JPH11176682A - Manufacturing method of Bond (registered trademark) magnet - Google Patents
Manufacturing method of Bond (registered trademark) magnetInfo
- Publication number
- JPH11176682A JPH11176682A JP9341535A JP34153597A JPH11176682A JP H11176682 A JPH11176682 A JP H11176682A JP 9341535 A JP9341535 A JP 9341535A JP 34153597 A JP34153597 A JP 34153597A JP H11176682 A JPH11176682 A JP H11176682A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- magnetic
- powder
- pulse
- orientation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 239000006247 magnetic powder Substances 0.000 claims abstract description 97
- 230000003068 static effect Effects 0.000 claims abstract description 71
- 238000000465 moulding Methods 0.000 claims abstract description 53
- 239000000843 powder Substances 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 35
- 239000002994 raw material Substances 0.000 claims abstract description 21
- 238000003825 pressing Methods 0.000 claims abstract description 12
- 229920005989 resin Polymers 0.000 claims description 43
- 239000011347 resin Substances 0.000 claims description 43
- 229920001187 thermosetting polymer Polymers 0.000 claims description 21
- 238000007493 shaping process Methods 0.000 claims description 4
- 229910000640 Fe alloy Inorganic materials 0.000 claims description 2
- 238000011049 filling Methods 0.000 abstract description 21
- 238000009776 industrial production Methods 0.000 abstract 1
- 150000001875 compounds Chemical class 0.000 description 35
- 239000011230 binding agent Substances 0.000 description 19
- 238000010438 heat treatment Methods 0.000 description 14
- 238000002844 melting Methods 0.000 description 9
- 230000008018 melting Effects 0.000 description 9
- 230000005415 magnetization Effects 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 238000001723 curing Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 230000001788 irregular Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 229910001172 neodymium magnet Inorganic materials 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000000748 compression moulding Methods 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 239000006249 magnetic particle Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 229920006122 polyamide resin Polymers 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- -1 polypropylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229910001047 Hard ferrite Inorganic materials 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0266—Moulding; Pressing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B11/00—Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
- B30B11/008—Applying a magnetic field to the material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B11/00—Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
- B30B11/02—Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space
- B30B11/022—Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space whereby the material is subjected to vibrations
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Powder Metallurgy (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
(57)【要約】
【課題】 磁粉の充填率、配向度をさらに向上させ、磁
気特性がより向上した磁気異方性ボンド磁石の工業的製
造方法を開発する。
【解決手段】磁場中でのプレス成形に際して、金型に充
填した原料粉末に、まずパルス磁場を一回あるいは複数
回印加した後、静磁場を印加しながら超音波振動を金型
および/またはパンチに付与し、次いで超音波振動を停
止して、加圧力で賦形する。
(57) [Summary] [PROBLEMS] To develop an industrial production method of a magnetic anisotropic bonded magnet with further improved magnetic properties by further improving the filling ratio and orientation degree of magnetic powder. In press molding in a magnetic field, a pulse magnetic field is applied once or plural times to raw material powder filled in a mold, and then ultrasonic vibration is applied to the mold and / or punch while applying a static magnetic field. Then, the ultrasonic vibration is stopped, and the shape is formed by the pressing force.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、磁場中でのプレス
成形によるボンド磁石の製造方法に関し、特に、磁気異
方性の磁性粉末の配向度が向上し、従って磁気特性が改
善された磁気異方性ボンド磁石の製造方法に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a bonded magnet by press molding in a magnetic field, and more particularly, to a method for producing a bonded magnet having improved magnetic properties by improving the degree of orientation of magnetic anisotropic magnetic powder. The present invention relates to a method for manufacturing an isotropic bonded magnet.
【0002】[0002]
【従来の技術】磁性粉末 (以下、磁粉ともいう) を樹脂
で結合したボンド磁石は、磁粉を焼結して製造される従
来の焼結磁石に比べ、磁性を発現しない樹脂成分を含む
ため磁気特性はやや劣る。しかし、焼結による収縮がな
いため寸法精度が良く、種々の形状の磁石が簡単に得ら
れる上、焼結磁石の硬くて脆く、欠け易いという欠点が
解消され、耐薬品性や耐候性にも優れている。そのた
め、ボンド磁石は一般家庭の各種電気製品から大型コン
ピュータの周辺端末機器に至るまで広く応用されてお
り、特にスピンドルモータ、ステッピングモータ等の小
型モータに近年多く用いられている。2. Description of the Related Art Bonded magnets in which magnetic powder (hereinafter, also referred to as magnetic powder) is bonded with resin contain a resin component that does not exhibit magnetism, compared to conventional sintered magnets manufactured by sintering magnetic powder. Characteristics are somewhat inferior. However, since there is no shrinkage due to sintering, dimensional accuracy is good, magnets of various shapes can be easily obtained, and the disadvantages of sintered magnets that are hard, brittle and easily chipped are eliminated, and chemical resistance and weather resistance are also improved. Are better. For this reason, bonded magnets are widely applied to various household electrical appliances to peripheral devices for large computers, and in recent years, are particularly widely used for small motors such as spindle motors and stepping motors.
【0003】ボンド磁石は、永久磁石材料となるハード
フェライトや希土類合金などの磁粉を、エポキシ樹脂、
フェノール樹脂、ポリエステル樹脂などの熱硬化性樹
脂、またはポリアミド樹脂、ポリプロピレン樹脂、ポリ
フェニレンスルファイド樹脂などの熱可塑性樹脂をバイ
ンダとして結合、賦形して製造される磁石である。[0003] A bonded magnet is made by using magnetic powder such as hard ferrite or a rare earth alloy as a permanent magnet material with an epoxy resin,
The magnet is manufactured by bonding and shaping a thermosetting resin such as a phenol resin or a polyester resin, or a thermoplastic resin such as a polyamide resin, a polypropylene resin, or a polyphenylene sulfide resin as a binder.
【0004】ボンド磁石の製造方法としては、射出成
形、押出成形、プレス成形などが可能である。このう
ち、射出成形と押出成形では、高い流動性が必要なた
め、バインダには一般に熱可塑性樹脂が使用される。そ
のときの成形温度はバインダの種類により異なるが、ポ
リプロピレン樹脂の場合で 200〜300 ℃、ポリアミド樹
脂の場合では250 〜300 ℃であり、プレス成形のときに
比べて高いので、磁粉の熱劣化が生じやすい。[0004] As a method for manufacturing a bonded magnet, injection molding, extrusion molding, press molding and the like are possible. Of these, injection molding and extrusion molding require high fluidity, so that a thermoplastic resin is generally used for the binder. The molding temperature at that time varies depending on the type of binder, but is 200-300 ° C for polypropylene resin and 250-300 ° C for polyamide resin. Easy to occur.
【0005】他方、プレス成形には、主に熱硬化性樹脂
がバインダとして用いられる。通常、予め磁性粉末とバ
インダとを複合化させた原料粉末 (磁粉を熱硬化性樹脂
で被覆した「コンパウンド」と呼ばれる材料) を作製
し、それを金型内に投入して、パンチで加圧することに
よりプレス成形を行う。得られた成形体 (圧粉体とも呼
ばれる) を加熱して、バインダの熱硬化性樹脂を硬化さ
せる。ボンド磁石の最終強度は、この熱硬化時に付与さ
れるので、硬化前の成形体の強度は、加熱設備への搬入
に必要なハンドリングが可能な程度であればよい。その
ため、プレス成形の温度は通常は室温である。プレス成
形は、射出および押出成形に比べ、樹脂量が少なくてす
み、従って磁粉の充填率が大きくなるので、より優れた
磁気特性を持つボンド磁石の製造が可能である。On the other hand, in press molding, a thermosetting resin is mainly used as a binder. Usually, a raw material powder (a material called “compound” in which a magnetic powder is coated with a thermosetting resin) in which a magnetic powder and a binder are compounded in advance is prepared, and then put into a mold and pressed with a punch. In this way, press molding is performed. The obtained compact (also called a green compact) is heated to cure the thermosetting resin of the binder. Since the final strength of the bonded magnet is given at the time of this heat curing, the strength of the molded body before the curing is sufficient as long as the handling required for carrying into the heating equipment is possible. Therefore, the temperature for press molding is usually room temperature. Press molding requires a smaller amount of resin than injection and extrusion molding, and thus increases the filling ratio of magnetic powder, so that a bonded magnet having better magnetic properties can be manufactured.
【0006】また、磁粉それ自体の磁気特性向上につい
ても研究が進み、Sm2Co17 合金系やNd−Fe−B合金系の
磁粉では、従来のどの方向に磁化しても同じ磁気特性を
示す等方性の磁粉に比べてより優れた磁気特性を示すこ
とができる、磁気異方性の磁粉が開発されている。Researches have also been made on improving the magnetic properties of the magnetic powder itself. Sm 2 Co 17 alloy-based and Nd—Fe—B alloy-based magnetic powders exhibit the same magnetic properties even when magnetized in any conventional direction. Magnetic anisotropic magnetic powder has been developed that can exhibit better magnetic properties than isotropic magnetic powder.
【0007】この異方性の磁粉は、ある一定方向 (磁化
容易方向) にのみ磁気特性が極めて高いので、樹脂で結
合する際に磁粉の磁化容易方向が揃うように、成形を磁
場の作用下に行う。通常は、成形に用いる金型に、磁気
回路を形成するための磁場コイルなどを付設して、磁粉
に磁場を作用させることにより磁粉を回転させ、異方性
磁粉の磁化容易方向を磁場の方向に揃える (即ち、粉末
を配向させる) 。Since the anisotropic magnetic powder has extremely high magnetic properties only in a certain direction (easy magnetization direction), the magnetic powder is molded under the action of a magnetic field so that the magnetic powder easily aligns in the direction of easy magnetization when bonded with resin. To do. Normally, a magnetic field coil or the like for forming a magnetic circuit is attached to a mold used for molding, and the magnetic powder is rotated by applying a magnetic field to the magnetic powder, so that the direction of easy magnetization of the anisotropic magnetic powder is changed to the direction of the magnetic field. (Ie, orient the powder).
