[go: up one dir, main page]

JPH11182958A - Pulse pipe refrigerator - Google Patents

Pulse pipe refrigerator

Info

Publication number
JPH11182958A
JPH11182958A JP34784097A JP34784097A JPH11182958A JP H11182958 A JPH11182958 A JP H11182958A JP 34784097 A JP34784097 A JP 34784097A JP 34784097 A JP34784097 A JP 34784097A JP H11182958 A JPH11182958 A JP H11182958A
Authority
JP
Japan
Prior art keywords
gas
driven compressor
refrigerator
heat
helium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34784097A
Other languages
Japanese (ja)
Other versions
JP3835912B2 (en
Inventor
Kenji Nakamichi
憲治 中道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP34784097A priority Critical patent/JP3835912B2/en
Publication of JPH11182958A publication Critical patent/JPH11182958A/en
Application granted granted Critical
Publication of JP3835912B2 publication Critical patent/JP3835912B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1403Pulse-tube cycles with heat input into acoustic driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1411Pulse-tube cycles characterised by control details, e.g. tuning, phase shifting or general control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1413Pulse-tube cycles characterised by performance, geometry or theory
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir
    • F25B2309/14241Pulse tubes with basic schematic including an orifice reservoir multiple inlet pulse tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/17Re-condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/10Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point with several cooling stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/006Thermal coupling structure or interface

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten the length of a resonance tube for a heat driving type compressor to miniaturize and compact the same by a method wherein a mixed gas, in which helium and the other rare gas are mixed so that the acoustic velocity of the same becomes smaller than that of helium, is sealed into the resonance tube. SOLUTION: Upon operation, a mixed gas 27 of helium(He) and xenon(Xe) is sealed into a resonance tube. The molecular weight of the mixed gas 27 is increased by four times or more and the acoustic velocity of the same is reduced to the half or less, compared with conventional helium, whereby the length of the resonance tube 21 can be shortened to the half or less of a conventional resonance tube. Further, the Prandtl number of the mixed gas 27 is reduced to one by three (1/3) of helium whereby the thickness of temperature boundary layer of the mixed gas 27 is increased whereby the heat transfer characteristics of a stack 22 and the mixed gas 27 are improved. According to this method, the performance of heat driving type compressor 100 is improved and a miniaturized and compacted pulse pipe refrigerator can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は液体水素等の液化に
使用される、熱駆動型圧縮機を備えたパルス管冷凍機に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pulse tube refrigerator having a heat driven compressor used for liquefying liquid hydrogen or the like.

【0002】[0002]

【従来の技術】図3は、液体水素の液化に使用されるパ
ルス管冷凍機の圧縮機として、共鳴管におけるガスの自
励振動を利用した熱駆動型圧縮機を用いたパルス管冷凍
機の従来の1例を示す。
2. Description of the Related Art FIG. 3 shows a pulse tube refrigerator using a heat driven compressor utilizing self-excited vibration of gas in a resonance tube as a compressor of a pulse tube refrigerator used for liquefying liquid hydrogen. One example of the related art is shown.

【0003】図3において、1は外部からの侵入熱を低
減するための有底筒状の断熱真空容器、2は同断熱真空
容器1の上部を覆蓋するフランジ部である。3は上記断
熱真空容器1の内部に収納されて常温からの輻射熱をシ
ールドするための液体窒素槽、4は同液体窒素槽3内に
収容された液体窒素である。5は第1段パルス管、7は
第1段蓄冷器、13は第2段蓄冷器である。同第1段パ
ルス管5の高温端は上記断熱真空容器1のフランジ部2
と熱的に結合されるとともに、低温端は、導管6によっ
て上記第1段蓄冷器7の低温端と接続されている。
In FIG. 3, reference numeral 1 denotes a cylindrical insulated vacuum container having a bottom for reducing heat intrusion from the outside, and 2 denotes a flange portion for covering an upper portion of the insulated vacuum container 1. Reference numeral 3 denotes a liquid nitrogen tank housed inside the heat-insulating vacuum vessel 1 for shielding radiant heat from room temperature, and reference numeral 4 denotes liquid nitrogen housed in the liquid nitrogen tank 3. Reference numeral 5 denotes a first-stage pulse tube, 7 denotes a first-stage regenerator, and 13 denotes a second-stage regenerator. The high-temperature end of the first-stage pulse tube 5 is connected to the flange portion 2 of the heat-insulated vacuum vessel 1.
And the low-temperature end is connected to the low-temperature end of the first-stage regenerator 7 by a conduit 6.

【0004】8aは上記第1段蓄冷器7の高温端と上記
第1段パルス管5の高温端とを接続する第1段用のバイ
パス管、8は同バイパス管路8aを開閉するバイパス弁
である。11は第2段パルス管であり、同パルス管11
の高温端は上記フランジ部2と熱的に結合されるととも
に、低温端は導管12によって上記第2段蓄冷器13の
低温端と接続されている。
8a is a first stage bypass pipe connecting the high temperature end of the first stage regenerator 7 and the high temperature end of the first stage pulse tube 5, and 8 is a bypass valve for opening and closing the bypass line 8a. It is. Reference numeral 11 denotes a second-stage pulse tube.
The high-temperature end is thermally coupled to the flange portion 2 and the low-temperature end is connected to a low-temperature end of the second-stage regenerator 13 by a conduit 12.

