JPH11186086A - Manufacture of spiral coil for noncontact power transmitter - Google Patents
Manufacture of spiral coil for noncontact power transmitterInfo
- Publication number
- JPH11186086A JPH11186086A JP9348203A JP34820397A JPH11186086A JP H11186086 A JPH11186086 A JP H11186086A JP 9348203 A JP9348203 A JP 9348203A JP 34820397 A JP34820397 A JP 34820397A JP H11186086 A JPH11186086 A JP H11186086A
- Authority
- JP
- Japan
- Prior art keywords
- spiral coil
- power transmission
- transmission device
- manufacturing
- wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 20
- 238000003466 welding Methods 0.000 claims abstract description 3
- 230000005540 biological transmission Effects 0.000 claims description 45
- 239000002184 metal Substances 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 7
- 238000004804 winding Methods 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 239000011889 copper foil Substances 0.000 claims description 2
- 238000005520 cutting process Methods 0.000 claims description 2
- 239000011120 plywood Substances 0.000 abstract description 4
- 230000015556 catabolic process Effects 0.000 abstract 1
- 238000010030 laminating Methods 0.000 abstract 1
- 230000004907 flux Effects 0.000 description 16
- 239000000696 magnetic material Substances 0.000 description 8
- 239000010410 layer Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 2
- 230000002500 effect on skin Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Insulating Of Coils (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は非接触式電力伝送装
置に使用される渦巻型コイルの製造方法に関する。The present invention relates to a method for manufacturing a spiral coil used in a non-contact power transmission device.
【0002】[0002]
【従来の技術】この種の非接触式電力伝送装置として、
本願出願人は非接触で二次電池を充電可能な「非接触充
電器」というものを既に提案している(例えば、特開平
7−231,586号公報参照)。この非接触充電器で
は、送電側から受電側へ電磁誘導作用を利用して非接触
に電力を伝送している。2. Description of the Related Art As this kind of non-contact power transmission device,
The present applicant has already proposed a “contactless charger” capable of contactlessly charging a secondary battery (see, for example, Japanese Patent Application Laid-Open No. 7-231,586). In this non-contact charger, electric power is transmitted from a power transmission side to a power reception side in a non-contact manner using an electromagnetic induction effect.
【0003】図2に従来の非接触式電力伝送装置を示
す。図2において、(a)は非接触式電力伝送装置の断
面図、(b)は送電部の平面図である。図示の非接触式
電力伝送装置は、互いに所定距離d離間して対向配置さ
れた送電部10及び受電部20を備えており、送電部1
0から受電部20へ非接触で電力を伝送する装置であ
る。FIG. 2 shows a conventional non-contact power transmission device. 2A is a cross-sectional view of the non-contact power transmission device, and FIG. 2B is a plan view of a power transmission unit. The illustrated non-contact power transmission device includes a power transmission unit 10 and a power reception unit 20 that are opposed to each other with a predetermined distance d therebetween.
This is a device for transmitting power from 0 to the power receiving unit 20 in a non-contact manner.
【0004】送電部10は、送電側軟磁性材11と、こ
の送電側軟磁性材11上に搭載された複数個(図示の例
では2個)の送電側渦巻型コイル12,13とを含む。
同様に、受電部20は、受電側軟磁性材21と、この受
電側軟磁性材21上に搭載された複数個(図示の例では
2個)の受電側渦巻型コイル22,23とを含む。軟磁
性材としてはフェライトが使用される。The power transmission unit 10 includes a power transmission side soft magnetic material 11 and a plurality (two in the illustrated example) of power transmission side spiral coils 12 and 13 mounted on the power transmission side soft magnetic material 11. .
Similarly, the power receiving unit 20 includes a power receiving side soft magnetic material 21 and a plurality of (two in the illustrated example) power receiving side spiral coils 22 and 23 mounted on the power receiving side soft magnetic material 21. . Ferrite is used as the soft magnetic material.
【0005】送電部10において、送電側渦巻型コイル
12,13は互いに発生する磁束の方向が逆となるよう
に巻回され、直列に接続されている。そして、送電側渦
巻型コイル12,13のそれぞれの一端は、図示の如
く、交流電源(例えば、商用交流電源)15に接続され
る。また、受電部20において、受電側渦巻型コイル2
2,22は、それぞれ送電側渦巻型コイル12,13と
対向するように配置され、送電側渦巻型コイル12,1
3で発生された磁束の変化により発生する電流の向きが
同一方向となるように巻回され、直列に接続されてい
る。In the power transmission section 10, the power transmission side spiral coils 12, 13 are wound so that the directions of magnetic fluxes generated are opposite to each other, and are connected in series. One end of each of the power transmission-side spiral coils 12 and 13 is connected to an AC power supply (for example, a commercial AC power supply) 15 as illustrated. In the power receiving unit 20, the power receiving side spiral coil 2
The power transmission side spiral coils 12, 1 are disposed opposite to the power transmission side spiral coils 12, 13, respectively.
The coils are wound so that the directions of the currents generated by the change in the magnetic flux generated in step 3 are the same, and are connected in series.
【0006】このような構成の非接触式電力伝送装置に
おいて、送電部10から受電部20へ伝送される電力
は、磁束の大きさと距離dとで決定される。すなわち、
磁束が大きい程、伝送される電力が大きくなり、距離d
が短い程、伝送される電力が大きくなる。また、磁束の
大きさは、渦巻型コイルに流れる電流と巻数とで決定さ
れる。すなわち、電流が大きい程、磁束が大きくなり、
巻数が多い程、磁束が大きくなる。従って、伝送される
電力を大きくする為には、距離dを短く、巻数を多く、
流す電流を大きくすれば良い。In the non-contact power transmission device having such a configuration, the power transmitted from the power transmitting unit 10 to the power receiving unit 20 is determined by the magnitude of the magnetic flux and the distance d. That is,
The greater the magnetic flux, the greater the transmitted power and the distance d
Is shorter, the transmitted power is larger. The magnitude of the magnetic flux is determined by the current flowing through the spiral coil and the number of turns. That is, the larger the current, the larger the magnetic flux,
The larger the number of turns, the larger the magnetic flux. Therefore, in order to increase the transmitted power, the distance d is short, the number of turns is large,
What is necessary is just to make the electric current which flows large.
【0007】図2(b)に、電流Iを図の矢印の向きに
流したときの磁束の向きを示している。すなわち、“○
の中に×”で示す記号は紙面上方より下方への磁束の方
向を、“○の中に・”で示す記号は記号は紙面下方より
上方への磁束の方向を示している。また、図2(a)の
矢印Aによって磁束の向きを示している。FIG. 2B shows the direction of the magnetic flux when the current I flows in the direction of the arrow in the figure. That is, "○
The symbol "x" in the symbol indicates the direction of the magnetic flux downward from above the plane of the paper, and the symbol "in the circle" indicates the direction of the magnetic flux upward from below the plane of the paper. The direction of the magnetic flux is indicated by the arrow A in FIG.
【0008】このような構成の非接触式電力伝送装置で
は、送電部10の送電側渦巻型コイル12、13に図に
示したような電流Iを流したとすると、送電側渦巻型コ
イル12,13で発生された磁束Aは、送電側渦巻型コ
イル12→送電側軟磁性材11→送電側渦巻型コイル1
3→受電側渦巻型コイル23→受電側軟磁性材21→受
電側渦巻型コイル22→送電側渦巻型コイル12という
ような順序の経路から成る閉磁路を通るので、磁束が外
部に漏れるのを防止することができる。したがって、受
電側軟磁性材21に近接して電子部品を配置したとして
も、この電子部品が上記磁束によって加熱されることが
ない。In the non-contact power transmission device having such a configuration, assuming that a current I as shown in FIG. 1 is applied to the power transmission side spiral coils 12, 13 of the power transmission section 10, the power transmission side spiral coils 12, The magnetic flux A generated in the power transmission side spiral coil 12 → the power transmission side soft magnetic material 11 → the power transmission side spiral coil 1
3 → the power receiving side spiral coil 23 → the power receiving side soft magnetic material 21 → the power receiving side spiral coil 22 → the power transmitting side spiral coil 12, so that the magnetic flux leaks to the outside because it passes through the closed magnetic path. Can be prevented. Therefore, even if the electronic component is arranged close to the power receiving side soft magnetic material 21, the electronic component is not heated by the magnetic flux.
【0009】図3に上記非接触式電力伝送装置に使用さ
れる従来の渦巻型コイル30´を示す。図3において、
(a)は平面図、(b)は断面図である。従来の渦巻型
コイル30´は、線材31´を渦巻状に巻回すことによ
って製造されるが、図3(b)に示すように、この線材
31´としてその断面形状が円形の丸線を使用してい
る。なお、この線材(丸線)31´としては自己融着線
が使用される。ここで「自己融着線」とは、銅線310
´を絶縁皮膜311´で被覆し、さらに絶縁皮膜311
´を自己融着層(図示せず)で覆った線をいう。FIG. 3 shows a conventional spiral coil 30 'used in the non-contact power transmission device. In FIG.
(A) is a plan view and (b) is a cross-sectional view. The conventional spiral coil 30 'is manufactured by spirally winding a wire 31'. As shown in FIG. 3B, a round wire having a circular cross section is used as the wire 31 '. doing. A self-bonding wire is used as the wire (round wire) 31 '. Here, the “self-fusion wire” refers to the copper wire 310.
′ Is coated with an insulating film 311 ′
′ Is covered with a self-fusion layer (not shown).
【0010】上述したように、従来の非接触式電力伝送
装置では、それに使用される渦巻型コイル30´とし
て、断面形状が円形の線材(丸線)31´を使用してい
るので、デットスペースが大きく、ステペースファクタ
が悪いので、渦巻型コイル30´のインダクタンス値を
大きくできないという問題点がある。As described above, in the conventional non-contact type power transmission device, a wire (circular wire) 31 ′ having a circular cross section is used as the spiral coil 30 ′ used in the power transmission device. However, there is a problem that the inductance value of the spiral coil 30 'cannot be increased because of the large step size and the poor step factor.
【0011】このような問題点を解決するために、本発
明者らは、平成9年9月22日に、図4に示すように、
渦巻型コイル30″の線材として断面形状が矩形の平角
線31″を使用したものを出願している(特願平9−2
56,747号)。図4において、(a)は平面図、
(b)は断面図である。図示の渦巻型コイル30″は、
線材31″を渦巻状に巻回すことによって製造される
が、図4(b)に示すように、この線材31″としてそ
の断面形状が矩形の平角線を使用している。なお、この
線材(平角線)31″としては、従来と同様に自己融着
線が使用される。[0011] In order to solve such a problem, the present inventors, on September 22, 1997, as shown in FIG.
An application using a rectangular wire 31 ″ having a rectangular cross section as the wire material of the spiral coil 30 ″ has been filed (Japanese Patent Application No. 9-2).
No. 56,747). In FIG. 4, (a) is a plan view,
(B) is a sectional view. The illustrated spiral coil 30 "
The wire 31 "is manufactured by spirally winding the wire 31", and as shown in FIG. 4B, a rectangular wire having a rectangular cross section is used as the wire 31 ". As the wire (square wire) 31 ″, a self-bonding wire is used as in the conventional case.
【0012】例えば、線材(平角線)31″として、図
4の示すように、幅(短軸の長さ)がrで、高さ(長軸
の長さ)がπ・rの平角線を使用としたとする。すなわ
ち、線材31″の長軸方向が渦巻型コイル30″が巻回
される平面と直交する方向に延在させている。この平角
線31″の断面積は、上記従来の丸線31´のそれに等
しい。しかしながら、平角線31″は、その幅rが丸線
31´の幅2rの半分なので、同じ領域上に巻回される
巻数を、丸線31´の2倍にすることができる。その結
果、送電部10と受電部20間の距離dが従来のものよ
りも若干長くなるものの、巻数が2倍になるので、磁束
を大きくすることができる。その結果、伝送できる電力
を従来よりも大きくすることができる。For example, as shown in FIG. 4, a wire (a rectangular wire) 31 ″ having a width (length of a short axis) r and a height (length of a long axis) of π · r is used as a wire (a rectangular wire) 31 ″. That is, the long axis direction of the wire 31 "is extended in a direction perpendicular to the plane on which the spiral coil 30" is wound. Of the round line 31 '. However, since the width r of the flat wire 31 ″ is half the width 2r of the round wire 31 ′, the number of turns wound on the same area can be twice as large as the round wire 31 ′. Although the distance d between the power transmitting unit 10 and the power receiving unit 20 is slightly longer than the conventional one, the number of turns is doubled, so that the magnetic flux can be increased, and as a result, the power that can be transmitted is increased as compared with the conventional one. be able to.
【0013】このように、渦巻型コイル30″を構成す
る線材31″の断面形状を矩形とすることにより、スペ
ースファクタを良くして、効率良く巻くことが可能とな
り、インダクタンス値を大きくすることができる。逆
に、丸線31´の場合と磁束の大きさを同くする場合に
は、平角線31″の方が、回路的に電流を小さく抑える
ことができ、結果として、銅損を軽減することが出来
る。As described above, by making the cross-sectional shape of the wire 31 "constituting the spiral coil 30" rectangular, the space factor can be improved, the winding can be efficiently performed, and the inductance value can be increased. it can. Conversely, when the magnitude of the magnetic flux is the same as that of the round wire 31 ′, the rectangular wire 31 ″ can reduce the current in a circuit, and consequently reduce the copper loss. Can be done.
【0014】[0014]
【発明が解決しようとする課題】しかしながら、平角線
31″も丸線31´と同様に、銅線310″を絶縁皮膜
311″で被覆したものである。この絶縁皮膜311″
の厚さは50〜100μmであり、非常に薄いものであ
る。このような、平角線31″をコイル状に渦巻状に巻
回すことによって製造される渦巻型コイル30″は、そ
の絶縁耐圧(互いに隣接する平角線31″間の絶縁耐
圧)が平角線31″の絶縁皮膜311″の厚さによって
規定されてしまう。上述したように、平角線31″の絶
縁皮膜311″の厚さは薄いので、渦巻型コイル30″
の絶縁耐圧を向上することは困難である。However, like the round wire 31 ', the rectangular wire 31 "is also a copper wire 310" covered with an insulating film 311 ". The insulating film 311"
Has a thickness of 50 to 100 μm and is very thin. The spiral coil 30 "manufactured by spirally winding the rectangular wire 31" into a coil shape has a withstand voltage (dielectric withstand voltage between the adjacent rectangular wires 31 ") of the rectangular wire 31". Is defined by the thickness of the insulating film 311 "of the flat wire 31". As described above, since the thickness of the insulating film 311 "of the flat wire 31" is thin, the spiral coil 30 "is formed.
It is difficult to improve the withstand voltage of these.
【0015】したがって、本発明の課題は、絶縁耐圧の
高い渦巻型コイルの製造方法を提供することにある。Therefore, an object of the present invention is to provide a method of manufacturing a spiral coil having a high withstand voltage.
【0016】[0016]
【課題を解決するための手段】本発明によれば、非接触
式電力伝送装置に使用される渦巻型コイルを製造する方
法において、柔軟性のある金属板と、所定の厚さを持つ
可撓性の絶縁部材と、を張り合わせる工程と、この張り
合わせた物をロール状に巻く工程と、このロール状に巻
いた物を解けない様に固定する工程と、を含む非接触式
電力伝送装置用渦巻型コイルの製造方法が得られる。According to the present invention, there is provided a method for manufacturing a spiral coil used in a non-contact type power transmission device, comprising: a flexible metal plate and a flexible metal plate having a predetermined thickness. For a non-contact power transmission device, comprising: a step of bonding an insulative insulating member, and a step of winding the bonded article into a roll, and a step of fixing the rolled article so as not to be unwound. A method of manufacturing a spiral coil is obtained.
【0017】[0017]
【作用】渦巻型コイルとして、柔軟性のある金属板と所
定の厚さを持つ可撓性の絶縁部材とを張り合わせてロー
ル状に巻いた物を使用するので、互いに隣接する金属板
間の絶縁耐圧(層間の絶縁耐圧)は、それらの間に介在
する絶縁部材の厚さによって規定される。したがって、
この絶縁部材の厚さを厚くすればする程、層間の絶縁耐
圧を高くする事が出来る。よって、任意の高さの絶縁耐
圧を持つ渦巻型コイルを容易に設計、製造することが可
能となる。The spiral coil is made of a flexible metal plate and a flexible insulating member having a predetermined thickness, which are wound in a roll, so that the insulation between the metal plates adjacent to each other is obtained. The withstand voltage (dielectric withstand voltage between layers) is defined by the thickness of the insulating member interposed between them. Therefore,
The greater the thickness of the insulating member, the higher the dielectric strength between layers can be increased. Therefore, it becomes possible to easily design and manufacture a spiral coil having a withstand voltage of an arbitrary height.
【0018】[0018]
【発明の実施の形態】次に、本発明について図面を参照
して詳細に説明する。Next, the present invention will be described in detail with reference to the drawings.
【0019】本発明に係る非接触式電力伝送装置の基本
的構成は図2に示したものと同様であり、従来との相違
点は、それに使用される渦巻型コイルの製造方法にあ
る。したがって、以下では渦巻型コイルの製造方法につ
いてのみ説明し、非接触式電力伝送装置の説明について
は省略する。The basic structure of the non-contact power transmission device according to the present invention is the same as that shown in FIG. 2, and the difference from the conventional one lies in the method of manufacturing the spiral coil used therein. Therefore, only the method of manufacturing the spiral coil will be described below, and the description of the non-contact power transmission device will be omitted.
【0020】図1を参照して、本発明の一実施の形態に
係る渦巻型コイルの製造方法について説明する。Referring to FIG. 1, a method of manufacturing a spiral coil according to an embodiment of the present invention will be described.
【0021】先ず、図1(a)に示すように、柔軟性の
ある金属板310と、所定の厚さtを持つ可撓性の絶縁
部材311とを用意(準備)する。本実施の形態では、
柔軟性のある金属板310として、銅板又は銅箔を使用
しているが、他の金属材料を使用しても良い。また、絶
縁部材311としては、ポリイミド樹脂やポリアミド樹
脂のような樹脂材料を使用する。そして、絶縁部材31
1の厚さtとしては、0.1〜1.0mmの範囲のもの
を使用するのが好ましい。厚さtが0.1mm未満であ
ると、必要な絶縁耐圧を確保することが困難となるから
であり、厚さtが1.0mmより大きくなると、加工等
が困難となるからである。First, as shown in FIG. 1A, a flexible metal plate 310 and a flexible insulating member 311 having a predetermined thickness t are prepared (prepared). In the present embodiment,
Although a copper plate or a copper foil is used as the flexible metal plate 310, another metal material may be used. Further, as the insulating member 311, a resin material such as a polyimide resin or a polyamide resin is used. Then, the insulating member 31
It is preferable to use a thickness t in the range of 0.1 to 1.0 mm. If the thickness t is less than 0.1 mm, it becomes difficult to secure a necessary withstand voltage, and if the thickness t is more than 1.0 mm, processing becomes difficult.
【0022】次に、図1(b)に示すように、柔軟性の
ある金属板310と可撓性の絶縁部材311とを接着に
より張り合わせて、張り合わせた物(合板)を作製す
る。Next, as shown in FIG. 1B, a flexible metal plate 310 and a flexible insulating member 311 are bonded by bonding to produce a bonded product (plywood).
【0023】そして、図1(c)に示すように、張り合
わせた物(合板)をロール状に巻き、そのロール状に巻
いた物を解けない様に、熱溶着又は接着で固定する。そ
の後、この固定した物を所定の厚さ(高さ)に切断して
も良い。これにより、渦巻型コイル30が製造される。Then, as shown in FIG. 1 (c), the bonded product (plywood) is wound into a roll, and the rolled product is fixed by heat welding or bonding so as not to be unraveled. Thereafter, the fixed object may be cut to a predetermined thickness (height). Thereby, the spiral coil 30 is manufactured.
【0024】このように渦巻型コイル30を製造するの
で、切断幅を任意に変える事により、渦巻型コイル30
を最適な厚みにすることが出来る。また、金属板310
の厚みを薄くすれば、表皮効果を抑えることができ、高
周波特性が良くなるという利点もある。そして、絶縁部
材311が所定の厚さtを持つので、隣接する金属板3
10間(層間)の絶縁耐圧を高くすることが出来る。こ
のように、渦巻型コイル30は層間耐圧が高いので、大
電流(大電力)用に向いており、例えば、電気自動車用
の非接触充電器を構成する共振コイルに適している。換
言すれば、大電力伝送様の電圧共振方式に向く絶縁耐圧
の高い(数kV)の渦巻型コイル30が得られる。ま
た、絶縁部材311として、プリント基板等に使用され
ている素材と同じものを使用することにより、層間の絶
縁耐圧、高周波特性、および耐熱ブレードを向上させる
ことが出来る。Since the spiral coil 30 is manufactured in this manner, the spiral coil 30 is manufactured by changing the cutting width arbitrarily.
Can be set to an optimum thickness. Also, the metal plate 310
If the thickness is reduced, the skin effect can be suppressed, and there is an advantage that the high frequency characteristics are improved. Since the insulating member 311 has a predetermined thickness t, the adjacent metal plate 3
It is possible to increase the withstand voltage between 10 layers (interlayer). As described above, since the spiral coil 30 has a high interlayer withstand voltage, it is suitable for a large current (high power), and is suitable, for example, as a resonance coil constituting a non-contact charger for an electric vehicle. In other words, a spiral coil 30 having a high withstand voltage (several kV) suitable for a voltage resonance system such as a large power transmission can be obtained. In addition, by using the same material as that used for the printed circuit board or the like as the insulating member 311, the dielectric strength between layers, high-frequency characteristics, and heat-resistant blade can be improved.
【0025】以上、本発明について好ましい実施の形態
を例に挙げて説明したが、本発明は上述した実施の形態
に限定せず、本発明の要旨を逸脱しない範囲内で種々の
変更が可能なのはいうまでもない。例えば、渦巻型コイ
ルの巻数は、上述した実施の形態のものに限定しないの
は勿論である。絶縁部材311の厚さtは、希望する絶
縁耐圧によって任意に選択できるのは勿論である。Although the preferred embodiments of the present invention have been described above as examples, the present invention is not limited to the above-described embodiments, and various changes can be made without departing from the scope of the present invention. Needless to say. For example, the number of turns of the spiral coil is not limited to the above-described embodiment. Needless to say, the thickness t of the insulating member 311 can be arbitrarily selected depending on a desired withstand voltage.
【0026】[0026]
【発明の効果】以上説明したように、本発明では、柔軟
性のある金属板と所定の厚さを持つ可撓性の絶縁部材と
を張り合わせてロール状に巻いて固定することにより、
渦巻型コイルを製造するので、互いに隣接する金属板間
の絶縁耐圧(層間の絶縁耐圧)は、それらの間に介在す
る絶縁部材の厚さによって規定される。したがって、こ
の絶縁部材の厚さを厚くすればする程、層間の絶縁耐圧
を高くする事が出来る。よって、任意の高さの絶縁耐圧
を持つ大電力伝送用の渦巻型コイルを容易に設計、製造
することが可能となる。As described above, according to the present invention, a flexible metal plate and a flexible insulating member having a predetermined thickness are bonded to each other and fixed in a roll shape.
Since the spiral coil is manufactured, the withstand voltage between the metal plates adjacent to each other (the withstand voltage between layers) is determined by the thickness of the insulating member interposed therebetween. Therefore, as the thickness of the insulating member is increased, the withstand voltage between layers can be increased. Therefore, it becomes possible to easily design and manufacture a spiral coil for high power transmission having an arbitrary withstand voltage and a high withstand voltage.
【図1】本発明の一実施の形態に係る渦巻型コイルの製
造工程を示す図である。FIG. 1 is a diagram illustrating a manufacturing process of a spiral coil according to an embodiment of the present invention.
【図2】従来の非接触式電力伝送装置の概略構成を示す
図で、(a)は断面図、(b)は送電部の平面図であ
る。FIGS. 2A and 2B are diagrams illustrating a schematic configuration of a conventional non-contact power transmission device, where FIG. 2A is a cross-sectional view and FIG. 2B is a plan view of a power transmission unit.
【図3】従来の非接触式電力伝送装置に使用される渦巻
型コイルを示す図で、(a)は平面図、(b)は断面図
である。3A and 3B are diagrams showing a spiral coil used in a conventional non-contact power transmission device, wherein FIG. 3A is a plan view and FIG. 3B is a cross-sectional view.
【図4】本発明者らが既に出願した、先願に係る非接触
式電力伝送装置に使用される渦巻型コイルを示す図で、
(a)は平面図、(b)は断面図である。FIG. 4 is a diagram showing a spiral coil used in the non-contact power transmission device according to the prior application, which has been already filed by the present inventors,
(A) is a plan view and (b) is a cross-sectional view.
30 渦巻型コイル 310 柔軟性のある金属板 311 可撓性の絶縁部材 Reference Signs List 30 spiral coil 310 flexible metal plate 311 flexible insulating member
Claims (7)
型コイルを製造する方法において、 柔軟性のある金属板と、所定の厚さを持つ可撓性の絶縁
部材と、を張り合わせる工程と、 該張り合わせた物をロール状に巻く工程と、 該ロール状に巻いた物を解けない様に固定する工程と、 を含む非接触式電力伝送装置用渦巻型コイルの製造方
法。1. A method of manufacturing a spiral coil used in a non-contact power transmission device, comprising: bonding a flexible metal plate and a flexible insulating member having a predetermined thickness. A method of manufacturing a spiral coil for a non-contact power transmission device, comprising: a step of winding the bonded product in a roll shape; and a step of fixing the rolled product so as not to be unwound.
請求項1に記載の非接触式電力伝送装置用渦巻型コイル
の製造方法。2. The flexible metal plate is a copper plate.
A method for manufacturing a spiral coil for a non-contact power transmission device according to claim 1.
請求項1に記載の非接触式電力伝送装置用渦巻型コイル
の製造方法。3. The flexible metal plate is a copper foil.
A method for manufacturing a spiral coil for a non-contact power transmission device according to claim 1.
範囲にある、請求項1に記載の非接触式電力伝送装置用
渦巻型コイルの製造方法。4. The method for manufacturing a spiral coil for a non-contact power transmission device according to claim 1, wherein the predetermined thickness is in a range of 0.1 to 1.0 mm.
ル状に巻いた物を固定する、請求項1に記載の非接触式
電力伝送装置用渦巻型コイルの製造方法。5. The method for manufacturing a spiral coil for a non-contact power transmission device according to claim 1, wherein the fixing step fixes the rolled object by heat welding.
状に巻いた物を固定する、請求項1に記載の非接触式電
力伝送装置用渦巻型コイルの製造方法。6. The method for manufacturing a spiral coil for a non-contact power transmission device according to claim 1, wherein the fixing step fixes the rolled object by bonding.
を所定の厚さに切断する工程を更に含む、請求項1に記
載の非接触式電力伝送装置用渦巻型コイルの製造方法。7. The method for manufacturing a spiral coil for a non-contact power transmission device according to claim 1, further comprising, after the fixing step, a step of cutting the fixed object to a predetermined thickness.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9348203A JPH11186086A (en) | 1997-12-17 | 1997-12-17 | Manufacture of spiral coil for noncontact power transmitter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9348203A JPH11186086A (en) | 1997-12-17 | 1997-12-17 | Manufacture of spiral coil for noncontact power transmitter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11186086A true JPH11186086A (en) | 1999-07-09 |
Family
ID=18395451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9348203A Withdrawn JPH11186086A (en) | 1997-12-17 | 1997-12-17 | Manufacture of spiral coil for noncontact power transmitter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11186086A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007063884A1 (en) * | 2005-11-30 | 2007-06-07 | Holy Loyalty International Co., Ltd. | Surface inductor device |
JP2008001250A (en) * | 2006-06-23 | 2008-01-10 | Izumi Industrial Co Ltd | Power supply device for electrical equipment post-fitted in automobile |
WO2009063975A1 (en) * | 2007-11-15 | 2009-05-22 | Meleagros Corporation | Air core coil of power transfer device, coil of power transfer device, power transfer device, transmission device of power transfer device, and semiconductor integrated circuit used in power transfer device |
WO2009081934A1 (en) * | 2007-12-25 | 2009-07-02 | Panasonic Electric Works Co., Ltd. | Plane coil, and non-contact power transmission device using the same |
JP2010267917A (en) * | 2009-05-18 | 2010-11-25 | Toyota Motor Corp | Coil unit, non-contact power transmission device, non-contact power supply system, and electric vehicle |
JP2013243250A (en) * | 2012-05-21 | 2013-12-05 | Kobe Steel Ltd | Coil for non-contact power supply |
JP2015518269A (en) * | 2012-03-20 | 2015-06-25 | オークランド ユニサービシズ リミテッドAuckland Uniservices Limited | Winding layout of wireless power transmission system |
US11296557B2 (en) | 2017-05-30 | 2022-04-05 | Wireless Advanced Vehicle Electrification, Llc | Single feed multi-pad wireless charging |
US11462943B2 (en) | 2018-01-30 | 2022-10-04 | Wireless Advanced Vehicle Electrification, Llc | DC link charging of capacitor in a wireless power transfer pad |
-
1997
- 1997-12-17 JP JP9348203A patent/JPH11186086A/en not_active Withdrawn
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007063884A1 (en) * | 2005-11-30 | 2007-06-07 | Holy Loyalty International Co., Ltd. | Surface inductor device |
JP2008001250A (en) * | 2006-06-23 | 2008-01-10 | Izumi Industrial Co Ltd | Power supply device for electrical equipment post-fitted in automobile |
WO2009063975A1 (en) * | 2007-11-15 | 2009-05-22 | Meleagros Corporation | Air core coil of power transfer device, coil of power transfer device, power transfer device, transmission device of power transfer device, and semiconductor integrated circuit used in power transfer device |
CN101911224A (en) * | 2007-12-25 | 2010-12-08 | 松下电工株式会社 | Plane coil, and non-contact power transmission device using the same |
JP2009158598A (en) * | 2007-12-25 | 2009-07-16 | Panasonic Electric Works Co Ltd | Planar coil and non-contact power transfer device using the same |
WO2009081934A1 (en) * | 2007-12-25 | 2009-07-02 | Panasonic Electric Works Co., Ltd. | Plane coil, and non-contact power transmission device using the same |
JP2010267917A (en) * | 2009-05-18 | 2010-11-25 | Toyota Motor Corp | Coil unit, non-contact power transmission device, non-contact power supply system, and electric vehicle |
JP2015518269A (en) * | 2012-03-20 | 2015-06-25 | オークランド ユニサービシズ リミテッドAuckland Uniservices Limited | Winding layout of wireless power transmission system |
EP2828951A4 (en) * | 2012-03-20 | 2016-02-10 | Auckland Uniservices Ltd | Winding arrangements in wireless power transfer systems |
US9899145B2 (en) | 2012-03-20 | 2018-02-20 | Auckland Uniservices Ltd. | Winding arrangements in wireless power transfer systems |
JP2013243250A (en) * | 2012-05-21 | 2013-12-05 | Kobe Steel Ltd | Coil for non-contact power supply |
US11296557B2 (en) | 2017-05-30 | 2022-04-05 | Wireless Advanced Vehicle Electrification, Llc | Single feed multi-pad wireless charging |
US11621586B2 (en) | 2017-05-30 | 2023-04-04 | Wireless Advanced Vehicle Electrification, Llc | Single feed multi-pad wireless charging |
US11462943B2 (en) | 2018-01-30 | 2022-10-04 | Wireless Advanced Vehicle Electrification, Llc | DC link charging of capacitor in a wireless power transfer pad |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2481662C2 (en) | Flat coil | |
US20190057806A1 (en) | Multilayer conductors with integrated capacitors and associated systems and methods | |
JP5364745B2 (en) | Magnetic element for wireless power transmission and power supply device | |
EP3809430B1 (en) | Coil module, wireless charging transmitting device, wireless charging receiving device, wireless charging system, and mobile terminal | |
WO2016006508A1 (en) | Printed wiring board, antenna, and wireless power-feeding device | |
WO2013046533A1 (en) | Planar coil and coil module, power reception apparatus, and contactless power transmission apparatus provided with same | |
KR20160089425A (en) | Wireless charging coil | |
JP4997330B2 (en) | Multiphase transformer and transformer system | |
JP5613268B2 (en) | Contactless power supply system | |
JP5646688B2 (en) | Contactless power supply system | |
JP6056100B2 (en) | Spiral coil | |
KR20160140502A (en) | Antenna unit for wireless power transfer and Wireless power transmission module having the same | |
JPH11186086A (en) | Manufacture of spiral coil for noncontact power transmitter | |
JPH1197263A (en) | Non-contact power transmitter and spiral coil used therefor | |
KR20180132205A (en) | wireless power transfer module | |
JP2009164012A (en) | Induction heating coil | |
JP2019179904A (en) | Coil unit, wireless power transmission device, wireless power reception device, and wireless power transmission system | |
JP6539024B2 (en) | Coil and coil component | |
JP7547935B2 (en) | Coil and manufacturing method thereof, power transmission device, power receiving device, and power transmission system | |
WO2024106455A1 (en) | Coil component, method for manufacturing same, power transmission device, power reception device, and power transmission system | |
WO2013054473A1 (en) | Wound element coil and wound element | |
JPH03280409A (en) | Flat transformer | |
JP7604794B2 (en) | Coil, power transmitting device, power receiving device, and power transmission system | |
JP2019080020A (en) | coil | |
JP2018164053A (en) | Magnetic core, coil unit and wireless power transmission unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20050301 |