【0008】磁粉が同じである場合、ボンド磁石の磁気
特性を向上させるには、磁粉の充填率を高めることと、
異方性磁粉の場合にはその磁気配向度 (磁化容易方向が
揃っている磁粉の割合) を高めることが有効であり、そ
のための工夫が従来より数多く提案されている。[0008] When the magnetic powder is the same, to improve the magnetic properties of the bonded magnet, it is necessary to increase the filling rate of the magnetic powder;
In the case of anisotropic magnetic powder, it is effective to increase the degree of magnetic orientation (the ratio of the magnetic powder in which the direction of easy magnetization is uniform), and many devices have been proposed for that purpose.
【0009】例えば、バインダの熱硬化性樹脂の流動性
を高めるためプレス成形を加熱下に実施すると、磁粉の
充填率が高くなることが特開平1−205403号公報および
特開平2−116104号公報および特開平4−80901 号公報
に記載されている。For example, Japanese Patent Application Laid-Open Nos. Hei 1-205403 and Hei 2-116104 show that when press molding is performed under heating to increase the fluidity of the thermosetting resin of the binder, the filling rate of the magnetic powder increases. And JP-A-4-80901.
【0010】一方、磁気配向度の向上についても、磁場
の印加方法を工夫することにより磁気配向度を向上させ
る手段がいくつか提案されている。例えば、特開昭62−
262413号公報には、配向磁場として0.5 秒以下のパルス
磁場のみを使用する方法が記載されている。On the other hand, with respect to the improvement of the degree of magnetic orientation, several means have been proposed for improving the degree of magnetic orientation by devising a method of applying a magnetic field. For example, Japanese Patent Application Laid-Open
No. 262413 describes a method using only a pulse magnetic field of 0.5 seconds or less as an alignment magnetic field.
【0011】特開昭63−120407号公報には、コンパウン
ドを予め磁化した後、磁場プレス成型機に供給し、静磁
場中で磁場配向プレス成形する方法が開示されている。
また、特開昭60−88418 号公報、特開昭60−10277 号公
報、特開平4−112504号公報には、配向磁場とし
て静磁場とパルス磁場とを併用するさまざまな方法が提
案されている。Japanese Patent Application Laid-Open No. 63-120407 discloses a method in which a compound is magnetized in advance, supplied to a magnetic field press molding machine, and subjected to magnetic field orientation press molding in a static magnetic field.
Japanese Patent Application Laid-Open Nos. 60-88418, 60-10277, and 4-112504 propose various methods in which a static magnetic field and a pulsed magnetic field are used in combination as an orientation magnetic field. .
【0012】特開平8−31677 号公報には、異方
性磁粉と熱硬化性樹脂粉末とを主成分とする原料粉末を
温度と磁界を制御できる金型に充填し、加熱して樹脂が
溶融状態になってから磁界を印加して磁粉を配向させつ
つ、次いで加圧して圧縮成形を行う方法が開示されてい
る。Japanese Patent Application Laid-Open No. 8-31677 discloses that a raw material powder containing anisotropic magnetic powder and thermosetting resin powder as main components is filled in a mold capable of controlling temperature and magnetic field, and heated to melt the resin. A method is disclosed in which a magnetic field is applied after the state is reached to orient the magnetic powder, and then compression is performed by applying pressure.
【0013】特開昭63−153806号公報、特開平1−2455
03号公報、特開平4−28207 号公報には、配向磁場とし
て正逆交番の静磁場を印加する方法が提案されている。JP-A-63-153806, JP-A-1-2455
Japanese Patent Application Laid-Open No. 03-28207 and Japanese Patent Application Laid-Open No. 4-28207 propose a method of applying a forward / reverse alternating static magnetic field as an orientation magnetic field.
【0014】[0014]
【発明が解決しようとする課題】ボンド磁石の磁気特性
を向上させるために、磁粉の充填率を高める工夫がされ
ている。例えば、特開平4−80901 号公報に開示されて
いる、金型を高温に加熱し、成形温度をバインダの融点
以上の温度とする高温プレス法は大きな効果があるが、
生産性が極端に低下するという問題があった。すなわ
ち、金型を加熱した高温プレスでは、一回のプレス成形
の後、次回の原料 (コンパウンド) 粉末を金型に供給す
る前に、金型に接触した次回のコンパウンド粉末の樹脂
が溶融し、金型に付着して、金型内に均一に充填できな
くなるという問題が生じる。従って、金型の加熱冷却が
プレス成形一回毎に不可欠であり、一回の成形に要する
時間 (プレスサイクルタイム) が長くなる。すなわち、
単位時間あたりの生産個数が著しく減少する。In order to improve the magnetic properties of the bonded magnet, various measures have been taken to increase the filling ratio of the magnetic powder. For example, the high-temperature pressing method disclosed in Japanese Patent Application Laid-Open No. 4-80901, in which the mold is heated to a high temperature and the molding temperature is set to a temperature equal to or higher than the melting point of the binder, has a great effect.
There is a problem that productivity is extremely reduced. In other words, in a high-temperature press in which a mold is heated, after one press molding and before supplying the next raw material (compound) powder to the mold, the resin of the next compound powder that has come into contact with the mold melts, There is a problem that the resin adheres to the mold and cannot be uniformly filled in the mold. Therefore, heating and cooling of the mold are indispensable for each press molding, and the time required for one molding (press cycle time) becomes long. That is,
The number of units produced per unit time is significantly reduced.
【0015】ボンド磁石の磁気特性を向上させるため
に、磁粉の配向度を高める工夫もされている。ボンド磁
石の磁場配向プレス成形において実際に採用されている
主流は、配向磁場として静磁場を使用する方法である。
しかし、配向磁場が静磁場のみでは、異方性磁粉の配向
度を増大するために配向磁場強度を大きくすると、コイ
ルの巻き数が増大し、コイルを付設した金型が大型化し
てしまう。さらに、巻き数の多いコイルに大電流を流す
ので、コイルには加熱を防ぐための大型の冷却装置が必
要になる。そのため、設備全体も大型化し、一台のプレ
ス装置で多数個取りできるような装置の実現は難しい。
また、大電流を持続して流すため消費電力が多く、コス
トが高くなるという問題もある。[0015] In order to improve the magnetic properties of the bonded magnet, a device has been devised to increase the degree of orientation of the magnetic powder. The mainstream used in the magnetic field orientation press molding of bonded magnets is a method using a static magnetic field as the orientation magnetic field.
However, if the orientation magnetic field is only a static magnetic field, if the intensity of the orientation magnetic field is increased in order to increase the degree of orientation of the anisotropic magnetic powder, the number of windings of the coil increases, and the mold provided with the coil becomes large. Further, since a large current flows through the coil having a large number of turns, a large cooling device for preventing heating is required for the coil. For this reason, it is difficult to realize an apparatus that can increase the size of the entire equipment and can take a large number of pieces with a single press.
In addition, there is also a problem that power consumption is large and a cost is high because a large current is continuously supplied.
【0016】一方、特開昭62−262413号公報に提案のよ
うに、配向磁場としてパルス磁場のみを使用する方法で
は、パルス磁場の持続時間が通常は数ms と短く、パル
ス電流を発生させるための充電時間に数秒かかることか
ら、加圧成形中の短い時間しか配向磁場を作用させるこ
とができないと同時に、パルス磁場を付与するタイミン
グが配向度に大きく影響する。そのため、異方性磁粉の
配向性を十分に向上させることができない。On the other hand, as proposed in Japanese Patent Application Laid-Open No. 62-262413, in a method using only a pulse magnetic field as an orientation magnetic field, the duration of the pulse magnetic field is usually as short as several ms, and a pulse current is generated. Since it takes several seconds for the charging time, the orientation magnetic field can be applied only for a short time during the pressure molding, and at the same time, the timing of applying the pulse magnetic field greatly affects the degree of orientation. Therefore, the orientation of the anisotropic magnetic powder cannot be sufficiently improved.
【0017】特開昭63−120407号公報に記載のコンパウ
ンドを予め磁化した後、静磁場中で磁場配向プレス成形
する方法では、金型に供給する前に磁化させたコンパウ
ンドが磁力により凝集し易く、金型への給粉性が低下す
るため、充填量のバラツキが生じ易く、その結果、生産
性が低下する。In the method described in Japanese Patent Application Laid-Open No. 63-120407, in which a compound is magnetized in advance and then subjected to magnetic field orientation press molding in a static magnetic field, the compound magnetized before being supplied to a mold is easily aggregated by magnetic force. In addition, since the powder feeding property to the mold is reduced, a variation in the filling amount is likely to occur, and as a result, the productivity is reduced.
【0018】特開昭60−88418 号公報に記載の方法で
は、高パルス磁場で予め磁粉を着磁させた後、静磁場中
で着磁方向とは異なる方向に配向させながらプレス成形
を行う。この方法は、水素処理法により製造されるよう
な不規則形状の異方性磁粉では、プレス成形中に磁粉が
回転しにくく、高配向化することは困難である。In the method described in Japanese Patent Application Laid-Open No. 60-88418, after magnetic particles are magnetized in advance with a high pulse magnetic field, press molding is performed in a static magnetic field while orienting in a direction different from the magnetization direction. In this method, in the case of anisotropic magnetic powder having an irregular shape such as that produced by a hydrogen treatment method, the magnetic powder does not easily rotate during press molding, and it is difficult to achieve high orientation.
【0019】特開昭60−10277 号公報には、パルス磁場
を印加した後、永久磁石による静磁場を用いて磁性粉末
の配向方向を保持しておいてプレス成形する方法が開示
されている。コイルを用いて配向磁場を発生させる方法
を取れば、プレス成形終了直前に電流を反対方向に流
し、成形体を脱磁することができるが、永久磁石を用い
る方法ではこのプレス成形工程での脱磁ができないた
め、プレス成形後の成形体の取り扱いが困難である。Japanese Patent Application Laid-Open No. 60-10277 discloses a method in which after applying a pulse magnetic field, press molding is performed while maintaining the orientation direction of the magnetic powder using a static magnetic field by a permanent magnet. If a method of generating an orientation magnetic field using a coil is employed, a current can be flowed in the opposite direction immediately before the end of press molding to demagnetize the molded body. Since it cannot be magnetized, it is difficult to handle the compact after press molding.