【0005】14aは上記第2段蓄冷器13の高温端と
上記第2段パルス管11の高温端とを接続する第2段用
のバイパス管、14は同バイパス管14aを開閉するバ
イパス弁である。10は上記第1段用のバイパス管8a
に接続される第1段用のバッファ、9は同バッファ10
への接続管路に設けられた第1段用のオリフィス弁であ
る。また、16は上記第2段用のバイパス管14aに接
続される第2段用のバッファ、15は同バッファ16へ
の接続管路に設けられた第2段用のオリフィス弁であ
る。
Reference numeral 14a denotes a second-stage bypass pipe connecting the high-temperature end of the second-stage regenerator 13 and the high-temperature end of the second-stage pulse tube 11, and 14 denotes a bypass valve for opening and closing the bypass pipe 14a. is there. 10 is a bypass pipe 8a for the first stage.
1 is connected to the first stage buffer, 9 is the same buffer 10
And a first-stage orifice valve provided in the connection conduit to the first stage. Reference numeral 16 denotes a second-stage buffer connected to the second-stage bypass pipe 14a, and reference numeral 15 denotes a second-stage orifice valve provided in a connection line to the buffer 16.

【0006】上記バイパス弁8及び14、並びにオリフ
ィス弁9及び15は、第1段パルス管5及び第2段パル
ス管11内のガスの圧力振動及び速度振幅変動の間の位
相差を制御する制御機構の機能をなす。上記蓄冷器7、
13の材料としては、磁性蓄冷材であるEr3 Ni等が
用いられる。
The bypass valves 8 and 14 and the orifice valves 9 and 15 control the phase difference between the pressure oscillation and the velocity amplitude fluctuation of the gas in the first pulse tube 5 and the second pulse tube 11. Performs the function of the mechanism. The regenerator 7,
As a material of No. 13, Er 3 Ni or the like which is a magnetic regenerator material is used.

【0007】17は密閉の容器18内に封入され、沸点
が上記液体窒素4以下の液体水素等の極低温流体であ
る。19は上記第2段蓄冷器13の低温端に設置された
熱交換器で、上記容器18内で蒸発した極低温流体17
を同熱交換器19のフィン20の表面で液化し再び液体
とせしめるように構成されている。
[0007] Reference numeral 17 denotes a cryogenic fluid such as liquid hydrogen having a boiling point of 4 or less of the above-mentioned liquid nitrogen, which is sealed in a closed container 18. Reference numeral 19 denotes a heat exchanger installed at the low-temperature end of the second-stage regenerator 13.
Is liquefied on the surface of the fins 20 of the heat exchanger 19 so as to become liquid again.

【0008】21は内部にヘリウムガス25が収容され
た共鳴管で、同共鳴管21には高温側熱交換器23、低
温側熱交換器24及びスタック22が設けられている。
上記スタック22は例えば、厚さ0.5mm程度のステン
レス板を1mm程度の間隔で重ね合わせて形成される。2
6は上記共鳴管21と上記第1段蓄冷器7とを接続する
導管である。
Reference numeral 21 denotes a resonance tube containing a helium gas 25 therein. The resonance tube 21 is provided with a high-temperature side heat exchanger 23, a low-temperature side heat exchanger 24, and a stack 22.
The stack 22 is formed, for example, by stacking stainless steel plates having a thickness of about 0.5 mm at intervals of about 1 mm. 2
Reference numeral 6 denotes a conduit connecting the resonance tube 21 and the first-stage regenerator 7.

【0009】そして、上記高温側熱交換器23を400
℃程度に加熱するとともに低温側熱交換器24を室温に
保持すると、スタック22内に侵入しているヘリウムガ
ス25に自励振動が発生し、共鳴管21内に圧力振動の
定在波が発生することにより、定常的に圧力振幅が発生
する熱駆動型圧縮機100が構成される。この熱駆動型
圧縮機100における上記圧力振幅は、上記導管26を
介して上記第1段、第2段パルス管5,11及び蓄冷器
7,13側に伝達されるようになっている。
The high-temperature side heat exchanger 23 is
When the low-temperature side heat exchanger 24 is kept at room temperature while being heated to about ℃, self-excited vibration is generated in the helium gas 25 penetrating into the stack 22, and a standing wave of pressure vibration is generated in the resonance tube 21. By doing so, the heat driven compressor 100 in which pressure amplitude is constantly generated is configured. The pressure amplitude in the heat driven compressor 100 is transmitted to the first and second pulse tubes 5 and 11 and the regenerators 7 and 13 via the conduit 26.

【0010】上記のように構成されたパルス管冷凍機の
作動時において、上記熱駆動型圧縮機100から、圧力
振幅を伴なう高圧のガスが導管26を介して導入される
と、上記蓄冷器7,13及び第1段、第2段パルス管
6,11内のガスは上記高圧ガスによって押される。そ
して行き場の無くなったガスは第1段、第2段パルス管
5,11の高温端で発熱し、その熱は断熱真空容器1の
フランジ部2に排熱される。次いで、上記熱駆動型圧縮
機100から低圧のガスが送られると、蓄冷器7,13
及び第1段、第2段パルス管6,11内のガスは、蓄冷
器7,13に寒冷を与えながら膨張する。
During operation of the pulse tube refrigerator configured as described above, when a high-pressure gas with a pressure amplitude is introduced from the heat-driven compressor 100 through the conduit 26, the cold storage The gas in the vessels 7, 13 and the first and second stage pulse tubes 6, 11 is pushed by the high pressure gas. The gas having no place to go is generated at the high-temperature ends of the first-stage and second-stage pulse tubes 5 and 11, and the heat is exhausted to the flange portion 2 of the insulated vacuum vessel 1. Next, when low-pressure gas is sent from the heat-driven compressor 100, the regenerators 7, 13
The gas in the first-stage and second-stage pulse tubes 6 and 11 expands while applying cold to the regenerators 7 and 13.

【0011】[0011]

【発明が解決しようとする課題】しかしながら上記従来
の熱駆動型圧縮機100を備えたバイパス管冷凍機には
次のような問題点がある。即ち、上記パルス管冷凍機に
おいては、上記のように、作動ガスとして、上記熱駆動
型圧縮機100の共鳴管21内に封入されたヘリウムガ
ス25を使用している。しかしながら同ヘリウムガス2
5の音速がきわめて大きいため、熱駆動型圧縮機100
の共鳴周波数をパルス管冷凍機の運転周波数に等しい数
10Hzに設定すると共鳴管21の長さが長くなり、上
記熱駆動型圧縮機100を含むパルス管冷凍機が大型化
する。
However, the bypass pipe refrigerator having the above-mentioned conventional heat driven compressor 100 has the following problems. That is, in the pulse tube refrigerator, as described above, the helium gas 25 sealed in the resonance tube 21 of the heat driven compressor 100 is used as the working gas. However, the same helium gas 2
5 has a very high sound speed, the heat-driven compressor 100
When the resonance frequency is set to several tens Hz which is equal to the operation frequency of the pulse tube refrigerator, the length of the resonance tube 21 becomes longer, and the pulse tube refrigerator including the heat driven compressor 100 becomes larger.

【0012】本発明の目的は、熱駆動型圧縮機の共鳴管
の長さを短縮することにより、小型コンパクト化された
パルス管冷凍機を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a compact and compact pulse tube refrigerator by shortening the length of a resonance tube of a heat driven compressor.

【0013】[0013]

【課題を解決するための手段】本発明は上記問題点を解
決するもので、その要旨とする第1の手段は、共鳴管内
に封入された作動ガスを加熱・冷却することにより同作
動ガスに自励振動を発生させる熱駆動型圧縮機を備え、
同熱駆動型圧縮機からの作動ガスの圧力振幅を冷凍機本
体部のパルス管及び蓄冷器に作用させて、水素等の容器
内の流体を冷却液化するパルス管冷凍機であって、上記
共鳴管内に封入される作動ガスにヘリウムガスと他の希
ガスとの混合ガスであってヘリウムガスよりも音速の大
きい混合ガスを用いたことを特徴とするパルス管冷凍機
にある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and a first means of the present invention is to provide a working gas filled in a resonance tube by heating and cooling the working gas. Equipped with a heat driven compressor that generates self-excited vibration,
A pulse tube refrigerator for cooling and liquefying a fluid in a container such as hydrogen by applying a pressure amplitude of a working gas from the heat-driven compressor to a pulse tube and a regenerator of the refrigerator body. A pulse tube refrigerator is characterized in that a mixed gas of helium gas and another rare gas is used as a working gas sealed in the tube, and a mixed gas having a higher sound speed than helium gas is used.

【0014】また上記第1の手段において、上記混合ガ
スが、ヘリウム(He)とキセノン(Xe)とを混合し
てなるのが好ましい。
In the first means, it is preferable that the mixed gas is a mixture of helium (He) and xenon (Xe).

【0015】上記手段によれば、共鳴管内にヘリウムと
他の希ガスとを混合しガスの音速がヘリウムよりも小さ
くなるようにした混合ガスを封入したので、上記音速の
低下により所要の共鳴管長さもヘリウムガス使用時に較
べ上記音速の低下分相当量短縮される。
According to the above-mentioned means, a mixed gas in which helium is mixed with another rare gas so that the sound speed of the gas is lower than that of helium is sealed in the resonance tube. Even when helium gas is used, the sound speed is reduced by a considerable amount as compared with the use of helium gas.

【0016】特に混合ガスとしてヘリウム(He)とキ
セノン(Xe)との混合ガスを用いて、双方のモル比を
He=89%、Xe=11%程度に設定すれば、分子量
がヘリウムの場合の4倍以上となり音速が半分以下とな
って、共鳴管の長さも半分以下に短縮することが可能と
なる。また、上記混合ガスはプラントル数もヘリウムの
1/3以下に低下し、熱駆動型圧縮機における混合ガス
の温度境界層の厚さが増大し、スタックと混合ガスとの
伝熱特性が向上し、熱駆動型圧縮機の性能が向上する。
In particular, when a mixed gas of helium (He) and xenon (Xe) is used as the mixed gas and the molar ratio of both is set to about He = 89% and Xe = 11%, the case where the molecular weight is helium is obtained. The sound speed becomes four times or more, the sound speed becomes half or less, and the length of the resonance tube can be reduced to half or less. In addition, the mixed gas also has a Prandtl number of 1/3 or less of helium, increases the thickness of the temperature boundary layer of the mixed gas in the heat driven compressor, and improves the heat transfer characteristics between the stack and the mixed gas. The performance of the heat driven compressor is improved.

【0017】また第2の手段は、上記熱駆動型圧縮機と
冷凍機本体部とを接続する導管路に、熱駆動型圧縮機側
の上記混合ガスと冷凍機本体部側の作動ガスとを遮断し
て両ガスの混合を阻止し、かつ上記熱駆動型圧縮機側の
圧力振幅の冷凍機本体部側への伝達を可能としたピスト
ン付きベローズ等の遮断機構を設けてなる。
Further, the second means is that the mixed gas on the heat driven compressor side and the working gas on the refrigerator main body side are connected to a conduit connecting the heat driven compressor and the refrigerator main body. A shut-off mechanism such as a bellows with a piston, which shuts off to prevent mixing of both gases and enables transmission of the pressure amplitude on the heat driven compressor side to the refrigerator main body side, is provided.

【0018】上記第2の手段によれば、極低温流体の生
成時に最も温度が低下する蓄冷器の低温端において混合
ガス中のキセノン(Xe)が凝縮、液化しようとする
も、熱駆動型圧縮機と冷凍機本体部との間に設けた遮断
機構により、共鳴管内の混合ガスと冷凍機本体部側の作
動ガスとの混合を阻止したのでかかるキセノンの凝縮、
液化が回避される。
According to the second means, the xenon (Xe) in the mixed gas is condensed and liquefied at the low temperature end of the regenerator whose temperature is the lowest when the cryogenic fluid is generated. The blocking mechanism provided between the refrigerator and the refrigerator body prevented mixing of the mixed gas in the resonance tube with the working gas on the refrigerator body, so that xenon condensation occurred.
Liquefaction is avoided.

【0019】[0019]

【発明の実施の形態】以下図1〜図2を参照して本発明
の実施形態につき詳細に説明する。図1は本発明の実施
形態に係る熱駆動型圧縮機100を備えたパルス管冷凍
機の構成図、図2は作動ガスの化学的性質及び物理的性
質の1例を示す表である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to FIGS. FIG. 1 is a configuration diagram of a pulse tube refrigerator provided with a heat driven compressor 100 according to an embodiment of the present invention, and FIG. 2 is a table showing an example of chemical and physical properties of a working gas.

【0020】図1において、1は外部からの侵入熱を低
減するための有底筒状の断熱真空容器、2は同断熱真空
容器1の上部を覆蓋するフランジ部である。3は上記断
熱真空容器1の内部に収納されて常温からの輻射熱をシ
ールドするための液体窒素槽、4は同液体窒素槽3内に
収容された液体窒素である。5は第1段パルス管、7は
第1段蓄冷器、13は第2段蓄冷器であり同蓄冷器7,
13の材料としては磁性蓄冷材であるEr3 Ni等が用
いられる。同第1段パルス管5の高温端は上記断熱真空
容器1のフランジ部2と熱的に結合されるとともに、低
温端は、導管6によって上記第1段蓄冷器7の低温端と
接続されている。
In FIG. 1, reference numeral 1 denotes a cylindrical insulated vacuum vessel having a bottom for reducing heat intrusion from the outside, and 2 denotes a flange portion for covering the upper part of the insulated vacuum vessel 1. Reference numeral 3 denotes a liquid nitrogen tank housed inside the heat-insulating vacuum vessel 1 for shielding radiant heat from room temperature, and reference numeral 4 denotes liquid nitrogen housed in the liquid nitrogen tank 3. 5 is a first-stage pulse tube, 7 is a first-stage regenerator, and 13 is a second-stage regenerator.
As a material of No. 13, Er 3 Ni, which is a magnetic regenerator, is used. The high-temperature end of the first-stage pulse tube 5 is thermally coupled to the flange portion 2 of the heat-insulated vacuum vessel 1, and the low-temperature end is connected to the low-temperature end of the first-stage regenerator 7 by a conduit 6. I have.

【0021】8aは上記第1段蓄冷器7の高温端と上記
第1段パルス管5の高温端とを接続する第1段用のバイ
パス管、8は同バイパス管路8aを開閉するバイパス弁
である。11は第2段パルス管であり、同パルス管11
の高温端は上記フランジ部2と熱的に結合されるととも
に、低温端は導管12によって上記第2段蓄冷器13の
低温端と接続されている。
Reference numeral 8a denotes a first-stage bypass pipe connecting the high-temperature end of the first-stage regenerator 7 to the high-temperature end of the first-stage pulse tube 5, and 8 denotes a bypass valve for opening and closing the bypass line 8a. It is. Reference numeral 11 denotes a second-stage pulse tube.
The high-temperature end is thermally coupled to the flange portion 2 and the low-temperature end is connected to a low-temperature end of the second-stage regenerator 13 by a conduit 12.

【0022】14aは上記第2段蓄冷器13の高温端と
上記第2段パルス管11の高温端とを接続する第2段用
のバイパス管、14は同バイパス管14aを開閉するバ
イパス弁である。10は上記第1段用のバイパス管8a
に接続される第1段用のバッファ、9は同バッファ10
への接続管路に設けられた第1段用のオリフィス弁であ
る。
Reference numeral 14a denotes a second-stage bypass pipe connecting the high-temperature end of the second-stage regenerator 13 and the high-temperature end of the second-stage pulse tube 11, and 14 denotes a bypass valve for opening and closing the bypass pipe 14a. is there. 10 is a bypass pipe 8a for the first stage.
1 is connected to the first stage buffer, 9 is the same buffer 10
And a first-stage orifice valve provided in the connection conduit to the first stage.

【0023】また、16は上記第2段用のバイパス管1
4aに接続される第2段用のバッファ、15は同バッフ
ァ16への接続管路に設けられた第2段用のオリフィス
弁である。
Reference numeral 16 denotes the bypass pipe 1 for the second stage.
A second-stage buffer connected to 4a, 15 is a second-stage orifice valve provided in a connection line to the buffer 16.

【0024】17は密閉の容器18内に封入され、沸点
が上記液体窒素4以下の液体水素等の極低温流体であ
る。また、19は上記第2段蓄冷器13の低温端に設置
された熱交換器で、上記容器18内の極低温流体17の
上方に位置して設けられたフィン20を備えている。以
上に示すパルス管冷凍機の構成は図3に示す従来技術と
同様である。
Reference numeral 17 denotes a cryogenic fluid such as liquid hydrogen having a boiling point of 4 or less of the above-mentioned liquid nitrogen, which is sealed in a closed container 18. Reference numeral 19 denotes a heat exchanger installed at the low-temperature end of the second-stage regenerator 13 and has fins 20 provided above the cryogenic fluid 17 in the vessel 18. The configuration of the pulse tube refrigerator described above is the same as that of the prior art shown in FIG.

