JPH11186603A - Nitride semiconductor light emitting device - Google Patents
Nitride semiconductor light emitting deviceInfo
- Publication number
- JPH11186603A JPH11186603A JP35699797A JP35699797A JPH11186603A JP H11186603 A JPH11186603 A JP H11186603A JP 35699797 A JP35699797 A JP 35699797A JP 35699797 A JP35699797 A JP 35699797A JP H11186603 A JPH11186603 A JP H11186603A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- phase
- light emitting
- nitride semiconductor
- emitting layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 150000004767 nitrides Chemical class 0.000 title claims abstract description 37
- 239000004065 semiconductor Substances 0.000 title claims abstract description 36
- 230000001419 dependent effect Effects 0.000 claims abstract description 87
- 239000013078 crystal Substances 0.000 claims abstract description 36
- 239000000203 mixture Substances 0.000 claims abstract description 29
- 229910052738 indium Inorganic materials 0.000 claims abstract description 27
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims description 15
- 239000002096 quantum dot Substances 0.000 abstract description 7
- 239000000470 constituent Substances 0.000 abstract description 6
- 239000010410 layer Substances 0.000 description 182
- 239000012071 phase Substances 0.000 description 164
- 238000001816 cooling Methods 0.000 description 29
- 229910002601 GaN Inorganic materials 0.000 description 21
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 17
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 11
- 239000001257 hydrogen Substances 0.000 description 11
- 229910052739 hydrogen Inorganic materials 0.000 description 11
- 229910052786 argon Inorganic materials 0.000 description 9
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 8
- 229910052733 gallium Inorganic materials 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 239000011777 magnesium Substances 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 6
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 6
- 239000010931 gold Substances 0.000 description 6
- 239000013081 microcrystal Substances 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 229910052749 magnesium Inorganic materials 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 3
- 238000003917 TEM image Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- NWAIGJYBQQYSPW-UHFFFAOYSA-N azanylidyneindigane Chemical compound [In]#N NWAIGJYBQQYSPW-UHFFFAOYSA-N 0.000 description 2
- 230000005587 bubbling Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 229910021478 group 5 element Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- QBJCZLXULXFYCK-UHFFFAOYSA-N magnesium;cyclopenta-1,3-diene Chemical compound [Mg+2].C1C=CC=[C-]1.C1C=CC=[C-]1 QBJCZLXULXFYCK-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0133—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials
- H10H20/01335—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials the light-emitting regions comprising nitride materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/824—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
- H10H20/825—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0137—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials the light-emitting regions comprising nitride materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/811—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
- H10H20/812—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions within the light-emitting regions, e.g. having quantum confinement structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/817—Bodies characterised by the crystal structures or orientations, e.g. polycrystalline, amorphous or porous
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Led Devices (AREA)
- Semiconductor Lasers (AREA)
Abstract
(57)【要約】
【課題】 従属相を効率良く量子ドットとして作用させ
るに必要な構成要件を明確とすることにより、発光層か
ら得られる発光特性を、安定した優れたものとする。
【解決手段】 この発明は、インジウム組成を互いに異
にする主体相21と従属相22とから成る多相構造のイ
ンジウム含有III 族窒化物半導体層を発光層2とする窒
化物半導体発光素子において、上記従属相22を、周囲
の主体相21との境界に歪層23を有する結晶体から主
に構成する、ことを特徴としている。
(57) [Problem] To clarify the constituent requirements necessary for a dependent phase to efficiently act as a quantum dot, and to stably and excellently emit light from a light-emitting layer. SOLUTION: The present invention provides a nitride semiconductor light emitting device in which a light emitting layer 2 is an indium-containing group III nitride semiconductor layer having a multiphase structure composed of a main phase 21 and a dependent phase 22 having different indium compositions. It is characterized in that the dependent phase 22 is mainly composed of a crystal having a strained layer 23 at the boundary with the surrounding main phase 21.
Description
【0001】[0001]
【発明の属する技術分野】この発明は、インジウム組成
を互いに異にする主体相と従属相とから成る多相構造の
インジウム含有III 族窒化物半導体層を発光層とする窒
化物半導体発光素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nitride semiconductor light emitting device having a multiphase indium-containing group III nitride semiconductor layer composed of a main phase and a sub phase having different indium compositions as a light emitting layer.
【0002】[0002]
【従来技術】一般式 AlxGayInzNaM1-a(x+y
+z=1、0≦x,y<1、0<z≦1、0<a≦1、
M:窒素以外の第V族元素)で表記されるインジウム
(In)含有III 族窒化物半導体は、短波長光を放射す
る窒化物半導体発光素子の発光層として利用されてい
る。特に、窒化ガリウム・インジウム混晶(GabIn
1-bN:0≦b<1)は、その発光層の代表的な構成材
料である(特公昭55−3834号公報明細書参照)。
一従来例を挙げれば、In組成比を0.20(20%)
とする窒化ガリウム・インジウム混晶(Ga0.80In
0.20N)が、発光波長を約450ナノメータ(nm)と
する青色発光ダイオード(LED)の発光層として利用
されている。In組成比を0.45とする窒化ガリウム
・インジウム混晶は、発光波長を約525nmとする緑
色LEDの発光層として利用されている。BACKGROUND general formula Al x Ga y In z N a M 1-a (x + y
+ Z = 1, 0 ≦ x, y <1, 0 <z ≦ 1, 0 <a ≦ 1,
Indium (In) -containing group III nitride semiconductors represented by M (Group V element other than nitrogen) are used as light emitting layers of nitride semiconductor light emitting devices that emit short-wavelength light. In particular, gallium nitride-indium mixed crystal (Ga b In
1-b N: 0 ≦ b <1) is a typical constituent material of the light emitting layer (see Japanese Patent Publication No. 55-3834).
In one conventional example, the In composition ratio is 0.20 (20%).
Gallium nitride-indium mixed crystal (Ga 0.80 In
0.20 N) is used as a light emitting layer of a blue light emitting diode (LED) having an emission wavelength of about 450 nanometers (nm). A gallium-indium nitride mixed crystal having an In composition ratio of 0.45 is used as a light emitting layer of a green LED having an emission wavelength of about 525 nm.
【0003】窒化ガリウム・インジウム混晶は、発光部
を成す単一或いは多重量子井戸構造の井戸層としても利
用されている(特開平9−36430号公報明細書参
照)。従来より発光層として多用される窒化ガリウム・
インジウム混晶は、In組成的に均一な均質組織である
のが望ましいとされてきた(特開平9−36430号公
報明細書参照)。しかし、最近ではむしろIn組成が不
均一な窒化ガリウム・インジウム層が、発光層として都
合良く利用できることが判明している(特願平8−26
1044号明細書参照)。所謂、In組成比を互いに異
にする相(phase)の集合体から成る多相構造の窒
化ガリウム・インジウム層である。A gallium-indium nitride mixed crystal is also used as a well layer having a single or multiple quantum well structure forming a light emitting portion (see Japanese Patent Application Laid-Open No. 9-36430). Gallium nitride which has been widely used as a light emitting layer
It has been considered that the indium mixed crystal preferably has a homogeneous structure with a uniform In composition (see Japanese Patent Application Laid-Open No. 9-36430). However, it has recently been found that a gallium-indium nitride layer having a non-uniform In composition can be conveniently used as a light-emitting layer (Japanese Patent Application No. Hei 8-26).
No. 1044). This is a so-called gallium-indium nitride layer having a multi-phase structure composed of an aggregate of phases having different In composition ratios.
【0004】In組成が上記のように不均一で、In組
成に”揺らぎ”を有する多相構造の窒化ガリウム・イン
ジウム層から高い出力の発光が帰結されるのは、量子ド
ット(dot)などの量子化された発光体に因るものと
される。多相構造の窒化ガリウム・インジウム層は体積
的に多くを占める主体相(母相)と、従属相とから一般
に構成される(特願平8−208486号明細書参
照)。従属相は通常は、主体相とはIn組成比を異にす
る。従属相の相互においてもIn組成比は異なる場合が
専らである。従属相は概ね、略球状或いは島状の微結晶
体の体をなし、主体相中に散在している。[0004] High output light emission from a multi-phase gallium indium nitride layer having a non-uniform In composition and "fluctuations" in the In composition as described above is attributed to quantum dots (dots) and the like. It is attributed to the quantized light emitter. A gallium-indium nitride layer having a multiphase structure is generally composed of a main phase (mother phase) occupying a large volume and a subordinate phase (see Japanese Patent Application No. 8-208486). The dependent phase usually has a different In composition ratio from the main phase. It is only in the case that the In composition ratio differs between the dependent phases. The subordinate phase generally forms a substantially spherical or island-like microcrystalline body and is scattered in the main phase.
【0005】従来技術において、微結晶体(従属相)と
それを囲繞する主体相との境界で形成される量子化され
た準位の発光への関与が指摘されている(特願平8−2
61044号明細書参照)。そして、一般に微結晶体の
大きさは直径にして数〜数十nmであり、量子ドットと
して作用するに足るサイズを擁しており、この量子ドッ
トとしての従属相が、In含有III 族窒化物半導体から
成る発光層からの発光に関与するとされている。[0005] In the prior art, it has been pointed out that the quantization level formed at the boundary between the microcrystalline body (dependent phase) and the main phase surrounding it is involved in the emission (Japanese Patent Application No. Hei 8-8). 2
No.61044). In general, the size of the microcrystal is several to several tens of nm in diameter and has a size sufficient to act as a quantum dot. The dependent phase as the quantum dot is an In-containing group III nitride semiconductor. It is considered to be involved in light emission from the light emitting layer composed of
【0006】[0006]
【発明が解決しようとする課題】しかし、よしんば、I
n含有III 族窒化物半導体から成る発光層からの発光に
従属相(量子ドット)が関与するとしても、その発光層
から放射される発光により帰結される、発光強度や発光
波長に代表される発光特性を、必ずしも安定して獲得す
る技術は未知であるのが現状であり、得られる発光特性
は不安定なものとなっている。However, if good, I
Even if a subordinate phase (quantum dot) is involved in light emission from a light emitting layer made of an n-containing group III nitride semiconductor, light emission typified by light emission intensity and light emission wavelength resulting from light emission emitted from the light emitting layer At present, the technology for obtaining the characteristics stably is unknown, and the obtained light-emitting characteristics are unstable.