【0020】特開平4−112504号公報には、コンパウン
ドをコイル静磁場中でプレス成形する際に、上パンチに
よる加圧を複数回に分けて行い、それぞれの加圧圧縮時
にパルス磁場を重畳させて印加する方法が提示されてい
る。この方法は、圧縮回数が多いほど磁気特性が向上す
るものの、成形時間が長くなる。また、パルス磁場を印
加するタイミングが成形体の配向度に及ぼす影響が大き
い上、加圧力が増す2回目や3回目のパルス磁場は配向
度向上に有効に作用しない。Japanese Patent Application Laid-Open No. 4-112504 discloses that when a compound is press-formed in a static magnetic field of a coil, pressurization by an upper punch is performed a plurality of times, and a pulsed magnetic field is superimposed during each pressurization and compression. A method of applying the voltage is presented. In this method, the magnetic properties are improved as the number of compressions is increased, but the molding time is increased. In addition, the timing at which the pulse magnetic field is applied has a large effect on the degree of orientation of the molded body, and the second or third pulse magnetic field in which the pressing force increases does not effectively affect the degree of orientation.
【0021】特開平8−31677 号公報に記載の方法は、
加熱下で磁場配向プレス成形を行うため、プレス成形時
に樹脂が軟化溶融し、磁粉が動き易くなる。そのため、
磁粉の充填率と配向度が向上し、磁気特性に優れた磁気
異方性ボンド磁石が得られると説明されているが、先に
示したように生産性の点で問題が残される。The method described in JP-A-8-31677 is
Since the magnetic field orientation press molding is performed under heating, the resin softens and melts at the time of press molding, and the magnetic powder easily moves. for that reason,
It is described that the filling ratio and the degree of orientation of the magnetic powder are improved, and a magnetically anisotropic bonded magnet having excellent magnetic properties can be obtained. However, as described above, a problem remains in terms of productivity.
【0022】さらに特開平4−28207 号公報などに開示
されているような配向磁場として正逆交番の静磁場を印
加する方法は、磁場が静磁場であるため、先に述べたよ
うに、異方性磁粉の配向性を上昇するために磁場強度を
大きくするとコイルの巻き数が増大し、金型が大型化す
るとともに、エネルギーコストも高くなる。また、飽和
磁化が高い磁気異方性磁粉では磁粉が十分に磁化され
ず、配向度が十分に向上しない。Further, in the method disclosed in Japanese Unexamined Patent Publication No. 4-28207 for applying an alternating static magnetic field as an orientation magnetic field, the magnetic field is a static magnetic field. When the magnetic field strength is increased to increase the orientation of the isotropic magnetic powder, the number of windings of the coil increases, the mold becomes large, and the energy cost also increases. Further, with magnetically anisotropic magnetic powder having high saturation magnetization, the magnetic powder is not sufficiently magnetized, and the degree of orientation is not sufficiently improved.
【0023】かくして、本発明は、磁気異方性の磁粉の
磁場配向プレス成形における磁粉の充填率および配向度
をさらに向上させることができ、それにより磁気特性が
より向上した磁気異方性ボンド磁石を工業的に製造する
ことが可能な方法を開発することを課題とする。Thus, the present invention can further improve the filling ratio and degree of orientation of magnetic powder in magnetic field orientation press molding of magnetically anisotropic magnetic powder, whereby the magnetic anisotropic bonded magnet with further improved magnetic properties can be obtained. It is an object of the present invention to develop a method capable of industrially producing a product.
【0024】[0024]
【課題を解決するための手段】本発明者らは、先にボン
ド磁石のプレス成形時に特定の超音波振動を一定の条件
で金型および/またはパンチに付与することによって、
金型を加熱せずに、コンパウンド粉末のみを短時間で加
熱できることを見出し (特願平6−310893号)、ボンド
磁石の温間での工業的な製造法を見出した。今回、磁気
特性がさらに向上したボンド磁石を効率良く成形するた
めに上記製造方法を発展させることを検討し、本発明を
完成するに至った。Means for Solving the Problems The present inventors first apply a specific ultrasonic vibration to a mold and / or a punch under certain conditions during press molding of a bonded magnet,
It has been found that only the compound powder can be heated in a short time without heating the mold (Japanese Patent Application No. 6-310893), and a warm industrial manufacturing method for bonded magnets has been discovered. Now, the present inventors have studied the development of the above manufacturing method to efficiently form a bonded magnet having further improved magnetic properties, and have completed the present invention.
【0025】本発明者らは、短い成形時間で磁気異方性
磁粉の配向度が向上し、磁粉充填率が向上する効率の良
い配向磁場条件と成形条件について鋭意検討した結果、
配向磁場としては静磁場とパルス磁場の両者を併用して
用いると磁粉の配向度が向上し、一方、超音波振動を印
加することによりコンパウンドが加熱され磁粉の充填率
が向上するが、この配向磁場と超音波振動の印加タイミ
ングが配向度および磁粉充填率を同時に向上させるため
には重要であり、さらに、配向磁場の中でもパルス磁場
の印加タイミングが重要であり、これらタイミングを適
切に設定することで、ボンド磁石の磁気特性が著しく向
上することを見出した。The inventors of the present invention have conducted intensive studies on efficient orientation field conditions and molding conditions in which the degree of orientation of the magnetic anisotropic magnetic powder is improved in a short molding time and the magnetic powder filling rate is improved.
The use of both a static magnetic field and a pulsed magnetic field as the orientation magnetic field improves the degree of orientation of the magnetic powder, while the application of ultrasonic vibrations heats the compound and improves the filling rate of the magnetic powder. The application timing of the magnetic field and the ultrasonic vibration is important for simultaneously improving the degree of orientation and the filling ratio of the magnetic powder, and the application timing of the pulse magnetic field is also important among the orientation magnetic fields, and these timings must be set appropriately. It was found that the magnetic properties of the bonded magnet were significantly improved.
【0026】すなわち、磁場強度が大きいパルス磁場を
加圧前に一回印加すること、より好ましくは磁場方向が
同一方向の複数回のパルス磁場、あるいは、磁場方向が
交互に反転する複数回のパルス磁場 (以下、反転パルス
磁場ともいう) を原料コンパウンドに印加すると、異方
性磁粉の配向度が大きく向上すること、その後に静磁場
を印加することによりこの高い配向度が保持されるこ
と、そしてこの高い配向度が保持されている状態で超音
波振動による原料コンパウンドの加熱を行えば成形体中
の磁粉充填率が向上し、併せて超音波振動の効果により
さらに配向度が向上すること、などの効果が相乗的に作
用して、著しく配向度および充填率が向上し、従って、
磁気特性に優れたボンド磁石を効率よく製造できること
を見出し、本発明に到達した。That is, a pulse magnetic field having a large magnetic field strength is applied once before pressing, more preferably a plurality of pulse magnetic fields having the same magnetic field direction, or a plurality of pulses having a magnetic field direction alternately reversed. When a magnetic field (hereinafter, also referred to as an inversion pulse magnetic field) is applied to the raw material compound, the degree of orientation of the anisotropic magnetic powder is significantly improved, and thereafter, the high degree of orientation is maintained by applying a static magnetic field, and If the raw material compound is heated by ultrasonic vibration in a state where the high degree of orientation is maintained, the magnetic powder filling rate in the compact is improved, and the degree of orientation is further improved by the effect of the ultrasonic vibration. Acts synergistically to significantly improve the degree of orientation and filling factor,
The present inventors have found that a bonded magnet having excellent magnetic properties can be efficiently produced, and have reached the present invention.
【0027】ここに、本発明は、磁気異方性の磁性粉末
を熱硬化樹脂で被覆した原料粉末を、金型内で配向磁場
を印加しながらプレス成形し、得られた成形体を加熱し
て樹脂を硬化させる、磁気異方性ボンド磁石の製造方法
であって、磁場中でのプレス成形に際して、金型内に充
填した原料粉末、つまりコンパウンドにパルス磁場を一
回あるいは複数回印加した後、静磁場の印加を開始し、
静磁場を印加した状態で超音波振動を印加し、次いで超
音波振動を停止して、加圧力で賦形することを特徴とす
るボンド磁石の成形方法である。In the present invention, the raw material powder obtained by coating a magnetic anisotropic magnetic powder with a thermosetting resin is press-molded in a mold while applying an orientation magnetic field, and the obtained molded body is heated. A method of manufacturing a magnetically anisotropic bonded magnet, in which a resin is cured by applying a pulsed magnetic field once or multiple times to a raw material powder filled in a mold, that is, a compound during press molding in a magnetic field. , Start applying a static magnetic field,
This is a method for forming a bonded magnet, which comprises applying ultrasonic vibration in a state where a static magnetic field is applied, then stopping the ultrasonic vibration, and shaping with a pressing force.
【0028】ここで、一回のパルス磁場を印加してから
静磁場を印加する場合、一回のパルス磁場の方向は好ま
しくは静磁場の方向と同一である。また、複数回のパル
ス磁場としては 1) 磁場方向が後の静磁場と同一方向である複数回のパ
ルス磁場と、 2) 磁場方向が交互に反転するパルス磁場であり、か
つ、最後のパルス磁場の方向と後の静磁場の方向が同一
方向である複数回のパルス磁場が使用できる。Here, when a static magnetic field is applied after one pulse magnetic field is applied, the direction of one pulse magnetic field is preferably the same as the direction of the static magnetic field. In addition, the pulse magnetic fields of a plurality of times include: 1) a plurality of pulse magnetic fields in which the direction of the magnetic field is the same as the subsequent static magnetic field; and 2) a pulse magnetic field in which the magnetic field direction is alternately reversed, and And the direction of the subsequent static magnetic field can be the same direction.