【0025】本発明の実施形態においては、熱駆動型圧
縮機100を改良している。即ち、図1において、21
は熱駆動型圧縮機100の共鳴管であり、同共鳴管21
内にはヘリウムガスとヘリウムガス以外の希ガスからな
る混合ガス27が封入されている。上記混合ガス27の
1例として、図2に示すように、ヘリウム(He)とキ
セノン(Xe)のモル比89%/11%のものがある。
図2はこの実施形態に適用されるヘリウムガス及び上記
混合ガスの化学的、物理的性質を示している。
In the embodiment of the present invention, the heat driven compressor 100 is improved. That is, in FIG.
Is a resonance tube of the heat driven compressor 100,
A mixed gas 27 composed of helium gas and a rare gas other than helium gas is sealed therein. As an example of the mixed gas 27, as shown in FIG. 2, there is one having a molar ratio of helium (He) and xenon (Xe) of 89% / 11%.
FIG. 2 shows the chemical and physical properties of the helium gas and the mixed gas applied to this embodiment.

【0026】また上記共鳴管21には、高温側熱交換器
23、低温側熱交換器24及びスタック22が設けられ
ている。上記スタック22は例えば、厚さ0.5mm程度
のステンレス板を1mm程度の間隔で重ね合わせて形成さ
れる。26は上記共鳴管21と上記第1段蓄冷器7とを
接続する導管である。
The resonance tube 21 is provided with a high-temperature side heat exchanger 23, a low-temperature side heat exchanger 24 and a stack 22. The stack 22 is formed, for example, by stacking stainless steel plates having a thickness of about 0.5 mm at intervals of about 1 mm. A conduit 26 connects the resonance tube 21 and the first-stage regenerator 7.

【0027】28は上記導管26に設けられた容器であ
る。上記容器28内にはピストン及び仕切板を兼ねた板
29とこの板29を容器28に支持するベローズ30と
が設けられ、これら板29及びベローズ30によって熱
駆動型圧縮機100側と冷凍機本体200側とのガスを
遮断している。
Reference numeral 28 denotes a container provided in the conduit 26. A plate 29 also serving as a piston and a partition plate and a bellows 30 for supporting the plate 29 on the container 28 are provided in the container 28, and the plate 29 and the bellows 30 serve as a heat-driven compressor 100 side and a refrigerator main body. The gas with the 200 side is shut off.

【0028】上記構成からなるパルス管冷凍機の作動時
において、上記熱駆動型圧縮機100の上記高温側熱交
換器23を400℃程度に加熱するとともに低温側熱交
換器24を室温に保持すると、スタック22内に侵入し
ている混合ガス27に自励振動が発生し、共鳴管21内
に圧力振動の定在波が発生することにより、定常的に圧
力振幅が発生する。そしてこの圧力振幅は導管26を介
して容器28内の板29及びベローズ30に作用し、こ
の板29及びベローズ30が伸縮させて、導管26を介
して冷凍機本体部200側の上記第1段、第2段パルス
管5,11及び蓄冷器7,13側に伝達される。
During operation of the pulse tube refrigerator having the above configuration, the high temperature side heat exchanger 23 of the heat driven compressor 100 is heated to about 400 ° C. and the low temperature side heat exchanger 24 is maintained at room temperature. The self-excited vibration is generated in the mixed gas 27 entering the stack 22, and the standing wave of the pressure vibration is generated in the resonance tube 21, so that the pressure amplitude is constantly generated. The pressure amplitude acts on the plate 29 and the bellows 30 in the container 28 via the conduit 26, and the plate 29 and the bellows 30 expand and contract, and the first stage on the refrigerator main body 200 side via the conduit 26. Are transmitted to the second-stage pulse tubes 5 and 11 and the regenerators 7 and 13.

【0029】7,13及び第1段、第2段パルス管6,
11内のガスは、上記圧力振幅を伴なう混合ガスによっ
て押される。そして行き場の無くなったガスは第1段、
第2段パルス管5,11の高温端で発熱し、その熱は断
熱真空容器1のフランジ部2に排熱される。次いで、上
記熱駆動型圧縮機100から低圧のガスが送られると、
蓄冷器7,13及び第1段、第2段パルス管6,11内
のガスは、蓄冷器7,13に寒冷を与えながら膨張す
る。そして、上記容器18内においては、極低温流体1
7の蒸発があるが、同流体は同容器18内に設けられた
熱交換器19のフィン20の表面で液化して再び液体と
なって容器18底部に収容される。
7, 13 and first and second stage pulse tubes 6,
The gas in 11 is pushed by the mixed gas with the above pressure amplitude. And the gas with no place to go is the first stage,
Heat is generated at the high-temperature ends of the second-stage pulse tubes 5 and 11, and the heat is discharged to the flange portion 2 of the heat-insulated vacuum vessel 1. Next, when a low-pressure gas is sent from the heat-driven compressor 100,
The gas in the regenerators 7 and 13 and the first and second stage pulse tubes 6 and 11 expands while applying cold to the regenerators 7 and 13. In the container 18, the cryogenic fluid 1
7, the fluid liquefies on the surface of the fins 20 of the heat exchanger 19 provided in the container 18, becomes a liquid again, and is stored at the bottom of the container 18.

【0030】また、上記バイパス弁8及び14、並びに
オリフィス弁9及び15は、第1段パルス管5及び第2
段パルス管11内のガスの圧力振動及び速度振幅変動の
間の位相差を制御する。
The bypass valves 8 and 14 and the orifice valves 9 and 15 are connected to the first-stage pulse tube 5 and the second
It controls the phase difference between pressure oscillations and velocity amplitude variations of the gas in the stepped pulse tube 11.

【0031】かかる作動時において、共鳴管21内に、
図2に示すようなヘリウム(He)とキセノン(Xe)
との混合ガス27を封入しており、同混合ガス27はそ
の分子量が従来のヘリウム25に較べて4倍以上に増大
し音速が半分以下に低下することから、共鳴管21の長
さも半分以下に短縮される。さらに上記混合ガス27の
プラントル数もヘリウム25の1/3以下に低下するこ
とから、同混合ガス27の温度境界層厚さが大きくな
り、スタック22と混合ガス27との伝熱特性が向上す
る。これにより、熱駆動型圧縮機100の性能も向上す
る。
In this operation, the resonance tube 21
Helium (He) and Xenon (Xe) as shown in FIG.
The mixed gas 27 has a molecular weight that is four times or more as compared with that of the conventional helium 25 and the sound speed is reduced to less than half, so that the length of the resonance tube 21 is also less than half. Is shortened to Further, since the Prandtl number of the mixed gas 27 is also reduced to 1/3 or less of the helium 25, the temperature boundary layer thickness of the mixed gas 27 is increased, and the heat transfer characteristic between the stack 22 and the mixed gas 27 is improved. . Thereby, the performance of the heat driven compressor 100 is also improved.

【0032】また、本発明の実施形態に係るヘリウム
(He)とキセノン(Xe)との混合ガス27を用い、
この混合ガス27をそのまま冷凍機本体部200の作動
ガスとして蓄冷器7、及び13に流し、容器18内の水
素を液化して極低温流体(液体水素)17を生成するよ
うに構成すると、最も温度が低下する第2段蓄冷器13
の低温端において混合ガス27中のキセノン(Xe)が
凝縮液化するが、本発明の実施形態においては、上記熱
駆動型圧縮機100と、冷凍機本体部200とを接続す
る導管26に、容器28内に支持されたピストン兼用の
板29及びベローズ30を設けて共鳴管21内の混合ガ
ス27と冷凍機本体部200側の作動ガスとを遮断した
ので、かかるキセノンの凝縮、液化が阻止され、冷凍機
は順調に作動する。
Further, using the mixed gas 27 of helium (He) and xenon (Xe) according to the embodiment of the present invention,
It is most preferable that the mixed gas 27 be passed directly to the regenerators 7 and 13 as the working gas of the refrigerator main body 200 to liquefy the hydrogen in the container 18 to generate the cryogenic fluid (liquid hydrogen) 17. Second-stage regenerator 13 whose temperature drops
At the low temperature end, xenon (Xe) in the mixed gas 27 is condensed and liquefied. In the embodiment of the present invention, the vessel 26 is connected to the conduit 26 connecting the heat driven compressor 100 and the refrigerator main body 200. Since the mixed gas 27 in the resonance tube 21 and the working gas on the side of the refrigerator main body 200 are cut off by providing the plate 29 and the bellows 30 supported in the piston 28, the condensation and liquefaction of xenon are prevented. , The refrigerator operates smoothly.

【0033】[0033]

【発明の効果】本発明は以上のように構成されており、
本発明によれば、共鳴管内にヘリウムと他の希ガスとを
混合しガスの音速がヘリウムよりも小さくなるようにし
た混合ガスを封入したので、上記音速の低下により所要
の共鳴管長さもヘリウムガス使用時に較べ上記音速の低
下分相当量短縮される。これにより熱駆動型圧縮機の長
さが短縮され、小形、コンパクトなパルス管冷凍機が得
られる。
The present invention is configured as described above.
According to the present invention, since a mixed gas in which helium and another noble gas are mixed in the resonance tube so that the sound speed of the gas is lower than that of helium is sealed, the required length of the resonance tube is reduced due to the decrease in the sound speed. The sound speed is reduced by a considerable amount compared to the time of use. As a result, the length of the heat driven compressor is shortened, and a compact and compact pulse tube refrigerator can be obtained.

【0034】また混合ガスとしてヘリウムとキセノンと
の混合ガスを使用すれば、この混合ガスは、プラントル
数がヘリウムの1/3以下に低下するので、熱駆動型圧
縮機における混合ガスの温度境界層の厚さが増大し、ス
タックと混合ガスとの伝熱特性が向上し、熱駆動型圧縮
機の性能が向上する。
If a mixed gas of helium and xenon is used as the mixed gas, the Prandtl number of the mixed gas is reduced to 1/3 or less of that of helium. And the heat transfer characteristics between the stack and the mixed gas are improved, and the performance of the heat driven compressor is improved.

【0035】さらに、請求項3,4のように構成すれ
ば、熱駆動型圧縮機と冷凍機本体部との間に設けた遮断
機構により、共鳴管内の混合ガスと冷凍機本体部側の作
動ガスとの混合を阻止したので蓄冷器低温端におけるキ
セノンの凝縮、液化が阻止され、かかる現象によるパル
ス管冷凍機の運転の阻害を防止できる。
Further, according to the third and fourth aspects of the present invention, the gas mixture in the resonance tube and the operation of the refrigerator main body side are controlled by a shut-off mechanism provided between the heat driven compressor and the refrigerator main body. Since the mixing with the gas is prevented, the condensation and liquefaction of xenon at the low-temperature end of the regenerator are prevented, so that the operation of the pulse tube refrigerator due to such a phenomenon can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係るパルス管冷凍機の構成
図。
FIG. 1 is a configuration diagram of a pulse tube refrigerator according to an embodiment of the present invention.

【図2】上記冷凍機用作動ガスの化学的性質及び物理的
性質を示す表。
FIG. 2 is a table showing chemical and physical properties of the working gas for a refrigerator.

【図3】従来例を示す図1応当図。FIG. 3 is a diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

100 熱駆動型圧縮機 200 冷凍機本体部 1 断熱真空容器 2 フランジ 3 液体窒素槽 4 液体窒素 5 第1段パルス管 6,12 導管 7 蓄冷器(第1段) 8,14 バイパス弁 8a,14a バイパス管 9,15 オリフィス弁 10,16 バッファ 11 第2段パルス管 13 蓄冷器(第2段) 17 極低温流体 18 容器 19 熱交換器 20 フィン 21 共鳴管 22 スタック 23 高温側熱交換器 24 低温側熱交換器 26 導管 27 混合ガス 28 容器 29 板 30 ベローズ REFERENCE SIGNS LIST 100 heat-driven compressor 200 refrigerator main unit 1 adiabatic vacuum vessel 2 flange 3 liquid nitrogen tank 4 liquid nitrogen 5 first stage pulse tube 6,12 conduit 7 regenerator (first stage) 8,14 bypass valve 8a, 14a Bypass pipe 9,15 orifice valve 10,16 buffer 11 second stage pulse tube 13 regenerator (second stage) 17 cryogenic fluid 18 container 19 heat exchanger 20 fin 21 resonance tube 22 stack 23 high temperature side heat exchanger 24 low temperature Side heat exchanger 26 Conduit 27 Mixed gas 28 Container 29 Plate 30 Bellows

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 共鳴管内に封入された作動ガスを加熱・
冷却することにより同作動ガスに自励振動を発生させる
熱駆動型圧縮機を備え、同熱駆動型圧縮機からの作動ガ
スの圧力振幅を冷凍機本体部のパルス管及び蓄冷器に作
用させて、水素等の容器内の流体を冷却液化するパルス
管冷凍機において、上記共鳴管内に封入される作動ガス
にヘリウムガスと他の希ガスとの混合ガスであってヘリ
ウムガスよりも音速の大きい混合ガスを用いたことを特
徴とするパルス管冷凍機。
A working gas sealed in a resonance tube is heated and
A heat driven compressor that generates self-excited vibration in the working gas by cooling is provided, and the pressure amplitude of the working gas from the heat driven compressor is applied to the pulse tube and regenerator of the refrigerator main body. In a pulse tube refrigerator for cooling and liquefying a fluid in a container such as hydrogen, a mixed gas of helium gas and another rare gas having a sound velocity higher than that of helium gas is mixed with the working gas sealed in the resonance tube. A pulse tube refrigerator characterized by using gas.
【請求項2】 上記混合ガスが、ヘリウム(He)とキ
セノン(Xe)とを混合してなる請求項1に記載のパル
ス管冷凍機。
2. The pulse tube refrigerator according to claim 1, wherein the mixed gas is a mixture of helium (He) and xenon (Xe).
【請求項3】 共鳴管内に封入された作動ガスを加熱・
冷却することにより同作動ガスに自励振動を発生させる
熱駆動型圧縮機を備え、同熱駆動型圧縮機からの作動ガ
スの圧力振幅を冷凍機本体部のパルス管及び蓄冷器に作
用させて、水素等の容器内の流体を冷却液化するパルス
管冷凍機において、上記熱駆動型圧縮機と冷凍機本体部
とを接続する導管路に、熱駆動型圧縮機側の上記混合ガ
スと冷凍機本体部側の作動ガスとを遮断して両ガスの混
合を阻止し、かつ上記熱駆動型圧縮機側の圧力振幅の冷
凍機本体部側への伝達を可能としたピストン付きベロー
ズ等の遮断機構を設けてなるパルス管冷凍機
3. A method of heating working gas sealed in a resonance tube.
A heat driven compressor that generates self-excited vibration in the working gas by cooling is provided, and the pressure amplitude of the working gas from the heat driven compressor is applied to the pulse tube and regenerator of the refrigerator main body. In a pulse tube refrigerator for cooling and liquefying a fluid in a container such as hydrogen, the mixed gas and the refrigerator on the side of the thermally driven compressor are connected to a conduit connecting the thermally driven compressor and the refrigerator main body. A shut-off mechanism, such as a bellows with a piston, that shuts off the working gas on the main body side to prevent mixing of both gases, and enables transmission of the pressure amplitude of the heat driven compressor to the refrigerator main body side. Tube refrigerator provided with
【請求項4】 上記熱駆動型圧縮機と冷凍機本体部とを
接続する導管路に、熱駆動型圧縮機側の上記混合ガスと
冷凍機本体部側の作動ガスとを遮断して両ガスの混合を
阻止し、かつ上記熱駆動型圧縮機側の圧力振幅の冷凍機
本体部側への伝達を可能としたピストン付きベローズ等
の遮断機構を設けてなる請求項1あるいは2に記載のパ
ルス管冷凍機。
4. A pipe line for connecting the heat driven compressor and the refrigerator main body, wherein the mixed gas on the heat driven compressor side and the working gas on the refrigerator main body side are cut off and both gases are shut off. The pulse according to claim 1 or 2, further comprising a shut-off mechanism such as a bellows with a piston for preventing the mixing of the heat-driven compressor and transmitting the pressure amplitude of the heat-driven compressor to the refrigerator main body. Tube refrigerator.
JP34784097A 1997-12-17 1997-12-17 Pulse tube refrigerator Expired - Fee Related JP3835912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34784097A JP3835912B2 (en) 1997-12-17 1997-12-17 Pulse tube refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34784097A JP3835912B2 (en) 1997-12-17 1997-12-17 Pulse tube refrigerator

Publications (2)

Publication Number Publication Date
JPH11182958A true JPH11182958A (en) 1999-07-06
JP3835912B2 JP3835912B2 (en) 2006-10-18

Family

ID=18392969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34784097A Expired - Fee Related JP3835912B2 (en) 1997-12-17 1997-12-17 Pulse tube refrigerator

Country Status (1)

Country Link
JP (1) JP3835912B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999064797A1 (en) * 1998-06-12 1999-12-16 Daido Hoxan Inc. Pulse pipe refrigerating machine and cryopump using the refrigerating machine
JP2003532045A (en) * 2000-04-24 2003-10-28 アイジーシー−エーピーディー クライオジェニクス、 インコーポレイテッド Hybrid two-stage pulse tube refrigerator
WO2004088217A1 (en) * 2003-03-28 2004-10-14 Japan Aerospace Exploration Agency Pulse tube refrigerator
JP2007530904A (en) * 2004-03-23 2007-11-01 プラクスエア・テクノロジー・インコーポレイテッド Resonant linear motor driven cryocooler system
JP2007530911A (en) * 2004-03-30 2007-11-01 プラクスエア・テクノロジー・インコーポレイテッド Cryogenic cooler system with frequency-converting mechanical resonator
JP2010500524A (en) * 2005-08-11 2010-01-07 マッチフロー エナジー インコーポレイテッド Bernoulli heat pump and its method based on noble gas
WO2022153713A1 (en) * 2021-01-14 2022-07-21 住友重機械工業株式会社 Pulse tube freezer and superconductive magnet apparatus
WO2023211563A1 (en) * 2022-04-25 2023-11-02 The Regents Of The University Of Colorado, A Body Corporate Dynamic acoustic impedance matching for cryocoolers
CN119755914A (en) * 2025-03-10 2025-04-04 安徽万瑞冷电科技有限公司 A small hydrogen liquefaction device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999064797A1 (en) * 1998-06-12 1999-12-16 Daido Hoxan Inc. Pulse pipe refrigerating machine and cryopump using the refrigerating machine
JP2003532045A (en) * 2000-04-24 2003-10-28 アイジーシー−エーピーディー クライオジェニクス、 インコーポレイテッド Hybrid two-stage pulse tube refrigerator
JP4942897B2 (en) * 2000-04-24 2012-05-30 住友重機械工業株式会社 Hybrid two-stage pulse tube refrigerator
CN100371657C (en) * 2003-03-28 2008-02-27 独立行政法人宇宙航空研究开发机构 Pulse tube refrigerator
WO2004088217A1 (en) * 2003-03-28 2004-10-14 Japan Aerospace Exploration Agency Pulse tube refrigerator
JP2007530904A (en) * 2004-03-23 2007-11-01 プラクスエア・テクノロジー・インコーポレイテッド Resonant linear motor driven cryocooler system
EP1738117A4 (en) * 2004-03-23 2009-03-04 Praxair Technology Inc Resonant linear motor driven cryocooler system
EP1740891A4 (en) * 2004-03-30 2009-02-25 Praxair Technology Inc Cryocooler system with frequency modulating mechanical resonator
JP2007530911A (en) * 2004-03-30 2007-11-01 プラクスエア・テクノロジー・インコーポレイテッド Cryogenic cooler system with frequency-converting mechanical resonator
JP2010500524A (en) * 2005-08-11 2010-01-07 マッチフロー エナジー インコーポレイテッド Bernoulli heat pump and its method based on noble gas
WO2022153713A1 (en) * 2021-01-14 2022-07-21 住友重機械工業株式会社 Pulse tube freezer and superconductive magnet apparatus
WO2023211563A1 (en) * 2022-04-25 2023-11-02 The Regents Of The University Of Colorado, A Body Corporate Dynamic acoustic impedance matching for cryocoolers
CN119755914A (en) * 2025-03-10 2025-04-04 安徽万瑞冷电科技有限公司 A small hydrogen liquefaction device

Also Published As

Publication number Publication date
JP3835912B2 (en) 2006-10-18

Similar Documents

Publication Publication Date Title
US6477847B1 (en) Thermo-siphon method for providing refrigeration to a refrigeration load
US6430938B1 (en) Cryogenic vessel system with pulse tube refrigeration
US7043925B2 (en) Densifier for simultaneous conditioning of two cryogenic liquids
WO1991014141A1 (en) Cryogenic cooling apparatus
CA2506747C (en) Pulse tube refrigeration system
JPH11182958A (en) Pulse pipe refrigerator
JPS6128907B2 (en)
CN101603743B (en) Acoustic Power Amplifier and Pulse Tube Refrigerator for Inertial Tube Phase Modulation
US20050274124A1 (en) Multi-stage pulse tube cryocooler
WO2004085935A1 (en) Pulse tube refrigerating machine
US7059138B2 (en) Biological refrigeration system
US20070209371A1 (en) MIXED GAS REFRIGERANT SYSTEM FOR SENSOR COOLING BELOW 80ºK
JPH02298765A (en) Multistage cold heat accumulation type refrigerator and cooler associated therewith
JP2650437B2 (en) Cold storage cryogenic refrigerator
Luck et al. Thermoacoustic oscillations in cryogenics. Part 1: Basic theory and experimental verification
JP3669911B2 (en) Liquefied gas storage device
Duband et al. Experimental results on inertance and permanent flow in pulse tube coolers
Matsubara et al. Multi-stage pulse tube refrigerator for temperatures below 4 k
JPH031053A (en) Refrigerating machine
JP3686222B2 (en) Pulse tube refrigerator
KR102716054B1 (en) Apparatus for testing liquefied hydrogen valve
Yoshimura et al. Performance dependence of 4K pulse tube cryocooler on working pressure
Poncet et al. Developments on single and double stage GM type pulse tube cryorefrigerators
WO2022153713A1 (en) Pulse tube freezer and superconductive magnet apparatus
JPH08145487A (en) Helium liquefying magnetic refrigerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041228

A131 Notification of reasons for refusal

Effective date: 20050517

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20050715

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060627

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20060725

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20090804

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110804

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees