3 and 4, and The reasons for limiting the components will be described below.
【0016】C:0.02〜0.30% Cは鋼板の引張強さを支配する重要な元素であり、マル
テンサイト組織を得るためには、少なくとも0.02%
の添加を必要とする。強度を高める観点からは多い程良
いが、0.30%を越えると、靱性と溶接性が著しく劣
化するため、その上限を0.30%とする。C: 0.02 to 0.30% C is an important element that controls the tensile strength of a steel sheet. To obtain a martensitic structure, at least 0.02%
Need to be added. From the viewpoint of increasing the strength, the larger the better, the better. However, if it exceeds 0.30%, the toughness and weldability are significantly deteriorated, so the upper limit is made 0.30%.
【0017】Si:0.01〜3.00% Siは鋼板の強度確保のほか脱酸元素として必須の元素
であり、その効果を得るには少なくとも0.01%は必
要である。一方、多すぎると熱間圧延工程におけるスケ
ールの発生が著しくなり、鋼板の表面性状を劣化させる
ため、その上限を3.00%とする。Si: 0.01 to 3.00% Si is an essential element as a deoxidizing element in addition to securing the strength of the steel sheet, and at least 0.01% is necessary to obtain its effect. On the other hand, if the amount is too large, the scale is remarkably generated in the hot rolling step, and the surface properties of the steel sheet are deteriorated. Therefore, the upper limit is set to 3.00%.
【0018】Mn:0.50〜3.00% Mnは強度確保のために必須の元素であり、その効果を
得るには少なくとも0.50%は必要である。3.00
%を越えると靱性と溶接性が著しく劣化するため、その
上限を3.00%とする。Mn: 0.50 to 3.00% Mn is an essential element for securing the strength, and at least 0.50% is necessary to obtain the effect. 3.00
%, The toughness and weldability deteriorate significantly, so the upper limit is made 3.00%.
【0019】P:0.15%以下 Pは0.15%を越えて過多に添加すれば溶接性を阻害
するため、上限を0.15%とする。P: not more than 0.15% If P is added in excess of 0.15%, the weldability is impaired, so the upper limit is made 0.15%.
【0020】Al:0.01〜0.07% Alは脱酸元素として0.01%は必要であるが、0.
07%を越えると脱酸効果が飽和するのみならず、アル
ミナクラスターを形成して表面性状を劣化させる。Al: 0.01 to 0.07% Al needs 0.01% as a deoxidizing element.
If it exceeds 07%, not only the deoxidizing effect is saturated, but also alumina clusters are formed to deteriorate the surface properties.
【0021】本発明にかかる高強度鋼板の好適な成分は
上記基本成分のほか、残部Feおよび不可避的不純物か
らなるが、さらに鋼板の機械的特性を向上させるため
に、必要に応じて、Ti:0.25%以下、Nb:0.
25%以下、B:0.005%以下、Cu:1.0%以
下、Ni:0.5%以下、Cr:1.0%以下、Mo:
0.6%以下、V:0.4%以下のうちから1種または
2種以上を含有することができる。これらの元素は鋼板
の強度と靱性を高める作用を有する。各元素含有量の上
限を越えると、鋼板の靱性と溶接性を著しく損なうよう
になるので、各上限値以下の含有に止める。The preferred components of the high-strength steel sheet according to the present invention comprise, in addition to the above basic components, the balance of Fe and unavoidable impurities. In order to further improve the mechanical properties of the steel sheet, Ti: 0.25% or less, Nb: 0.
25% or less, B: 0.005% or less, Cu: 1.0% or less, Ni: 0.5% or less, Cr: 1.0% or less, Mo:
One or more of 0.6% or less and V: 0.4% or less can be contained. These elements have the effect of increasing the strength and toughness of the steel sheet. If the content exceeds the upper limit of each element content, the toughness and weldability of the steel sheet will be significantly impaired.
【0022】[0022]
【実施例】表1に示す組成の鋼片に熱間圧延、酸洗、冷
間圧延、焼鈍を施し、同表に示す引張強さを有する鋼板
(板厚:2.0mm)を製造した。各鋼板について、下記
の測定法で溶融鉄合金、溶融酸化物の粘性を測定すると
ともに、下記条件でプラズマ切断、レーザー切断を行
い、下記要領でドロス付着性を調査した。それらの結果
を表1に併せて示す。EXAMPLE A slab having the composition shown in Table 1 was subjected to hot rolling, pickling, cold rolling and annealing to produce a steel sheet (sheet thickness: 2.0 mm) having the tensile strength shown in the same table. For each steel sheet, the viscosity of the molten iron alloy and the molten oxide were measured by the following measurement method, and plasma cutting and laser cutting were performed under the following conditions, and dross adhesion was investigated in the following manner. The results are shown in Table 1.
【0023】(1) 粘性の測定法 溶融鉄合金 各鋼板から切り出した試料を、不活性ガス中で1550
℃に加熱、溶融し、るつぼ回転振動法にて溶融鉄合金の
粘度μFeを測定した。るつぼ回転振動法は、融体試料を
満たした容器を懸垂線でつるして回転振動させると、容
器中の試料の粘性抵抗のために振動は次第に減衰するこ
とを利用したもので、この減衰振動の対数減衰率と振動
周期を測定し、これらの測定値から試料の粘度を求める
方法であり、主に低粘度の測定に用いられるものであ
る。(1) Method of measuring viscosity Molten iron alloy A sample cut from each steel plate was placed in an inert gas for 1550 minutes.
℃, melted, and the viscosity μFe of the molten iron alloy was measured by a crucible rotation vibration method. The crucible rotation vibration method utilizes the fact that when a container filled with a melt sample is hung with a catenary and rotated and vibrated, the vibration gradually attenuates due to the viscous resistance of the sample in the container. This is a method of measuring the logarithmic decay rate and the oscillation period, and obtaining the viscosity of the sample from these measured values, and is mainly used for measurement of low viscosity.
【0024】溶融酸化物 鋼板から切り出した試料を、大気中または酸素富化雰囲
気中で1550℃に加熱溶融して十分酸化させ、この時
に採取した酸化物を不活性ガス中で1550℃に再加
熱、溶融し、回転円筒法にて溶融酸化物の粘度μOxを測
定した。回転円筒法は、融体試料中で円筒を一定の角速
度で回転させ、その時回転体に作用する粘性による回転
モーメントを測定し、その測定値から試料の粘度を求め
る方法である。Molten oxide A sample cut from a steel sheet is heated and melted at 1550 ° C. in the air or an oxygen-enriched atmosphere to sufficiently oxidize, and the oxide collected at this time is reheated to 1550 ° C. in an inert gas. , Melted, and the viscosity μOx of the molten oxide was measured by a rotating cylinder method. The rotating cylinder method is a method in which a cylinder is rotated at a constant angular velocity in a molten sample, a rotational moment due to viscosity acting on the rotating body is measured at that time, and the viscosity of the sample is obtained from the measured value.
【0025】(2) 切断法 プラズマ切断 プラズマ切断は動作ガスとして空気を用いるエアプラズ
マ法を適用し、切断電流10A、切断速度0.1m/mi
n で行った。(2) Cutting method Plasma cutting Plasma cutting is performed by an air plasma method using air as an operating gas, cutting current 10 A, cutting speed 0.1 m / mi.
Made with n.
【0026】レーザー切断 レーザー切断はレーザー源として炭酸ガスレーザーを用
い、レーザー出力900W、切断速度4m/min で行っ
た。Laser cutting Laser cutting was performed using a carbon dioxide laser as a laser source at a laser output of 900 W and a cutting speed of 4 m / min.
【0027】(3) ドロス付着量の測定法 切断部両側に付着したドロスを研磨除去し、その除去前
後の重量差から、切断長1m当たりの付着量を求めた。(3) Method of measuring the amount of dross adhering The dross adhering to both sides of the cut portion was polished and removed, and the amount of adhering per 1 m of cutting length was determined from the weight difference before and after the removal.
【0028】[0028]
【表1】 [Table 1]
【0029】表1から、比較例である試料No. 21、2
2と実施例である試料No. 1〜11を比べると、溶融鉄
合金の粘度μFeが本発明の範囲内にあって初めてドロス
付着を著しく抑制することができ、その粘度μFeは式1
の値が4.3以下で達成できることがわかる。なお、発
明例のNo. 10と他の発明例から、切断法が相違して
も、本発明を満足する限り、溶断の際に切断縁にドロス
の付着はなく、優れた溶断性が得られていることがわか
る。From Table 1, it can be seen that Samples Nos. 21 and 2
Comparing Sample No. 1 with Sample Nos. 1 to 11 as Examples, the dross adhesion can be remarkably suppressed only when the viscosity μFe of the molten iron alloy is within the range of the present invention.
Can be achieved when the value is 4.3 or less. In addition, even if the cutting method is different from Inventive Example No. 10 and other invention examples, dross does not adhere to the cut edge at the time of fusing as long as the present invention is satisfied, and excellent fusing property is obtained. You can see that it is.
【0030】また、比較例である試料No. 23〜26と
No. 1〜11を比べると、溶融酸化物の粘度μOxが本発
明の範囲内にあって初めてドロス付着を著しく抑制する
ことができ、その粘度は式2の値が4.6以下でしかも
式3の値が1〜9の範囲内で初めて達成できることがわ
かる。Sample Nos. 23 to 26, which are comparative examples,
Comparing Nos. 1 to 11, the dross adhesion can be significantly suppressed only when the viscosity μOx of the molten oxide is within the range of the present invention. It can be seen that the value of 3 can be achieved only within the range of 1 to 9.
【0031】[0031]
【発明の効果】本発明の高強度鋼板によれば、溶断時に
ドロス付着のない良好な切断面が得られるため、鋼板製
造あるいは製品形状への加工が容易となり、大幅な生産
性の向上あるいは製品用途の拡大を図ることができる。According to the high-strength steel sheet of the present invention, a good cut surface without dross adhesion at the time of fusing can be obtained, so that the steel sheet can be easily manufactured or processed into a product shape, and the productivity can be greatly improved. Applications can be expanded.
Claims (4)
Feが6cP以下、同温度で溶融鉄合金を酸化した際に生成
した溶融酸化物の粘度μOxが150cP以下である溶断性
に優れた高強度鋼板。1. The viscosity μ of a molten iron alloy at 1550 ° C.
A high-strength steel sheet excellent in fusing properties, in which the Fe is 6 cP or less and the viscosity μOx of the molten oxide generated when the molten iron alloy is oxidized at the same temperature is 150 cP or less.
量%を示すとき、下記式1の値が4.3以下、下記式2
の値が4.6以下、下記式3の値が1〜9である請求項
1に記載した溶断性に優れた高強度鋼板。 式1=5−0.5C−0.2(Si+Mn)−3.4P
−8.5Al+Ti+1.2Nb+0.3(Cr+M
o)+2.7V 式2=1.8Al+1.6Si+1.7(Ti+Nb+
V)+2.1Cr 式3=Mn/Si2. When an element symbol in each of the following formulas indicates the content percentage by weight of the same element, the value of the following formula 1 is 4.3 or less, and the value of the following formula 2 is
2. The high-strength steel sheet excellent in fusing property according to claim 1, wherein the value of Eq. Formula 1 = 5-0.5C-0.2 (Si + Mn) -3.4P
−8.5Al + Ti + 1.2Nb + 0.3 (Cr + M
o) + 2.7V Formula 2 = 1.8Al + 1.6Si + 1.7 (Ti + Nb +
V) + 2.1Cr Formula 3 = Mn / Si
%、Si:0.01〜3.00%、Mn:0.50〜
3.00%、P:0.15%以下、Al:0.01〜
0.07%を含有し、残部Feおよび不可避的不純物か
らなる請求項1又は2に記載した溶断性に優れた高強度
鋼板。3. C: 0.02 to 0.30% by weight
%, Si: 0.01 to 3.00%, Mn: 0.50 to 0.5%
3.00%, P: 0.15% or less, Al: 0.01 to
The high-strength steel sheet having excellent fusing property according to claim 1 or 2, comprising 0.07%, and the balance being Fe and unavoidable impurities.
0.25%以下、B:0.005%以下、Cu:1.0
%以下、Ni:0.5%以下、Cr:1.0%以下、M
o:0.6%以下、V:0.4%以下のうちから1種又
は2種以上を含有する請求項3に記載した溶断性に優れ
た高強度鋼板。4. Ti: 0.25% or less, Nb:
0.25% or less, B: 0.005% or less, Cu: 1.0
%, Ni: 0.5% or less, Cr: 1.0% or less, M
4. The high-strength steel sheet excellent in fusing property according to claim 3, containing one or more of o: 0.6% or less and V: 0.4% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1499598A JPH11199984A (en) | 1998-01-09 | 1998-01-09 | High strength steel sheet excellent in gas cutting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1499598A JPH11199984A (en) | 1998-01-09 | 1998-01-09 | High strength steel sheet excellent in gas cutting |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11199984A true JPH11199984A (en) | 1999-07-27 |
Family
ID=11876524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1499598A Pending JPH11199984A (en) | 1998-01-09 | 1998-01-09 | High strength steel sheet excellent in gas cutting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11199984A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009101951A1 (en) * | 2008-02-12 | 2009-08-20 | Sumitomo Metal Industries, Ltd. | Steel material for thermal cutting with oxygen |
US7699947B2 (en) * | 2003-01-15 | 2010-04-20 | Usinor | Ultrahigh strength hot-rolled steel and method of producing bands |
-
1998
- 1998-01-09 JP JP1499598A patent/JPH11199984A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7699947B2 (en) * | 2003-01-15 | 2010-04-20 | Usinor | Ultrahigh strength hot-rolled steel and method of producing bands |
WO2009101951A1 (en) * | 2008-02-12 | 2009-08-20 | Sumitomo Metal Industries, Ltd. | Steel material for thermal cutting with oxygen |
JP4435289B2 (en) * | 2008-02-12 | 2010-03-17 | 住友金属工業株式会社 | Steel for thermal cutting using oxygen |
JPWO2009101951A1 (en) * | 2008-02-12 | 2011-06-09 | 住友金属工業株式会社 | Steel for thermal cutting using oxygen |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6033623A (en) | Method of manufacturing iron aluminide by thermomechanical processing of elemental powders | |
JP7311633B2 (en) | Nickel-base alloy for powder and method for producing powder | |
EP0738782B1 (en) | Iron aluminide useful as electrical resistance heating elements | |
US5595706A (en) | Aluminum containing iron-base alloys useful as electrical resistance heating elements | |
WO2011090402A2 (en) | Secondary titanium alloy and method for manufacturing same | |
JPH03104832A (en) | Gamma-titanium-aluminum alloy modified with chrome and silicon and its manufacture | |
WO1995027586A1 (en) | Alloy foil capable of liquid-phase diffusion welding of heat-resisting material in oxidizing atmosphere | |
Li et al. | Brazeability evaluation of Ti-Zr-Cu-Ni-Co-Mo filler for vacuum brazing TiAl-based alloy | |
US3085005A (en) | Alloys | |
RU2436858C2 (en) | Secondary titanium alloy and procedure for its production | |
US5320803A (en) | Process for making aluminum-lithium alloys of high toughness | |
US5676773A (en) | Aluminum-lithium, aluminum-magnesium and magnesuim-lithium alloys of high toughness | |
EP0132371B1 (en) | Process for making alloys having a coarse elongated grain structure | |
JPH11199984A (en) | High strength steel sheet excellent in gas cutting | |
WO2006102034A2 (en) | Co-based wire and method for saw tip manufacture and repair | |
US4385934A (en) | Austenitic iron alloys having yttrium | |
JPH05504996A (en) | Spray casting aluminum/lithium alloy | |
JPH08170143A (en) | Alloy based on silicide essentially consisting of chromium and molybdenum | |
ZA200307900B (en) | Reinforced durable tool steel, method for the production thereof, method for producing parts made of said steel, and parts thus obtained. | |
US3681061A (en) | Fully dense consolidated-powder superalloys | |
CA1073708A (en) | Oxidation resistant iron base alloys | |
JP4044305B2 (en) | Iron-based high rigidity material and manufacturing method thereof | |
US3991930A (en) | Method for producing a multi-layer metal strip and metal strip produced according to said method | |
JPH0762494A (en) | Hot tool steel having excellent low cycle fatigue characteristic | |
JP3573344B2 (en) | Manufacturing method of highly clean maraging steel |