【0029】これからも分かるように、本発明の好適態
様にあっては、パルス磁場を一回または複数回印加する
場合も含めて、静磁場の印加に先行する最後のパルス磁
場の方向を静磁場の方向と同一にするのである。As can be seen from the above, in the preferred embodiment of the present invention, the direction of the last pulse magnetic field preceding the application of the static magnetic field, including the case where the pulse magnetic field is applied once or more than once, is changed. In the same direction.
【0030】本発明の方法により磁気特性が著しく向上
したボンド磁石が製造できる理由としては、以下のよう
に考えられる。すなわち、原料粉末、つまりコンパウン
ドに超音波振動を印加するとコンパウンドが加熱される
が、同時に振動により粉末の充填性が向上する結果、コ
ンパウンドの嵩密度 (金型内に投入したコンパウンドの
重量を金型内キャビティ体積で除した値) が増大する。
嵩密度が増大すると磁粉間の空隙が減少し、配向磁場に
よる磁粉の回転が起こりにくくなるので配向磁場が有効
に作用しない。従って、超音波振動の印加後に配向磁場
を印加するというプロセスによりボンド磁石を成形して
も、磁粉充填率は高くなるが、磁粉配向度の向上は得ら
れない。しかしながら、まずパルス磁場を複数回印加
し、その後静磁場でこの配向状態を保持しながら超音波
振動によるコンパウンドの加熱を行うというプロセスに
よれば、配向度、充填率ともに高いボンド磁石が得られ
る。また、磁場強度の大きいパルス磁場を印加すること
で、飽和磁化の大きい磁気異方性磁粉が大きく磁化され
るとともに、このパルス磁場を複数回同一方向あるいは
交互に反転する方向に印加することで、特にNd−Fe−B
系合金の磁気異方性磁粉のように丸みがなく不規則形状
を有する磁粉にもパルス磁場による回転トルクが有効に
作用し、配向度が向上する。そして、最後のパルス磁場
方向と同一方向の静磁場を印加しながら超音波振動の印
加およびプレス成形を行うことにより、超音波振動の印
加により配向度がさらに向上するとともに、この高い配
向状態がプレス成形中も保持されるため、配向度の著し
い向上が得られる。The reason why a bonded magnet with significantly improved magnetic properties can be produced by the method of the present invention is considered as follows. In other words, when ultrasonic vibration is applied to the raw material powder, that is, the compound, the compound is heated, but at the same time, the filling property of the powder is improved by the vibration, so that the bulk density of the compound (the weight of the compound put into the mold Divided by the internal cavity volume).
When the bulk density increases, the gap between the magnetic particles decreases, and the rotation of the magnetic particles due to the alignment magnetic field hardly occurs, so that the alignment magnetic field does not work effectively. Therefore, even if a bond magnet is formed by a process of applying an orientation magnetic field after the application of ultrasonic vibration, the magnetic powder filling rate is increased, but the degree of orientation of the magnetic powder cannot be improved. However, according to a process in which a pulse magnetic field is applied a plurality of times, and then the compound is heated by ultrasonic vibration while maintaining this orientation state in a static magnetic field, a bonded magnet having a high degree of orientation and a high filling factor can be obtained. Also, by applying a pulse magnetic field having a large magnetic field intensity, the magnetic anisotropic magnetic powder having a large saturation magnetization is greatly magnetized, and by applying this pulse magnetic field a plurality of times in the same direction or alternately reversed, Especially Nd-Fe-B
Rotational torque by a pulse magnetic field effectively acts on magnetic powder having irregular shape without roundness like magnetic anisotropic magnetic powder of a system alloy, and the degree of orientation is improved. By applying ultrasonic vibration and press molding while applying a static magnetic field in the same direction as the last pulse magnetic field direction, the degree of orientation is further improved by the application of ultrasonic vibration, and this high orientation state is reduced by pressing. Since it is maintained during molding, a remarkable improvement in the degree of orientation can be obtained.
【0031】また、超音波振動によりコンパウンドが短
時間に加熱され、バインダの溶融による潤滑性の向上お
よび振動による粉末の充填性向上効果により、磁粉充填
率の向上も同時に得られる。The compound is heated in a short time by the ultrasonic vibration, the lubricating property is improved by melting the binder, and the filling property of the powder is improved by the vibration, so that the magnetic powder filling rate can be improved at the same time.
【0032】[0032]
【発明の実施の形態】本発明のボンド磁石の製造方法に
用いる原料粉末は、従来の樹脂ボンド磁石のプレス成形
用のコンパウンドと同様に、磁性粉末とバインダの熱硬
化性樹脂とからなる。原料粉末は、磁粉と熱硬化性樹脂
との混合物でもよいが、磁粉を熱硬化性樹脂で被覆した
ものの方が樹脂が磁粉に対してより均一に分布している
ため好ましい。熱硬化性樹脂による磁粉の被覆は、押出
機等を用いて熱硬化性樹脂をその溶融温度以上で硬化温
度より低温にて磁粉と溶融混練するか、または、熱硬化
性樹脂の溶液を磁粉と混合した後、溶媒を蒸発させると
いった慣用法により実施できる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The raw material powder used in the method for producing a bonded magnet of the present invention comprises a magnetic powder and a thermosetting resin of a binder, similarly to a conventional compound for press molding of a resin bonded magnet. The raw material powder may be a mixture of a magnetic powder and a thermosetting resin, but a material obtained by coating the magnetic powder with a thermosetting resin is preferable because the resin is more uniformly distributed with respect to the magnetic powder. The coating of the magnetic powder with the thermosetting resin is performed by melting and kneading the thermosetting resin with the magnetic powder at a temperature higher than its melting temperature and lower than the curing temperature using an extruder, or a solution of the thermosetting resin with the magnetic powder. After mixing, it can be carried out by a conventional method such as evaporating the solvent.
【0033】磁粉は磁気異方性のものを利用する。磁粉
の種類は特に制限されないが、通常はSm2Co17 系、Sm−
Fe−N系、Nd−Fe−B系等の希土類合金からなる。かか
る磁気異方性磁粉は、急冷凝固法により製造した磁粉を
熱間静水圧プレスし、成形体を塑性加工後に粉砕する方
法、水素処理 (HDDR) 法などの従来法により製造したも
のでよい。これらの磁気異方性磁粉は、不規則形状の粉
末であって、従来の磁場中プレス成形では配向度が低く
なると言われているが、本発明は特にこのような粉末に
適用した時に配向度の向上効果が大きい。好ましい磁粉
は、Nd−Fe−B系、Sm−Fe−N系などを含む希土類−鉄
系合金の粉末であり、特に不規則形状のものである。The magnetic powder uses magnetic anisotropy. The type of the magnetic powder is not particularly limited, but is usually Sm 2 Co 17 type, Sm−
It is made of a rare earth alloy such as Fe-N-based or Nd-Fe-B-based. Such magnetic anisotropic magnetic powder may be manufactured by a conventional method such as a method of hot isostatic pressing magnetic powder produced by a rapid solidification method, pulverizing the compact after plastic working, and a hydrogen treatment (HDDR) method. These magnetic anisotropic magnetic powders are irregularly shaped powders, and it is said that the degree of orientation is low in conventional press molding in a magnetic field, but the present invention is particularly effective when applied to such powders. The effect of improvement is great. Preferred magnetic powders are rare earth-iron alloy powders including Nd-Fe-B-based, Sm-Fe-N-based and the like, and are particularly irregular in shape.
【0034】粉末の粒度も広範囲に適用可能であるが、
平均粒径が 0.5〜350 μmの範囲内が好適である。0.5
μm未満であると外部配向磁場により磁粉に作用する回
転トルクが小さく、磁気特性が低下し、350 μmを越え
ると、磁石中の空孔サイズが大きくなり、表面処理に対
して問題になる。より好ましい範囲は、38μm以上、30
0 μm未満である。Although the particle size of the powder is widely applicable,
The average particle size is preferably in the range of 0.5 to 350 μm. 0.5
If it is less than μm, the rotational torque acting on the magnetic powder due to the externally oriented magnetic field is small, and the magnetic properties are degraded. A more preferred range is 38 μm or more,
It is less than 0 μm.
【0035】バインダとして用いる熱硬化性樹脂も特に
制限されず、従来より樹脂ボンド磁石に使用されてきた
エポキシ樹脂、フェノール樹脂、ポリエステル樹脂など
が使用できる。樹脂の常温での性状は液状でも固形でも
よいが、金型への投入のしやすさからは固形が望まし
い。さらに固形樹脂の融点が45℃〜90℃の範囲であるこ
とが望ましい。融点が45℃未満であると、連続的にプレ
ス成形を行う場合、パンチと金型および/あるいは粉末
と金型との摩擦熱により金型温度が上昇する可能性があ
るため、金型への投入時にコンパウンドが付着しやす
く、投入しづらくなる。逆に融点が90℃を越えると、超
音波による加熱に時間を要するため、生産性の低下があ
る。The thermosetting resin used as the binder is not particularly limited, and an epoxy resin, a phenol resin, a polyester resin and the like conventionally used for resin-bonded magnets can be used. The properties of the resin at room temperature may be liquid or solid, but solids are desirable from the viewpoint of ease of introduction into a mold. Further, it is desirable that the melting point of the solid resin is in the range of 45 ° C to 90 ° C. When the melting point is less than 45 ° C., when the press molding is performed continuously, the mold temperature may increase due to frictional heat between the punch and the mold and / or the powder and the mold. Compound tends to adhere at the time of injection, making it difficult to insert. Conversely, if the melting point exceeds 90 ° C., time is required for heating by ultrasonic waves, so that productivity is reduced.