【0007】従来技術において、得られる発光特性が不
安定である主たる理由は、従属相を量子化された発光体
として作用させるに必要な要件が充分に明確となってい
ないからである。発光特性、特に高い発光強度を安定し
て得るには、従属相たる微結晶体を効率良く量子ドット
として作用させるための構成要件を明確とする必要があ
る。[0007] In the prior art, the main reason that the resulting emission characteristics are unstable is that the requirements necessary for the dependent phase to act as a quantized illuminant are not sufficiently defined. In order to stably obtain light emission characteristics, particularly high light emission intensity, it is necessary to clarify the constituent requirements for causing the dependent microcrystals to efficiently act as quantum dots.
【0008】この発明は上記に鑑み提案されたもので、
従属相を効率良く量子ドットとして作用させるに必要な
構成要件を明確とすることにより、発光層から得られる
発光特性を、安定した優れたものとすることができる窒
化物半導体発光素子を提供することを目的とする。[0008] The present invention has been proposed in view of the above,
Provided is a nitride semiconductor light-emitting device capable of stably and excellently emitting light obtained from a light-emitting layer by clarifying constituent components necessary for causing a dependent phase to efficiently act as quantum dots. With the goal.
【0009】[0009]
【課題を解決するための手段】上記目的を達成するため
に、本発明は、従属相を構成する微結晶体を、量子化さ
れた発光媒体として作用させるべく、従属相とその周囲
を囲繞する主体相との境界近傍領域の構成を規定するも
のである。すなわち、本発明では、インジウム組成を互
いに異にする主体相と従属相とから成る多相構造のイン
ジウム含有III族窒化物半導体層を発光層とする窒化物
半導体発光素子において、上記従属相を、周囲の主体相
との境界に歪層を有する結晶体から主に構成する、こと
を特徴としている。In order to achieve the above object, the present invention encloses the subphase and its surroundings so that the microcrystal constituting the subphase acts as a quantized luminescent medium. This defines the configuration of the region near the boundary with the main phase. That is, in the present invention, in the nitride semiconductor light-emitting device having a multi-phase structure indium-containing group III nitride semiconductor layer composed of a main phase and a sub phase having different indium compositions as the light emitting layer, the sub phase, It is mainly composed of a crystal having a strained layer at the boundary with the surrounding main phase.
【0010】[0010]
【発明の実施の形態】以下にこの発明の実施の形態を詳
細に説明する。以下の説明では、In組成比(濃度)を
略一定とする空間的に或る領域を占有する結晶相を単純
に相(phase)として表現する。空間的に多くの領
域を占める相を主体相と称し、主体相内に略均一に散在
し或いは他層との接合界面近傍の領域に偏在する、主体
相に比較すれば空間的な占有率の小さい相を従属相と称
する。主体相と従属相はIn組成比の大小で区別するの
ではなく、空間的に占有する体積の大小から判別する。Embodiments of the present invention will be described below in detail. In the following description, a crystal phase that occupies a certain region spatially with a substantially constant In composition ratio (concentration) is simply expressed as a phase. A phase that occupies a large area spatially is called a main phase, and is scattered almost uniformly in the main phase or unevenly distributed in a region near a junction interface with another layer. The smaller phase is called the dependent phase. The main phase and the dependent phase are not distinguished by the magnitude of the In composition ratio but by the magnitude of the volume occupied spatially.
【0011】主体相は、単結晶層が累積した層状の単結
晶体から構成される場合がほとんどであるが、部分的に
多結晶領域或いは非晶質体を含む場合がある。結晶形態
に拘わらず、多くの領域を占めるのが主体相である。従
属相は、微小な結晶体(微結晶体)の体を成すのがほと
んどである。微結晶体は単結晶、多結晶或いは非晶質若
しくはこれらの結晶粒の混合体である。一般に微結晶体
の外形は略球状或いは多角形の島状である。従属相の大
きさは、直径或いは島状体にあっては横幅にして概ね、
数〜数十nmである。他層との接合界面に蓄積したイン
ジウムを核として、数〜数十μmの比較的大きなIn析
出体が発生する場合があるが、本発明では、数〜数十n
m程度の大きさの結晶体を従属相として取り扱う。In most cases, the main phase is composed of a layered single crystal in which a single crystal layer is accumulated, but it may partially include a polycrystalline region or an amorphous substance. The main phase occupies a large area irrespective of the crystal form. In most cases, the dependent phase is in the form of fine crystals (microcrystals). The microcrystal is a single crystal, polycrystal, amorphous or a mixture of these crystal grains. Generally, the outer shape of the microcrystal is a substantially spherical or polygonal island. The size of the dependent phase is approximately the diameter or the width in the case of an island,
It is several to several tens of nm. A relatively large In precipitate having a size of several to several tens of μm may be generated using indium accumulated at a bonding interface with another layer as a nucleus.
A crystal having a size of about m is treated as a dependent phase.
【0012】本発明では、主体相と従属相から成る多相
構造のIn含有III 族窒化物半導体から発光層を構成す
る。主体相を構成する層状体の平均的な層厚が、発光層
の層厚となる。約1nm未満の極薄膜層では膜の連続性
は欠如する。不連続膜から成る発光層は発光素子の順方
向電圧の低減に支障を来すなどの不都合をもたらす。逆
に、約300nmを越えた厚膜層では表面状態は損なわ
れるため、発光強度の増大に寄与する発光層として都合
良く利用できない。従って、発光層の層厚は概ね、約1
nmから約300nmの範囲であるのが望ましい。In the present invention, the light-emitting layer is composed of an In-containing group III nitride semiconductor having a multiphase structure composed of a main phase and a subordinate phase. The average layer thickness of the layered body constituting the main phase is the layer thickness of the light emitting layer. Ultra-thin layers less than about 1 nm lack film continuity. The light-emitting layer formed of a discontinuous film causes inconvenience such as a problem in reducing the forward voltage of the light-emitting element. Conversely, if the thickness exceeds about 300 nm, the surface state is impaired, so that it cannot be conveniently used as a light emitting layer that contributes to an increase in light emission intensity. Therefore, the thickness of the light emitting layer is generally about 1
Desirably, the range is from about 300 nm to about 300 nm.
【0013】発光層は不純物を故意に添加した(ドーピ
ング)したIn含有III 族窒化物半導体から構成でき
る。不純物を故意に添加しないアンドープのIn含有II
I 族窒化物半導体からも構成できる。また、アンドープ
層と不純物ドープ層を重層構成からも構成できる。発光
強度の観点からすれば、不純物ドープ発光層の層厚は、
ある程度厚くするのが望ましい。約10nmから約30
0nmが好ましい。アンドープ発光層の場合は、反対に
薄くするのが望ましい。約10nm以下で約1nm以上
が好ましい範囲である。The light emitting layer can be composed of an In-containing group III nitride semiconductor to which impurities are intentionally added (doped). Undoped In-containing II without intentional addition of impurities II
It can also be composed of a Group I nitride semiconductor. In addition, the undoped layer and the impurity-doped layer may be formed in a multilayer structure. From the viewpoint of emission intensity, the layer thickness of the impurity-doped emission layer is
It is desirable to have a certain thickness. About 10nm to about 30
0 nm is preferred. In the case of an undoped light emitting layer, it is desirable to make it thinner. A preferred range is about 10 nm or less and about 1 nm or more.
【0014】発光層の電気伝導形はn形であるのが特に
好ましい。主体相と従属相間での担体(キャリア)、特
に電子の遷移が主に発光強度の大小を担うと考慮される
からである。従って、発光層は電子をマジョリティ(m
ajority)キャリアとする、即ち、n形とするの
が最も好ましい。発光層のキャリア濃度は、大凡10 16
cm-3以上で約1×1019cm-3以下とするのが好都合
である。主体相と従属相とのキャリア濃度を略同一とす
る必要は必ずしもない。一例を挙げれば、主体相のキャ
リア濃度が約1018cm-3程度で、従属相のそれは約1
017cm-3程度である場合も起こり得る。主体相及び従
属相とのキャリア濃度の差異は程度はともあれ、発光層
全体としては上記の範囲とするのが好ましい。In particular, the electric conduction type of the light emitting layer is n-type.
preferable. The carrier between the main phase and the dependent phase,
Is considered to be mainly responsible for the magnitude of the emission intensity
Because. Therefore, the light emitting layer transfers electrons to the majority (m
ajority) to be a carrier, that is, to be n-type
Is most preferred. The carrier concentration of the light emitting layer is approximately 10 16
cm-3About 1 × 1019cm-3It is convenient to
It is. Make the carrier concentration of the main phase and that of the sub phase substantially the same.
You don't have to. For example, the main phase
Rear concentration is about 1018cm-3Degree, that of the dependent phase is about 1
017cm-3In some cases, it may occur. Subject and subordinate
The degree of difference in carrier concentration from the genus
It is preferable to set the above range as a whole.
【0015】従属相は主体相の内部から発生するもので
ある。例えば、主体相の内部に潜在する歪領域或いは結
晶欠陥の密集領域に凝集した、主体相内部に含まれてい
るInを核として発生する。主体相内の従属相の密度が
極端に大となると、主体相(発光層)からの発光は単色
性を欠くものとなる。従属相の密度が2×1018cm -3
を越えると発光の単色性は急激に悪化する。従って、従
属相の密度は2×10 18cm-3以下とするのが好まし
い。特に、層厚を20nm以下とするアンドープ発光層
にあっては、従属相の密度を5.0×1023×t(ここ
で、t:層厚(cm))以下とすると好都合である。従
属相の密度を上記の範囲とすれば、半値幅を15nm以
下とする単色性に優れる発光を獲得できる。The dependent phase is generated from inside the main phase.
is there. For example, there is a potential strain region or
Contained in the main phase, agglomerated in the dense area of crystal defects
In is generated with In as a nucleus. The density of the dependent phase in the main phase is
When extremely large, light emission from the main phase (light-emitting layer) is monochromatic
It lacks sex. Dependent phase density 2 × 1018cm -3
When the value exceeds, the monochromaticity of light emission deteriorates rapidly. Therefore,
Genus phase density 2 × 10 18cm-3Preferably
No. Particularly, an undoped light emitting layer having a layer thickness of 20 nm or less.
The density of the dependent phase is 5.0 × 10twenty three× t (here
And t: layer thickness (cm) or less. Obedience
If the density of the genus phase is within the above range, the half width is 15 nm or less.
Light emission with excellent monochromaticity can be obtained as described below.
【0016】一般に、650℃以上で950℃未満の温
度範囲でMOCVD成長法等により気相成長されるIn
含有III 族窒化物半導体から成る発光層は、成長時のア
ズグローン(as−grown)状態で多相に分離して
いる場合もある。しかし、as−grown状態での多
相構造では、従属相の大きさは不均一を極める。as−
grownのIn含有III 族窒化物半導体層に加熱処理
を施せば、主体相を母体として安定して従属相を発生さ
せられ、多相構造となすことができる。発光層となす多
相構造のIn含有III 族窒化物半導体層を安定して形成
する加熱処理方法に於いて、(イ)発光層の成長温度か
ら加熱処理温度への昇温速度、(ロ)加熱処理温度に於
ける保持時間の他に、特に(ハ)加熱処理温度から降温
する際の冷却速度の最適化により、従属相の大きさを均
一化できる。従属相の大きさの画一化は、従属相内のI
n濃度(組成比)の均一化と共に発光波長及び発光の単
色性の均一性の向上に特に効果を奏するものである。In general, In is vapor-phase grown by MOCVD or the like in a temperature range of 650 ° C. or more and less than 950 ° C.
In some cases, the light emitting layer made of the contained group III nitride semiconductor is separated into multiple phases in an as-grown state during growth. However, in a multiphase structure in an as-grown state, the size of the dependent phase is extremely uneven. as-
When a heat treatment is performed on the grown In-containing group III nitride semiconductor layer, a subordinate phase can be generated stably with the main phase as a parent, and a multiphase structure can be formed. In a heat treatment method for stably forming an In-containing group III nitride semiconductor layer having a multiphase structure serving as a light emitting layer, (a) a temperature rising rate from a growth temperature of the light emitting layer to a heat treatment temperature; In addition to the holding time at the heat treatment temperature, the size of the dependent phase can be made uniform by optimizing the cooling rate particularly when the temperature is lowered from the heat treatment temperature. The uniformity of the size of the dependent phase depends on the I in the dependent phase.
This is particularly effective in improving the uniformity of the emission wavelength and the monochromaticity of the emission as well as the uniformization of the n concentration (composition ratio).
【0017】本発明では、発光層における主体相と従属
相との境界領域の構成に規定を加える。即ち、本発明の
従属相は、それを囲繞する主体相との境界に歪領域(歪
層)を保有することを特徴とする。そして、この歪層を
付帯する従属相の数量は、全従属相の数量の50%以上
を占めるようにする。In the present invention, the structure of the boundary region between the main phase and the subordinate phase in the light emitting layer is specified. That is, the dependent phase of the present invention is characterized by having a strained region (strained layer) at the boundary with the main phase surrounding it. Then, the number of the dependent phases accompanying the strained layer is set to account for 50% or more of the total number of the dependent phases.
【0018】外周囲を歪層で囲繞された従属相は、上記
の多相構造を安定して形成するための発光層の加熱処理
において、特に加熱処理温度からの冷却速度を適宣、調
節することをもって形成することができる。950℃を
越え1200℃以下の温度を望ましい処理温度とする加
熱処理温度から、速度を変更して降温するのは最も好ま
しい冷却方法である。特に、加熱処理温度から950℃
へ毎分20℃以上の速度で降温し、950℃から650
℃へは毎分20℃以下の速度で降温する過程を備えた冷
却方法は、外周囲に歪層を保有する従属相を安定して形
成できる方法である。加熱処理温度から950℃へ20
℃/分以下の速度で降温すると、そもそも発光層の表面
状態を良好に保持できなくなり、平坦性に欠ける発光層
が帰結される。950℃から650℃への毎分20℃を
越える急激な冷却は、従属相の周囲に適量を越える歪層
を残存させるため不都合である。The dependent phase whose outer periphery is surrounded by the strained layer appropriately adjusts the cooling rate particularly from the heat treatment temperature in the heat treatment of the light emitting layer for stably forming the above-mentioned multiphase structure. It can be formed by things. It is the most preferred cooling method to change the temperature from the heat treatment temperature at which the temperature is preferably 950 ° C. or more and 1200 ° C. or less as a desirable treatment temperature while changing the speed. In particular, 950 ° C from the heat treatment temperature
To 650 ° C / min.
The cooling method including a step of lowering the temperature to 20 ° C. per minute at a rate of 20 ° C. or less is a method capable of stably forming a dependent phase having a strained layer on the outer periphery. 20 from heat treatment temperature to 950 ° C
If the temperature is decreased at a rate of not more than ° C./min, the surface state of the light emitting layer cannot be maintained in the first place, resulting in a light emitting layer lacking in flatness. Rapid cooling from 950 ° C. to 650 ° C. above 20 ° C. per minute is disadvantageous as it leaves more than an appropriate amount of strained layer around the dependent phase.
【0019】なお、多相構造となすための上記の加熱処
理は別個に特別に施工する必要はない。加熱処理は一例
を挙げれば、In含有III 族窒化物半導体層から成る発
光層の上部に、例えば窒化ガリウム系層或いは窒化アル
ミニウム・ガリウム系混晶層を成長させるときの成長操
作をもって代用できる。発光層上にこれらの層を成長さ
せる際の成長温度は、上記の好ましい加熱温度の範囲に
あるからである。It is not necessary to separately and specially perform the above-mentioned heat treatment for forming a multi-phase structure. For example, the heat treatment can be replaced by a growth operation for growing, for example, a gallium nitride-based layer or an aluminum-gallium nitride-based mixed crystal layer on the light-emitting layer formed of an In-containing group III nitride semiconductor layer. This is because the growth temperature at the time of growing these layers on the light emitting layer is in the preferable heating temperature range described above.
【0020】In含有III 族窒化物半導体層が多相構造
であるか否かは、透過型電子顕微鏡(TEM)を利用す
る通常の断面TEM技法により確認することができる。
多相構造から成る窒化ガリウム・インジウム混晶につい
ての明視野断面TEM像には、断面を略円形台形或いは
多角形状等の黒色のコントラストをもって従属相が撮像
される。黒色コントラストは転位等の結晶欠陥に起因す
る場合もある。転位等に因るコントラストは概ね、線状
である。コントラストの形状から従属相であるか否か、
また従属相の形状を知ることができる。従属相に起因す
るコントラストの密度から主体相中の従属相の密度を計
測できる。エレクトロンプローブマイクロアナライザ
(EPMA)等の組成分析機能を備えた、所謂分析用電
子顕微鏡に依れば、主体相と従属相との各々につきIn
組成比を分析できる。主体相と従属相とのIn組成の差
異(”揺らぎ”)は、4結晶法と簡略して呼称されるX
線精密回折法からも解析できる。Whether or not the In-containing group III nitride semiconductor layer has a multiphase structure can be confirmed by a normal cross-sectional TEM technique using a transmission electron microscope (TEM).
In the bright-field cross-sectional TEM image of the gallium-indium nitride mixed crystal having a multiphase structure, the dependent phase is imaged with a black contrast such as a substantially circular trapezoidal or polygonal cross section. The black contrast may be caused by crystal defects such as dislocations. The contrast due to dislocations and the like is generally linear. Whether or not the phase is dependent on the shape of the contrast,
Also, the shape of the dependent phase can be known. The density of the dependent phase in the main phase can be measured from the density of the contrast caused by the dependent phase. According to a so-called analytical electron microscope having a composition analysis function such as an electron probe microanalyzer (EPMA), each of the main phase and the dependent phase has In.
The composition ratio can be analyzed. The difference in the In composition between the main phase and the subordinate phase (“fluctuation”) is expressed by X which is simply called a four-crystal method.
It can also be analyzed from the line precision diffraction method.
【0021】従属相の外周囲の歪層の存在の有無は、高
倍率での断面TEM像から観測できる。観測には、数百
万倍の高倍率が適する。図1はこの発明の窒化物半導体
発光素子に係る発光層を透過型電子顕微鏡(TEM)で
撮像したときの結晶格子像の一例である。この結晶格子
像は、2百万倍の明視野断面TEM技法で撮像したもの
である。以下、この図を用いて説明を進める。The presence or absence of the strain layer around the dependent phase can be observed from a high-magnification cross-sectional TEM image. A high magnification of several million times is suitable for observation. FIG. 1 is an example of a crystal lattice image when the light emitting layer according to the nitride semiconductor light emitting device of the present invention is imaged by a transmission electron microscope (TEM). This crystal lattice image was taken by a 2 million times bright field cross-sectional TEM technique. Hereinafter, description will be made with reference to FIG.
