JPH11190210A - Exhaust gas purification control device - Google Patents
Exhaust gas purification control deviceInfo
- Publication number
- JPH11190210A JPH11190210A JP9359182A JP35918297A JPH11190210A JP H11190210 A JPH11190210 A JP H11190210A JP 9359182 A JP9359182 A JP 9359182A JP 35918297 A JP35918297 A JP 35918297A JP H11190210 A JPH11190210 A JP H11190210A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- catalyst
- nox
- amount
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000746 purification Methods 0.000 title claims description 40
- 239000003054 catalyst Substances 0.000 claims abstract description 181
- 239000000446 fuel Substances 0.000 claims abstract description 100
- 238000002485 combustion reaction Methods 0.000 claims abstract description 46
- 239000000126 substance Substances 0.000 claims abstract description 21
- 239000000203 mixture Substances 0.000 claims abstract description 20
- 238000002347 injection Methods 0.000 claims abstract description 15
- 239000007924 injection Substances 0.000 claims abstract description 15
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical group [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims abstract description 4
- 238000001179 sorption measurement Methods 0.000 claims description 123
- 238000000034 method Methods 0.000 claims description 55
- 239000003638 chemical reducing agent Substances 0.000 claims description 49
- 239000011734 sodium Substances 0.000 claims description 33
- 239000007800 oxidant agent Substances 0.000 claims description 19
- 239000011777 magnesium Substances 0.000 claims description 18
- 239000011575 calcium Substances 0.000 claims description 16
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 12
- 230000009467 reduction Effects 0.000 claims description 10
- 229910052708 sodium Inorganic materials 0.000 claims description 10
- 231100000614 poison Toxicity 0.000 claims description 9
- 231100000572 poisoning Toxicity 0.000 claims description 9
- 230000000607 poisoning effect Effects 0.000 claims description 9
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 8
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 8
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 8
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 8
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 8
- 229910052791 calcium Inorganic materials 0.000 claims description 8
- 229910052749 magnesium Inorganic materials 0.000 claims description 8
- 239000011591 potassium Substances 0.000 claims description 8
- 229910052700 potassium Inorganic materials 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 8
- 239000010948 rhodium Substances 0.000 claims description 8
- 229910052712 strontium Inorganic materials 0.000 claims description 8
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 8
- 230000033116 oxidation-reduction process Effects 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 229910044991 metal oxide Inorganic materials 0.000 claims description 6
- 150000004706 metal oxides Chemical class 0.000 claims description 6
- 230000001590 oxidative effect Effects 0.000 claims description 6
- 229910052697 platinum Inorganic materials 0.000 claims description 6
- 230000007096 poisonous effect Effects 0.000 claims description 6
- 229910052703 rhodium Inorganic materials 0.000 claims description 6
- 230000003647 oxidation Effects 0.000 claims description 5
- 238000007254 oxidation reaction Methods 0.000 claims description 5
- 238000006555 catalytic reaction Methods 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 4
- 239000002131 composite material Substances 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- 229910052684 Cerium Inorganic materials 0.000 claims description 3
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims description 3
- 230000006866 deterioration Effects 0.000 claims description 3
- 150000002739 metals Chemical class 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 239000010970 precious metal Substances 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 239000010936 titanium Substances 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 239000002574 poison Substances 0.000 claims 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims 1
- 229910002091 carbon monoxide Inorganic materials 0.000 abstract description 28
- 239000000243 solution Substances 0.000 abstract description 11
- 230000003197 catalytic effect Effects 0.000 abstract description 2
- 230000000274 adsorptive effect Effects 0.000 abstract 5
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 371
- 239000007789 gas Substances 0.000 description 96
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 27
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 16
- 239000001301 oxygen Substances 0.000 description 16
- 229910052760 oxygen Inorganic materials 0.000 description 16
- 230000006870 function Effects 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 11
- 238000006722 reduction reaction Methods 0.000 description 11
- 239000002250 absorbent Substances 0.000 description 10
- 230000002745 absorbent Effects 0.000 description 10
- 230000008929 regeneration Effects 0.000 description 10
- 238000011069 regeneration method Methods 0.000 description 10
- 229910002651 NO3 Inorganic materials 0.000 description 8
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 230000010354 integration Effects 0.000 description 8
- 238000011144 upstream manufacturing Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000003502 gasoline Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000003463 adsorbent Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000010531 catalytic reduction reaction Methods 0.000 description 2
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910052878 cordierite Inorganic materials 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical class O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000004438 BET method Methods 0.000 description 1
- 229910020203 CeO Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000002156 adsorbate Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000000809 air pollutant Substances 0.000 description 1
- 231100001243 air pollutant Toxicity 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000009841 combustion method Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000010485 coping Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000008635 plant growth Effects 0.000 description 1
- -1 plates Substances 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 239000004323 potassium nitrate Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- VXNYVYJABGOSBX-UHFFFAOYSA-N rhodium(3+);trinitrate Chemical compound [Rh+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VXNYVYJABGOSBX-UHFFFAOYSA-N 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000000954 titration curve Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Treating Waste Gases (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は自動車等の内燃機関
から排出される排気ガスを浄化する装置に係わり、特に
希薄空燃比(リーンバーン)で運転可能な内燃機関及び
該内燃機関を搭載した自動車から排出される排ガスの浄
化装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for purifying exhaust gas emitted from an internal combustion engine of an automobile or the like, and more particularly to an internal combustion engine operable at a lean air-fuel ratio (lean burn) and an automobile equipped with the internal combustion engine. The present invention relates to a device for purifying exhaust gas discharged from a plant.
【0002】[0002]
【従来の技術】自動車等の内燃機関から排出される排ガ
スに含まれる、一酸化炭素(CO),炭化水素(HC:H
ydrocarbon),窒素酸化物(NOx)等は大気汚染物質
として人体に悪影響を及ぼす他、植物の生育を妨げる等
の問題を生起する。そこで、従来より、これらの排出量
低減には多大の努力が払われ、内燃機関の燃焼方法の改
善による発生量の低減に加え、排出された排ガスを触媒
等を利用して浄化する方法の開発が進められ、着実な成
果を挙げてきた。ガソリンエンジン車に関しては、三元
触媒なるPt,Rhを活性の主成分とし、HC及びCO
の酸化とNOxの還元を同時に行って無害化する触媒を
用いる方法が主流となっている。2. Description of the Related Art Carbon monoxide (CO) and hydrocarbons (HC: H) contained in exhaust gas discharged from an internal combustion engine of an automobile or the like are used.
Hydrocarbons, nitrogen oxides (NOx), and the like adversely affect the human body as air pollutants and cause problems such as hindering plant growth. So far, great efforts have been made to reduce these emissions, and in addition to reducing the amount generated by improving the combustion method of the internal combustion engine, a method of purifying the exhaust gas using a catalyst or the like has been developed. Has been promoted and has achieved steady results. For gasoline engine vehicles, Pt and Rh, which are three-way catalysts, are the main components of activity, and HC and CO
The mainstream is a method using a catalyst that renders harmless by simultaneously oxidizing NO and reducing NOx.
【0003】ところで、三元触媒はその特性から、ウィ
ンドウと称される理論空気燃料比近傍で燃焼させて生成
した排ガスにしか効果的に作用しない。そこで従来は、
空燃比は自動車の運転状況に応じて変動するものの変動
範囲は原則として理論空燃比(ガソリンの場合A(空気
の重量)/F(燃料の重量)=約14.7 ;以下本明細
書では理論空撚比をA/F=14.7 で代表させるが燃
料種によりこの数値は変る。)近傍に調節されてきた。
しかし、理論空燃比より希薄(リーン)な空燃比でエン
ジンを運転できると燃費を向上させる事ができることか
ら、リーンバーン燃焼技術の開発が進められ、最近では
空燃比18以上のリーン域で内燃機関を燃焼させる自動
車が珍しくない。しかし前述の様に現用三元触媒でリー
ンバーン排気の浄化を行わせるとHC,COの酸化浄化
は行えるもののNOxを効果的に還元浄化することはで
きない。したがって、リーンバーン方式の大型車への適
用、リーンバーン燃焼時間の拡大(リーンバーン方式の
適用運転域の拡大)を進めるには、リーンバーン対応排
ガス浄化技術が必要となる。そこでリーンバーン対応排
気浄化技術、すなわち酸素(O2 )が多量に含まれる排
ガス中のHC,NO,NOxを浄化する技術の開発、特
にNOxを浄化する技術の開発が精力的に進められてい
る。[0003] By the way, due to its characteristics, the three-way catalyst effectively acts only on exhaust gas generated by burning near the theoretical air-fuel ratio called a window. So conventionally,
Although the air-fuel ratio fluctuates according to the driving conditions of the vehicle, the fluctuation range is in principle the stoichiometric air-fuel ratio (A (weight of air) / F (weight of fuel) for gasoline) = about 14.7; The air / twist ratio is represented by A / F = 14.7, but this value varies depending on the fuel type.)
However, if the engine can be operated at an air-fuel ratio leaner than the stoichiometric air-fuel ratio, the fuel efficiency can be improved. Therefore, the development of lean burn combustion technology has been promoted. It is not unusual for cars to burn gas. However, as described above, when purifying lean burn exhaust gas with the current three-way catalyst, HC and CO can be oxidized and purified, but NOx cannot be effectively reduced and purified. Therefore, in order to apply the lean burn method to a large-sized vehicle and to extend the burn time of the lean burn method (expansion of the operating range to which the lean burn method is applied), lean burn compatible exhaust gas purification technology is required. Therefore, development of lean burn compatible exhaust gas purification technology, that is, technology for purifying HC, NO, and NOx in exhaust gas containing a large amount of oxygen (O 2 ), particularly technology for purifying NOx, has been vigorously pursued. .
【0004】特開昭63−61708 号では、リーンバーン排
ガスの上流にHCを供給し、排ガス中のO2 濃度を触媒
が有効に機能する濃度域まで低め触媒の能力を引き出す
方法が提案されている。Japanese Patent Application Laid-Open No. 63-61708 proposes a method in which HC is supplied to the upstream of lean burn exhaust gas to lower the O 2 concentration in the exhaust gas to a concentration range in which the catalyst can function effectively, thereby extracting the ability of the catalyst. I have.
【0005】特開昭62-97630号,62−106826号,62−11
7620号は排ガス中のNOxを(NOは酸化して吸収され
易いNO2 に変換した後)NOx吸収能を有する触媒と
接触させて吸収除去し、吸収効率が低下した時点で排ガ
スの通過を止めてH2 ,メタン・ガソリン等のHC、等
の還元剤を用いて蓄積されたNOxを還元除去し、触媒
のNOx吸収能を再生する方法が示されている。JP-A-62-97630, 62-106826, 62-11
No. 7620 NOx in exhaust gas by (NO in to after converting absorbed to easily NO 2 oxidation) removing absorbed by contact with a catalyst having a NOx trapping ability, stop the passage of the exhaust gas at the time the absorption efficiency is lowered A method of reducing and removing accumulated NOx using a reducing agent such as H 2 , HC such as methane and gasoline, and regenerating the NOx absorption capacity of the catalyst is disclosed.
【0006】また、PCT/JP92/01279及び
PCT/JP92/01330には、排ガスがリーンの
時にNOxを吸収し排ガス中の酸素濃度を低下させると
吸収したNOxを放出するNOx吸収剤を排気通路に設
置し、排気ガスがリーンのときにNOxを吸収させ、吸
収させたNOxをNOx吸収剤に流入する排ガス中のO
2 濃度を低下せしめて放出させる、排気浄化装置が提案
されている。In PCT / JP92 / 01279 and PCT / JP92 / 01330, a NOx absorbent that absorbs NOx when the exhaust gas is lean and releases the absorbed NOx when the oxygen concentration in the exhaust gas is reduced is provided in the exhaust passage. NOx is absorbed when the exhaust gas is lean, and the absorbed NOx is absorbed by the exhaust gas flowing into the NOx absorbent.
2. Exhaust gas purifying devices have been proposed in which the concentration is reduced and released.
【0007】しかし、特開昭63−61708 号において触媒
が機能する空燃比である(A/F)14.7程度に相当
する排ガスの組成(O2 濃度約0.5%程度)を達成す
るには多量のHCが必要となる。同発明のブローバイガ
スの利用は有効であるものの、内燃機関運転中の排ガス
を処理するに十分な量ではない。燃料を投入することも
技術的には不可能ではないが、リーンバーン方式で節減
した燃費を低下させる結果となる。However, in JP-A-63-61708, an exhaust gas composition (O 2 concentration of about 0.5%) corresponding to an air-fuel ratio (A / F) of about 14.7 at which the catalyst functions is achieved. Requires a large amount of HC. Although the use of the blow-by gas of the present invention is effective, it is not sufficient to treat the exhaust gas during operation of the internal combustion engine. Injecting fuel is not technically impossible, but will result in a reduction in fuel economy, which has been saved by the lean burn method.
【0008】また、特開昭62−97630 号,62−106826,
62−117620号では、NOx吸収剤の再生にあたり排ガス
の流通を停止してHC等の還元剤をNOx吸収剤に接触
させるため、還元剤の排ガス中のO2 による燃焼消費が
大幅に抑制されて還元剤の使用量が激減する。しかし、
NOx吸収剤を2つ設け、且つ、排ガスをこれらに交互
に流通させるための排気切り替え機構が必要で、排気処
理装置の構造が複雑になることは否定できない。Further, Japanese Patent Application Laid-Open No. 62-97630, 62-106826,
In JP 62-117620, for Upon regeneration of the NOx absorbent by stopping the flow of the exhaust gas a reducing agent such as HC is brought into contact with the NOx absorbent, the fuel consumption due to O 2 in the exhaust gas of the reducing agent is significantly suppressed The amount of reducing agent used is drastically reduced. But,
An exhaust switching mechanism for providing two NOx absorbents and alternately flowing exhaust gas through them is necessary, and it cannot be denied that the structure of the exhaust treatment device becomes complicated.
【0009】さらに、PCT/JP92/01279及
びPCT/JP92/01330では、排ガスを常時N
Ox吸収剤に流通させておき、排ガスがリーンの時にN
Oxを吸収させ、排ガス中のO2 濃度を低下させて吸収
したNOxを放出させて吸収剤を再生するため、排ガス
流の切り替えは不要で、上記方式の問題点は解消する。
しかし、以上の触媒は排気に硫黄(SOx)が含まれて
いるとNOx吸収剤がSOxと化合して硫化物となり、
吸収能力が急速に劣るという問題があった。Further, in PCT / JP92 / 01279 and PCT / JP92 / 01330, the exhaust gas is always N
Circulated through the Ox absorbent, and when the exhaust gas is lean,
To absorb ox, for regeneration of the absorbent by releasing the NOx absorbed by lowering the O 2 concentration in the exhaust gas, the switching of the exhaust gas flow is not required, the problems of the method will be eliminated.
However, when the exhaust gas contains sulfur (SOx), the NOx absorbent combines with SOx to form sulfide,
There is a problem that the absorption capacity is rapidly deteriorated.
【0010】[0010]
【発明が解決しようとする課題】本発明は、上記従来技
術の問題点に鑑み、排気処理装置の構造が簡単であり、
且つ、還元剤の消費量が少なく、且つ、耐久性に優れ
た、内燃機関のリーンバーン排ガスからNOx等の有害
成分を効果的に除去・無害化できる排気浄化制御装置を
提供することにある。SUMMARY OF THE INVENTION In view of the above-mentioned problems of the prior art, the present invention has a simple structure of an exhaust treatment device,
Further, it is an object of the present invention to provide an exhaust gas purification control device which is capable of effectively removing and detoxifying harmful components such as NOx from lean burn exhaust gas of an internal combustion engine, which consumes less reducing agent and has excellent durability.
【0011】[0011]
【課題を解決するための手段】上記課題は、内燃機関か
ら排出される排気を理論空燃比もしくは燃料過剰(リッ
チ)の状態とし、排気温度を所定以上に所定期間以上保
持することにより、経時的に蓄積された触媒の被毒物
(SOx)を触媒から排除することで劣化したNOx吸
着能力を回復させて、解決することができる。以下にN
Ox吸着触媒についてのNOx吸着、還元方法について
説明するが、このNOx吸着能力は排気に含まれる硫黄
分(SOx)の触媒への蓄積量にともなって劣ってく
る。SUMMARY OF THE INVENTION The object of the present invention is to provide an exhaust gas discharged from an internal combustion engine at a stoichiometric air-fuel ratio or an excess of fuel (rich), and by maintaining the exhaust gas temperature at a predetermined value or more for a predetermined time or longer, By removing poisonous substances (SOx) of the catalyst accumulated in the catalyst from the catalyst, the deteriorated NOx adsorption ability can be recovered and solved. Below N
A method of adsorbing and reducing NOx on the Ox adsorption catalyst will be described. However, the NOx adsorbing ability becomes inferior as the amount of sulfur (SOx) contained in exhaust gas accumulates on the catalyst.
【0012】本発明に使用されるNOx吸着触媒では、
排ガス中の各成分間の酸化還元化学量論関係において還
元剤に対して酸化剤が多い状態でNOxを化学吸着し、
酸化剤に対し還元剤が同量以上の状態で吸着したNOx
を接触還元するNOx吸着触媒を排ガス流路に配置し、
排ガス中の各成分間の酸化還元化学量論関係において還
元剤に対して酸化剤が多い状態をつくって吸着触媒上に
NOxを化学吸着させ、次に酸化剤に対し還元剤が同量
以上の状態をつくり、吸着触媒上に吸着したNOxを還
元剤と接触反応させてN2 に還元して無害化する。In the NOx adsorption catalyst used in the present invention,
In the oxidation-reduction stoichiometry relationship between the components in the exhaust gas, NOx is chemisorbed in a state where the oxidizing agent is large relative to the reducing agent,
NOx adsorbed with oxidizing agent in the same amount or more of reducing agent
A NOx adsorption catalyst for catalytic reduction of
In the oxidation-reduction stoichiometry relationship between each component in the exhaust gas, a state in which the oxidizing agent is large relative to the reducing agent is created, and NOx is chemisorbed on the adsorption catalyst. A state is created, and NOx adsorbed on the adsorption catalyst is brought into contact with a reducing agent to be reduced to N 2 and rendered harmless.
【0013】ここで吸着触媒は、NOx等の物質を吸着
する能力を持ち同時に触媒機能を持つ材料を指す。本発
明では、NOxを吸着して捕捉する能力とNOxを接触
的に還元する能力及びHC,CO等を接触的に酸化する
能力を持つ材料を指す。Here, the adsorption catalyst refers to a material that has the ability to adsorb substances such as NOx and also has a catalytic function. In the present invention, it refers to a material having an ability to adsorb and capture NOx, an ability to catalytically reduce NOx, and an ability to catalytically oxidize HC, CO, and the like.
【0014】また、酸化剤はO2 ,NO,NO2 等で主
として酸素である。還元剤は、内燃機関に供されたH
C、燃焼仮定で生成するその派生物としてHC(含む含
酸素炭化水素),CO,H2 等、さらには、後述の還元
成分として排ガス中に添加されるHC等の還元性物質で
ある。The oxidizing agent is O 2 , NO, NO 2 or the like, and is mainly oxygen. The reducing agent was H supplied to the internal combustion engine.
C is a reducing substance such as HC (including oxygen-containing hydrocarbon), CO, H 2 or the like as a derivative thereof generated on the assumption of combustion, and HC added to exhaust gas as a reducing component described later.
【0015】前述のように、リーン排ガスとNOxを窒
素にまで還元するための還元剤としてのHC,CO,H
2 等とを接触させるとこれらは排ガス中の酸化剤として
のO2 と燃焼反応を起こす。NOx(NO及びNO2 )
もこれらと反応して窒素に還元される。通常は両反応が
平行して進行するため酸素の共存下では還元剤の利用率
が低い。特に反応温度が(触媒材料にも依るが)500
℃以上の高温では後者の割合がかなり大きくなる。そこ
で、NOxを吸着触媒で排ガスから分離し(少なくとも
排ガス中のO2 から分離し)しかる後に還元剤と接触反
応させることによりNOxのN2 への還元を効果的に行
うことが可能となる。本発明では、NOx吸着触媒によ
りリーン排ガス中のNOxを吸着除去することにより排
ガス中のNOxをO2 から分離する。As described above, HC, CO, H as reducing agents for reducing lean exhaust gas and NOx to nitrogen
When they come into contact with 2 etc., they cause a combustion reaction with O 2 as an oxidizing agent in the exhaust gas. NOx (NO and NO 2 )
Also reacts with these to be reduced to nitrogen. Usually, the utilization of the reducing agent is low in the presence of oxygen because both reactions proceed in parallel. Especially when the reaction temperature is 500 (depending on the catalyst material)
At a high temperature of ℃ or more, the ratio of the latter becomes considerably large. Therefore, NOx is separated from the exhaust gas in the adsorber (separated from O 2 at least in the exhaust gas) it is possible to perform reduction to N 2 in the NOx effectively by catalytic reaction with a reducing agent thereafter. In the present invention, NOx in lean exhaust gas is adsorbed and removed by the NOx adsorption catalyst to separate NOx in exhaust gas from O 2 .
【0016】本発明のNOx吸着触媒においては、次
に、排ガス中の酸化剤(O2 ,NOx等)と還元剤(H
C,CO,H2 等)で構成される酸化還元系において還
元剤が同量かもしくは卓越する状態をつくり、吸着触媒
上に吸着したNOxをHC等の還元剤と接触反応させて
N2 に還元する。Next, in the NOx adsorption catalyst of the present invention, the oxidizing agent (O 2 , NOx, etc.) and the reducing agent (H
C, CO, H 2 etc.) in the oxidation-reduction system composed of the same amount or a predominant amount of the reducing agent, and the NOx adsorbed on the adsorption catalyst is contacted with the reducing agent such as HC to react with N 2 to form N 2 . To reduce.
【0017】ところで排ガス中のNOxはほぼNOとN
O2 からなる。NO2 はNOに比べて反応性に富む。し
たがってNO2 の吸着除去と還元はNOよりも容易であ
る。したがってNOをNO2 に酸化すれば排ガス中のN
Oxの吸着除去と還元が容易となる。本発明はリーン排
ガス中のNOxを共存するO2 によりNO2 に酸化し除
去する方法、そのための酸化手段例えば吸着触媒にNO
酸化機能を持たせたり吸着触媒前段に酸化触媒を設ける
ことをも包含するものである。By the way, NOx in exhaust gas is almost NO and N
Consists of O 2 . NO 2 is more reactive than NO. Therefore, adsorption removal and reduction of NO 2 are easier than NO. Therefore, if NO is oxidized to NO 2 , N
Adsorption removal and reduction of Ox are facilitated. The present invention is a method of removing oxidized to NO 2 by O 2 coexist NOx in lean exhaust gas, NO oxidation means such as adsorption catalyst therefor
It also includes providing an oxidation function or providing an oxidation catalyst before the adsorption catalyst.
【0018】本発明のNOx吸着触媒における、化学吸
着したNOxの還元反応はおおよそ以下の反応式で記述
できる。The reduction reaction of chemically adsorbed NOx in the NOx adsorbing catalyst of the present invention can be approximately described by the following reaction formula.
【0019】M−NO3+HC→MO+N2+CO2+H2
O→MCO3+N2+H2O ここに、Mは金属元素(還元生成物にMCO3 を採用し
た理由は後述する) 上記の反応は発熱反応である。金属Mとしてアルカリ金
属とアルカリ土類金属を取り上げ、それぞれNa及びB
aを代表させて反応熱を評価すると標準状態(1気圧,
25℃)では以下となる。M-NO 3 + HC → MO + N 2 + CO 2 + H 2
O → MCO 3 + N 2 + H 2 O Here, M is a metal element (the reason why MCO 3 is used as a reduction product will be described later). The above reaction is an exothermic reaction. Alkali metals and alkaline earth metals are taken as metals M, Na and B respectively.
When the reaction heat is evaluated as a representative, the standard state (1 atm,
(25 ° C.) is as follows.
【0020】2NaNO3(s)+5/9C3H6→Na2C
O3(s)+N2+2/3CO2+5/3H2O[−ΔH=8
73kjule/mole] Ba(NO3)2+5/9C3H6→BaCO3(s)+N2+2
/3CO2+5/3H2O[−ΔH=751kjule/mol
e] ここに、s:固体 g:気体 吸着種の熱力学量には相当する固体の値を用いた。2NaNO 3 (s) + 5 / 9C 3 H 6 → Na 2 C
O 3 (s) + N 2 + 2 / 3CO 2 + 5 / 3H 2 O [−ΔH = 8
73 kjule / mole] Ba (NO 3 ) 2 + 5 / 9C 3 H 6 → BaCO 3 (s) + N 2 +2
/ 3CO 2 + 5 / 3H 2 O [−ΔH = 751 kjule / mol
e] Here, s: solid g: gas The thermodynamic quantity of the adsorbed species used was the value of the corresponding solid.
【0021】ちなみにC3H65/9mole の燃焼熱は1
070kjuleであり、上記各反応はHCの燃焼熱に匹敵
する発熱量である。当然のことながらこの発熱は接触す
る排ガスに伝えられ吸着触媒表面の局部的な温度上昇は
抑制される。Incidentally, the combustion heat of C 3 H 6 5/9 mole is 1
070 kjule, and each of the above reactions has a calorific value comparable to the heat of combustion of HC. Naturally, this heat generation is transmitted to the contacting exhaust gas, and a local temperature rise on the surface of the adsorption catalyst is suppressed.
【0022】NOxの捕捉剤がNOx吸収剤の場合、吸
収剤のバルク内に捕捉されたNOxも還元されるため発
熱量は大きくなり、排ガスへの伝達には限度があるため
吸収剤の温度上昇をもたらす。この発熱は下式に示す吸
収反応の平衡を放出側にずらす。When the NOx trapping agent is a NOx absorbent, the NOx trapped in the bulk of the absorbing agent is also reduced, so that the calorific value increases. Bring. This exotherm shifts the equilibrium of the absorption reaction shown below to the emission side.
【0023】 放出したNOxを速やかに還元して装置外へ排出される
排ガス中のNOx濃度を低減すべく還元剤の濃度を高め
ても、気相においてはNO2 とHCの反応はあまり進ま
ない。したがって、還元剤の増量でNOx放出量を十分
に減ずることができない。また、NOx吸収量が少ない
段階で還元反応による操作を行うことも考えられるが、
NOx吸収剤の再生頻度が増し、実用的でない。[0023] In order to reduce the NOx concentration in the exhaust gas discharged to rapidly reduced to the outside of the apparatus to release the NOx even enhance the concentration of reducing agent does not proceed much reaction of NO 2 and HC in the gas phase. Therefore, the amount of NOx emission cannot be sufficiently reduced by increasing the amount of the reducing agent. It is also conceivable to perform an operation by a reduction reaction at a stage where the NOx absorption amount is small,
The frequency of regeneration of the NOx absorbent increases, which is not practical.
【0024】本発明の吸着触媒は、その表面近傍でのみ
NOxを捕捉するため発熱の絶対量としては少なく、且
つ速やかに排ガスに伝達されるため吸着触媒の温度上昇
は少ない。したがって一旦捕捉したNOxの放出を防止
することができる。The adsorption catalyst of the present invention traps NOx only in the vicinity of its surface, so that the absolute amount of heat generation is small, and it is quickly transmitted to exhaust gas, so that the temperature rise of the adsorption catalyst is small. Therefore, release of the trapped NOx can be prevented.
【0025】本発明のNOx吸着触媒は、NOxをその
表面で化学吸着により捕捉しNOxの還元に際しての発
熱反応でNOxの放出を生起しない材料として特徴付け
られる。また、本発明のNOx吸着触媒は、NOxをそ
の表面で化学吸着によりもしくは表面近傍で化学結合に
より捕捉し、NOxの還元に際しての発熱反応でNOx
の放出を生起しない材料として特徴付けられる。The NOx adsorption catalyst of the present invention is characterized as a material that captures NOx on its surface by chemisorption and does not generate NOx by an exothermic reaction upon reduction of NOx. Further, the NOx adsorption catalyst of the present invention captures NOx by chemical adsorption on its surface or by chemical bonding near the surface, and generates NOx by an exothermic reaction upon reduction of NOx.
Is characterized as a material that does not cause the release of
【0026】本発明者等は、少なくともカリウム
(K),ナトリウム(Na),マグネシウム(Mg),
ストロンチウム(Sr)及びカルシウム(Ca)から選
ばれる一種以上の元素を成分の一部として含むNOx吸
着触媒で上記特徴を実現し得ることを見出した。The present inventors have proposed that at least potassium (K), sodium (Na), magnesium (Mg),
It has been found that the above characteristics can be realized by a NOx adsorption catalyst containing at least one element selected from strontium (Sr) and calcium (Ca) as a part of components.
【0027】本発明の内燃機関の排ガス浄化装置は、少
なくともカリウム(K),ナトリウム(Na),マグネ
シウム(Mg),ストロンチウム(Sr)及びカルシウ
ム(Ca)から選ばれる一種以上の元素を成分の一部と
して含むNOx吸着触媒を排ガス流路に配置し、排ガス
中の各成分間の酸化還元化学量論関係において還元剤に
対して酸化剤が多い状態をつくって吸着触媒上にNOx
を化学吸着させ、次に酸化剤に対し還元剤が同量以上の
状態をつくり、吸着触媒上に吸着したNOxを還元剤と
接触反応させてN2 に還元して無害化することを特徴
とする。The exhaust gas purifying apparatus for an internal combustion engine of the present invention comprises at least one element selected from the group consisting of potassium (K), sodium (Na), magnesium (Mg), strontium (Sr) and calcium (Ca). The NOx adsorption catalyst, which is included as a part, is disposed in the exhaust gas flow path, and in the oxidation-reduction stoichiometric relationship between the components in the exhaust gas, a state in which the amount of the oxidizing agent is large relative to the reducing agent is formed, and the NOx adsorption catalyst is formed on the adsorption catalyst.
Was chemically adsorbed, then the reducing agent to the oxidizing agent is made the same amount or more states, and characterized in that the detoxification is reduced to N 2 by catalytic reaction with a reducing agent adsorbed NOx on adsorption catalyst I do.
【0028】本発明の内燃機関の排ガス浄化装置は、ま
た、少なくともカリウム(K),ナトリウム(Na),
マグネシウム(Mg),ストロンチウム(Sr)及びカ
ルシウム(Ca)から選ばれる一種以上の元素を成分の
一部として含むNOx吸着触媒を排ガス流路に配置し、
酸化還元化学量論関係においてHC等の還元剤に対して
O2 等の酸化剤が多い状態をつくって吸着触媒表面及び
表面近傍にNOxを化学結合により捕捉し、次に酸化剤
に対し還元剤が同量かもしくは多い状態をつくり、吸着
触媒に捕捉されたNOxを還元剤と接触反応させてN2
に還元して無害化することを特徴とする。The exhaust gas purifying apparatus for an internal combustion engine according to the present invention further comprises at least potassium (K), sodium (Na),
A NOx adsorption catalyst containing at least one element selected from magnesium (Mg), strontium (Sr) and calcium (Ca) as a part of components is disposed in the exhaust gas flow path;
In the oxidation-reduction stoichiometry, a state in which the oxidizing agent such as O 2 is larger than the reducing agent such as HC is used to trap NOx by chemical bonding on the surface of the adsorption catalyst and in the vicinity of the surface. Make the same amount or more, and make NOx trapped by the adsorption catalyst react with the reducing agent to form N 2
To make it harmless.
【0029】本発明におけるNOx吸着触媒としては特
に以下が好適に適用できる。Particularly, the following can be suitably applied as the NOx adsorption catalyst in the present invention.
【0030】カリウム(K),ナトリウム(Na),マ
グネシウム(Mg),ストロンチウム(Sr)及びカル
シウム(Ca)から選ばれる少なくとも一種と、セリウ
ム等からなる希土類から選ばれる少なくとも一種と、白
金,ロジウム,パラヂウム等からなる貴金属から選ばれ
る少なくとも一種の元素を含む、金属および金属酸化物
(もしくは複合酸化物)からなる組成物、該組成物を多
孔質耐熱性金属酸化物に担持してなる組成物。本組成物
は、優れたNOx吸着能に加え優れた耐SOx性を有す
る。At least one selected from potassium (K), sodium (Na), magnesium (Mg), strontium (Sr) and calcium (Ca), and at least one selected from rare earths such as cerium and the like, platinum, rhodium, A composition comprising a metal and a metal oxide (or composite oxide) containing at least one element selected from precious metals such as palladium, and a composition comprising the composition supported on a porous heat-resistant metal oxide. The composition has excellent SOx resistance in addition to excellent NOx adsorption ability.
【0031】本発明の方法における、酸化剤に対し還元
剤が同量かもしくは多い状態は以下の方法で作る事がで
きる。In the method of the present invention, the condition where the amount of the reducing agent is equal to or larger than the amount of the oxidizing agent can be prepared by the following method.
【0032】内燃機関における燃焼条件を理論空燃比も
しくは燃料過剰(リッチ)とする。また、リーンバーン
排ガスに還元剤を添加する。The combustion conditions in the internal combustion engine are set to the stoichiometric air-fuel ratio or excess fuel (rich). Further, a reducing agent is added to the lean burn exhaust gas.
【0033】前者は以下の方法で達成することができ
る。The former can be achieved by the following method.
【0034】排気ダクトに設けられた酸素濃度センサー
出力及び吸気流量センサー出力等に応じて燃料噴射量を
制御する方法。本法では、複数の気筒の一部を燃料過剰
とし残部を燃料不足とし、全気筒からの混合排ガス中の
成分が酸化還元化学量論関係において酸化剤に対して還
元剤が同量かもしくは多い状態をつくる方法をも含む。A method of controlling the fuel injection amount according to the output of an oxygen concentration sensor and the output of an intake flow sensor provided in an exhaust duct. In this method, a part of the plurality of cylinders is made excessive and the remaining fuel is made insufficient, and the components in the mixed exhaust gas from all the cylinders have the same amount or larger amount of the reducing agent than the oxidizing agent in the oxidation-reduction stoichiometry relationship. Includes methods for creating states.
【0035】後者は以下の各方法で達成することができ
る。The latter can be achieved by the following methods.
【0036】排ガス流の吸着触媒上流に還元剤を投入す
る方法。還元剤には内燃機関の燃料としてのガソリン,
軽油,灯油,天然ガス、これらの改質物,水素,アルコ
ール類,アンモニア等が適用できる。A method of introducing a reducing agent upstream of the adsorption catalyst in the exhaust gas stream. Gasoline as fuel for internal combustion engine
Light oil, kerosene, natural gas, their reformed products, hydrogen, alcohols, ammonia and the like can be applied.
【0037】ブローバイガス及びキャニスターパージガ
スを吸着触媒上流に導きこれらに含まれる炭化水素等の
還元剤を投入することも有効である。燃料直噴式内燃機
関においては、排気行程で燃料を噴射し還元剤としての
燃料を投入することが有効である。It is also effective to introduce the blow-by gas and the canister purge gas upstream of the adsorption catalyst and to introduce a reducing agent such as a hydrocarbon contained therein. In a fuel direct injection type internal combustion engine, it is effective to inject fuel during an exhaust stroke and to input fuel as a reducing agent.
【0038】本発明における、吸着触媒は、各種の形状
で適用することができる。コージェライト,ステンレス
等の金属材料からなるハニカム状構造体に吸着触媒成分
をコーティングして得られるハニカム形状を始めとし、
ペレット状,板状,粒状,粉末として適用できる。In the present invention, the adsorption catalyst can be applied in various shapes. Starting with the honeycomb shape obtained by coating the adsorption catalyst component on a honeycomb-like structure made of metal materials such as cordierite and stainless steel,
It can be applied as pellets, plates, granules, and powders.
【0039】本発明における、酸化剤に対し還元剤が同
量かもしくは多い状態を作るタイミングは以下の各方法
によることができる。In the present invention, the timing for forming a state in which the amount of the reducing agent is equal to or larger than that of the oxidizing agent can be determined by the following methods.
【0040】ECU(Engine Control Unit)で決定され
る空燃比設定信号,エンジン回転数信号,吸入空気量信
号,吸気管圧力信号,速度信号,スロットル開度,排ガ
ス温度等からリーン運転時におけるNOx排出量を推定
し、その積算値が所定の設定値を超えたとき。NOx emission during lean operation is determined from an air-fuel ratio setting signal determined by an ECU (Engine Control Unit), an engine speed signal, an intake air amount signal, an intake pipe pressure signal, a speed signal, a throttle opening, an exhaust gas temperature, and the like. When the amount is estimated and the integrated value exceeds a predetermined set value.
【0041】排気流路の吸着触媒上流または後流に置か
れた酸素センサー(もしくはA/Fセンサー)の信号に
より累積酸素量を検出し累積酸素量が所定の量を超えた
とき。その変形態様として、リーン運転時の累積酸素量
が所定の量を超えたとき。When an accumulated oxygen amount is detected by a signal from an oxygen sensor (or A / F sensor) placed upstream or downstream of the adsorption catalyst in the exhaust passage, and the accumulated oxygen amount exceeds a predetermined amount. As a variation thereof, when the accumulated oxygen amount during the lean operation exceeds a predetermined amount.
【0042】排気流路の吸着触媒上流に置かれたNOx
センサー信号により累積NOx量を算出し、リーン運転
時における累積NOx量が所定の量を超えたとき。NOx placed upstream of the adsorption catalyst in the exhaust passage
When the accumulated NOx amount is calculated based on the sensor signal, and the accumulated NOx amount during the lean operation exceeds a predetermined amount.
【0043】排気流路の吸着触媒後流に置かれたNOx
センサーの信号によりリーン運転時におけるNOx濃度
を検出し、NOx濃度が所定濃度を超えたとき。NOx placed downstream of the adsorption catalyst in the exhaust passage
When the NOx concentration during the lean operation is detected based on a signal from the sensor, and the NOx concentration exceeds a predetermined concentration.
【0044】本発明における、酸化剤に対し還元剤が同
量かもしくは多い状態を維持する時間もしくは維持すべ
く投入する還元剤量は、前述のごとく、予め吸着触媒の
特性,内燃機関の諸元と特性等を考慮して決めることが
できるが、これらは、燃料噴射弁のストローク,噴射時
間及び噴射間隔を調整して実現できる。In the present invention, as described above, the time for maintaining the state in which the amount of the reducing agent is equal to or larger than the amount of the oxidizing agent or the amount of the reducing agent to be charged is, as described above, the characteristics of the adsorption catalyst and the specifications of the internal combustion engine. Although it can be determined in consideration of the characteristics and the like, these can be realized by adjusting the stroke of the fuel injection valve, the injection time and the injection interval.
【0045】[0045]
【発明の実施の形態】本発明の具体的実施態様を挙げて
本発明を詳細に説明する。なお、本発明は以下の実施態
様及び実施例に限定されるものでなく、その思想範囲内
において各種の実施態様があることは言うまでもない。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to specific embodiments of the present invention. The present invention is not limited to the following embodiments and examples, and it goes without saying that there are various embodiments within the scope of the idea.
【0046】[吸着触媒]本発明の方法による吸着触媒
の特性について説明する。アルカリ金属としてNaを含
むN−N9とKを含むN−K9の特性は次の様である 《吸着触媒調製法》吸着触媒N−N9を以下の方法で得
た。[Adsorption Catalyst] The characteristics of the adsorption catalyst according to the method of the present invention will be described. The characteristics of N-N9 containing Na as an alkali metal and NK9 containing K are as follows << Adsorption catalyst preparation method >> Adsorption catalyst N-N9 was obtained by the following method.
【0047】アルミナ粉末とベーマイトを硝酸邂逅して
得たバインダーとしてのアルミナゾルを混合し硝酸酸性
アルミナスラリーを得た。該コーティング液にハニカム
を浸漬した後速やかに引き上げ、セル内に閉塞した液を
エアブローして除去した後、乾燥、続いて450℃で焼
成した。この操作を繰返しハニカムの見掛け容積1Lあ
たり150gのアルミナをコーティングした。該アルミ
ナコートハニカムに触媒活性成分担持しハニカム状吸着
触媒を得た。例えば、硝酸セリウム(硝酸Ce)溶液を含
浸し乾燥後600℃で1時間焼成した。続いて硝酸ナト
リウム(硝酸Na)溶液とチタニアゾル溶液と硝酸マグ
ネシウム(硝酸Mg)溶液の混合溶液を含浸し、同様に
乾燥,焼成した。さらにジニトジアンミンPt硝酸溶液
と硝酸ロジウム(硝酸Rh)溶液の混合溶液に含浸し、乾
燥後450℃で1時間焼成した。最後に硝酸Mg溶液を
含浸し450℃で1時間焼成した。以上によりアルミナ
(Al2O3)にCe,Mg,Na,Ti,Rh,Ptを担
持したハニカム状吸着触媒、2Mg−(0.2Rh,2.
7Pt)−(18Na,4Ti,2Mg)−27Ce/A
l2O3を得た。ここで、/Al2O3は活性成分がAl2
O3上に担持されたことを示し、元素記号前の数値はハ
ニカム見掛け容積1L当たりに担持した表示金属成分の
重量(g)である。表記順序は担持順序を示しており、A
l2O3に近く表記される成分から離れる成分の順で担持
し、( )で括られた成分は同時に担持した。ちなみに
各活性成分の担持量は含浸溶液中の活性成分濃度を変化
させることにより変えることができる。Alumina sol as a binder obtained by mixing alumina powder and boehmite with nitric acid was mixed to obtain a nitric acid acidic alumina slurry. After the honeycomb was immersed in the coating liquid, it was quickly pulled up, and the liquid clogged in the cell was removed by air blowing, dried, and subsequently fired at 450 ° C. This operation was repeated to coat 150 g of alumina per 1 L of apparent volume of the honeycomb. A catalytically active component was carried on the alumina-coated honeycomb to obtain a honeycomb-shaped adsorption catalyst. For example, it was impregnated with a cerium nitrate (Ce nitrate) solution, dried, and fired at 600 ° C. for 1 hour. Subsequently, a mixed solution of a sodium nitrate (Na nitrate) solution, a titania sol solution and a magnesium nitrate (Mg nitrate) solution was impregnated, and dried and fired similarly. Further, the mixture was impregnated with a mixed solution of a dinitodiamine Pt nitric acid solution and a rhodium nitrate (Rh nitrate) solution, dried, and baked at 450 ° C. for 1 hour. Finally, it was impregnated with a Mg nitrate solution and fired at 450 ° C. for 1 hour. Alumina
(Al 2 O 3 ) Ce, Mg, Na, Ti, Rh, Pt supported honeycomb-shaped adsorption catalyst, 2Mg- (0.2Rh, 2.
7Pt)-(18Na, 4Ti, 2Mg) -27Ce / A
I 2 O 3 was obtained. Here, / Al 2 O 3 indicates that the active ingredient is Al 2
The value before the element symbol indicates that it was supported on O 3 , and the numerical value before the symbol of the element is the weight (g) of the indicated metal component supported per 1 L of the honeycomb apparent volume. The notation order indicates the loading order, and A
The components were carried in the order of components away from the components described close to l 2 O 3 , and the components enclosed in parentheses were carried simultaneously. Incidentally, the loading amount of each active ingredient can be changed by changing the active ingredient concentration in the impregnating solution.
【0048】吸着触媒N−K9を以下の方法で調製し
た。The adsorption catalyst NK9 was prepared by the following method.
【0049】吸着触媒N−N9調製における硝酸Na溶
液に代わり硝酸カリウム(硝酸K)溶液を用い、その他は
吸着触媒N−N9同様の方法でN−K9 2Mg−(0.2
Rh,2.7Pt)−(18K,4Ti,2Mg)−27C
e/Al2O3を得た。また同様の方法で比較触媒N−R
2 2Mg−(0.2Rh,2.7Pt)−27Ce/Al
2O3を得た。A potassium nitrate (K nitrate) solution was used in place of the Na nitrate solution in the preparation of the adsorption catalyst N-N9, and the other method was the same as that of the adsorption catalyst N-N9.
Rh, 2.7Pt)-(18K, 4Ti, 2Mg) -27C
e / Al 2 O 3 was obtained. In the same manner, the comparative catalyst NR
22Mg- (0.2Rh, 2.7Pt) -27Ce / Al
2 O 3 was obtained.
【0050】《性能評価法》上記方法で得た吸着触媒を
700℃で5時間酸化雰囲気で熱処理した後、以下の方
法で特性を評価した。<< Performance Evaluation Method >> The adsorption catalyst obtained by the above method was heat-treated at 700 ° C. for 5 hours in an oxidizing atmosphere, and then its characteristics were evaluated by the following methods.
【0051】排気量1.8L のリーンバーン仕様ガソリ
ンエンジンを搭載した乗用車に本発明の方法により調製
した容積1.7L のハニカム状吸着触媒を搭載しNOx
浄化特性を評価した。A 1.7-liter honeycomb-shaped adsorption catalyst prepared by the method of the present invention was mounted on a passenger car equipped with a lean-burn gasoline engine having a displacement of 1.8 L, and NOx
The purification properties were evaluated.
【0052】《吸着触媒の特性》吸着触媒N−N9を搭
載し、A/F=13.3 のリッチ運転30秒間とA/F
=22のリーン運転約20分間を交互に繰り返し図2の
NOx浄化率経時特性を得た。同図から本吸着触媒によ
りリーン運転期間中のNOxが浄化されることが伺え
る。リーン運転中NOx浄化率は徐々に低下し初期に1
00%あった浄化率は20分後には約40%となる。し
かしこの低下した浄化率は30秒間のリッチ運転で10
0%にまで回復する。再びリーン運転を行うとNOx浄
化能は回復して前述の経時変化を繰り返す。リーン運転
とリッチ運転を複数回繰返してもリーン運転中のNOx
浄化率の経時低下の速度は不変であり、これはリッチ運
転によりNOx吸着性能が十分に再生されたことを示し
ている。<< Characteristics of Adsorption Catalyst >> The adsorbent catalyst N-N9 is mounted, the A / F = 13.3 rich operation for 30 seconds and the A / F
= 22 was alternately repeated for about 20 minutes to obtain the NOx purification rate aging characteristics of FIG. From the figure, it can be seen that the present adsorption catalyst purifies NOx during the lean operation period. During lean operation, the NOx purification rate gradually decreased to 1
The purification rate of 00% becomes about 40% after 20 minutes. However, this reduced purification rate is 10 times in the rich operation for 30 seconds.
Recovers to 0%. When the lean operation is performed again, the NOx purification ability is restored and the above-described temporal change is repeated. NOx during lean operation even when lean operation and rich operation are repeated multiple times
The rate of reduction of the purification rate over time was unchanged, indicating that the NOx adsorption performance was sufficiently regenerated by the rich operation.
【0053】車速を約40km/h一定(排ガスの空間
速度(SV)約20,000/h 一定)とし点火時期を
変化させて排ガス中のNOx濃度を変え、NOx濃度と
リーン排ガス中のNOx浄化率の関係を求めて図3を得
た。NOx浄化率は経時的に低下するがNOx濃度が低
いほど低下速度は小さい。NOx浄化率50%及び30
%に至るまでに捕捉されたNOx量を同図から求めると
表1となる。The vehicle speed is constant at about 40 km / h (the exhaust gas space velocity (SV) is constant at about 20,000 / h), and the ignition timing is changed to change the NOx concentration in the exhaust gas, thereby purifying the NOx concentration and the NOx purification in the lean exhaust gas. Figure 3 was obtained by determining the relationship between the rates. The NOx purification rate decreases with time, but the lower the NOx concentration, the lower the rate of decrease. NOx purification rate 50% and 30
% Is obtained from FIG.
【0054】NOx捕捉量はNOx濃度に依らずほぼ一
定である。吸着量が吸着質の濃度(圧力)に寄らないの
は化学吸着の特徴である。The amount of trapped NOx is substantially constant regardless of the NOx concentration. The fact that the amount of adsorption does not depend on the concentration (pressure) of the adsorbate is a characteristic of chemisorption.
【0055】供試吸着触媒中でNOx吸着剤として先ず
考えられるのはPt粒子である。露出Pt量を評価する
手段として多用されるCO吸着量評価を行ったところC
O吸着量(at 100℃)は4.5×10-4molであっ
た。この値は上記NOx吸着量の約1/100でありP
tがNOx吸着剤の主役でないことは明らかである。The first conceivable NOx adsorbent in the sample adsorption catalyst is Pt particles. Evaluation of the amount of CO adsorbed, which is frequently used as a means for evaluating the amount of exposed Pt, showed
The O adsorption amount (at 100 ° C.) was 4.5 × 10 −4 mol. This value is about 1/100 of the NOx adsorption amount and P
Obviously, t is not the main player of the NOx adsorbent.
【0056】一方、本吸着触媒のコージェライトごと測
定したBET比表面積(窒素吸着で測定)は約25m2
/gでハニカム1.7L当たり28,050m2であっ
た。また、本発明の吸着触媒のNaの化学構造について
検討したところ、鉱酸にCO2 ガスを発生して溶解する
こと及び鉱酸による中和滴定曲線における変曲点の値か
ら判断して主にNa2CO3として存在すると判断でき
た。仮に全ての表面がNa2CO3で占められているとすると
表面には0.275molのNa2CO3が露出していること
になる(Na2CO3の比重が2.533g/ml である
ことからNa2CO31分子の体積が求まる(Na2CO3
を立方体と仮定してその1面の面積を求めこれを表面N
a2CO3の占有面積とした)。前出の反応式に従えば
0.275molのNa2CO3は0.55molのNO2 を吸着
する能力がある。しかし、実際に本発明の吸着触媒が除
去したNOx量はその1/10以下の0.04molのオー
ダーである。この相違はBET法が物理表面積を評価す
るものでAl2O3等のNa2CO3以外の表面積も評価し
ていることによる。以上の評価は、吸着NOx量はNa2C
O3バルクのNOx捕捉能よりはるかに少なく、少なくと
もNOxがNa2CO3表面か表面近傍の限られた領域で
捕捉されていることを示している。On the other hand, the BET specific surface area (measured by nitrogen adsorption) of the present adsorption catalyst measured for each cordierite is about 25 m 2
/ G was 28,050 m 2 per 1.7 L of honeycomb. Further, when the chemical structure of Na of the adsorption catalyst of the present invention was examined, it was mainly determined from the fact that CO 2 gas was generated and dissolved in the mineral acid and the value of the inflection point in the neutralization titration curve with the mineral acid was used. It was determined that it was present as Na 2 CO 3 . Assuming that the entire surface is occupied by Na 2 CO 3 , 0.275 mol of Na 2 CO 3 is exposed on the surface (the specific gravity of Na 2 CO 3 is 2.533 g / ml). the volume of Na 2 CO 3 1 molecule is obtained since (Na 2 CO 3
Is assumed to be a cube, the area of one surface is obtained and this is calculated as the surface N
a 2 CO 3 occupied area). According to the above reaction formula, 0.275 mol of Na 2 CO 3 is capable of adsorbing 0.55 mol of NO 2 . However, the amount of NOx actually removed by the adsorption catalyst of the present invention is on the order of 0.04 mol, which is 1/10 or less. This difference is due to the fact that the BET method evaluates the physical surface area and also evaluates the surface area other than Na 2 CO 3 such as Al 2 O 3 . The above evaluation indicates that the amount of adsorbed NOx is Na 2 C
O 3 is much less than the NOx trapping ability of the bulk, indicate that at least NOx is trapped in a region with limited or near the surface Na 2 CO 3 surface.
【0057】図3において前記NOx吸着能力は自動車
の走行距離の増加に伴い、低下し、ストイキ運転からリ
ーン運転に切り替えた後のNOx浄化率の減少速度が速
くなる。これは排ガス中に含まれる被毒物(SOx等)
がNOx吸着物質と反応し、吸着能力を低下させるため
である。この劣化は内燃機関から排出される排気を理論
空燃比もしくは燃料過剰(リッチ)の状態とし、排気温
度を所定以上に所定期間以上保持することにより、経時
的に蓄積された触媒の被毒物を触媒から排除することに
より回復させることができる。In FIG. 3, the NOx adsorbing ability decreases as the traveling distance of the vehicle increases, and the rate of decrease of the NOx purification rate after switching from the stoichiometric operation to the lean operation increases. This is a poisonous substance (SOx etc.) contained in exhaust gas.
Is to react with the NOx adsorbing substance to lower the adsorbing ability. This deterioration is caused by causing the exhaust gas discharged from the internal combustion engine to be in a stoichiometric air-fuel ratio or an excess fuel (rich) state and maintaining the exhaust gas temperature at a predetermined temperature or higher for a predetermined period of time, thereby removing catalyst poisoning accumulated over time. Can be recovered by exclusion.
【0058】図4は、リーン運転からストイキ運転に切
替えた直後のNOx浄化率を示す。本吸着触媒では、ス
トイキ運転への切替え直後から90%以上のNOx浄化
率が得られることが分かる。FIG. 4 shows the NOx purification rate immediately after switching from the lean operation to the stoichiometric operation. It can be seen that with the present adsorption catalyst, a NOx purification rate of 90% or more can be obtained immediately after switching to the stoichiometric operation.
【0059】図5,図6に、リーンからストイキあるい
はリッチへの切替え前後におけるNOx浄化特性を示し
た。図5は吸着触媒N−N9の入口と出口のNOx濃度
を示したもので、図(a)はA/F=22のリーンからA
/F=14.2 のリッチへ空燃比を切替えた場合であ
る。リッチ切替え直後の再生の開始時点においてはA/
F=14.2 の排ガスNOx濃度が高いためリッチ運転
の入口NOx濃度が大きく増加し、これに伴い過渡的に
出口NOx濃度は増加するが、常時出口NOx濃度は入
口NOx濃度を大きく下回る。再生は速やかに進み短時
間で出口NOx濃度は0近傍に到達する。図(b)はA/
F=22のリーンからA/F=14.2のリッチへ空燃
比を切替えた場合であるが、図(a)と同様に、常時出
口NOx濃度は入口NOx濃度を大きく下回り、且つ、
より短時間で出口NOx濃度は0近傍に到達する。FIGS. 5 and 6 show NOx purification characteristics before and after switching from lean to stoichiometric or rich. FIG. 5 shows the NOx concentration at the inlet and outlet of the adsorption catalyst N-N9, and FIG.
This is the case where the air-fuel ratio is switched to rich /F=14.2. At the start of playback immediately after rich switching, A /
Since the exhaust gas NOx concentration at F = 14.2 is high, the inlet NOx concentration in the rich operation greatly increases, and the outlet NOx concentration transiently increases with this. However, the outlet NOx concentration is always significantly lower than the inlet NOx concentration. The regeneration proceeds promptly, and the outlet NOx concentration reaches near zero in a short time. Figure (b) shows A /
This is a case where the air-fuel ratio is switched from lean at F = 22 to rich at A / F = 14.2, but the outlet NOx concentration is always much lower than the inlet NOx concentration, as in FIG.
The outlet NOx concentration reaches near zero in a shorter time.
【0060】以上から明らかであるが、再生条件として
のA/F値は再生に要する時間に影響する。再生に適し
たA/F値,時間、さらには還元剤量は、吸着触媒の組
成,形状,温度,SV値,還元剤の種類,排気流路の形
状や長さの影響を受ける。従って、再生条件はこれらを
考慮して総合的に決められるものである。As is clear from the above, the A / F value as a reproduction condition affects the time required for reproduction. The A / F value, time, and amount of reducing agent suitable for regeneration are affected by the composition, shape, temperature, SV value, type of reducing agent, and shape and length of the exhaust passage of the adsorption catalyst. Therefore, reproduction conditions are comprehensively determined in consideration of these.
【0061】図6は吸着触媒N−K9の入口と出口のN
Ox濃度を示したもので、図(a)はA/F=22のリ
ーンからA/F=14.2 のリッチへ空燃比を切替えた
場合、図(b)はA/F=22のリーンからA/F=1
4.2 のリッチへ空燃比を切替えた場合であるが、上述
の吸着触媒N−N9の場合と同様に常時出口NOx濃度
は入口NOx濃度を大きく下回り、且つ、短時間で吸着
触媒の再生が進んでいる。FIG. 6 shows N and N at the inlet and outlet of the adsorption catalyst NK9.
FIG. 4A shows the Ox concentration. FIG. 4A shows the case where the air-fuel ratio is switched from A / F = 22 lean to A / F = 14.2 rich, and FIG. 4B shows A / F = 22 lean. A / F = 1
In the case where the air-fuel ratio is switched to 4.2 rich, the NOx concentration at the outlet is always much lower than the NOx concentration at the inlet and the regeneration of the adsorbent catalyst is performed in a short time as in the case of the adsorption catalyst N-N9. I'm advancing.
【0062】[排気浄化制御装置]図1は本発明の排ガ
ス浄化制御装置の一実施態様を示す装置の全体構成であ
る。[Exhaust Gas Purification Control Device] FIG. 1 shows the overall configuration of an exhaust gas purification control device according to an embodiment of the present invention.
【0063】本発明の装置は、リーンバーン可能なエン
ジン99,エアフローセンサー2,電子制御スロットル
バルブ3等を擁する吸気系、酸素濃度センサー(or
A/Fセンサー)19,排気温度センサー17,NOx
吸着触媒18等を擁する排気系及び制御ユニット(EC
U)等から構成される。ECUは入出力インターフェイ
スとしてのI/O LSI,演算処理装置MPU,多数
の制御プログラムを記憶させた記憶装置RAMおよびR
OM,タイマーカウンター等より構成される。以上の排
気浄化制御装置は、以下のように機能する。エンジンへ
の吸入空気はエアクリーナー1により濾過された後エア
フローセンサー2により計量され、電子制御スロットル
バルブ3を経て、さらにインジェクター5から燃料噴射
を受け、混合気としてエンジン99に供給される。エア
フローセンサー信号その他のセンサー信号はECU(En
gine Control Unit)へ入力される。The apparatus according to the present invention comprises an intake system having an engine 99 capable of lean burn, an air flow sensor 2, an electronically controlled throttle valve 3, etc., an oxygen concentration sensor (or
A / F sensor) 19, exhaust temperature sensor 17, NOx
Exhaust system and control unit (EC
U) and the like. The ECU includes an I / O LSI as an input / output interface, an arithmetic processing unit MPU, a storage device RAM storing a large number of control programs, and an R / O interface.
OM, timer counter, etc. The above exhaust gas purification control device functions as follows. The intake air to the engine is filtered by an air cleaner 1 and then measured by an air flow sensor 2, passes through an electronic control throttle valve 3, receives a fuel injection from an injector 5, and is supplied to the engine 99 as an air-fuel mixture. The airflow sensor signal and other sensor signals are sent to the ECU (En
gine Control Unit).
【0064】ECUでは後述の方法によって内燃機関の
運転状態及びNOx吸着触媒の状態を評価して運転空燃
比を決定し、インジェクター5の噴射時間等を制御して
混合気の燃料濃度を所定値に設定する。また、電子制御
スロットルバルブ3の開度調整で混合気の燃料濃度を所
定値に設定してもよい。シリンダーに吸入された混合気
はECU25からの信号で制御される点火プラグ10に
より着火され燃焼する。燃焼排ガスは排気浄化系に導か
れる。排気浄化系にはNOx吸着触媒が設けられ、スト
イキ運転時にはその三元触媒機能により排ガス中のNO
x,HC,COを浄化し、また、リーン運転時にはNO
x吸着能によりNOxを浄化すると同時に併せ持つ燃焼
機能により、HC,COを浄化する。さらに、ECUの
判定及び制御信号により、リーン運転時にはNOx吸着
触媒のNOx浄化能力を常時判定して、NOx浄化能力
が低下した場合燃焼の空燃比等をリッチ側にシフトして
吸着触媒のNOx吸着能を回復させる。以上の操作によ
り、本装置では、リーン運転,ストイキ(含むリッチ)
運転の全てのエンジン燃焼条件下における排ガスを効果
的に浄化する。The ECU evaluates the operating state of the internal combustion engine and the state of the NOx adsorption catalyst by a method described later to determine the operating air-fuel ratio, and controls the injection time of the injector 5 and the like to adjust the fuel concentration of the air-fuel mixture to a predetermined value. Set. Further, the fuel concentration of the air-fuel mixture may be set to a predetermined value by adjusting the opening of the electronic control throttle valve 3. The air-fuel mixture sucked into the cylinder is ignited by the spark plug 10 controlled by a signal from the ECU 25 and burns. The combustion exhaust gas is led to an exhaust purification system. The exhaust gas purification system is provided with a NOx adsorption catalyst. During the stoichiometric operation, the NOx in the exhaust gas is controlled by the three-way catalyst function.
x, HC, CO, and NO during lean operation
HC and CO are purified by the combustion function which simultaneously purifies NOx with the x adsorption capability. Further, the NOx purifying ability of the NOx adsorbing catalyst is constantly determined at the time of lean operation based on the judgment and control signal of the ECU. Restores ability. With the above operation, the present device can perform the lean operation and the stoichiometric (including rich) operation.
Effectively purifies exhaust gas under all engine combustion conditions of operation.
【0065】エンジンに供給される混合気の燃料濃度
(以下空燃比)は次の様に制御される。図7に空燃比制
御方法をブロック線図で示した。The fuel concentration (hereinafter referred to as air-fuel ratio) of the air-fuel mixture supplied to the engine is controlled as follows. FIG. 7 is a block diagram showing the air-fuel ratio control method.
【0066】アクセルペダルの踏み込みに応じた信号を
出力する負荷センサー出力,エアフローセンサーにより
計量された吸気量の出力信号,クランク角センサーによ
り検出されるエンジン回転数信号,排ガス温度信号,ス
ロットル開度を検出するスロットルセンサー信号,エン
ジン冷却水温信号,スターター信号等の情報からECU
25は空燃比(A/F)を決定し、さらにこの信号は酸
素センサーからフィードバックされる信号に基づき補正
され、燃料噴射量を決定する。なお、低温時,アイドル
時,高負荷時等では各センサー及びスイッチの信号によ
りフィードバック制御を停止する。また、空燃比補正学
習機能により空燃比の微妙な変化や急な変化にも正確に
対応できるよう空燃比補正学習機能で対応する。The output of the load sensor for outputting a signal corresponding to the depression of the accelerator pedal, the output signal of the intake air amount measured by the air flow sensor, the engine speed signal detected by the crank angle sensor, the exhaust gas temperature signal, and the throttle opening are obtained. ECU detects information from detected throttle sensor signal, engine coolant temperature signal, starter signal, etc.
25 determines the air-fuel ratio (A / F), and this signal is corrected based on the signal fed back from the oxygen sensor to determine the fuel injection amount. At low temperatures, at idle, at high load, etc., the feedback control is stopped by the signals of the sensors and switches. In addition, the air-fuel ratio correction learning function is used to accurately respond to subtle or sudden changes in the air-fuel ratio by the air-fuel ratio correction learning function.
【0067】決定された空燃比がストイキ(A/F=1
4.7)及びリッチ(A/F<14.7)のときECUの指
示によりインジェクタの噴射条件が決定されストイキ及
びリッチ運転が行われる。電子制御スロットルバルブ3
の開度調整によりストイキおよびリッチ運転を行っても
よい。一方、リーン(A/F>14.7)運転が決定され
た場合、NOx吸着触媒のNOx吸着能の有無の判定を
行い吸着能があると判定された場合に指示通りのリーン
運転を行うべく燃料噴射量が決定され、吸着能がないと
判定された場合には空燃比を所定期間リッチシフトして
NOx吸着触媒を再生する。リーン運転は電子制御スロ
ットルバルブ3を開いて、吸入空気量を増加させること
で行ってもよい。When the determined air-fuel ratio is stoichiometric (A / F = 1)
In the case of 4.7) and rich (A / F <14.7), the injection condition of the injector is determined by the instruction of the ECU, and the stoichiometric and rich operation is performed. Electronically controlled throttle valve 3
The stoichiometric and rich operation may be performed by adjusting the opening degree. On the other hand, when the lean (A / F> 14.7) operation is determined, it is determined whether or not the NOx adsorbing catalyst has the NOx adsorbing ability, and when it is determined that the NOx adsorbing catalyst has the adsorbing ability, the lean operation as instructed is performed. When the fuel injection amount is determined and it is determined that there is no adsorption capacity, the air-fuel ratio is richly shifted for a predetermined period to regenerate the NOx adsorption catalyst. The lean operation may be performed by opening the electronic control throttle valve 3 and increasing the intake air amount.
【0068】前記NOx吸着触媒の再生処理に加え、所
定の走行距離毎、または吸入空気量の積算値が所定量を
越える毎に、排気温度が所定以上になるような運転条件
で運転する。この処理を加えることにより被毒物質の蓄
積により劣化したNOx吸着能力を回復させることがで
きる。排気温度を上昇させる手段としては、点火時期を
遅らせる、電子制御スロットルバルブ3を開いて、吸入
空気量を増加させる、排気管に2次空気を導入する、リ
ーンからストイキに戻す、失火させて触媒の内部温度を
上昇させる方法などがある。In addition to the regeneration processing of the NOx adsorption catalyst, the engine is operated under operating conditions such that the exhaust gas temperature becomes equal to or higher than a predetermined value at every predetermined traveling distance or every time the integrated value of the intake air amount exceeds a predetermined value. By adding this process, it is possible to recover the NOx adsorption ability that has deteriorated due to the accumulation of the poisoning substance. Means for raising the exhaust gas temperature include delaying the ignition timing, opening the electronically controlled throttle valve 3 to increase the amount of intake air, introducing secondary air into the exhaust pipe, returning from lean to stoichiometric, misfiring and catalyzing. There is a method of raising the internal temperature of the device.
【0069】図8(a)に前記の被毒時の回復処理のフ
ローチャートを示した。FIG. 8 (a) shows a flowchart of the above-described recovery process at the time of poisoning.
【0070】図8(b)に空燃比制御のフローチャート
を示した。ステップ1002で各種の運転条件を指示す
るあるいは運転状態を検出する信号を読み込む。これら
の信号に基づきステップ1003で空燃比を決定、ステ
ップ1004では決定された空燃比を検出する。ステッ
プ1005で決定された空燃比と理論空燃比との大小を
比較する。ここでの比較対象となる理論空燃比は、正確
には吸着触媒においてNOxの接触還元反応の速度が吸
着による捕捉速度を上回る空燃比であり、予め吸着触媒
の特性を評価して決定されるもので、理論空燃比近傍の
空燃比が選定される。ここで、設定空燃比≦理論空燃比
の場合ステップ1006に進み吸着触媒の再生操作を行
うことなく指示通りの空燃比運転を行う。設定空燃比>
理論空燃比の場合ステップ1007に進む。ステップ1
007ではNOx吸着量の推定演算を行う。推定演算方
法については後述する。続いてステップ1008で推定
NOx吸着量が所定限界量以下であるか否かを判定す
る。限界吸着量は予め実験等により吸着触媒のNOx捕
捉特性を評価して、また排ガス温度や吸着触媒温度等を
考慮して、排ガス中のNOxが十分に浄化できる値に設
定される。NOx吸着能がある場合にはステップ100
6に進み、吸着触媒の再生操作を行うことなく指示通り
の空燃比運転を行う。NOx吸着能がない場合にはステ
ップ1009に進み、空燃比をリッチ側にシフトする。
ステップ1010ではリッチシフト時間をカウントし、
経過時間Trが所定の時間(Tr)cを超えればリッチ
シフトを終了する。FIG. 8B shows a flowchart of the air-fuel ratio control. In step 1002, signals for instructing various operating conditions or detecting operating conditions are read. At step 1003, the air-fuel ratio is determined based on these signals, and at step 1004, the determined air-fuel ratio is detected. A comparison is made between the air-fuel ratio determined in step 1005 and the stoichiometric air-fuel ratio. The stoichiometric air-fuel ratio to be compared here is exactly the air-fuel ratio at which the speed of the catalytic reduction reaction of NOx exceeds the trapping speed by adsorption in the adsorption catalyst, and is determined in advance by evaluating the characteristics of the adsorption catalyst. , An air-fuel ratio near the stoichiometric air-fuel ratio is selected. If the set air-fuel ratio is smaller than or equal to the stoichiometric air-fuel ratio, the process proceeds to step 1006 to perform the air-fuel ratio operation as instructed without performing the regeneration operation of the adsorption catalyst. Set air-fuel ratio>
In the case of the stoichiometric air-fuel ratio, the process proceeds to step 1007. Step 1
In 007, an estimation calculation of the NOx adsorption amount is performed. The estimation calculation method will be described later. Subsequently, at step 1008, it is determined whether or not the estimated NOx adsorption amount is equal to or less than a predetermined limit amount. The limit adsorption amount is set to a value at which NOx in the exhaust gas can be sufficiently purified in consideration of the NOx trapping characteristics of the adsorption catalyst in advance by experiments and the like, and in consideration of the exhaust gas temperature and the temperature of the adsorption catalyst. If NOx adsorption capacity is present, step 100
Proceeding to 6, the air-fuel ratio operation is performed as instructed without performing the regeneration operation of the adsorption catalyst. If there is no NOx adsorption ability, the process proceeds to step 1009, and the air-fuel ratio is shifted to the rich side.
In step 1010, the rich shift time is counted,
If the elapsed time Tr exceeds a predetermined time (Tr) c, the rich shift ends.
【0071】NOx吸着能の判定は次のように行うこと
ができる。The determination of the NOx adsorption ability can be performed as follows.
【0072】図9はリーン運転時の各種運転条件からN
Ox排出量を積算し判定する方法である。FIG. 9 shows N from various operating conditions during lean operation.
This is a method of integrating and determining the amount of Ox emission.
【0073】ステップ1007−E01で排ガス温度等
のNOx吸着触媒の作動条件に関する信号と排ガス中の
NOx濃度に影響する各種の機関運転条件に関する信号
とを読み込み単位時間に吸着するNOx量EN を推算す
る。ステップ1007−E02でEN を積算し、ステップ
1008−E01で積算値ΣEN と吸着量の上限値(E
N)cとの大小を比較する。ΣEN≦(EN)cの場合は積
算を継続し、ΣEN>(EN)cの場合ステップ1008
−E02で積算を解除しステップ1009に進む。[0073] estimate the NOx amount E N adsorbed on the signal and the signal and loading unit time for various engine operating conditions affecting the NOx concentration in the exhaust gas about the operating conditions of the NOx adsorbing catalyst of the exhaust gas temperature such as at step 1007-E01 I do. In step 1007-E02, E N is integrated, and in step 1008-E01, the integrated value ΔE N and the upper limit value (E
N ) Compare magnitude with c. If ΣE N ≤ (E N ) c, the integration is continued. If ΣE N > (E N ) c, step 1008 is executed.
The integration is canceled at -E02, and the process proceeds to step 1009.
【0074】図10はリーン運転の積算時間で判定する
方法である。FIG. 10 shows a method of making a determination based on the integrated time of the lean operation.
【0075】ステップ1007−H01でリーンの運転
時間HL を積算し、ステップ1008−H01で積算値ΣH
L と積算時間の上限値 (HL)cとの大小を比較する。Σ
HL≦(HL)c の場合積算を継続し、ΣHL>(HL)cの
場合ステップ1008−H02で積算を解除しステップ1
009に進む。In step 1007-H01, the lean operation time HL is integrated, and in step 1008-H01, the integrated value ΣH
The magnitude of L and the upper limit value (H L ) c of the integration time are compared. Σ
If H L ≦ (H L ) c, the integration is continued. If ΣH L > (H L ) c, the integration is canceled in step 1008 -H 02 and step 1 is performed.
Proceed to 009.
【0076】図11はリーン運転時の酸素センサー信号
で判定する方法である。FIG. 11 shows a method of making a determination based on the oxygen sensor signal during the lean operation.
【0077】ステップ1007−O01でリーン運転に
おける酸素量QO を積算し、ステップ1008−O01
で積算値ΣQO と積算酸素量の上限値(QO)cとの大小
を比較する。ΣQO≦(QO)cの場合積算を継続し、ΣQ
O>(QO)cの場合ステップ1008−O02で積算を解
除しステップ1009に進む。At step 1007-O01, the oxygen amount Q O in the lean operation is integrated, and at step 1008-01.
Then, the magnitude of the integrated value OQ O and the upper limit value (Q O ) c of the integrated oxygen amount are compared. When ΣQ O ≤ (Q O ) c, integration is continued and ΣQ
If O > (Q O ) c, the integration is canceled in step 1008 -O 02, and the flow advances to step 1009.
【0078】図12はリーン運転時のNOx吸着触媒入
口で検出したNOx濃度センサー信号で判定する方法で
ある。FIG. 12 shows a method of making a determination based on the NOx concentration sensor signal detected at the inlet of the NOx adsorption catalyst during the lean operation.
【0079】ステップ1007−N01でNOx濃度セ
ンサー信号に基づきNOx吸着触媒入口におけるNOx
量QNを積算する。ステップ1008−N01で積算値
ΣQNと積算NOx量の上限値(QN)cとの大小を比較
する。ΣQN ≦(QN)c の場合積算を継続し、ΣQN >
(QN)c の場合ステップ1008−N02で積算を解除
しステップ1009に進む。In step 1007-N01, the NOx at the inlet of the NOx adsorption catalyst is determined based on the NOx concentration sensor signal.
Integrating the amount Q N. Integrated value [sum] Q N and the accumulated NOx amount upper limit value at step 1008-N01 compares the magnitude of the (Q N) c. When ΣQ N ≤ (Q N ) c, integration is continued and ΣQ N >
(Q N) to release the case accumulated at step 1008-N 02 of c proceeds to step 1009.
【0080】図13はリーン運転時のNOx吸着触媒出
口で検出したNOx濃度センサー信号で判定する方法で
ある。FIG. 13 shows a method of making a determination based on the NOx concentration sensor signal detected at the outlet of the NOx adsorption catalyst during the lean operation.
【0081】ステップ1007−C01でNOx濃度セ
ンサー信号に基づきNOx吸着触媒入口におけるNOx
濃度CN を検出する。ステップ1008−C01でCN
とCNの上限値(CN)cとの大小を比較する。CN≦
(CN)cの場合検出を継続し、CN>(CN)c の場合ステ
ップ1009に進む。At step 1007-C01, the NOx at the inlet of the NOx adsorption catalyst is determined based on the NOx concentration sensor signal.
The concentration C N is detected. Step 1008-C N in C01
And comparing the magnitude of C upper limit of N (C N) c. C N ≦
If (C N ) c, the detection is continued, and if C N > (C N ) c, the process proceeds to step 1009.
【0082】図14に本発明の排ガス浄化装置の他の実
施態様を示す。図1の態様との相違は、エンジン近くの
排気ダクトにマニホールド触媒17を設けた点にある。
自動車排ガスの排出規制の強化は、エンジン起動直後に
排出されるHC等の有害物の浄化を必要としている。す
なわち従来は触媒が作動温度に達するまで未処理で排出
されていたが、この量を大幅に低減する必要がある。こ
れには、触媒を作動温度まで急速に昇温する方法が有効
である。図14はエンジン起動時のHC,CO排出量低
減と、リーン及びストイキ(含むリッチ)運転における
排ガス浄化に対応できる装置構成である。図14の構成
においてマニホールド触媒17にはPt,Rh,CeO
2 を主たる成分とするいわゆる三元触媒やこれらにPd
を添加したりあるいはPd等の燃焼活性成分を中心成分
とした燃焼触媒が適用できる。本構成では、起動時には
マニホールド触媒17が短時間で昇温してHCやCOの
浄化を起動直後から行い、ストイキ運転時にはマニホー
ルド触媒と吸着触媒18の双方が機能してHC,CO,
NOxの浄化を行い、リーン運転時は吸着触媒がNOx
を吸着浄化する。吸着触媒の再生にあたり空燃比をリッ
チシフトすると還元剤としてのHC,COはマニホール
ド触媒で大きな化学変化を受けることなく吸着触媒に到
達し、これを再生する。このような構成を可能とするの
は吸着触媒の大きなな特徴である。FIG. 14 shows another embodiment of the exhaust gas purifying apparatus of the present invention. 1 in that a manifold catalyst 17 is provided in an exhaust duct near the engine.
The tightening of emission control of automobile exhaust gas requires purification of harmful substances such as HC discharged immediately after the engine is started. That is, in the past, the catalyst was discharged untreated until it reached the operating temperature, but this amount needs to be greatly reduced. For this purpose, a method of rapidly raising the temperature of the catalyst to the operating temperature is effective. FIG. 14 shows an apparatus configuration capable of coping with the reduction of HC and CO emissions at the time of engine startup and the purification of exhaust gas in lean and stoichiometric (including rich) operation. In the configuration of FIG. 14, Pt, Rh, CeO
So-called three-way catalysts containing 2 as a main component and Pd
Or a combustion catalyst containing a combustion active component such as Pd as a central component. In this configuration, at the time of startup, the temperature of the manifold catalyst 17 rises in a short time to purify HC and CO immediately after the startup, and at the time of the stoichiometric operation, both the manifold catalyst and the adsorption catalyst 18 function so that HC, CO,
NOx is purified, and during lean operation, the adsorption catalyst
To adsorb and purify. When the air-fuel ratio is richly shifted during regeneration of the adsorption catalyst, HC and CO as reducing agents reach the adsorption catalyst without undergoing a large chemical change in the manifold catalyst, and are regenerated. A major feature of the adsorption catalyst is that it enables such a configuration.
【0083】図15に本発明の排ガス浄化装置のさらに
他の実施態様を示す。図1の態様との相違は、エンジン
99が筒内噴射方式である点にある。本発明の装置は筒
内噴射方式エンジンにも良好に適用することができる。FIG. 15 shows still another embodiment of the exhaust gas purifying apparatus of the present invention. The difference from the embodiment of FIG. 1 is that the engine 99 is a direct injection type. The device of the present invention can be suitably applied to a direct injection type engine.
【0084】図16に本発明の排ガス浄化装置のさらに
他の実施態様を示す。図1及び図15の態様との相違
は、吸着触媒の下流に後触媒24を設けたことにある。
たとえば後触媒に燃焼触媒を置くことによりHC浄化能
を向上させた装置が、三元触媒を置くことによりストイ
キ時の三元機能を強化させた装置が、実現する。FIG. 16 shows still another embodiment of the exhaust gas purifying apparatus of the present invention. 1 and 15 is that a rear catalyst 24 is provided downstream of the adsorption catalyst.
For example, a device in which the HC purification ability is improved by placing a combustion catalyst in the post-catalyst, and a device in which the three-way function at the time of stoichiometry is strengthened by placing a three-way catalyst, are realized.
【0085】図17に本発明の排ガス浄化装置のさらに
他の実施態様を示す。図1及び図14〜図16との相違
は、リッチシフトの指示により、還元剤インジェクター
23を通じて吸着触媒上流に燃料を添加することにあ
る。本方式ではエンジンの運転状態を吸着触媒の状態と
無関係に設定することができるという大きな利点があ
る。FIG. 17 shows still another embodiment of the exhaust gas purifying apparatus of the present invention. The difference from FIG. 1 and FIGS. 14 to 16 is that fuel is added to the upstream of the adsorption catalyst through the reducing agent injector 23 in response to the instruction of the rich shift. This method has a great advantage that the operating state of the engine can be set independently of the state of the adsorption catalyst.
【0086】図18に、本発明の方法による吸着触媒N
−N9を搭載した場合、吸着触媒N−K9を搭載した場
合、また比較の触媒N−R2を搭載した場合の、3度繰
返される10モードの最後の10モードとそれに続く1
5モードにおける吸着触媒前後のNOx濃度を示した。
比較触媒は後掲の表2に示す組成のものとした。FIG. 18 shows the adsorption catalyst N according to the method of the present invention.
The last 10 modes of the 10 modes repeated three times and the subsequent 1 mode when -N9 is mounted, when the adsorption catalyst NK9 is mounted, and when the comparative catalyst NR2 is mounted.
The NOx concentrations before and after the adsorption catalyst in the five modes are shown.
The comparative catalyst had the composition shown in Table 2 below.
【0087】図18において、吸着触媒N−N9および
N−K9を搭載した場合全運転域において出口NOx濃
度は入口NOx濃度を下回り、リーン運転とストイキ運
転が繰返されることにより吸着触媒が効果的に再生され
NOx浄化機能を保持し続けていることが分かる。一
方、比較触媒N−R2においては出口NOx濃度が入口
NOx濃度を上回る部分が生じている。In FIG. 18, when the adsorption catalysts N-N9 and NK9 are mounted, the outlet NOx concentration is lower than the inlet NOx concentration in the entire operation range, and the lean operation and the stoichiometric operation are repeated so that the adsorption catalyst can be effectively used. It can be seen that it is regenerated and keeps the NOx purification function. On the other hand, in the comparative catalyst NR2, there is a portion where the outlet NOx concentration exceeds the inlet NOx concentration.
【0088】各種吸着触媒および比較触媒で得たCVS
値を吸着触媒組成とともに表2及び表3に示した。吸着
触媒および比較触媒の調製は前述の方法によったが、調
製原料として、バリウム(Ba)には硝酸Baを、シリ
コン(Si)にはシリカゾルを用いた。Siはシリカ
(SiO2 )もしくはその複合酸化物として存在すると
推定される。CVS obtained with various adsorption catalysts and comparative catalysts
The values are shown in Tables 2 and 3 together with the composition of the adsorption catalyst. Preparation of the adsorption catalyst and the comparative catalyst was carried out according to the above-mentioned method, but as the preparation raw materials, Ba nitrate Ba was used for barium (Ba) and silica sol was used for silicon (Si). It is presumed that Si exists as silica (SiO 2 ) or its composite oxide.
【0089】以上から明らかな様に、本発明の装置によ
れば、排ガス流路にNOx吸着触媒を設け、リーン排ガ
スの酸化雰囲気でNOxを吸着捕捉し還元雰囲気をつく
って吸着触媒を再生することにより、リーンバーン排ガ
ス中のNOx等を、燃費に大きな影響を与えることなく
高効率で浄化できる。As is evident from the above, according to the apparatus of the present invention, the NOx adsorbing catalyst is provided in the exhaust gas channel, NOx is adsorbed and captured in the oxidizing atmosphere of the lean exhaust gas, and the reducing catalyst is created to regenerate the adsorbing catalyst. As a result, NOx and the like in the lean burn exhaust gas can be purified with high efficiency without significantly affecting fuel efficiency.
【0090】[0090]
【表1】 [Table 1]
【0091】[0091]
【表2】 [Table 2]
【0092】[0092]
【表3】 [Table 3]
【0093】[0093]
【発明の効果】本発明によれば、NOx吸着触媒が燃料
に含まれる硫黄分等で被毒し、吸着性能が劣化しても所
定の走行距離毎、または、吸入空気量の積算値が所定値
を越える毎に排気温度が所定値の運転条件で運転される
ので、被毒物質の蓄積が解消されて劣化したNOx吸着
能力を回復させることができる。その結果、耐被毒性が
向上され、長い間、NOxを高効率で浄化できる。According to the present invention, even if the NOx adsorbing catalyst is poisoned by sulfur contained in the fuel and the adsorbing performance is degraded, the NOx adsorbing catalyst is decremented by a predetermined traveling distance or an integrated value of the intake air amount. Since the exhaust temperature is operated under the operating condition of the predetermined value every time the value exceeds the value, the accumulation of the poisoning substance is eliminated and the deteriorated NOx adsorption ability can be recovered. As a result, the poisoning resistance is improved, and NOx can be purified with high efficiency for a long time.
【図1】本発明の代表的な実施態様を示す本発明の方法
による排ガス浄化装置の構成図。FIG. 1 is a configuration diagram of an exhaust gas purifying apparatus according to a method of the present invention, showing a typical embodiment of the present invention.
【図2】本発明の方法によりリッチ運転とリーン運転を
交互に繰返したときのNOx浄化率の経時特性。FIG. 2 is a time characteristic of the NOx purification rate when a rich operation and a lean operation are alternately repeated by the method of the present invention.
【図3】走行距離とNOx浄化率の関係。FIG. 3 shows a relationship between a traveling distance and a NOx purification rate.
【図4】ストイキ排ガス中のNOx浄化率。FIG. 4 is a NOx purification rate in stoichiometric exhaust gas.
【図5】リッチ(ストイキ)運転からリーン運転に切替
えたときの吸着触媒入口NOx濃度と出口NOx濃度の
関係。FIG. 5 shows the relationship between the NOx concentration at the inlet of the adsorption catalyst and the NOx concentration at the outlet when switching from rich (stoichiometric) operation to lean operation.
【図6】リッチ(ストイキ)運転からリーン運転に切替
えたときの吸着触媒入口NOx濃度と出口NOx濃度の
関係。FIG. 6 shows the relationship between the NOx concentration at the inlet of the adsorption catalyst and the NOx concentration at the outlet when switching from rich (stoichiometric) operation to lean operation.
【図7】空燃比の制御方法を示すブロック線図。FIG. 7 is a block diagram showing a method for controlling an air-fuel ratio.
【図8】(a)は空燃比の制御方法を示すフローチャー
ト。(b)は空燃比の制御方法を示すフローチャート。FIG. 8A is a flowchart illustrating a method of controlling an air-fuel ratio. (B) is a flowchart showing a method for controlling the air-fuel ratio.
【図9】リーン運転時のNOx排出量積算判定方法を示
すフローチャート。FIG. 9 is a flowchart showing a method for determining the integrated NOx emission during lean operation.
【図10】図8のフローチャートにおけるNOx量推算
部分。FIG. 10 is a NOx amount estimation part in the flowchart of FIG. 8;
【図11】図8のフローチャートにおけるNOx量推算
部分。FIG. 11 is a NOx amount estimation part in the flowchart of FIG. 8;
【図12】図8のフローチャートにおけるNOx量推算
部分。FIG. 12 is a NOx amount estimation part in the flowchart of FIG. 8;
【図13】図8のフローチャートにおけるNOx量推算
部分。FIG. 13 is a NOx amount estimation part in the flowchart of FIG. 8;
【図14】マニホールド触媒を設けた実施態様を示す装
置の構成図。FIG. 14 is a configuration diagram of an apparatus showing an embodiment provided with a manifold catalyst.
【図15】筒内噴射エンジンにおける実施態様を示す装
置の構成図。FIG. 15 is a configuration diagram of an apparatus showing an embodiment in a direct injection engine.
【図16】後触媒を設けた実施態様を示す装置の構成
図。FIG. 16 is a configuration diagram of an apparatus showing an embodiment provided with a rear catalyst.
【図17】吸着触媒の上流に還元剤を添加する実施態様
を示す装置構成図。FIG. 17 is an apparatus configuration diagram showing an embodiment in which a reducing agent is added upstream of an adsorption catalyst.
【図18】モード運転したときのNOx浄化特性図。FIG. 18 is a NOx purification characteristic diagram when a mode operation is performed.
【符号の説明】 1…エアクリーナ、2…エアフローセンサー、3…スロ
ットルバルブ、5…インジェクタ、6…点火プラグ、7
…アクセルペダル、8…負荷センサー、9…吸気温度セ
ンサー、12…燃料ポンプ、13…燃料タンク、17…
マニホールド触媒、18…吸着触媒、19…酸素センサ
ー、20…吸着触媒温度センサー、21…排ガス温度セ
ンサー、22…NOx濃度サンサー、23…還元剤イン
ジェクター、24…後触媒、25…ECU、26…ノッ
クセンサー、28…水温サンサー、29…クランク角セ
ンサー、99…エンジン。[Description of Signs] 1 ... Air cleaner, 2 ... Air flow sensor, 3 ... Throttle valve, 5 ... Injector, 6 ... Spark plug, 7
... Accelerator pedal, 8 ... Load sensor, 9 ... Intake air temperature sensor, 12 ... Fuel pump, 13 ... Fuel tank, 17 ...
Manifold catalyst, 18: Adsorption catalyst, 19: Oxygen sensor, 20: Adsorption catalyst temperature sensor, 21: Exhaust gas temperature sensor, 22: NOx concentration sensor, 23: Reducing agent injector, 24: Rear catalyst, 25: ECU, 26: Knock Sensor, 28: water temperature sensor, 29: crank angle sensor, 99: engine.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B01J 38/10 ZAB F01N 3/24 ZABE F01N 3/08 3/28 ZAB ZAB 301C 3/24 F02D 41/04 305A ZAB 45/00 ZAB 3/28 ZAB B01D 53/34 129A 301 53/36 ZAB F02D 41/04 305 101Z 45/00 ZAB (72)発明者 市丸 雅浩 茨城県ひたちなか市高場2477番地 株式会 社日立カーエンジニアリング内 (72)発明者 北原 雄一 茨城県ひたちなか市大字高場2520番地 株 式会社日立製作所自動車機器事業部内 (72)発明者 平塚 俊史 茨城県ひたちなか市大字高場2520番地 株 式会社日立製作所自動車機器事業部内 (72)発明者 黒田 修 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 山下 寿生 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 飯塚 和宏 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification symbol FI B01J 38/10 ZAB F01N 3/24 ZABE F01N 3/08 3/28 ZAB ZAB 301C 3/24 F02D 41/04 305A ZAB 45/00 ZAB 3/28 ZAB B01D 53/34 129A 301 53/36 ZAB F02D 41/04 305 101Z 45/00 ZAB (72) Inventor Masahiro Ichimaru 2477 Takaba, Hitachinaka City, Ibaraki Pref. Hitachi Car Engineering Co., Ltd. (72) Inventor Yuichi Kitahara 2520 Takahiro, Hitachinaka City, Ibaraki Pref.Hitachi, Ltd.Automotive Equipment Division (72) Inventor Toshifumi Hiratsuka 2520 Ojitakaba, Hitachinaka, Ibaraki Pref.Hitachi Ltd.Automotive Equipment Division (72) Inventor Osamu Kuroda 1-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture No. 7 Hitachi, Ltd. Hitachi Research Laboratories (72) Inventor Toshio Yamashita 7-1-1, Omikamachi, Hitachi City, Ibaraki Prefecture Inside Hitachi Research Laboratories Hitachi Research Laboratory (72) Inventor Kazuhiro Iizuka Omikamachi, Hitachi City, Ibaraki Prefecture No. 1-1, Hitachi Research Laboratory, Hitachi Ltd.
Claims (12)
係において還元剤に対して酸化剤が多い状態でNOxを
化学吸着し、酸化剤に対し還元剤が同量以上の状態で吸
着したNOxを接触還元するNOx吸着触媒を排ガス流
路に配置し、排ガス中の各成分間の酸化還元化学量論関
係において還元剤に対して酸化剤が多い状態をつくって
吸着触媒上にNOxを化学吸着させ、次に酸化剤に対し
還元剤が同量以上の状態をつくり、吸着触媒上に吸着し
たNOxを還元剤と接触反応させてN2 に還元して無害
化する、内燃機関の排ガス浄化装置において、 内燃機関から排出される排気を理論空燃比もしくは燃料
過剰(リッチ)の状態とし、排気温度を所定以上に所定
期間以上保持することにより、経時的に蓄積された触媒
の被毒物を触媒から排除することを特徴とする排気浄化
制御装置。1. In the oxidation-reduction stoichiometry relationship between components in exhaust gas, NOx is chemisorbed in a state where the oxidant is large relative to the reducing agent, and is adsorbed in a state where the amount of the reducing agent is equal to or more than the oxidizing agent. A NOx adsorption catalyst for catalytically reducing NOx is placed in the exhaust gas flow path, and in a redox stoichiometric relationship between the components in the exhaust gas, a state in which the amount of the oxidant is large relative to the reducing agent is formed, and NOx is reduced on the adsorption catalyst. is chemically adsorbed, then the reducing agent to the oxidizing agent is made the same amount or more states, harmless by reduction by catalytic reaction with a reducing agent to N 2 adsorbed NOx on adsorption catalyst, the internal combustion engine exhaust gas In the purifier, the exhaust gas discharged from the internal combustion engine is set to a stoichiometric air-fuel ratio or an excess fuel (rich) state, and the exhaust gas temperature is maintained at a predetermined level or higher for a predetermined period or more, so that catalyst poisoning substances accumulated over time are removed. Exclude from catalyst Exhaust gas purification controller, characterized in that.
(Na),マグネシウム(Mg),ストロンチウム(S
r)及びカルシウム(Ca)から選ばれる一種以上の元
素を成分の一部として含むNOx吸着触媒を排ガス流路
に配置し、排ガス中の各成分間の酸化還元化学量論関係
において還元剤に対して酸化剤が多い状態をつくって吸
着触媒上にNOxを化学吸着させ、次に酸化剤に対し還
元剤が同量以上の状態をつくり、吸着触媒上に吸着した
NOxを還元剤と接触反応させてN2 に還元して無害化
する、内燃機関の排ガス浄化装置において、 内燃機関から排出される排気を理論空燃比もしくは燃料
過剰(リッチ)の状態とし、排気温度を所定以上に所定
期間以上保持することにより、経時的に蓄積された触媒
の被毒物を触媒から排除することを特徴とする排気浄化
制御装置。2. At least potassium (K), sodium (Na), magnesium (Mg), strontium (S)
r) and a NOx adsorption catalyst containing at least one element selected from the group consisting of calcium (Ca) as a part of the components is disposed in the exhaust gas flow path. To create a state with a large amount of oxidant to chemically adsorb NOx on the adsorption catalyst, and then create a state in which the amount of the reducing agent is equal to or more than that of the oxidizing agent, and contact the NOx adsorbed on the adsorption catalyst with the reducing agent to react. An exhaust gas purifying apparatus for an internal combustion engine that reduces the temperature of the exhaust gas to N 2 to make the exhaust gas harmless by setting the exhaust gas discharged from the internal combustion engine to a stoichiometric air-fuel ratio or an excess fuel (rich) state, and keeping the exhaust temperature at a predetermined level or higher for a predetermined period or longer. An exhaust gas purification control apparatus characterized in that the catalyst poisoning substance accumulated with time is removed from the catalyst.
(Na),マグネシウム(Mg),ストロンチウム(S
r)及びカルシウム(Ca)から選ばれる一種以上の元
素を成分の一部として含むNOx吸着触媒を排ガス流路
に配置し、酸化還元化学量論関係においてHC等の還元
剤に対してO2 等の酸化剤が多い状態をつくって吸着触
媒表面及び表面近傍にNOxを化学結合により捕捉し、
次に酸化剤に対し還元剤が同量かもしくは多い状態をつ
くり、吸着触媒に捕捉されたNOxを還元剤と接触反応
させてN2 に還元して無害化する、内燃機関の排ガス浄
化装置において、 内燃機関から排出される排気を理論空燃比もしくは燃料
過剰(リッチ)の状態とし、排気温度を所定以上に所定
期間以上保持することにより、経時的に蓄積された触媒
の被毒物を触媒から排除することを特徴とする排気浄化
制御装置。3. At least potassium (K), sodium (Na), magnesium (Mg), strontium (S
The NOx adsorbing catalyst disposed in the exhaust gas line comprising one or more elements selected from r) and calcium (Ca) as part of component, O 2 or the like to a reducing agent such as HC in a redox stoichiometry NOx is trapped on the surface of the adsorption catalyst and near the surface by chemical bonding,
Then create a state reducing agent is the same amount whether or greater to oxidation agent, detoxifying and reduced to N 2 by catalytic reaction with a reducing agent of NOx trapped in the adsorption catalyst, the exhaust gas purifying apparatus of an internal combustion engine The exhaust gas discharged from the internal combustion engine is set to a stoichiometric air-fuel ratio or a fuel excess (rich) state, and the exhaust gas temperature is maintained at a predetermined temperature or higher for a predetermined period of time, thereby eliminating catalyst poisoning accumulated over time from the catalyst. An exhaust gas purification control device comprising:
(K),ナトリウム(Na),マグネシウム(Mg),
ストロンチウム(Sr)及びカルシウム(Ca)から選
ばれる少なくとも一種とセリウム等からなる希土類から
選ばれる少なくとも一種と、白金,ロジウム,パラヂウ
ム等からなる貴金属から選ばれる少なくとも一種の元素
を含む、金属および金属酸化物(もしくは複合酸化物)
からなる組成物もしくは該組成物を多孔質耐熱性金属酸
化物に担持してなる組成物を吸着触媒として用いた内燃
機関の排ガス浄化装置において、 内燃機関から排出される排気を理論空燃比もしくは燃料
過剰(リッチ)の状態とし、排気温度を所定以上に所定
期間以上保持することにより、経時的に蓄積された触媒
の被毒物を触媒から排除することを特徴とする排気浄化
制御装置。4. The method according to claim 1, wherein potassium (K), sodium (Na), magnesium (Mg),
Metals and metal oxides containing at least one selected from strontium (Sr) and calcium (Ca), at least one selected from rare earths such as cerium and the like, and at least one element selected from precious metals such as platinum, rhodium and palladium. Object (or composite oxide)
An exhaust gas purifying apparatus for an internal combustion engine using, as an adsorption catalyst, a composition comprising: or a composition comprising the composition supported on a porous heat-resistant metal oxide, wherein exhaust gas discharged from the internal combustion engine has a stoichiometric air-fuel ratio or fuel. An exhaust gas purification control device characterized in that an excess (rich) state is maintained, and an exhaust gas temperature is maintained at a predetermined level or higher for a predetermined period or more, thereby removing catalyst poisons accumulated over time from the catalyst.
(K),ナトリウム(Na),マグネシウム(Mg),
ストロンチウム(Sr)及びカルシウム(Ca)から選
ばれる少なくとも一種と、セリウム等からなる希土類か
ら選ばれる少なくとも一種と、白金,ロジウム,パラヂ
ウム等からなる貴金属から選ばれる少なくとも一種と、
チタン及びシリコンから選ばれる少なくとも一種の元素
を含む、金属および金属酸化物(もしくは複合酸化物)
からなる組成物、該組成物を多孔質耐熱性金属酸化物に
担持してなる組成物を吸着触媒として用いた内燃機関の
排ガス浄化装置において、 内燃機関から排出される排気を理論空燃比もしくは燃料
過剰(リッチ)の状態とし、排気温度を所定以上に所定
期間以上保持することにより、経時的に蓄積された触媒
の被毒物を触媒から排除することを特徴とする排気浄化
制御装置。5. The method according to claim 1, wherein potassium (K), sodium (Na), magnesium (Mg),
At least one selected from strontium (Sr) and calcium (Ca), at least one selected from rare earths such as cerium and the like, and at least one selected from precious metals such as platinum, rhodium and palladium;
Metals and metal oxides (or composite oxides) containing at least one element selected from titanium and silicon
An exhaust gas purifying apparatus for an internal combustion engine using a composition comprising the composition supported on a porous heat-resistant metal oxide as an adsorption catalyst, wherein exhaust gas discharged from the internal combustion engine is stoichiometric air-fuel ratio or fuel An exhaust gas purification control device characterized in that an excess (rich) state is maintained, and an exhaust gas temperature is maintained at a predetermined level or higher for a predetermined period or more, thereby removing catalyst poisons accumulated over time from the catalyst.
トルクまたは内燃機関の出力トルクが変動しないような
関係で内燃機関に吸入される空気量,燃料量,点火時
期,燃料噴射時期,変速機の変速比,エンジン回転数の
いずれかの組み合わせの制御量で制御することを特徴と
する排気浄化制御装置。6. An air amount, a fuel amount, an ignition timing, a fuel injection timing, a shift speed, a fuel amount, an intake air amount, a fuel intake amount, and an intake time, which are taken into the internal combustion engine so that the drive shaft torque of the automobile or the output torque of the internal combustion engine does not change. An exhaust purification control device, wherein the control is performed by a control amount of any combination of a speed ratio of an engine and an engine speed.
触媒から排除する処理を所定の期間毎,自動車の所定走
行距離毎,吸入空気量,燃料供給量,排気量のいずれか
の積算値が所定値に達する毎のいずれかで実施すること
を特徴とする排気浄化装置。7. A method according to claim 1, wherein the processing for removing the poisonous substance of the catalyst from the catalyst is performed at every predetermined period, at every predetermined traveling distance of the vehicle, any one of the intake air amount, the fuel supply amount, and the exhaust amount. An exhaust gas purifying apparatus characterized in that the exhaust gas purifying apparatus is performed every time the value reaches a predetermined value.
触媒から排除する処理をNOx吸着能力の劣化度が所定
値以上超えた時に実施することを特徴とする排気浄化装
置。8. An exhaust gas purification apparatus according to claim 1, wherein a process of removing poisonous substances from the catalyst from the catalyst is performed when the degree of deterioration of the NOx adsorption capacity exceeds a predetermined value or more.
する燃料を増量し、排気管に空気を導入することにより
排気を理論空燃比もしくは燃料過剰(リッチ)の状態と
し、排気温度を所定以上に所定期間以上保持することに
より、経時的に蓄積された触媒の被毒物を触媒から排除
することを特徴とする排気浄化制御装置。9. The method according to claim 1, wherein the amount of fuel supplied to the internal combustion engine is increased, and air is introduced into an exhaust pipe to bring the exhaust to a stoichiometric air-fuel ratio or an excess fuel (rich) state, and the exhaust temperature is set to a predetermined value. An exhaust gas purification control device characterized in that the catalyst poisoning substance accumulated over time is removed from the catalyst by holding the catalyst for a predetermined period or more.
を組み合わせるにより排気温度を所定以上に所定期間以
上保持することにより、経時的に蓄積された触媒の被毒
物を触媒から排除することを特徴とする排気浄化制御装
置。10. The method according to claim 9, wherein the exhaust gas temperature is maintained at a predetermined value or more for a predetermined period or more by combining ignition timing retard control to eliminate catalyst poisons accumulated with time from the catalyst. Exhaust gas purification control device.
物を触媒から排除する処理を所定の期間毎,自動車の所
定走行距離毎,吸入空気量,燃料供給量,排気量のいず
れかの積算値が所定値に達する毎のいずれかで実施する
ことを特徴とする排気浄化装置。11. A method according to claim 9, wherein the processing for removing the poisonous substance of the catalyst from the catalyst is performed at every predetermined period, at every predetermined traveling distance of the automobile, and at least one of an intake air amount, a fuel supply amount, and an exhaust amount. An exhaust gas purifying apparatus characterized in that the exhaust gas purifying apparatus is performed every time the value reaches a predetermined value.
物を触媒から排除する処理をNOx吸着能力の劣化度が
所定値以上超えた時に実施することを特徴とする排気浄
化装置。12. The exhaust gas purifying apparatus according to claim 9, wherein a process for removing poisonous substances from the catalyst from the catalyst is performed when the degree of deterioration of the NOx adsorption capacity exceeds a predetermined value or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9359182A JPH11190210A (en) | 1997-12-26 | 1997-12-26 | Exhaust gas purification control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9359182A JPH11190210A (en) | 1997-12-26 | 1997-12-26 | Exhaust gas purification control device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11190210A true JPH11190210A (en) | 1999-07-13 |
Family
ID=18463174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9359182A Pending JPH11190210A (en) | 1997-12-26 | 1997-12-26 | Exhaust gas purification control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11190210A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003510488A (en) * | 1999-09-22 | 2003-03-18 | フオルクスワーゲン・アクチエンゲゼルシヤフト | Method for monitoring the function of a NOx sensor disposed in an exhaust duct of an internal combustion engine |
US7073325B2 (en) | 2002-08-06 | 2006-07-11 | Toyota Jidosha Kabushiki Kaisha | Exhaust emission control method and system |
JP2007263271A (en) * | 2006-03-29 | 2007-10-11 | Toyota Motor Corp | Vehicle control device |
CN115715348A (en) * | 2020-06-25 | 2023-02-24 | 国际壳牌研究有限公司 | Exhaust emission reduction system |
-
1997
- 1997-12-26 JP JP9359182A patent/JPH11190210A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003510488A (en) * | 1999-09-22 | 2003-03-18 | フオルクスワーゲン・アクチエンゲゼルシヤフト | Method for monitoring the function of a NOx sensor disposed in an exhaust duct of an internal combustion engine |
US7073325B2 (en) | 2002-08-06 | 2006-07-11 | Toyota Jidosha Kabushiki Kaisha | Exhaust emission control method and system |
JP2007263271A (en) * | 2006-03-29 | 2007-10-11 | Toyota Motor Corp | Vehicle control device |
CN115715348A (en) * | 2020-06-25 | 2023-02-24 | 国际壳牌研究有限公司 | Exhaust emission reduction system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100290272B1 (en) | Exhaust gas purifying apparatus for internal combustion engine and exhaust gas purifying catalyst for internal combustion engine | |
KR100370486B1 (en) | Internal combustion engine exhaust gas purification apparatus, exhaust gas purification process and exhaust gas purification catalyst | |
JP2009092076A (en) | Diesel engine exhaust gas purification system | |
JP3613083B2 (en) | Exhaust purification control device | |
US20020050135A1 (en) | Apparatus for purifying and controlling exhaust gases | |
JP3107294B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP4464472B2 (en) | Internal combustion engine exhaust gas purification method and purification device | |
JPH11190210A (en) | Exhaust gas purification control device | |
JP3744163B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP4147702B2 (en) | NOx adsorption catalyst for exhaust gas purification of internal combustion engine | |
JP3772478B2 (en) | Regeneration method of exhaust gas purification catalyst for internal combustion engine | |
JP3107303B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP3896224B2 (en) | Control device for internal combustion engine | |
JP3896223B2 (en) | Exhaust gas purification device for internal combustion engine | |
JPH1181988A (en) | Exhaust gas purification device for internal combustion engine | |
JP4073168B2 (en) | Exhaust gas purification method for internal combustion engine, exhaust gas purification device, and exhaust gas purification catalyst | |
JP4309978B2 (en) | Exhaust gas purification method, exhaust gas purification device, and exhaust gas purification catalyst | |
JP2006037790A (en) | Exhaust gas purification device and exhaust gas purification method for gas heat pump | |
JP2002115534A (en) | Exhaust emission control device for internal combustion engine | |
WO2007029339A1 (en) | Exhaust gas purifying apparatus for internal combustion engine and method for exhaust gas purification | |
JP2001050033A (en) | Exhaust gas purification control device | |
AU742434B2 (en) | Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas of internal combustion engine | |
JPH1181987A (en) | NOx purification method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040302 |