【0036】磁性粉末に対するバインダ (熱硬化性樹
脂) の混合比率は1〜20wt%とするのが好ましい。この
混合比率が1wt%未満では、成形された樹脂ボンド磁石
内の磁性粉末間の結合が不十分となり、成形性が悪く、
得られた圧粉体および最終的に得られる樹脂ボンド磁石
の機械的強度が著しく低下する。一方、バインダの混合
比率が20wt%を越えると、磁性粉末の割合が低下し、磁
気特性が著しく低下する。バインダの好ましい混合比率
は2〜10wt%であり、より好ましくは2wt%以上、5wt
%以下である。The mixing ratio of the binder (thermosetting resin) to the magnetic powder is preferably 1 to 20% by weight. If the mixing ratio is less than 1% by weight, the bonding between the magnetic powders in the molded resin-bonded magnet becomes insufficient, resulting in poor moldability.
The mechanical strength of the obtained green compact and the finally obtained resin-bonded magnet are significantly reduced. On the other hand, if the mixing ratio of the binder exceeds 20% by weight, the ratio of the magnetic powder decreases, and the magnetic characteristics are significantly reduced. The preferred mixing ratio of the binder is 2 to 10 wt%, more preferably 2 wt% or more and 5 wt%.
% Or less.
【0037】原料粉末には、熱硬化性樹脂と磁性粉末の
他に、必要に応じて、カップリング材、潤滑剤等の従来
より用いられてきた各種の添加剤を少量であれば添加で
きる。また、熱硬化性樹脂による被覆を異なる樹脂で2
層以上施すこともできる。この原料粉末を金型に給粉し
て磁場中超音波プレス成形を行う。本発明では、パルス
磁場を印加後、静磁場中で超音波振動を付与した後プレ
ス成形を行う。In addition to the thermosetting resin and the magnetic powder, various conventionally used additives such as a coupling material and a lubricant can be added to the raw material powder if necessary in small amounts. Further, the coating with the thermosetting resin is made of a different resin.
More than one layer can be applied. This raw material powder is supplied to a mold and subjected to ultrasonic press molding in a magnetic field. In the present invention, after applying a pulse magnetic field, press molding is performed after applying ultrasonic vibration in a static magnetic field.
【0038】図1は、本発明にかかるボンド磁石の製造
装置の模式的説明図であり、磁場中プレス成形機10は、
上パンチ12と、下パンチ14と、金型16、そして金型16の
周囲に設けられた、パルス磁場および静磁場の印加手段
を構成する磁場コイル18から構成され、図示例では、上
パンチには図示しない超音波振動子に接続された、超音
波振動の印加手段を構成するホーン20が接触して設けら
れている。ホーン20は、下パンチ14に設けられてもよ
い。さらに、金型16にも取付けることができる。FIG. 1 is a schematic explanatory view of an apparatus for manufacturing a bonded magnet according to the present invention.
The upper punch 12, the lower punch 14, the mold 16, and a magnetic field coil 18 which is provided around the mold 16 and constitutes means for applying a pulse magnetic field and a static magnetic field. A horn 20, which is connected to an ultrasonic transducer (not shown) and constitutes an ultrasonic vibration applying means, is provided in contact therewith. The horn 20 may be provided on the lower punch 14. Further, it can be attached to the mold 16.
【0039】原料粉末( コンパウンド)22 は、金型16内
に挿入され上下パンチの間で成形され、そのとき磁場コ
イル18によりパルス磁場および静磁場が印加され、さら
に、ホーン20を介して超音波振動が、金型16および/ま
たは上パンチ12( および/または下パンチ14) に印加さ
れる。A raw material powder (compound) 22 is inserted into a mold 16 and formed between upper and lower punches. At this time, a pulse magnetic field and a static magnetic field are applied by a magnetic field coil 18, and further, an ultrasonic wave is applied through a horn 20. Vibration is applied to the mold 16 and / or the upper punch 12 (and / or the lower punch 14).
【0040】このように本発明において使用するプレス
成形機は、電磁石等のパルス磁場および静磁場の印加手
段と、超音波振動の印加手段を備えている。パルス磁場
は、静磁場発生用と同じコイルを利用して印加すること
もできるが、発生可能なパルス磁場強度が制限されるの
で、静磁場発生用の電磁石とは別に、パルス磁場発生用
空心コイルを設置することが好ましい。As described above, the press molding machine used in the present invention includes means for applying a pulse magnetic field and a static magnetic field, such as an electromagnet, and means for applying ultrasonic vibration. The pulse magnetic field can be applied using the same coil as that used for generating the static magnetic field, but the pulse magnetic field strength that can be generated is limited, so apart from the electromagnet for generating the static magnetic field, the air-core coil for generating the pulse magnetic field can be used. Is preferably installed.
【0041】配向磁場の強さは、静磁場は好ましくは8
kOe 以上、より好ましくは10 kOe以上であり、パルス磁
場は好ましくは10 kOe以上、より好ましくは25 kOe以上
である。静磁場が8kOe 未満、またはパルス磁場が10 k
Oe未満であると、得られたボンド磁石の配向度の向上は
小さい。配向磁場の強さの上限は特に限定されず、磁場
が強いほど磁粉の配向度が向上する傾向があるが、上記
のより好ましい磁場の強さを超えた場合の配向度の向上
はそれほど大きくない。磁場強さを過大にするとエネル
ギーコストや装置が大型化するので、通常は静磁場で15
kOe以下、パルス磁場で40 kOe以下、特に35 kOe以下で
十分である。The strength of the alignment magnetic field is preferably such that the static magnetic field is 8
It is at least kOe, more preferably at least 10 kOe, and the pulse magnetic field is preferably at least 10 kOe, more preferably at least 25 kOe. Static magnetic field less than 8kOe or pulsed magnetic field of 10k
When it is less than Oe, the improvement in the degree of orientation of the obtained bonded magnet is small. The upper limit of the intensity of the alignment magnetic field is not particularly limited, and the degree of orientation of the magnetic powder tends to improve as the magnetic field increases, but the degree of improvement in the degree of orientation when the strength of the more preferable magnetic field is exceeded is not so large. . Excessive magnetic field strength increases energy costs and equipment, so a static magnetic field
A kOe or less and a pulse magnetic field of 40 kOe or less, especially 35 kOe or less are sufficient.
【0042】パルス磁場の1波形の時間は、1マイクロ
秒〜1秒、より好ましくは5マイクロ秒〜100 ミリ秒で
ある。プレス成形は、従来と同様に、下パンチで底面が
形成された金型キャビティ内に原料粉末を給粉し、上パ
ンチを押し下げて加圧することにより実施できる。加圧
力は特に制限されず、従来と同様でよいが、超音波振動
により粉末の充填性が向上しているので、従来の圧力よ
りも低い圧力となる。好ましくは4〜10 ton/cm2、より
好ましくは4〜6ton/cm2 である。加圧保持時間は通常
は1〜3秒で十分である。The time for one waveform of the pulse magnetic field is 1 microsecond to 1 second, more preferably 5 microseconds to 100 milliseconds. Press molding can be carried out by supplying raw material powder into a mold cavity having a bottom surface formed by a lower punch and pressing down an upper punch, as in the related art. The pressing force is not particularly limited, and may be the same as the conventional one. However, since the filling property of the powder is improved by the ultrasonic vibration, the pressure is lower than the conventional pressure. Preferably 4~10 ton / cm 2, more preferably 4~6ton / cm 2. The pressure holding time is usually 1 to 3 seconds.
【0043】金型キャビティに充填した原料粉末を上記
のように加圧する前に、まずパルス磁場を一回、より好
ましくは複数回印加する。特に不規則形状の磁気異方性
磁粉は磁場強度の小さい静磁場では回転しにくく、従来
は配向度を十分に高くすることが困難であった。本発明
により高い磁場強度のパルス磁場を一回あるいは/また
は複数回印加することにより、磁気異方性磁粉が配向し
やすくなる。Before the raw material powder filled in the mold cavity is pressurized as described above, a pulsed magnetic field is first applied once, more preferably a plurality of times. In particular, irregularly shaped magnetic anisotropic magnetic powder is hard to rotate in a static magnetic field having a small magnetic field strength, and it has conventionally been difficult to sufficiently increase the degree of orientation. By applying a pulse magnetic field having a high magnetic field intensity once or / and a plurality of times according to the present invention, the magnetic anisotropic magnetic powder is easily oriented.
【0044】一回だけのパスル磁場を印加する場合は、
そのパルス磁場の方向は、その後の静磁場の方向と同一
方向とする。複数回のパスル磁場を印加する場合は、そ
れらのパルス磁場の方向はすべて後の静磁場と同一方向
とするか、反転パルス磁場の場合は、静磁場を印加する
直前のパルス磁場の方向と静磁場の方向を同一方向にす
る。When applying a pulse magnetic field only once,
The direction of the pulse magnetic field is the same as the direction of the subsequent static magnetic field. When applying a pulse magnetic field a plurality of times, the directions of the pulse magnetic fields are all the same as the direction of the subsequent static magnetic field. Make the direction of the magnetic field the same.
【0045】パルス磁場の印加回数は、パルス磁場の方
向が静磁場の方向と同一であれば、本発明によるプロセ
スにより高い配向度のボンド磁石が得られるが、複数回
の方がその効果が大きい。パルス磁場の印加回数は二回
以上、より好ましくは三回以上とする。If the direction of the pulse magnetic field is the same as the direction of the static magnetic field, a bond magnet having a high degree of orientation can be obtained by the process according to the present invention. . The number of times of application of the pulse magnetic field is two or more, more preferably three or more.
【0046】本発明において使用可能な磁粉、例えば丸
みがなく不規則な形状を有しているNd−Fe−B系異方性
磁粉は、配向磁場により回転しにくいので、一般に高配
向化することは困難であるが、高い磁場強度のパルス磁
場を同一方向に複数回印加すること、あるいは、高い磁
場強度のパルス磁場の磁場方向を交互に反転させるこ
と、により一回では充分に配向しなかった磁気異方性磁
粉が配向しやすくなる。The magnetic powder usable in the present invention, for example, an Nd-Fe-B-based anisotropic magnetic powder having no roundness and an irregular shape is hardly rotated by an alignment magnetic field. Is difficult, but by applying a pulse magnetic field with a high magnetic field strength several times in the same direction, or by alternately reversing the magnetic field direction of the pulse magnetic field with a high magnetic field strength, it was not sufficiently oriented at one time The magnetic anisotropic magnetic powder is easily oriented.
【0047】本発明では、超音波振動およびパルス磁場
と静磁場を併用した配向磁場を使用するが、特にパルス
磁場および超音波振動を印加するタイミングが重要であ
る。すなわち、パルス磁場の印加は超音波振動を印加す
る前に行う。コンパウンドに超音波振動を印加すること
により、金型を加熱することなく、コンパウンドのみを
選択的に加熱でき、ボンド磁石の温間プレス成形が工業
的に可能となるが、コンパウンドに超音波振動を印加す
ると、この加熱とともに粉末の充填性が向上する結果、
コンパウンドの嵩密度が増大する。超音波振動の印加後
にパルス磁場を印加すると、この嵩密度の増大のため
に、コンパウンドの粉末間の空隙が減少し、配向磁場に
より磁粉が回転/移動しにくくなり、配向磁場としての
パルス磁場が有効に作用しなくなり、その結果、成形体
の配向度すなわち磁気特性も低下する。超音波振動の印
加前にパルス磁場を印加すると、コンパウンドの嵩密度
が小さいため、粉末間の空隙が多く、配向磁場としての
パルス磁場により、磁粉が自由に回転/移動しやすく、
その結果成形体の配向度すなわち磁気特性が向上する。In the present invention, an orientation magnetic field using a combination of an ultrasonic vibration and a pulse magnetic field and a static magnetic field is used. In particular, the timing of applying the pulse magnetic field and the ultrasonic vibration is important. That is, the application of the pulse magnetic field is performed before the application of the ultrasonic vibration. By applying ultrasonic vibration to the compound, only the compound can be selectively heated without heating the mold, and warm press forming of bonded magnets becomes possible industrially. When applied, the powder fillability improves with this heating,
The bulk density of the compound increases. When a pulse magnetic field is applied after the application of the ultrasonic vibration, the gap between the compound powders is reduced due to the increase in the bulk density, and the magnetic powder becomes difficult to rotate / move due to the orientation magnetic field. It does not work effectively, and as a result, the degree of orientation of the molded body, that is, the magnetic properties are also reduced. If a pulse magnetic field is applied before the application of the ultrasonic vibration, the bulk density of the compound is small, so there are many gaps between the powders, and the pulse magnetic field as the alignment magnetic field allows the magnetic powder to rotate / move freely,
As a result, the degree of orientation of the molded body, that is, the magnetic properties are improved.
【0048】パルス磁場の印加後、静磁場を印加しなが
ら、上パンチを押し下げて金型キャビティ内の原料粉末
に超音波振動を印加し、さらに、超音波振動を停止、高
圧下する。After the application of the pulse magnetic field, while applying the static magnetic field, the upper punch is depressed to apply ultrasonic vibration to the raw material powder in the mold cavity, and the ultrasonic vibration is stopped and the pressure is reduced.
【0049】静磁場の方向は一回あるいは複数回の同一
方向のパルス磁場の方向と同一方向とする。複数回の反
転パルス磁場の場合には、静磁場の方向は複数回の反転
パルス磁場の最後のパルス磁場方向と同一とする。反転
パルス磁場の初回の磁場方向を後の静磁場方向と揃えた
場合、反転パルス磁場の印加回数が奇数回であれば、複
数回の反転パルス磁場の最後のパルス磁場の方向と静磁
場の方向とが一致する。また、反転パルス磁場の印加回
数が偶数回であれば、複数回の反転パルス磁場の最後の
パルス磁場の方向と静磁場の方向とが逆向きになる。The direction of the static magnetic field is the same as the direction of the pulse magnetic field in the same direction one or more times. In the case of a plurality of inversion pulse magnetic fields, the direction of the static magnetic field is the same as the last pulse magnetic field direction of the plurality of inversion pulse magnetic fields. When the initial magnetic field direction of the inversion pulse magnetic field is aligned with the direction of the subsequent static magnetic field, if the number of application of the inversion pulse magnetic field is an odd number, the direction of the last pulse magnetic field of the multiple inversion pulse magnetic fields and the direction of the static magnetic field Matches. If the number of application of the inversion pulse magnetic field is an even number, the direction of the last pulse magnetic field of the plurality of inversion pulse magnetic fields and the direction of the static magnetic field are opposite.
【0050】静磁場の方向が一回あるいは複数回の同一
方向のパルス磁場と逆方向となるか、複数回の反転パル
ス磁場の最後のパルス磁場方向と逆方向になると、パル
ス磁場の印加により付与された磁粉の高度の配向性が、
プレス成形中の圧下による磁粉の回転/移動による乱れ
に加えて、逆向きの静磁場によっても乱され、成形体の
磁粉の配向度が低下し、最終的にボンド磁石の磁気特性
が低下する。When the direction of the static magnetic field is opposite to the direction of the pulse magnetic field in the same direction one or more times, or in the direction opposite to the last pulse magnetic field of the plurality of inversion pulse magnetic fields, the direction is applied by applying the pulse magnetic field. The high degree of orientation of the magnetic powder
In addition to the disturbance caused by the rotation / movement of the magnetic powder due to the reduction during press molding, the magnetic powder is also disturbed by the static magnetic field in the opposite direction, so that the degree of orientation of the magnetic powder in the compact decreases and finally the magnetic properties of the bonded magnet deteriorate.
【0051】これに対し、静磁場方向を、一回のパルス
磁場、あるいは、複数回の同一方向のパルス磁場、ある
いは、複数回の反転パルス磁場の最後のパルス磁場方向
と同一にすると、一回、あるいは、複数回の同一方向の
パルス磁場、あるいは、複数回の反転パルス磁場で付与
された高度の磁粉の配向性を、超音波振動によりさらに
向上させるとともに、この高度の磁粉の配向性を静磁場
が保持するようにプレス成形のあいだ作用し、プレス成
形中の圧下に起因する磁粉の回転/移動による乱れが静
磁場により妨げられるため、異方性磁粉が高度に配向し
た成形体が得られ、最終的に高い磁気特性のボンド磁石
が製造される。静磁場はこの磁性粉末の配向状態を維持
するために加圧中はずっと印加しておくことが好まし
い。On the other hand, if the direction of the static magnetic field is the same as the direction of a single pulse magnetic field, or the direction of the pulse magnetic field of the same direction a plurality of times, or the direction of the last pulse magnetic field of the plurality of inversion pulse magnetic fields, Or, the orientation of the high-grade magnetic powder given by a plurality of pulse magnetic fields in the same direction or a plurality of inversion pulse magnetic fields can be further improved by ultrasonic vibration, and the orientation of the high-grade magnetic powder can be reduced. The magnetic field acts during press molding to maintain the magnetic field, and the disturbance due to the rotation / movement of the magnetic powder caused by the reduction during press molding is prevented by the static magnetic field, so that a molded article with highly oriented anisotropic magnetic powder can be obtained. Finally, a bonded magnet having high magnetic properties is manufactured. It is preferable that the static magnetic field be applied during the pressurization in order to maintain the orientation state of the magnetic powder.
【0052】超音波振動により、この静磁場中での配向
度のさらなる向上、およびコンパウンドの加熱がなされ
る。超音波振動の印加中に、静磁場と同一方向のパルス
磁場を静磁場に重畳させるように印加してもよい。この
パルス磁場はやはり、静磁場より強度が大きいのでプレ
ス成形中の配向度の低下を防止する作用をする。このパ
ルス磁場の強度は、一回、あるいは、複数回の同一方向
のパルス磁場、複数回の反転パルス磁場の強度と同様で
よい。By the ultrasonic vibration, the degree of orientation in the static magnetic field is further improved, and the compound is heated. During the application of the ultrasonic vibration, a pulse magnetic field in the same direction as the static magnetic field may be applied so as to be superimposed on the static magnetic field. Since this pulse magnetic field is still stronger than the static magnetic field, it acts to prevent a decrease in the degree of orientation during press molding. The intensity of this pulse magnetic field may be the same as the intensity of one or a plurality of pulse magnetic fields in the same direction or a plurality of inversion pulse magnetic fields.
【0053】また、静磁場は、超音波振動印加前のパル
ス磁場が一回または、同一方向の複数回の場合、これら
のパルス磁場に重畳されるように、同一方向に印加して
もよい。The static magnetic field may be applied in the same direction so as to be superimposed on the pulse magnetic field when the pulse magnetic field before the application of the ultrasonic vibration is applied once or plural times in the same direction.
【0054】超音波としては、周波数10〜40kHz 、振幅
1〜100 μmのものが適用できる。周波数が10kHz 未満
か、40kHz を越える超音波、または、振幅1μm未満の
超音波では、超音波振動によるコンパウンドの加熱に時
間を要しすぎる。振幅が100μmを越える超音波では、
超音波振動により誘発される磁粉の破壊が著しくなり、
ボンド磁石の磁気特性が低下する。好ましくは、周波数
が15〜35kHz 、振幅が1〜50μmの超音波を適用する。
超音波振動の付与時間は0.5 秒以上とする。0.5 秒より
短い時間では、所定の発振条件への立ち上がりが急激と
なり、超音波発振の制御が困難で実際的でない。この付
与時間は、コンパウンドのバインダ樹脂が固形樹脂であ
る場合には、これを溶融させるのに必要な時間とするこ
とが好ましい。生産性を考慮すると、超音波振動の付与
時間は10秒以下、特に5秒以下が好ましいので、この範
囲の超音波付与時間で熱硬化性樹脂が所望の温度まで加
熱されるように超音波の周波数、振幅を選択することが
好ましい。Ultrasonic waves having a frequency of 10 to 40 kHz and an amplitude of 1 to 100 μm can be applied. With an ultrasonic wave having a frequency of less than 10 kHz or exceeding 40 kHz, or an ultrasonic wave having an amplitude of less than 1 μm, it takes too much time to heat the compound by the ultrasonic vibration. For ultrasonic waves whose amplitude exceeds 100 μm,
The destruction of magnetic powder induced by ultrasonic vibration becomes remarkable,
The magnetic properties of the bonded magnet decrease. Preferably, an ultrasonic wave having a frequency of 15 to 35 kHz and an amplitude of 1 to 50 μm is applied.
The application time of ultrasonic vibration shall be 0.5 seconds or more. If the time is shorter than 0.5 second, the rise to the predetermined oscillation condition becomes sharp, and it is difficult to control the ultrasonic oscillation, which is not practical. When the binder resin of the compound is a solid resin, the application time is preferably set to a time necessary for melting the binder resin. In consideration of productivity, the application time of the ultrasonic vibration is preferably 10 seconds or less, particularly preferably 5 seconds or less, so that the ultrasonic wave is applied so that the thermosetting resin is heated to a desired temperature in the ultrasonic application time in this range. It is preferable to select the frequency and the amplitude.
【0055】超音波は、金型内のコンパウンドと接触し
ている圧縮成形機の少なくとも一つの部材、例えば、上
下パンチで加圧する方式の圧縮成形機の場合には、上パ
ンチ、下パンチ、金型の少なくとも一つに付与する。具
体的には、その部材に超音波ホーンを取り付けることに
より超音波振動させることができる。リング状のボンド
磁石では、コア (リング状磁石の中空部に相当する位置
に配置した円柱状の部材で、リング状の下パンチの中央
にある) を超音波振動させてもよい。The ultrasonic wave is applied to at least one member of the compression molding machine that is in contact with the compound in the mold, for example, in the case of a compression molding machine of the type that presses with upper and lower punches, the upper punch, the lower punch, the metal Assigned to at least one of the types. Specifically, by attaching an ultrasonic horn to the member, ultrasonic vibration can be performed. In the ring-shaped bonded magnet, the core (a cylindrical member disposed at a position corresponding to the hollow portion of the ring-shaped magnet and located at the center of the ring-shaped lower punch) may be ultrasonically vibrated.
【0056】上記のように超音波振動を付与した後、超
音波振動を停止し、コンパウンドをパンチにより加圧し
て圧縮成形を行い、賦形させる。このときの加圧力は、
加熱設備までのハンドリングに必要な強度を持った成形
体が得られるように選択すればよく、特に制限されな
い。本発明によれば、超音波振動の付与によりコンパウ
ンドの充填性が向上し、また、好ましくは樹脂が溶融し
ているため、従来の冷間圧縮成形、さらには温間圧縮成
形に比べても、より低い加圧力で賦形することができ
る。After the application of the ultrasonic vibration as described above, the ultrasonic vibration is stopped, the compound is pressed by a punch, compression-molded, and shaped. The pressing force at this time is
The material may be selected so as to obtain a molded body having strength necessary for handling up to the heating equipment, and is not particularly limited. According to the present invention, the filling property of the compound is improved by the application of ultrasonic vibration, and also, since the resin is preferably melted, conventional cold compression molding, and even more than warm compression molding, The shaping can be performed with a lower pressing force.
【0057】静磁場発生用の磁場コイルに配向方向 (静
磁場の方向) と逆向きの電流を流して成形体を脱磁し、
脱型する。プレス成形で得られた成形体は、従来と同様
に、適当な加熱炉に移してバインダーの熱硬化性樹脂の
硬化に必要な温度に加熱すると、磁粉が熱硬化性樹脂で
結合されたボンド磁石が得られる。その後、必要に応じ
て、塗装やメッキなどの表面処理等の処理を施してもよ
い。本発明により、従来の温間プレス成形に比べても、
より高い磁気特性を有するボンド磁石が短時間で成形可
能となる。A current in a direction opposite to the orientation direction (direction of the static magnetic field) is applied to a magnetic field coil for generating a static magnetic field to demagnetize the molded body.
Demold. As before, the molded body obtained by press molding is transferred to an appropriate heating furnace and heated to the temperature required for curing the thermosetting resin of the binder, and the bonded magnet in which the magnetic powder is bonded with the thermosetting resin Is obtained. Thereafter, if necessary, a treatment such as surface treatment such as painting or plating may be performed. By the present invention, even compared to conventional warm press forming,
Bonded magnets having higher magnetic properties can be formed in a short time.
【0058】[0058]
【実施例】水素処理法で得た不規則形状の磁気異方性Nd
−Fe−B系磁粉 (平均粒径150 μm) に、バインダとし
て磁粉重量に対して3wt%のエポキシ樹脂 (硬化剤と硬
化促進剤を含有、溶融温度60℃) を混合し、60℃で溶融
混練して、磁粉がエポキシ樹脂で被覆された原料粉末
(コンパウンド) を得た。プレス成形は、図1に示すよ
うな磁場中超音波プレス成形機を用いて、断面積が9×
11mmの成形体を得るように行った。[Example] Irregular magnetic anisotropy Nd obtained by hydrotreatment
-Mix Fe-B-based magnetic powder (average particle size 150 μm) with 3 wt% epoxy resin (containing a curing agent and a curing accelerator, melting temperature 60 ° C) based on the weight of the magnetic powder as a binder and melt at 60 ° C. Raw material powder kneaded and magnetic powder coated with epoxy resin
(Compound). Press molding is performed using a magnetic field ultrasonic press molding machine as shown in FIG.
It was performed to obtain a molded body of 11 mm.
【0059】金型内コンパウンドに対しては、磁化コイ
ルから圧下方向に垂直な方向 (横磁場) の静磁場および
/またはパルス磁場を印加できる。また、上パンチを超
音波振動することにより、コンパウンドに超音波振動(
周波数20kHz 、振幅20μm)を印加した。For the compound in the mold, a static magnetic field and / or a pulse magnetic field in a direction (transverse magnetic field) perpendicular to the rolling down direction can be applied from the magnetizing coil. In addition, by ultrasonically vibrating the upper punch, ultrasonic vibration (
A frequency of 20 kHz and an amplitude of 20 μm) were applied.
【0060】原料粉末を金型内に投入した後、磁場強度
が25kOe の一回のパルス磁場、複数回の同一方向のパル
ス磁場、複数回の反転パルス磁場を所定回数印加し、次
いで10 kOeの静磁場を印加しながら超音波振動を付与し
た後、プレス成形を行った (加圧力6ton/cm2 、加圧保
持時間1秒) 。なお、静磁場の方向は、パルス磁場が一
回の場合と同一方向の複数回の場合には、パルス磁場と
同一方向とし、パルス磁場が複数回の反転パルス磁場の
場合には、最後のパルス磁場の方向と同一方向とした。
また、超音波振動によるコンパウンドの加熱温度は、従
来例として行った金型加熱プレス法の場合と同様の80℃
になるように、超音波の条件を設定した。After the raw material powder is charged into the mold, a single pulse magnetic field having a magnetic field strength of 25 kOe, a plurality of pulse magnetic fields in the same direction, a plurality of inversion pulse magnetic fields are applied a predetermined number of times, and then 10 kOe. After applying ultrasonic vibration while applying a static magnetic field, press molding was performed (pressure 6 ton / cm 2 , pressure holding time 1 second). The direction of the static magnetic field is the same as the direction of the pulse magnetic field when the pulse magnetic field is multiple times in the same direction as when the pulse magnetic field is one time. The direction was the same as the direction of the magnetic field.
The heating temperature of the compound by ultrasonic vibration is 80 ° C, which is the same as that of the mold heating press method performed as a conventional example.
The ultrasonic conditions were set so that
【0061】その後、静磁場発生用コイルに逆向きの電
流を流して脱磁させ、脱型して成形体を得た。この成形
体をArガス雰囲気中で120 ℃に60分間加熱してバインダ
ーを硬化させ、ボンド磁石を得た。Thereafter, a current was applied in the opposite direction to the static magnetic field generating coil to demagnetize it, and it was demolded to obtain a compact. The molded body was heated at 120 ° C. for 60 minutes in an Ar gas atmosphere to cure the binder, thereby obtaining a bonded magnet.
【0062】従来例として、金型を加熱する温間プレス
成形を行った。比較例として、パルス磁場を使用しない
で静磁場と超音波振動のみを印加した場合(A) 、超音波
振動印加後にパルス磁場を印加しその後静磁場を印加し
ながらプレス成形する場合(B) 、静磁場を印加しながら
超音波振動を印加した後超音波振動を停止し静磁場を印
加したままパルス磁場を重畳して印加し、その後プレス
成形を静磁場を印加したまま行った場合(C) についてボ
ンド磁石を作製した。As a conventional example, warm press molding for heating a mold was performed. As a comparative example, when applying only a static magnetic field and ultrasonic vibration without using a pulse magnetic field (A), applying a pulse magnetic field after applying ultrasonic vibration, and then performing press molding while applying a static magnetic field (B), When applying ultrasonic vibration while applying a static magnetic field, then stopping the ultrasonic vibration, applying a pulse magnetic field while applying the static magnetic field, and then applying press forming while applying the static magnetic field (C) , A bonded magnet was produced.
【0063】図2(a) 〜(p) に、本実施例における加圧
条件およびパスル磁場および静磁場の印加条件、そして
それらの印加タイミング、ならびに超音波振動印加のタ
イミングを図示して示す。図中、上パンチ押し込み量
は、下方に向かって増加し、波線は超音波振動を印加し
たタイミングを示す。また、磁場強度のグラフにおいて
黒太線はパスル磁場印加タイミングと大きさを、線状グ
ラフは静磁場の印加タイミングと大きさをそれぞれ示
す。FIGS. 2 (a) to 2 (p) show pressurizing conditions, application conditions of a pulse magnetic field and a static magnetic field, application timings thereof, and timings of application of ultrasonic vibration in this embodiment. In the figure, the amount of pushing in the upper punch increases downward, and the dashed line indicates the timing at which ultrasonic vibration is applied. Further, in the graph of the magnetic field strength, a thick black line indicates the application timing and magnitude of the pulse magnetic field, and a linear graph indicates the application timing and magnitude of the static magnetic field.
【0064】得られたボンド磁石について、下記の方法
により、磁気特性を測定し、それらの結果を表1にまと
めて示す。 (1) 磁気特性 得られたボンド磁石の残留磁束密度(Br)、保磁力(iHc)
ならびに最大エネルギー積(BHmax) をBHトレーサを用い
て測定した。The magnetic properties of the obtained bonded magnet were measured by the following method, and the results are shown in Table 1. (1) Magnetic properties Residual magnetic flux density (Br) and coercive force (iHc) of the obtained bonded magnet
In addition, the maximum energy product (BHmax) was measured using a BH tracer.
【0065】[0065]
【表1】 [Table 1]
【0066】[0066]
【発明の効果】本発明により、次のような効果を得るこ
とができる。 (1) パルス磁場の印加により高い配向度を持った磁気異
方性のボンド磁石を製造できる。According to the present invention, the following effects can be obtained. (1) By applying a pulsed magnetic field, it is possible to manufacture a bonded magnet having a high degree of orientation and a magnetic anisotropy.
【0067】(2) 超音波振動の印加により高い磁粉充填
率、配向度を持ったボンド磁石が製造できる。 (3) 従来の温間プレス成形に比べて、より高い磁気特性
を持った異方性ボンド磁石を短時間で成形できる。(2) By applying ultrasonic vibration, a bonded magnet having a high magnetic powder filling rate and a high degree of orientation can be manufactured. (3) Anisotropic bonded magnets with higher magnetic properties can be formed in a shorter time than conventional warm press forming.
【図1】本発明において用いることができるプレス成形
機の模式的説明図である。FIG. 1 is a schematic explanatory view of a press molding machine that can be used in the present invention.
【図2】図2(a) 〜(p) は、実施例における加圧条件お
よびパスル磁場および静磁場の印加条件、そしてそれら
の印加タイミング、ならびに超音波振動印加のタイミン
グの説明図である。FIGS. 2 (a) to 2 (p) are explanatory diagrams of pressurizing conditions, application conditions of a pulse magnetic field and a static magnetic field, application timings thereof, and timing of application of ultrasonic vibration in the embodiment.
Claims (5)
からなる原料粉末を金型に充填し、磁場中でプレス成形
をした後、成形体を加熱して樹脂を硬化させることから
なるボンド磁石の製造方法であって、磁場中でのプレス
成形に際して、金型に充填した原料粉末に、まずパルス
磁場を一回あるいは複数回印加した後、静磁場を印加し
ながら、超音波振動を金型および/またはパンチに付与
し、次いで超音波振動を停止して、加圧力で賦形するこ
とを特徴とするボンド磁石の製造方法。1. A mold is filled with a raw material powder composed of a magnetic anisotropic magnetic powder and a thermosetting resin, pressed in a magnetic field, and then the molded body is heated to cure the resin. A method of manufacturing a bonded magnet, which comprises applying a pulse magnetic field once or multiple times to a raw material powder filled in a mold during press molding in a magnetic field, Is applied to a mold and / or a punch, and then ultrasonic vibration is stopped, and shaping is performed by pressing force.
一方向である、請求項1記載のボンド磁石の製造方法。2. The method according to claim 1, wherein the direction of one pulse magnetic field is the same as the direction of the static magnetic field.
静磁場と同一方向である、請求項1記載のボンド磁石の
製造方法。3. The method for manufacturing a bonded magnet according to claim 1, wherein the directions of the pulse magnetic field of the plurality of times are all the same as the direction of the subsequent static magnetic field.
し、その後の静磁場の方向と、静磁場を印加する直前の
パルス磁場の方向とが同じであることを特徴とする、請
求項1記載のボンド磁石の製造方法。4. The method according to claim 1, wherein the directions of the pulse magnetic field are alternately reversed a plurality of times, and the direction of the subsequent static magnetic field is the same as the direction of the pulse magnetic field immediately before the application of the static magnetic field. 2. A method for producing the bonded magnet according to 1.
金の粉末である、請求項1ないし4のいずれかに記載の
ボンド磁石の製造方法。5. The method for producing a bonded magnet according to claim 1, wherein the magnetic powder having magnetic anisotropy is a rare earth-iron alloy powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9341535A JPH11176682A (en) | 1997-12-11 | 1997-12-11 | Manufacturing method of Bond (registered trademark) magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9341535A JPH11176682A (en) | 1997-12-11 | 1997-12-11 | Manufacturing method of Bond (registered trademark) magnet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11176682A true JPH11176682A (en) | 1999-07-02 |
Family
ID=18346827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9341535A Pending JPH11176682A (en) | 1997-12-11 | 1997-12-11 | Manufacturing method of Bond (registered trademark) magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11176682A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7367791B2 (en) | 2004-11-19 | 2008-05-06 | Aichi Steel Corporation | Device for producing annular or arcuate magnet |
KR100914043B1 (en) * | 2007-08-22 | 2009-08-31 | 한국세라믹기술원 | Magnet forming apparatus and method |
KR101019124B1 (en) * | 2008-11-25 | 2011-03-07 | 한국생산기술연구원 | Magnetic powder press molding device |
CN103894605A (en) * | 2012-12-25 | 2014-07-02 | 中磁科技股份有限公司 | Triple joint guarantee method and device for molding press |
CN104647793A (en) * | 2015-02-09 | 2015-05-27 | 中国科学院声学研究所东海研究站 | Production method for compression molding of PBX (Polymer Bonded Explosive) |
CN108057883A (en) * | 2018-01-02 | 2018-05-22 | 中南大学 | The method and apparatus that a kind of radial and axial electromagnetic force realizes powder compacting |
CN115010478A (en) * | 2022-07-06 | 2022-09-06 | 横店集团东磁股份有限公司 | Opposite-sex dry-pressed ferrite and preparation method thereof |
CN115780807A (en) * | 2022-12-27 | 2023-03-14 | 北京工商大学 | Full-automatic magnet integrated forming device and method using one-way mover |
WO2023090167A1 (en) * | 2021-11-17 | 2023-05-25 | 株式会社アイシン | Method for producing bonded magnet |
-
1997
- 1997-12-11 JP JP9341535A patent/JPH11176682A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7367791B2 (en) | 2004-11-19 | 2008-05-06 | Aichi Steel Corporation | Device for producing annular or arcuate magnet |
KR100914043B1 (en) * | 2007-08-22 | 2009-08-31 | 한국세라믹기술원 | Magnet forming apparatus and method |
KR101019124B1 (en) * | 2008-11-25 | 2011-03-07 | 한국생산기술연구원 | Magnetic powder press molding device |
CN103894605A (en) * | 2012-12-25 | 2014-07-02 | 中磁科技股份有限公司 | Triple joint guarantee method and device for molding press |
CN103894605B (en) * | 2012-12-25 | 2016-08-10 | 中磁科技股份有限公司 | Moulding press triple UNPROFOR method and device |
CN104647793A (en) * | 2015-02-09 | 2015-05-27 | 中国科学院声学研究所东海研究站 | Production method for compression molding of PBX (Polymer Bonded Explosive) |
CN108057883A (en) * | 2018-01-02 | 2018-05-22 | 中南大学 | The method and apparatus that a kind of radial and axial electromagnetic force realizes powder compacting |
WO2023090167A1 (en) * | 2021-11-17 | 2023-05-25 | 株式会社アイシン | Method for producing bonded magnet |
CN115010478A (en) * | 2022-07-06 | 2022-09-06 | 横店集团东磁股份有限公司 | Opposite-sex dry-pressed ferrite and preparation method thereof |
CN115010478B (en) * | 2022-07-06 | 2023-09-26 | 横店集团东磁股份有限公司 | Different-polarity dry-pressed ferrite and preparation method thereof |
CN115780807A (en) * | 2022-12-27 | 2023-03-14 | 北京工商大学 | Full-automatic magnet integrated forming device and method using one-way mover |
CN115780807B (en) * | 2022-12-27 | 2024-01-26 | 北京工商大学 | Full-automatic magnet integrated forming device and method using unidirectional motion device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2816668B2 (en) | Method for manufacturing magnetically anisotropic resin-bonded magnet | |
EP0452580B1 (en) | A resin bound magnet and its production process | |
WO2003038845A1 (en) | Permanent magnet manufacturing method and press apparatus | |
JPH11176682A (en) | Manufacturing method of Bond (registered trademark) magnet | |
JP3060104B2 (en) | Radially-oriented magnetic anisotropic resin-bonded magnet and method for producing the same | |
WO2010029642A1 (en) | Method of producing rare earth anisotropic bond magnet, method of orienting compacted magnet body and apparatus for compacting in magnetic field | |
EP1180772B1 (en) | Anisotropic magnet and process of producing the same | |
JP3883138B2 (en) | Manufacturing method of resin bonded magnet | |
JPH1167568A (en) | Manufacturing method of bonded magnet | |
JP2003203818A (en) | Method of manufacturing permanent magnet and pressing apparatus | |
JPH104023A (en) | Manufacturing method of bonded type permanent magnet | |
WO2003056583A1 (en) | Production method for permanent magnet and press device | |
JPH1167567A (en) | Manufacturing method of bonded magnet | |
JP3151604B2 (en) | Method for producing radial anisotropic bonded magnet and bonded magnet | |
Ohmori | Bonded Rare Earth Permanent Magnets | |
JPH09186012A (en) | Magnetically isotropic resin bond magnet | |
JPH0831677A (en) | Manufacture of magnetic anisotropy resin bonding type magnet and magnetic anisotropy resin type magnet | |
JP2002237406A (en) | Method of manufacturing magnetically anisotropic resin- bonded magnet | |
JPH10189320A (en) | Anisotropic magnet alloy powder, and its manufacture | |
JPH04112504A (en) | Manufacture of pare-earth magnet | |
JP2002057014A (en) | Anisotropic magnet, its manufacturing method, and motor using the same | |
JPH0559572B2 (en) | ||
JPH0774012A (en) | Bonding permanent magnet manufacturing method and raw material powder | |
JPH10199717A (en) | Anisotropic magnet and its manufacturing method | |
JPH06260360A (en) | Production of rare-earth metal and iron-based magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20031125 |