【0022】図において、発光層2は、インジウム(I
n)組成を互いに異にする主体相21と従属相22とか
ら成る多相構造を有しており、発光層2の母体となる主
体相21内に存在する従属相22の周囲には、歪層23
が付帯している。即ち、従属相22は、周囲の主体相2
1との境界に歪層23を有する結晶体となっており、中
心側を成す本体部分(以下、「従属相本体部分」とい
う)22aと、その従属相本体部分22aの外周囲に形
成された歪層23とから成っている。歪層23の層厚d
は、周囲に略均一に保たれるとは限らず、従属相本体部
分22aに対してゆがんだ状態で、例えば一方向にのみ
厚く発達したものもある。In the figure, the light emitting layer 2 is made of indium (I
n) It has a multiphase structure composed of a main phase 21 and a sub phase 22 having different compositions, and a strain is present around the sub phase 22 existing in the main phase 21 which is a base of the light emitting layer 2. Layer 23
Is attached. That is, the dependent phase 22 is composed of the surrounding main phase 2
The crystal body has a strained layer 23 at the boundary with the main body 1 and is formed around the center of the main body (hereinafter referred to as “dependent phase main body”) 22a and the outer periphery of the dependent phase main body 22a. And a strain layer 23. Layer thickness d of strained layer 23
Is not always maintained substantially uniformly around the periphery, and may be distorted with respect to the dependent phase main body portion 22a, for example, may be developed thick only in one direction.
【0023】結晶格子面の間隔を比較すると、主体相2
1、従属相本体部分22a及び歪層23の内部では格子
の間隔が相互に異なるのが識別される。即ち、歪層23
は格子像上、主体相21や従属相本体部分22aとは異
なる格子面(格子像)間隔と格子の配列方向を有する領
域であると認められる。歪層23の格子像の間隔は、主
体相21と従属相本体部分22aとの中間的なものとな
り、格子(像)の配列が乱雑である場合もある。Comparison of the distance between the crystal lattice planes shows that the main phase 2
1. It is recognized that the lattice intervals are different from each other inside the dependent phase main body portion 22a and the strained layer 23. That is, the strained layer 23
Is a region having a lattice plane (lattice image) interval and a lattice arrangement direction different from those of the main phase 21 and the subordinate phase main portion 22a on the lattice image. The interval between the lattice images of the strained layer 23 is intermediate between the main phase 21 and the dependent phase main portion 22a, and the arrangement of the lattice (image) may be messy.
【0024】従属相22の周囲を成す歪層23の厚さd
は、多相構造の発光層2から出射される発光の強度に影
響を与える。歪層23が極端に厚くなると、発光強度の
向上には然したる効果をもたらさない。高強度の発光を
得るには、歪層23には適する厚さdが存在する。歪層
23の層厚(領域幅)dを求めると、高強度の発光に適
する歪層23の厚さdは、従属相本体部分22aの大き
さDに対して0.5×D以下である。従属相22が略球
状であるときは、その大きさDは直径で表せる。島状の
従属相22にあっては、その大きさDは横幅で表せる。
一例を挙げれば、直径が20nmの球状従属相について
は歪層23の厚さを10(=0.5×20)nm以下と
する。The thickness d of the strained layer 23 surrounding the dependent phase 22
Affects the intensity of light emitted from the light emitting layer 2 having a multiphase structure. If the strained layer 23 is extremely thick, the effect of improving the light emission intensity will not be obtained. In order to obtain high-intensity light emission, the strained layer 23 has an appropriate thickness d. When the layer thickness (region width) d of the strained layer 23 is obtained, the thickness d of the strained layer 23 suitable for high-intensity light emission is 0.5 × D or less with respect to the size D of the dependent phase main body portion 22a. . When the dependent phase 22 is substantially spherical, the size D can be represented by a diameter. In the island-shaped dependent phase 22, the size D can be represented by the width.
For example, the thickness of the strained layer 23 is set to 10 (= 0.5 × 20) nm or less for a spherical dependent phase having a diameter of 20 nm.
【0025】上記の如く、歪層23の厚さdは必ずしも
略均一ではないが、歪層23の平均的な厚さdが0.5
×D以下であれば効果が損なわれることはない。歪層2
3が極端に薄い場合も、発光強度の向上には然したる効
果を上げることができない。主体相21と従属相本体部
分22a間に或る程度の歪層23が存在しないと、高強
度の発光を帰結する量子化されたキャリアを発生するた
めのバンド(band)構成が充分に創出できないため
と思料される。歪層23の厚さdとして最低でも約5Å
程度は必要であり、好ましくは10Å(=1nm)以上
である。As described above, the thickness d of the strained layer 23 is not necessarily substantially uniform, but the average thickness d of the strained layer 23 is 0.5
If it is less than × D, the effect will not be impaired. Strain layer 2
Even when 3 is extremely thin, it is not possible to achieve the effect corresponding to the improvement of the emission intensity. If a certain amount of the strain layer 23 does not exist between the main phase 21 and the dependent phase main body portion 22a, a band configuration for generating quantized carriers resulting in high-intensity light emission cannot be sufficiently created. It is thought that it is. At least about 5 mm as the thickness d of the strained layer 23
The degree is necessary, and is preferably 10 ° (= 1 nm) or more.
【0026】一方、歪層23の厚さdの最大値は10n
m以下とするのが好ましい。発光層2として極く一般的
に利用されるIn含有III 族窒化物半導体層のIn混晶
比が約0.05から約0.5程度であることに鑑みた歪
層の好ましい厚さである。従って、歪層23の厚さd
は、約10Å以上で10nm以下の範囲とするのが好ま
しい。On the other hand, the maximum value of the thickness d of the strained layer 23 is 10 n
m or less. This is the preferred thickness of the strained layer in view of the fact that the In content of the In-containing group III nitride semiconductor layer, which is extremely generally used as the light emitting layer 2, is about 0.05 to about 0.5. . Therefore, the thickness d of the strained layer 23
Is preferably in the range of about 10 ° to 10 nm.
【0027】歪層23の厚さdは、上記したように、発
光層2とするIn含有III 族窒化物半導体層の成長を終
了した後の、多相構造化のための発光層2の加熱処理に
付帯する冷却工程における降温速度の調節をもって制御
でき、特に、950℃から650℃の温度範囲における
降温(冷却)速度が、歪層23の厚さdを決定する支配
的な因子となる。同温度範囲における降温速度は、上記
のように、毎分20℃以下とするのが望ましいが、歪層
23の厚さdを10Å以上で10nm以下の範囲とする
には、降温速度を5℃/分〜20℃/分の範囲に設定す
ると好結果が得られ、さらに好ましい降温速度は7℃/
分〜15℃/分である。20℃/分を越える速度で降温
すると、歪層23の厚さdは増加し、安定して0.5×
D以下とするのは困難となる。逆に降温速度を毎分3℃
未満とすると歪層23の厚さdは減少し、約5Å程度の
最低の歪層の厚さを確保することすらできなくなる。As described above, the thickness d of the strained layer 23 is determined by heating the light emitting layer 2 for forming a multiphase structure after the growth of the In-containing group III nitride semiconductor layer serving as the light emitting layer 2 is completed. It can be controlled by adjusting the cooling rate in the cooling step accompanying the treatment. In particular, the cooling (cooling) rate in the temperature range of 950 ° C. to 650 ° C. is a dominant factor that determines the thickness d of the strained layer 23. As described above, the cooling rate in the same temperature range is desirably 20 ° C. or less per minute. However, in order to set the thickness d of the strained layer 23 in the range of 10 ° to 10 nm, the cooling rate is 5 ° C. / Min to 20 ° C / min, good results can be obtained, and a more preferable cooling rate is 7 ° C / min.
Min to 15 ° C / min. When the temperature is lowered at a rate exceeding 20 ° C./min, the thickness d of the strained layer 23 increases and stably becomes 0.5 ×
It is difficult to reduce the value to D or less. Conversely, the cooling rate is 3 ° C per minute
If the thickness is less than the above, the thickness d of the strained layer 23 decreases, and it becomes impossible to secure even the minimum thickness of the strained layer of about 5 °.
【0028】上記の冷却工程における降温速度について
は、多様な降温パターンをとることができる。例えば、
950℃から650℃へは、一定の降温速度をもって一
律に冷却しても構わないし、種々降温速度を変化させて
冷却しても差し支えはない。具体例を上げると、950
℃より800℃へ毎分15℃の速度で降温し、引き続き
800℃から600℃へ毎分10℃の速度で降温しても
よい。また、950℃より一定の速度で冷却を開始し、
950℃〜650℃間の或る温度で所定の待機時間だけ
保持してた後、650℃へ再び冷却を開始するようにし
てもよい。このように、降温処理時に所定の待機時間だ
け略一定の温度に保持することの利点は、従属相22の
周囲の歪層23の厚さdの均一化が果たせることであ
る。従って、本発明の提示する降温速度と待機時間を設
ける降温処理法とを併用すれば、歪層23の厚さdを制
御できると共に、歪層23の厚さdの均一化を達成する
に効果がある。制御された且つ均一な厚さを有する歪層
23の存在は、量子準位の画一化を介して発光強度の向
上及び発光の単色性の向上に寄与するものである。As for the cooling rate in the cooling step, various cooling patterns can be adopted. For example,
From 950 ° C. to 650 ° C., cooling may be performed uniformly at a constant cooling rate, or cooling may be performed at various cooling rates. To give a specific example, 950
The temperature may be lowered at a rate of 15 ° C./minute from 800 ° C. to 800 ° C., and subsequently at a rate of 10 ° C./minute from 800 ° C. to 600 ° C. Also, start cooling at a constant rate from 950 ° C,
After holding at a certain temperature between 950 ° C. and 650 ° C. for a predetermined standby time, cooling to 650 ° C. may be started again. As described above, the advantage of maintaining the temperature at a substantially constant temperature for a predetermined standby time during the temperature lowering process is that the thickness d of the strained layer 23 around the dependent phase 22 can be made uniform. Therefore, the combined use of the temperature lowering rate and the temperature lowering treatment method of providing a waiting time according to the present invention can control the thickness d of the strained layer 23 and achieve the uniformity of the thickness d of the strained layer 23. There is. The presence of the strained layer 23 having a controlled and uniform thickness contributes to the improvement of the emission intensity and the monochromaticity of the emission through the uniformization of the quantum levels.
【0029】以上述べたように、この実施形態では、イ
ンジウム組成を互いに異にする主体相21と従属相22
とから成る多相構造のインジウム含有III 族窒化物半導
体で形成した発光層2にあって、従属相22を、その周
囲の主体相21との境界に歪層23を有する結晶体から
主に構成するようにしたので、従属相22の周囲に存在
する歪層23は、発光強度の増大に寄与するキャリアを
安定して発生させるようになり、従って、従属相22を
構成する結晶体を量子化された発光媒体として有効に作
用させることが可能となり、この発光層2を含む窒化物
半導体発光素子から出力される短波長可視光を、安定し
て高発光強度で且つ単色性に優れたものとすることがで
きる。As described above, in this embodiment, the main phase 21 and the dependent phase 22 having different indium compositions from each other.
In the light-emitting layer 2 formed of an indium-containing group-III nitride semiconductor having a multiphase structure consisting of the following, the dependent phase 22 is mainly composed of a crystal having a strained layer 23 at the boundary with the surrounding main phase 21. As a result, the strained layer 23 present around the dependent phase 22 stably generates carriers contributing to an increase in emission intensity, and therefore, the crystals constituting the dependent phase 22 are quantized. Can be effectively used as a light emitting medium, and short-wavelength visible light output from the nitride semiconductor light emitting device including the light emitting layer 2 can be stably provided with high light emission intensity and excellent monochromaticity. can do.
【0030】次に、この発明の窒化物半導体発光素子
を、より具体的な実施例を以て説明する。Next, the nitride semiconductor light emitting device of the present invention will be described with more specific examples.
【0031】[0031]
【実施例】(第1実施例)本発明を発光ダイオード(L
ED)に適用した場合について説明する。LED用途の
積層構造体を構成する各構成層は一般的な常圧(大気
圧)方式のMOCVD成長炉を利用して、基板上に次の
手順により順次形成した。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) The present invention relates to a light emitting diode (L).
ED) will be described. Each constituent layer constituting the laminated structure for LED use was sequentially formed on the substrate by the following procedure using a general normal pressure (atmospheric pressure) type MOCVD growth furnace.
【0032】図2は本発明の第1実施例に係る積層構造
体を示す図である。図において、積層構造体11は、基
板100上に積層して構成されている。基板100とし
て、直径2インチ(直径50mm)で厚さが約90μm
の両面研磨した(0001)(c面)−サファイア(α
−Al2 O3 単結晶)を使用した。その基板100上
に、トリメチルガリウム((CH3 )3 Ga)、トリメ
チルアルミニウム((CH3)3Al)及びアンモニア
(NH3 )を原料として通常の常圧MOCVD法により
窒化アルミニウム・ガリウム(Al0.8Ga0.2N)から
成る低温緩衝層100aを成膜した。成膜は水素気流中
で430℃で正確に3分間に亘り実施した。水素の流量
は毎分8リットルとし、アンモニアガスの流量は毎分1
リットルとした。低温緩衝層100aの層厚は15nm
であった。FIG. 2 is a view showing a laminated structure according to the first embodiment of the present invention. In the figure, a laminated structure 11 is formed by being laminated on a substrate 100. The substrate 100 has a diameter of 2 inches (50 mm in diameter) and a thickness of about 90 μm.
(0001) (c-plane) -sapphire (α
-Al 2 O 3 single crystal) was used. On the substrate 100, trimethylgallium ((CH 3 ) 3 Ga), trimethylaluminum ((CH 3 ) 3 Al) and ammonia (NH 3 ) are used as raw materials by a normal atmospheric pressure MOCVD method to form aluminum gallium nitride (Al 0.8 A low-temperature buffer layer 100a made of Ga 0.2 N) was formed. The film formation was performed at 430 ° C. for exactly 3 minutes in a hydrogen stream. The flow rate of hydrogen is 8 liters per minute, and the flow rate of ammonia gas is 1 liter per minute.
Liters. The thickness of the low-temperature buffer layer 100a is 15 nm.
Met.
【0033】次に、低温緩衝層100a上に、体積濃度
にして約3ppmのジシラン(Si 2H6)を含む水素ガ
スを、MOCVD反応系に添加し、水素−アルゴン(A
r)気流中1100℃で、n形窒化ガリウム(GaN)
層101を90分間に亘り成膜した。ジシラン−水素混
合ガスの系内への添加量は、毎分10ccとなるように
電子式質量流量計(MFC)で精密に制御した。この珪
素(Si)ドープのn形窒化ガリウム層101のキャリ
ア濃度は約3×1018cm-3で、層厚は約3μmであっ
た。Next, on the low-temperature buffer layer 100a, a volume concentration
About 3 ppm of disilane (Si TwoH6) Containing hydrogen gas
Is added to the MOCVD reaction system and hydrogen-argon (A
r) n-type gallium nitride (GaN) in air stream at 1100 ° C
Layer 101 was deposited for 90 minutes. Disilane-hydrogen mixture
The addition amount of the combined gas into the system should be 10 cc / min.
It was precisely controlled by an electronic mass flow meter (MFC). This silicon
Carrying of n-type gallium nitride layer 101 doped with silicon (Si)
A concentration is about 3 × 1018cm-3And the layer thickness is about 3 μm.
Was.
【0034】基板100の温度を1100℃から800
℃に低下させた後、n形窒化ガリウム層101上に、イ
ンジウム(In)の平均的な組成比を0.18とする窒
化ガリウム・インジウム(Ga0.82In0.18N)から成
る発光層102を堆積した。発光層102の成長はアル
ゴン気流中で実施した。発光層102の層厚は5nmと
した。ガリウム源にはトリメチルガリウムを、インジウ
ム源にはトリメチルインジウムを、それぞれ用いた。ト
リメチルガリウムは0℃の恒温に保持し、それを発泡す
る(バブリング)する水素の流量は、MFCで毎分1c
cに精密に制御した。トリメチルインジウムは50℃の
恒温に保持した。昇華したトリメチルインジウムの蒸気
を随伴する水素ガスの流量は、MFCにより毎分13c
cに設定した。発光層102の成長時のV/III 比率は
約3×104 となる様に、窒素源であるアンモニアガス
の流量を設定した。ここで、V/III 比率とは、成長反
応系に供給されたガリウム源及びインジウム源の合計濃
度に対する窒素源の濃度の比率を表す。発光層102の
成長速度はn形窒化ガリウム層101の場合より低下さ
せ約2nm/分とした。The temperature of the substrate 100 is increased from 1100 ° C. to 800
After the temperature is lowered to about 0 ° C., a light emitting layer 102 made of gallium indium nitride (Ga 0.82 In 0.18 N) having an average composition ratio of indium (In) of 0.18 is deposited on the n-type gallium nitride layer 101. did. The growth of the light emitting layer 102 was performed in an argon stream. The layer thickness of the light emitting layer 102 was 5 nm. Trimethyl gallium was used as the gallium source, and trimethyl indium was used as the indium source. Trimethylgallium is kept at a constant temperature of 0 ° C., and the flow rate of hydrogen for bubbling (bubbling) it is 1 c / min.
c was precisely controlled. Trimethylindium was kept at a constant temperature of 50 ° C. The flow rate of hydrogen gas accompanying the sublimated trimethylindium vapor is 13 c / min by MFC.
c. The flow rate of ammonia gas as a nitrogen source was set so that the V / III ratio during growth of the light emitting layer 102 was about 3 × 10 4 . Here, the V / III ratio indicates the ratio of the concentration of the nitrogen source to the total concentration of the gallium source and the indium source supplied to the growth reaction system. The growth rate of the light emitting layer 102 was lower than that of the n-type gallium nitride layer 101 to about 2 nm / min.
【0035】発光層102の成長終了後、基板100の
温度をアルゴン気流中で800℃から100℃/分の昇
温速度で1100℃へ3分間で急激に加熱した。同温度
に1分間待機する間に、MOCVD反応系の雰囲気の構
成をアルゴンと水素の混合気体に変更し、マグネシウム
(Mg)をドーピングした窒化アルミニウム・ガリウム
混晶層(Al0.15Ga0.85N)層103を発光層102
上に堆積した。成長速度は発光層102の場合の約1.
5倍に相当する約3nm/分とした。10分間に亘り成
長を継続して約30nmの厚さの混晶層を得た。マグネ
シウムのドーピング源にはビスシクロペンタマグネシウ
ム(bis−(C5 H5 )2 Mg)を利用した。マグネ
シウムドーピング源のMOCVD反応系への供給量は毎
分8×10-6モルに設定した。Mgドープ窒化アルミニ
ウム・ガリウム層103内のマグネシウム原子の濃度
は、一般的なSIMS分析により約6×1019atom
s/cm3と定量された。After the growth of the light-emitting layer 102, the temperature of the substrate 100 was rapidly increased from 800 ° C. to 100 ° C./minute to 1100 ° C. for 3 minutes in an argon stream. While waiting at the same temperature for 1 minute, the composition of the atmosphere of the MOCVD reaction system was changed to a mixed gas of argon and hydrogen, and a magnesium (Mg) -doped aluminum-gallium nitride mixed crystal layer (Al 0.15 Ga 0.85 N) layer was used. 103 is the light emitting layer 102
Deposited on top. The growth rate is about 1.
It was set to about 3 nm / min, which was equivalent to 5 times. The growth was continued for 10 minutes to obtain a mixed crystal layer having a thickness of about 30 nm. The doping source magnesium using bis cyclopentadienyl magnesium (bis- (C 5 H 5) 2 Mg). The supply amount of the magnesium doping source to the MOCVD reaction system was set at 8 × 10 -6 mol / min. The concentration of magnesium atoms in the Mg-doped aluminum-gallium nitride layer 103 is determined to be about 6 × 10 19 atoms by general SIMS analysis.
s / cm 3 .
【0036】引き続き、アルゴン−水素混合気流中11
00℃で、Mgドープ窒化ガリウム層103aをMgド
ープ窒化アルミニウム・ガリウム層103上に20分間
に亘り堆積した。ガリウム源はトリメチルガリウムと
し、マグネシウム源はMgドープ窒化アルミニウム・ガ
リウム層103の成長時と同様の有機Mg化合物を利用
した。マグネシウムのドーピング効率は成長速度を小と
するに従い上昇する傾向が認められたため、約3nm/
分とした。Mgドープ窒化ガリウム層103aの層厚は
約60nmとなった。Subsequently, an argon-hydrogen mixed gas stream 11
At 00 ° C., a Mg-doped gallium nitride layer 103 a was deposited on the Mg-doped aluminum-gallium nitride layer 103 for 20 minutes. The gallium source was trimethylgallium, and the magnesium source used was an organic Mg compound similar to that used when growing the Mg-doped aluminum gallium nitride layer 103. Since the doping efficiency of magnesium tended to increase as the growth rate was reduced, about 3 nm /
Minutes. The layer thickness of the Mg-doped gallium nitride layer 103a was about 60 nm.
【0037】上記の積層構造体11の各構成層100
a,101,102,103,103aの成長終了後、
アルゴンと水素の等体積混合気流にアンモニアガスを添
加した状態で基板100の温度を1100℃から950
℃に直ちに降温した。1100℃から950℃へは、雰
囲気を構成する熱伝導率の大きい水素ガスの流量のみを
毎分4リットルから毎分8リットルに増加させ、1分を
掛けずに半ば強制的に冷却した。950℃に基板100
の温度が降下した後は、MOCVD反応炉内に流通する
ガス種をアルゴンのみとした。950℃から650℃へ
は、毎分10℃の速度で30分間で降温した。650℃
から室温へはMOCVD反応炉内の雰囲気をアルゴン−
水素雰囲気として冷却した。約30℃に至る迄約45分
を要した。Each constituent layer 100 of the above-mentioned laminated structure 11
After the growth of a, 101, 102, 103, 103a,
The temperature of the substrate 100 is raised from 1100 ° C. to 950 in a state where ammonia gas is added to an equal volume mixed gas flow of argon and hydrogen.
The temperature was immediately dropped to ° C. From 1100 ° C. to 950 ° C., only the flow rate of hydrogen gas having a high thermal conductivity constituting the atmosphere was increased from 4 liters per minute to 8 liters per minute, and the cooling was performed forcibly in half without taking one minute. Substrate 100 at 950 ° C
Was lowered, only argon was used as the gas species flowing in the MOCVD reactor. The temperature was lowered from 950 ° C. to 650 ° C. at a rate of 10 ° C. per minute for 30 minutes. 650 ° C
The atmosphere in the MOCVD reactor from argon to
Cooled in a hydrogen atmosphere. It took about 45 minutes to reach about 30 ° C.
【0038】冷却後、積層構造体11の一断片を試料と
して通常の断面TEM技法により、発光層102の内部
構造を加速電圧200KV下で観察した。図3は第1実
施例での発光層を透過型電子顕微鏡(TEM)で撮像し
たときの結晶格子像である。観察倍率は2×106 であ
る。図において、第1実施例での発光層102は、主体
相201と、略球状及び島状の従属相202とから構成
される多相構造から成ると判明した。島状の従属相20
2はn形窒化ガリウム層101と発光層102との界面
により多く存在する様に観察された。撮像範囲での従属
相202の数から求めた従属相202の密度は約2×1
017cm-3であった。主体相201と従属相202とで
はインジウム組成を異にし、もっぱら従属相202は主
体相201よりインジウム濃度を大とする傾向があるの
が認められた。インジウム組成比が約0.3程度の従属
相も認められた。After cooling, the internal structure of the light emitting layer 102 was observed at an accelerating voltage of 200 KV by a normal section TEM technique using one fragment of the laminated structure 11 as a sample. FIG. 3 is a crystal lattice image when the light emitting layer in the first embodiment is imaged by a transmission electron microscope (TEM). The observation magnification is 2 × 10 6 . In the drawing, it has been found that the light emitting layer 102 in the first embodiment has a multiphase structure composed of the main phase 201 and the substantially spherical and island-shaped subordinate phases 202. Island-like subordinate phase 20
2 was observed to be more present at the interface between the n-type gallium nitride layer 101 and the light emitting layer 102. The density of the dependent phase 202 obtained from the number of the dependent phases 202 in the imaging range is about 2 × 1
It was 0 17 cm -3 . It was recognized that the indium composition was different between the main phase 201 and the dependent phase 202, and that the dependent phase 202 tended to have a higher indium concentration than the main phase 201. A dependent phase having an indium composition ratio of about 0.3 was also observed.
【0039】従属相202は、周囲の主体相201との
境界に歪層203を有しているのが認められ、中心側を
成す従属相本体部分202aと、その外周の歪層203
とから構成されていた。略球状の従属相本体部分202
aの直径は概ね、約25〜35Å(2.5〜3.5n
m)程度であった。島状の従属相本体部分202aの大
きさは横幅にして概ね、35Å程度であった。従属相本
体部分202aと歪層203とにおける格子面の配列方
向の角度差は、約60度となっている場合もあった。歪
層203は従属相本体部分202aの外周に必ずしも一
様の厚さをもって存在するのではなかったが、平均すれ
ば10Å程度であった。直径或いは幅にして25〜35
Åを有する従属相本体部分202aに付随する歪層20
3の厚さ(幅)dは8〜13Åであった。約10〜15
Åの比較的小さな従属相本体部分202aに付随する歪
層203の厚さdは約5Å弱から約7Å程度であった。It is recognized that the dependent phase 202 has a strained layer 203 at the boundary with the surrounding main phase 201, and the dependent phase main body portion 202 a forming the center side and the strained layer 203 on the outer periphery thereof are formed.
And was composed of Substantially spherical dependent phase body portion 202
a has a diameter of about 25 to 35 ° (2.5 to 3.5 n
m). The size of the island-shaped dependent phase main body portion 202a was approximately 35 ° in width. In some cases, the angle difference in the arrangement direction of the lattice plane between the dependent phase main body portion 202a and the strained layer 203 was about 60 degrees. The strained layer 203 did not necessarily exist with a uniform thickness on the outer periphery of the dependent phase main body portion 202a, but was on average about 10 °. 25 to 35 in diameter or width
Strain layer 20 associated with dependent phase body portion 202a having
3 had a thickness (width) d of 8 to 13 °. About 10-15
The thickness d of the strained layer 203 associated with the relatively small dependent phase body portion 202a of Å was about 5 ° to about 7 °.
【0040】上記の積層構造体11を母体材料としてL
EDを作製した。図4は第1実施例におけるLEDの断
面構造を模式的に示す図で図5のA−A断面であり、図
5はそのLEDの平面模式図である。これらの図におい
て、LED50は、上記の積層構造体11に電極を設け
た構成となっている。Using the above-mentioned laminated structure 11 as a base material, L
An ED was prepared. FIG. 4 is a diagram schematically showing a cross-sectional structure of the LED in the first embodiment, and is a cross-sectional view taken along line AA of FIG. 5, and FIG. 5 is a schematic plan view of the LED. In these figures, the LED 50 has a configuration in which electrodes are provided on the laminated structure 11 described above.
【0041】先ず、n形パッド電極109を形成するた
めの領域をメタン/アルゴン/水素混合ガスを利用して
プラズマエッチングにより形成した。エッチングにより
露出させたn形窒化ガリウム層101の表層部に、通常
の真空蒸着法によりアルミニウム(Al)単体から成る
直径が100μmのn形パッド電極109を形成した。
層厚は約2μmとした。メサ(mesa)として残存さ
せた部位の最表層のMgドープ窒化ガリウム層103a
上には、Mgドープ窒化ガリウム層103aに接触する
側を金・ベリリウム(Au・Be)合金とし、その上層
部を金(Au)単体とするp形パッド電極105を、通
常の真空蒸着法により形成し、層厚は合計で約2μmと
した。p形パッド電極105はn形パッド電極109に
対向するチップの端面側の隅部に設けた。Mgドープ窒
化ガリウム層103aの表面上には、厚さを約20nm
とする透光性の金薄膜電極104をp形パッド電極10
5に電気的に導通させて設けた。更に、金薄膜電極10
4の表面に限り、厚さを約10nmとする透光性であり
絶縁度の高いニッケル(Ni)酸化物薄膜104aを、
金薄膜電極104及びMgドープ窒化ガリウム層103
aの露出面の略全面の保護膜として形成した。First, a region for forming the n-type pad electrode 109 was formed by plasma etching using a methane / argon / hydrogen mixed gas. On the surface layer of the n-type gallium nitride layer 101 exposed by etching, an n-type pad electrode 109 made of aluminum (Al) alone and having a diameter of 100 μm was formed by a normal vacuum deposition method.
The layer thickness was about 2 μm. Mg-doped gallium nitride layer 103a on the outermost surface of the portion left as a mesa
A p-type pad electrode 105 having a gold-beryllium (Au-Be) alloy on the side in contact with the Mg-doped gallium nitride layer 103a and a gold (Au) simple substance on the upper side is formed by a normal vacuum deposition method. And a total layer thickness of about 2 μm. The p-type pad electrode 105 was provided at a corner on the end face side of the chip facing the n-type pad electrode 109. On the surface of the Mg-doped gallium nitride layer 103a, a thickness of about 20 nm
The translucent gold thin film electrode 104 to be used is a p-type pad electrode 10
5 electrically connected to each other. Further, the gold thin film electrode 10
Only on the surface of No. 4, a translucent nickel (Ni) oxide thin film 104a having a thickness of about 10 nm and a high degree of insulation is formed.
Gold thin film electrode 104 and Mg-doped gallium nitride layer 103
The protective film was formed on almost the entire exposed surface of a.
【0042】上記構成のLED50において、n形パッ
ド電極109及びp形パッド電極105間に直流電圧を
印加し、発光させた。そのときの発光諸特性の測定結果
を図6に示す。この図6の説明は後述する。In the LED 50 having the above structure, a DC voltage was applied between the n-type pad electrode 109 and the p-type pad electrode 105 to emit light. FIG. 6 shows measurement results of various light emission characteristics at that time. The description of FIG. 6 will be described later.
【0043】(第2実施例)上記の第1実施例の積層構
造体11を形成した後、第1実施例とは一部異なる降温
条件で冷却した。即ち、第1実施例と同一の条件で11
00℃から950℃に冷却した後、950℃から800
℃に毎分7.5℃の速度で20分間で降温した。その
後、800℃で15分間保持した。然る後、800℃か
ら650℃に毎分10℃の速度で降温した。650℃に
降温した後はMOCVD反応炉に供給する雰囲気構成ガ
スを水素のみとし室温迄冷却した。約30℃に冷却する
のに約45分間を要した。(Second Embodiment) After the laminated structure 11 of the first embodiment was formed, it was cooled under a temperature lowering condition partially different from that of the first embodiment. That is, 11 under the same conditions as in the first embodiment.
After cooling from 00 ° C to 950 ° C, 950 ° C to 800
The temperature was lowered at a rate of 7.5 ° C./min for 20 minutes. Then, it was kept at 800 ° C. for 15 minutes. Thereafter, the temperature was lowered from 800 ° C to 650 ° C at a rate of 10 ° C per minute. After the temperature was lowered to 650 ° C., only the hydrogen constituting gas supplied to the MOCVD reactor was cooled to room temperature. It took about 45 minutes to cool to about 30 ° C.
【0044】冷却後、断面TEM技法により発光層の内
部構造を同定した。この第2実施例での発光層は、上記
第1実施例の発光層102と同様に、主体相と従属相と
から構成される多相構造であった。従属相は、周囲の主
体相との境界に歪層を有しているのが認められた。従属
相内のインジウム濃度は主体相のそれよりも概して高
く、また主体相のインジウム組成比は、大凡0.15と
見積もられた。従属相の中心側を成す従属相本体部分は
主に略球状体であり、その大きさは直径にして約30Å
とほぼ画一化されていた。且つ従属相本体部分周囲の歪
層の厚さも約10Åと均一となっていた。このように、
この第2実施例では、800℃で15分間という待機時
間を含む上記の冷却パターンで降温したことで、従属相
本体部分の形状を略球状でほぼ画一化でき、また歪層の
厚さもより均一に制御することができた。After cooling, the internal structure of the light emitting layer was identified by a cross-sectional TEM technique. The light emitting layer in the second embodiment has a multiphase structure composed of a main phase and a dependent phase, similarly to the light emitting layer 102 in the first embodiment. The dependent phase was found to have a strained layer at the boundary with the surrounding main phase. The indium concentration in the dependent phase was generally higher than that of the main phase, and the indium composition ratio of the main phase was estimated to be approximately 0.15. The main part of the dependent phase which forms the central side of the dependent phase is mainly a substantially spherical body, and its size is about 30 mm in diameter.
It was almost standardized. Further, the thickness of the strain layer around the main part of the dependent phase was also uniform at about 10 °. in this way,
In the second embodiment, the temperature of the cooling phase was lowered at 800 ° C. in the above-described cooling time including the waiting time of 15 minutes, so that the shape of the main body of the dependent phase could be made substantially spherical and almost uniform, and the thickness of the strained layer was also increased. It could be controlled uniformly.
【0045】(比較例)第1実施例に記載の積層構造体
を形成した後、1100℃から室温に自然に放冷させ
た。約30℃に降下するのに約90分を要した。従っ
て、平均的な冷却速度は約12℃/分となった。従来技
術(特開平9−40490号公報明細書参照)に倣い、
1000℃以下の温度帯域では、不活性ガス雰囲気をア
ルゴンから構成した。第1実施例及び第2実施例の如
く、650℃以下の温度域で雰囲気ガスを水素のみから
構成する操作は施さなかった。(Comparative Example) After the laminated structure described in the first example was formed, it was naturally cooled from 1100 ° C. to room temperature. It took about 90 minutes to drop to about 30 ° C. Therefore, the average cooling rate was about 12 ° C./min. Following the prior art (see Japanese Patent Application Laid-Open No. 9-40490),
In a temperature zone of 1000 ° C. or lower, the inert gas atmosphere was made of argon. As in the first embodiment and the second embodiment, the operation of forming the atmosphere gas only from hydrogen in the temperature range of 650 ° C. or less was not performed.
【0046】上記従来の条件で冷却した積層構造体の発
光層の内部構造を断面TEM技法で観察した。断面TE
M像上には、転位に主に起因すると考慮される線状の黒
色コントラストは認められるものの、インジウムの凝集
に主に起因する従属相の存在を表す球状或いは島状のコ
ントラストは顕著に認められなかった。撮像範囲の略球
状或いは島状のコントラストの数から、従属相の密度は
1×1012cm-3以下であると求められた。即ち、発光
層は多相構造から構成されているとは明確に認知され難
かった。The internal structure of the light emitting layer of the laminated structure cooled under the above conventional conditions was observed by a cross-sectional TEM technique. Section TE
On the M image, a linear black contrast, which is considered to be mainly caused by dislocations, is observed, but a spherical or island-like contrast, which indicates the existence of a dependent phase mainly caused by indium aggregation, is remarkably observed. Did not. From the number of substantially spherical or island-shaped contrasts in the imaging range, the density of the dependent phase was determined to be 1 × 10 12 cm −3 or less. That is, it was difficult to clearly recognize that the light-emitting layer had a multi-phase structure.
【0047】第2実施例及び比較例に記載の条件で冷却
した各積層構造体を、上記第1実施例と同様に加工して
LEDを作製し、各々のLEDの電極間に直流電圧を印
加して発光させた。そのときの発光諸特性の測定結果を
図6に示す。Each laminated structure cooled under the conditions described in the second embodiment and the comparative example was processed in the same manner as in the first embodiment to produce LEDs, and a DC voltage was applied between the electrodes of each LED. And emitted light. FIG. 6 shows measurement results of various light emission characteristics at that time.
【0048】図6を用いて、第1実施例、第2実施例及
び比較例におけるLEDの発光特性を比較すると、各L
ED間で、発光波長に然したる差異はなく、430〜4
50nmとなった。その他、順方向電圧を20mAとし
た際の順方向電圧、及び逆方向電流が5μA時の逆方向
電圧に顕著な差異は認められなかった。一方、一般的な
積分球を利用して通常に測定した発光出力の比較からす
れば、ほぼ画一化された歪層を付帯する従属相を有する
発光層を備えた第2実施例におけるLEDが最も高い
2.1mWを呈した。比較例におけるLEDの発光出力
は最も低く0.4mWであった。主たる発光スペクトル
の半値幅(FWHM)は更に顕著な差異が生じた。半値
幅の最小値は第2実施例のLEDであり、7nmであっ
た。第1実施例のLEDの半値幅は9nmであり、比較
例のLEDは18nmと最も大きく、単色性に欠ける発
光を呈するものとなった。Referring to FIG. 6, the light emission characteristics of the LEDs in the first embodiment, the second embodiment, and the comparative example are compared.
There is no significant difference in emission wavelength between the EDs.
It became 50 nm. In addition, no remarkable difference was observed between the forward voltage when the forward voltage was set to 20 mA and the reverse voltage when the reverse current was 5 μA. On the other hand, from the comparison of the light emission output measured normally using a general integrating sphere, the LED in the second embodiment having the light emitting layer having the dependent phase accompanied by the almost uniform strain layer is found to be It exhibited the highest 2.1 mW. The light emission output of the LED in the comparative example was the lowest, 0.4 mW. The half-width (FWHM) of the main emission spectrum showed a further remarkable difference. The minimum value of the half width of the LED of the second example was 7 nm. The half value width of the LED of the first example was 9 nm, and the LED of the comparative example was 18 nm, which was the largest, and exhibited light emission lacking in monochromaticity.
【0049】上記の各実施例では、本発明を発光ダイオ
ード(LED)に適用した場合について説明したが、本
発明は、他の発光素子、例えばレーザダイオード(L
D)にも同様に適用することができる。In each of the above embodiments, the case where the present invention is applied to a light emitting diode (LED) has been described. However, the present invention relates to another light emitting element such as a laser diode (L).
The same can be applied to D).
【0050】[0050]
【発明の効果】以上説明したように、この発明の窒化物
半導体発光素子によれば、インジウム組成を互いに異に
する主体相と従属相とから成る多相構造のインジウム含
有III族窒化物半導体で形成した発光層にあって、従属
相を、その周囲の主体相との境界に歪層を有する結晶体
から主に構成するようにしたので、従属相の周囲に存在
する歪層は、発光強度の増大に寄与するキャリアを安定
して発生させるようになり、従って、従属相を構成する
結晶体を量子化された発光媒体として有効に作用させる
ことが可能となり、この発光層を含む窒化物半導体発光
素子から出力される短波長可視光を、安定して高発光強
度で且つ単色性に優れたものとすることができる。As described above, according to the nitride semiconductor light emitting device of the present invention, a multi-phase indium-containing group III nitride semiconductor composed of a main phase and a sub phase having different indium compositions is used. In the formed light emitting layer, the dependent phase is mainly composed of a crystal having a strained layer at the boundary with the surrounding main phase, so that the strained layer existing around the dependent phase has an emission intensity. Carrier that contributes to the increase in the number of electrons can be stably generated, and therefore, the crystal constituting the subordinate phase can effectively act as a quantized light emitting medium, and the nitride semiconductor including the light emitting layer Short-wavelength visible light output from the light-emitting element can be stably provided with high emission intensity and excellent monochromaticity.
【図1】この発明の窒化物半導体発光素子に係る発光層
を透過型電子顕微鏡(TEM)で撮像したときの結晶格
子像の一例である。FIG. 1 is an example of a crystal lattice image when a light emitting layer according to a nitride semiconductor light emitting device of the present invention is imaged by a transmission electron microscope (TEM).
【図2】本発明の第1実施例に係る積層構造体を示す図
である。FIG. 2 is a view showing a laminated structure according to a first embodiment of the present invention.
【図3】第1実施例での発光層を透過型電子顕微鏡(T
EM)で撮像したときの結晶格子像である。FIG. 3 shows a light-emitting layer according to the first embodiment, which is formed by a transmission electron microscope (T).
It is a crystal lattice image when imaged by (EM).
【図4】第1実施例でのLEDの断面構造を模式的に示
す図で図5のA−A断面である。LEDの平面模式図で
ある。FIG. 4 is a diagram schematically showing a cross-sectional structure of the LED in the first embodiment, and is a cross-sectional view taken along line AA of FIG. It is a plane schematic diagram of LED.
【図5】第1実施例でのLEDの平面模式図である。FIG. 5 is a schematic plan view of an LED in the first embodiment.
【図6】各実施例で作製したLEDの諸特性を示す図で
ある。FIG. 6 is a diagram showing various characteristics of the LED manufactured in each example.
2 発光層 11 積層構造体 21 主体相 22 従属相 22a 従属相本体部分 23 歪層 50 LED 100 基板 100a 低温緩衝層 101 n形窒化ガリウム層 102 発光層 103 Mgドープ窒化アルミニウム・ガリウム層 103a Mgドープ窒化ガリウム層 104 金薄膜電極 104a Ni酸化物薄膜 105 p形パッド電極 109 n形パッド電極 201 主体相 202 従属相 202a 従属相本体部分 203 歪層 D 従属相本体部分の直径(幅) d 歪層の層厚 Reference Signs List 2 light emitting layer 11 laminated structure 21 main phase 22 dependent phase 22a dependent phase main part 23 strained layer 50 LED 100 substrate 100a low temperature buffer layer 101 n-type gallium nitride layer 102 light emitting layer 103 Mg-doped aluminum / gallium nitride layer 103a Mg-doped nitride Gallium layer 104 Gold thin film electrode 104a Ni oxide thin film 105 P-type pad electrode 109 N-type pad electrode 201 Main phase 202 Dependent phase 202a Dependent phase main body part 203 Strain layer D Diameter (width) of sub phase main body part d Layer of strain layer Thick
Claims (3)
と従属相とから成る多相構造のインジウム含有III 族窒
化物半導体層を発光層とする窒化物半導体発光素子にお
いて、 上記従属相を、その周囲の主体相との境界に歪層を有す
る結晶体から主に構成する、 ことを特徴とする窒化物半導体発光素子。1. A nitride semiconductor light emitting device having a light emitting layer of an indium-containing group III nitride semiconductor layer having a multiphase structure composed of a main phase and a sub phase having different indium compositions, wherein the sub phase is A nitride semiconductor light emitting device mainly comprising a crystal having a strained layer at a boundary with a surrounding main phase.
に対して0.5×D以下の幅の歪層を有する結晶体から
主に構成する、 ことを特徴とする請求項1に記載の窒化物半導体素子。2. The method according to claim 1, wherein said dependent phase has an overall size (D).
2. The nitride semiconductor device according to claim 1, wherein the nitride semiconductor device is mainly formed of a crystal having a strained layer having a width of 0.5 × D or less. 3.
属相の数量の50%以上を占める、 ことを特徴とする請求項1または2に記載の窒化物半導
体発光素子。3. The nitride semiconductor light emitting device according to claim 1, wherein the number of the dependent phases having the strained layer accounts for 50% or more of the total number of the dependent phases.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35699797A JP3257976B2 (en) | 1997-12-25 | 1997-12-25 | Nitride semiconductor light emitting device |
US09/217,629 US6147363A (en) | 1997-12-25 | 1998-12-22 | Nitride semiconductor light-emitting device and manufacturing method of the same |
KR1019980057478A KR100324396B1 (en) | 1997-12-25 | 1998-12-23 | Nitride semiconductor light-emitting device and manufacturing method of the same |
DE19860347A DE19860347A1 (en) | 1997-12-25 | 1998-12-24 | Light-emitting nitride semiconductor element and manufacturing method therefor |
TW087121669A TW398083B (en) | 1997-12-25 | 1998-12-24 | The nitride semiconductor light emitting element and its manufacturing method |
CN98124075A CN1130778C (en) | 1997-12-25 | 1998-12-25 | Nitride semiconductor light-emitting device and manufacturing method of the same |
US09/624,221 US6335219B1 (en) | 1997-12-25 | 2000-07-24 | Nitride semiconductor light-emitting device and manufacturing method of the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35699797A JP3257976B2 (en) | 1997-12-25 | 1997-12-25 | Nitride semiconductor light emitting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11186603A true JPH11186603A (en) | 1999-07-09 |
JP3257976B2 JP3257976B2 (en) | 2002-02-18 |
Family
ID=18451852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35699797A Expired - Fee Related JP3257976B2 (en) | 1997-12-25 | 1997-12-25 | Nitride semiconductor light emitting device |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP3257976B2 (en) |
KR (1) | KR100324396B1 (en) |
CN (1) | CN1130778C (en) |
DE (1) | DE19860347A1 (en) |
TW (1) | TW398083B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001068733A (en) * | 1999-08-24 | 2001-03-16 | Sanyo Electric Co Ltd | Semiconductor element, semiconductor light-emitting element and manufacture thereof and formation of quantum box |
US6670647B1 (en) | 1999-08-31 | 2003-12-30 | Sharp Kabushiki Kaisha | Semiconductor light emitting element, display device and optical information reproduction device using the same, and fabrication method of semiconductor light emitting element |
WO2005117078A1 (en) * | 2004-05-27 | 2005-12-08 | Showa Denko K.K. | Gallium nitride-based semiconductor stacked structure, production method thereof, and compound semiconductor and light-emitting device each using the stacked structure |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100367977B1 (en) * | 2000-05-10 | 2003-01-14 | 광주과학기술원 | Transparent display device and process for the preparation thereof |
KR101714041B1 (en) * | 2010-07-06 | 2017-03-08 | 엘지이노텍 주식회사 | Light emitting device and method for fabricating thereof |
US8399948B2 (en) | 2009-12-04 | 2013-03-19 | Lg Innotek Co., Ltd. | Light emitting device, light emitting device package and lighting system |
-
1997
- 1997-12-25 JP JP35699797A patent/JP3257976B2/en not_active Expired - Fee Related
-
1998
- 1998-12-23 KR KR1019980057478A patent/KR100324396B1/en not_active IP Right Cessation
- 1998-12-24 DE DE19860347A patent/DE19860347A1/en not_active Ceased
- 1998-12-24 TW TW087121669A patent/TW398083B/en not_active IP Right Cessation
- 1998-12-25 CN CN98124075A patent/CN1130778C/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001068733A (en) * | 1999-08-24 | 2001-03-16 | Sanyo Electric Co Ltd | Semiconductor element, semiconductor light-emitting element and manufacture thereof and formation of quantum box |
US6670647B1 (en) | 1999-08-31 | 2003-12-30 | Sharp Kabushiki Kaisha | Semiconductor light emitting element, display device and optical information reproduction device using the same, and fabrication method of semiconductor light emitting element |
WO2005117078A1 (en) * | 2004-05-27 | 2005-12-08 | Showa Denko K.K. | Gallium nitride-based semiconductor stacked structure, production method thereof, and compound semiconductor and light-emitting device each using the stacked structure |
US7772599B2 (en) | 2004-05-27 | 2010-08-10 | Showa Denko K.K. | Gallium nitride-based semiconductor stacked structure, production method thereof, and compound semiconductor and light-emitting device each using the stacked structure |
Also Published As
Publication number | Publication date |
---|---|
CN1130778C (en) | 2003-12-10 |
KR19990063356A (en) | 1999-07-26 |
DE19860347A1 (en) | 1999-07-15 |
JP3257976B2 (en) | 2002-02-18 |
CN1222770A (en) | 1999-07-14 |
TW398083B (en) | 2000-07-11 |
KR100324396B1 (en) | 2002-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102067348B (en) | Nitride semiconductor element and method for production thereof | |
US8084281B2 (en) | Semiconductor substrate, electronic device, optical device, and production methods therefor | |
TW200814369A (en) | III nitride compound semiconductor laminated structure | |
TW200834670A (en) | Process for producing III group nitride compound semiconductor, III group nitride compound semiconductor light emitting element, and lamp | |
US20100059760A1 (en) | Gallium nitride-based compound semiconductor light emitting device and process for its production | |
US6335219B1 (en) | Nitride semiconductor light-emitting device and manufacturing method of the same | |
JP3257976B2 (en) | Nitride semiconductor light emitting device | |
JP3064891B2 (en) | Group 3-5 compound semiconductor, method of manufacturing the same, and light emitting device | |
JP3522610B2 (en) | Method for manufacturing p-type nitride semiconductor | |
JPH118410A (en) | N-type nitride semiconductor electrode | |
JP3757544B2 (en) | Group III nitride semiconductor light emitting device | |
CN100470857C (en) | GaN-based semiconductor devices | |
JP3097597B2 (en) | Method of forming group III nitride semiconductor | |
CN117916901A (en) | Group III nitride light-emitting device, group III nitride epitaxial wafer, and method for manufacturing group III nitride light-emitting device | |
JP3221359B2 (en) | P-type group III nitride semiconductor layer and method for forming the same | |
JP3711966B2 (en) | Vapor phase growth method of group III nitride semiconductor layer and group III nitride semiconductor device | |
JP3090063B2 (en) | Compound semiconductor device | |
JP3700664B2 (en) | Boron phosphide-based semiconductor layer, manufacturing method thereof, and semiconductor element | |
JP3097596B2 (en) | Group III nitride semiconductor light emitting device | |
JPH11346002A (en) | Manufacture of p-type gallium nitride based compound semiconductor | |
JP3931740B2 (en) | Boron phosphide-based semiconductor device, manufacturing method thereof, and LED | |
JP3279226B2 (en) | III-nitride semiconductor light emitting device | |
JP2003229601A (en) | Boron phosphide based semiconductor element, its manufacturing method and light emitting diode | |
JP3251667B2 (en) | Semiconductor device | |
JP2000216096A (en) | Chemical vapor deposition method of gallium indium nitride crystal layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101207 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111207 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111207 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121207 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121207 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131207 Year of fee payment: 12 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131207 Year of fee payment: 12 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |