JPH11173683A - Cryogenic apparatus - Google Patents
Cryogenic apparatusInfo
- Publication number
- JPH11173683A JPH11173683A JP34024697A JP34024697A JPH11173683A JP H11173683 A JPH11173683 A JP H11173683A JP 34024697 A JP34024697 A JP 34024697A JP 34024697 A JP34024697 A JP 34024697A JP H11173683 A JPH11173683 A JP H11173683A
- Authority
- JP
- Japan
- Prior art keywords
- flow path
- condenser
- heat exchanger
- refrigerant
- cooler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 86
- 239000007791 liquid phase Substances 0.000 claims description 13
- 239000012071 phase Substances 0.000 claims description 6
- 238000005338 heat storage Methods 0.000 abstract description 6
- 239000007792 gaseous phase Substances 0.000 abstract 3
- 238000005057 refrigeration Methods 0.000 description 21
- 230000000694 effects Effects 0.000 description 8
- 239000003921 oil Substances 0.000 description 8
- 238000010257 thawing Methods 0.000 description 5
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 238000009835 boiling Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical compound F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 230000002528 anti-freeze Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、真空産業、理化
学、化学、食品等の多くの分野で利用される極低温を生
成するための装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing a cryogenic temperature used in many fields such as the vacuum industry, physics and chemistry, chemistry, and food.
【0002】[0002]
【従来の技術】従来から、人為的手段を用いて物質を自
然の温度以下に下げる冷凍装置は、様々なものが提案さ
れている。上記した冷凍装置としては、圧縮機、凝縮
器、膨張弁及び蒸発器を備え、冷媒を圧縮機で吸入して
高温高圧の気相状態まで圧縮し、この高温高圧の気相冷
媒を凝縮器で、周囲にある空気や冷却水等を用いて液相
状態まで冷却し、前記液相冷媒を、膨張弁で減圧し後、
蒸発器に送り、蒸発器で周囲の空気や不凍液などの低温
の被冷却体から熱を吸収し、この時に被冷却体に対する
冷凍効果を得て、吸熱後の冷媒を再び圧縮機に戻す、い
わゆる一段圧縮冷凍装置がある。しかし、上記した一段
圧縮冷凍装置では、−30゜Cより高い温度までの冷凍
は行えるが、それ以下の−30゜C〜−60゜C程度の
低温域を生成しようとすると、圧縮機での圧縮比が増大
し、冷媒の体積効率や圧縮効率が低下し、圧縮機出口の
冷媒の温度が上昇して潤滑油等が劣化してしまう等の問
題が生じるため、−30゜C〜−60゜C程度の低温域
を生成する場合には、圧縮機を低圧側と高圧側に分けた
2段冷凍装置が用いられていた。そして、さらに低い温
度、具体的には−70゜C以下の低温域、いわゆる極低
温域を生成する場合には、極低温による低蒸発圧力を避
けるために段階的に異なる低沸騰点の冷媒を2種類以上
使用して、沸騰点の高い方の冷媒を凝縮器内で蒸発さ
せ、その潜熱によって沸騰点の低い方の冷媒を凝縮する
多元冷凍装置が用いられる。2. Description of the Related Art Various types of refrigeration systems have been proposed for reducing a substance below its natural temperature by using artificial means. The refrigerating apparatus includes a compressor, a condenser, an expansion valve, and an evaporator. The refrigerant is sucked by the compressor, compressed to a high-temperature, high-pressure gas phase, and the high-temperature, high-pressure gas phase refrigerant is condensed by the condenser. After cooling to a liquid state using surrounding air or cooling water, the liquid-phase refrigerant is depressurized by an expansion valve,
It is sent to the evaporator and the evaporator absorbs heat from the low-temperature object to be cooled, such as ambient air or antifreeze, and at this time, obtains a refrigeration effect on the object to be cooled, and returns the refrigerant after absorbing the heat to the compressor again. There is a single-stage compression refrigeration system. However, in the single-stage compression refrigeration apparatus described above, refrigeration can be performed up to a temperature higher than -30 ° C. Since the compression ratio increases, the volumetric efficiency and the compression efficiency of the refrigerant decrease, and the temperature of the refrigerant at the compressor outlet rises, causing problems such as deterioration of lubricating oil and the like. To generate a low temperature range of about ゜ C, a two-stage refrigeration system in which a compressor is divided into a low pressure side and a high pressure side has been used. In the case of generating a lower temperature, specifically, a low-temperature region of -70 ° C or less, a so-called cryogenic region, a refrigerant having a low boiling point that is different in stages is used in order to avoid a low evaporation pressure due to a cryogenic temperature. A multi-component refrigeration system is used in which two or more types are used to evaporate a refrigerant having a higher boiling point in a condenser and condense the refrigerant having a lower boiling point by the latent heat.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、極低温
を達成できる多元式冷凍装置は、上記したように2種類
以上の異なる冷媒を使用するため、各冷媒に対して独立
した冷凍回路が必要になり、部品数が多く構造が複雑に
なり制作費が高くなるという問題があり、全体の大きさ
が大きくなり設置場所も多大になるという問題もある。
また、上記した多元式冷凍装置では、生成する温度を下
げるに従って使用する冷媒の種類を増やす必要があり、
それに応じて冷凍回路の数も増やさなければならないの
で、生成すべき温度が低い程、上記した問題点が大きく
なるという問題もある。さらに当然のことながら、これ
ら多元式冷凍装置は、二つ以上の冷凍回路を運転しなけ
ればならないので運転経費も莫大なものになるという問
題があった。また、近年、オゾン層破壊の原因となるた
め熱交換率の高い安価なフロンガスの使用が規制される
傾向にあり、その結果、冷凍装置には、フロンガスより
熱交換率の低い代用冷媒を使用しても、従来の動力を維
持したままで高い冷凍効果を得ることが強く要求されて
いる。本発明は、上記した問題点を解決し、使用する冷
媒に依存せずに低コストで小型でありながら極低温域の
生成を達成できる極低温装置を提供することを目的とし
ている。However, since a multi-component refrigeration system which can achieve extremely low temperatures uses two or more different refrigerants as described above, an independent refrigeration circuit is required for each refrigerant. However, there is a problem that the number of parts is large, the structure is complicated and the production cost is high, and there is also a problem that the whole size is large and the installation place is large.
Further, in the above-described multi-component refrigeration apparatus, it is necessary to increase the type of refrigerant to be used as the generated temperature is lowered,
Since the number of refrigeration circuits must be increased accordingly, there is also a problem that the lower the temperature to be generated, the greater the above-mentioned problems. Further, needless to say, these multi-unit refrigeration apparatuses have a problem that the operation cost is enormous because two or more refrigeration circuits must be operated. In recent years, the use of inexpensive chlorofluorocarbon gas with a high heat exchange rate tends to be restricted due to the destruction of the ozone layer. As a result, a refrigeration system uses a substitute refrigerant having a lower heat exchange rate than chlorofluorocarbon gas. However, there is a strong demand for obtaining a high refrigeration effect while maintaining the conventional power. An object of the present invention is to solve the above-described problems and to provide a cryogenic device capable of achieving generation of a cryogenic region at low cost and small size without depending on a refrigerant to be used.
【0004】[0004]
【課題を解決するための手段】上記した目的を達成する
ために、本発明に係る極低温装置は、圧縮機の吐出側か
ら吐出された液相冷媒が、予備凝縮器を経て凝縮器に流
入し、凝縮器の第1の流路から流出して第1熱交換器の
第1の流路、予備冷却器の第1の流路、第2熱交換器の
第1の流路、蓄熱器の第1の流路及び膨張手段の順に通
過して冷却器に入り、冷却後の気相冷媒が、冷却器から
流出して蓄熱器の第2の流路、第2熱交換器の第2の流
路、第1熱交換器の第2の流路の順に通過して圧縮機の
吸入側に戻る第1の冷媒循環回路と、圧縮機の吐出側か
ら吐出された液相冷媒が、予備凝縮器を経て凝縮器に流
入し、凝縮器の第2の流路から流出して膨張弁及び予備
冷却器の第2の流路を通り、さらに、第1熱交換器の第
1の流路を通過して圧縮機の吸入側に戻る第2の冷媒循
環回路とを備えていることを特徴とするものである。In order to achieve the above-mentioned object, a cryogenic apparatus according to the present invention is arranged such that a liquid-phase refrigerant discharged from a discharge side of a compressor flows into a condenser through a pre-condenser. And flows out of the first flow path of the condenser, the first flow path of the first heat exchanger, the first flow path of the precooler, the first flow path of the second heat exchanger, and the heat storage device. Passes through the first flow path and the expansion means in order, and enters the cooler, and the cooled gas-phase refrigerant flows out of the cooler and flows into the second flow path of the heat storage device and the second flow path of the second heat exchanger. The first refrigerant circulation circuit which passes through the flow path of the first heat exchanger and the second flow path of the first heat exchanger and returns to the suction side of the compressor, and the liquid phase refrigerant discharged from the discharge side of the compressor is The fluid flows into the condenser via the condenser, flows out of the second flow path of the condenser, passes through the second flow path of the expansion valve and the pre-cooler, and further passes through the first flow path of the first heat exchanger. Pass through It and a second refrigerant circuit back to the suction side of the compressor is characterized in.
【0005】[0005]
【発明の実施の形態】以下、本発明の一実施例を示した
添付図面を参照しながら本発明に係る極低温装置の実施
の形態について説明していく。図1は、本発明に係る極
低温装置の概略配管図である。図面に示すように、この
極低温装置は、圧縮機1、予備凝縮器2、凝縮器3、第
1熱交換器4、予備冷却器5、第2熱交換器6、蓄熱器
7、冷却器8及び膨張弁9を含んだ冷媒循環回路から成
り、圧縮機1を駆動して冷媒回路中で冷媒を循環させ、
冷却器8で−120゜C以下の極低温が得られるように
構成されている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of a cryogenic apparatus according to the present invention will be described with reference to the accompanying drawings showing an embodiment of the present invention. FIG. 1 is a schematic piping diagram of a cryogenic device according to the present invention. As shown in the drawing, this cryogenic device includes a compressor 1, a pre-condenser 2, a condenser 3, a first heat exchanger 4, a pre-cooler 5, a second heat exchanger 6, a regenerator 7, and a cooler. 8 and a refrigerant circulation circuit including an expansion valve 9, and drives the compressor 1 to circulate refrigerant in the refrigerant circuit;
The cooler 8 is configured to obtain an extremely low temperature of −120 ° C. or less.
【0006】圧縮機1の吐出口1aと、凝縮器3の流入
口3aとの間には油分離器10、CHV11及び予備凝
縮器2が介装されている。凝縮器3は二つの流出口3b
及び3cを備え、第1の流出口3bは二つのドライヤ交
換用バルブ12、13及びドライヤ14を介して第1熱
交換器4に接続されている。第1熱交換器4は、第1流
路4a及び第2流路4bを備え、前記凝縮器3の第1の
流出口3bは第1流路4aに接続され、この第1流路4
aは予備冷却器5に接続されている。予備冷却器5は、
第1流路5a及び第2流路5bを備え、前記第1熱交換
器4の第1流路4aは第1流路5aに接続され、この第
1流路5aは第2熱交換器6に接続されている。第2熱
交換器6は、第1流路6a及び第2流路6bを備え、前
記予備冷却器5の第1流路5aは第1流路6aに接続さ
れ、この第1流路6aは蓄熱器7に接続されている。蓄
熱器7は、第1流路7a及び第2流路7bを備え、前記
第2熱交換器6の第1流路6aは第1流路7aに接続さ
れ、この第1流路7aは、毛細管17を介して冷却器8
の流入口8aに接続されている。冷却器8の流出口8b
は、再び蓄熱器7に戻され、その第2流路7bに接続さ
れ、この蓄熱器7の第2流路7bは、第2熱交換器6の
第2流路6bを介して第1熱交換器4の第2流路4bに
接続され、第1熱交換器4の第2流路4bの流出口は圧
縮機1の吸入口1bに接続されている。上記した構成に
より、圧縮機1(吐出口1a)−油分離器10−CHV
11−予備凝縮器2−凝縮器3(第1流出口3b)−バ
ルブ12−ドライヤ14−バルブ13−第1熱交換器4
(第1流路4a)−予備冷却器5(第1流路5a)−第
2熱交換器6(第1流路6a)−蓄熱器7(第1流路7
a)−毛細管17−冷却器8−蓄熱器7(第2流路7
b)−第2熱交換器6(第2流路6b)−第1熱交換器
4(第2流路4b)−圧縮機1(吸入口1b)の順に冷
媒が流れる冷却器8を含んだ第1冷媒回路が構成され
る。An oil separator 10, a CHV 11, and a pre-condenser 2 are interposed between a discharge port 1a of the compressor 1 and an inlet 3a of the condenser 3. The condenser 3 has two outlets 3b
, 3c, and the first outlet 3b is connected to the first heat exchanger 4 via two dryer replacement valves 12, 13 and a dryer 14. The first heat exchanger 4 includes a first flow path 4a and a second flow path 4b, and a first outlet 3b of the condenser 3 is connected to the first flow path 4a.
a is connected to the precooler 5. The pre-cooler 5
The first heat exchanger 4 includes a first flow path 5a and a second flow path 5b. The first flow path 4a of the first heat exchanger 4 is connected to the first flow path 5a. It is connected to the. The second heat exchanger 6 includes a first flow path 6a and a second flow path 6b, and the first flow path 5a of the pre-cooler 5 is connected to the first flow path 6a. It is connected to the regenerator 7. The heat storage unit 7 includes a first flow path 7a and a second flow path 7b, and the first flow path 6a of the second heat exchanger 6 is connected to the first flow path 7a. Cooler 8 via capillary 17
Is connected to the inlet 8a. Outlet 8b of cooler 8
Is returned to the regenerator 7 again and connected to the second flow path 7b. The second flow path 7b of the regenerator 7 is connected to the first heat exchanger 6 via the second flow path 6b of the second heat exchanger 6. The outlet of the second flow path 4b of the first heat exchanger 4 is connected to the suction port 1b of the compressor 1. With the configuration described above, the compressor 1 (discharge port 1a) -oil separator 10-CHV
11-Precondenser 2-Condenser 3 (first outlet 3b) -Valve 12-Dryer 14-Valve 13-First heat exchanger 4
(First flow path 4a)-pre-cooler 5 (first flow path 5a)-second heat exchanger 6 (first flow path 6a)-regenerator 7 (first flow path 7)
a) -Capillary tube 17-Cooler 8-Regenerator 7 (second flow path 7)
b) -the second heat exchanger 6 (the second flow path 6b) -the first heat exchanger 4 (the second flow path 4b) -the compressor 1 (the suction port 1b). A first refrigerant circuit is configured.
【0007】また、前記凝縮器3の第2流出口3cは、
バルブ15、ドライヤ16及び膨張弁9を介して予備冷
却器5の第2流路5bに接続されている。この予備冷却
器5の第2流路5bは、第1熱交換器4の第2流路4b
を介して圧縮機1の吸入口1bに接続されており、これ
により、圧縮機1(吐出口1a)−油分離器10−CH
V11−予備凝縮器2−凝縮器3(第2流出口3c)−
バルブ15−ドライヤ16−膨張弁9−予備冷却器5
(第2流路5a)−第1熱交換器4(第2流路4b)−
圧縮機1(吸入口1b)の順に冷媒が流れる第2冷媒回
路が構成される。The second outlet 3c of the condenser 3 is
The precooler 5 is connected to the second flow path 5b via a valve 15, a dryer 16 and an expansion valve 9. The second flow path 5b of the precooler 5 is connected to the second flow path 4b of the first heat exchanger 4.
To the compressor 1 (discharge port 1a) -oil separator 10-CH
V11-Precondenser 2-Condenser 3 (second outlet 3c)-
Valve 15-dryer 16-expansion valve 9-precooler 5
(2nd flow path 5a)-1st heat exchanger 4 (2nd flow path 4b)-
A second refrigerant circuit through which the refrigerant flows in the order of the compressor 1 (the suction port 1b) is configured.
【0008】ここで、上記したように構成された極低温
装置の簡単な作用を説明すると、圧縮機1の吐出口1a
から吐出された液相冷媒は、油分離器10でその油成分
が分離された後、予備凝縮器2を経て凝縮器3に流入す
る。凝縮器3の第2流出口3cから流出した液相冷媒
は、膨張弁9で膨張された後、予備冷却器5及び第1熱
交換器4を経て圧縮機1に戻る。即ち、第2冷媒回路内
を通る。一方、凝縮器3の第1流出口3bから流出した
液相冷媒は、第1熱交換器4を通過する時に、第2冷媒
回路内を通過する低温低圧の冷媒及び第1冷媒回路にお
ける冷却器通過後の冷媒と熱交換して冷却され、さらに
予備冷却器5を通過する時に、第2冷媒回路における膨
張弁9の直ぐ下流の低温低圧の冷媒によって過冷却され
る。第1熱交換器4及び予備冷却器5によって冷却され
た冷媒は、その後、さらに、第2熱交換器6及び蓄熱器
7で、冷却器通過後の冷媒と熱交換して冷却された後、
毛細管17から流出する時に膨張され、−120゜C以
下の極低温で低圧の状態にされ冷却器8に流入する。前
記極低温で低圧状態の液相冷媒は、冷却器内で気化して
周囲温度を−120゜C以下まで冷却して極低温低圧の
液相冷媒となり、再び、蓄熱器7、第2熱交換器6及び
第1熱交換器4に流され、これらを通過する時に、第1
冷媒回路における冷却器8を通過する前の気相冷媒を冷
却する。上記の作用により、第1冷媒回路を流れる液相
冷媒は、第2冷媒回路を流れる冷媒と、第1冷媒回路に
おける冷却器8を通過した後の極低温液相冷媒とによっ
て効率的に冷却され、冷却器8で−120゜C以下の極
低温雰囲気を生成し得る。図2は、出願人が図1に示し
た極低温装置を実際に200V交流電源を40Hz、5
0Hz、及び60Hzの3種類の周波数で用いて運転
し、冷却器8にて得られた温度を測定した実験結果を示
すグラフである。縦軸は温度を示し、横軸は時間を示し
ており、この実験結果から、何れの周波数でも−120
゜C以下の極低温が得られていることが分かる。Here, the simple operation of the cryogenic device configured as described above will be described.
After the oil component thereof is separated by the oil separator 10, the liquid-phase refrigerant discharged from the tank flows into the condenser 3 via the pre-condenser 2. The liquid-phase refrigerant flowing out of the second outlet 3c of the condenser 3 is expanded by the expansion valve 9, and then returns to the compressor 1 via the pre-cooler 5 and the first heat exchanger 4. That is, it passes through the second refrigerant circuit. On the other hand, when the liquid-phase refrigerant flowing out of the first outlet 3b of the condenser 3 passes through the first heat exchanger 4, the low-temperature low-pressure refrigerant passing through the second refrigerant circuit and the cooler in the first refrigerant circuit After passing through the pre-cooler 5, it is cooled by heat exchange with the refrigerant after passing, and is further supercooled by a low-temperature low-pressure refrigerant immediately downstream of the expansion valve 9 in the second refrigerant circuit. After the refrigerant cooled by the first heat exchanger 4 and the pre-cooler 5 is further cooled by exchanging heat with the refrigerant after passing through the cooler in the second heat exchanger 6 and the heat storage 7,
It is expanded when flowing out of the capillary tube 17, is brought into a low pressure state at an extremely low temperature of −120 ° C. or less, and flows into the cooler 8. The cryogenic low-pressure liquid-phase refrigerant is vaporized in the cooler to cool the ambient temperature to −120 ° C. or lower to become a cryogenic low-pressure liquid-phase refrigerant. Flows through the heat exchanger 6 and the first heat exchanger 4 and passes therethrough.
The gas-phase refrigerant before passing through the cooler 8 in the refrigerant circuit is cooled. By the above operation, the liquid-phase refrigerant flowing in the first refrigerant circuit is efficiently cooled by the refrigerant flowing in the second refrigerant circuit and the cryogenic liquid-phase refrigerant after passing through the cooler 8 in the first refrigerant circuit. , A very low temperature atmosphere of −120 ° C. or less can be generated in the cooler 8. FIG. 2 shows that the cryogenic apparatus shown in FIG.
It is a graph which shows driving | operation using three types of frequencies of 0 Hz and 60 Hz, and which measured the temperature obtained by the cooler 8, and which shows the experimental result. The vertical axis indicates the temperature, and the horizontal axis indicates the time. From this experimental result, -120 is obtained at any frequency.
It can be seen that an extremely low temperature of ゜ C or less has been obtained.
【0009】尚、上記したように構成された極低温装置
は、低圧で、かつ真空状態で駆動されるように構成され
ており、冷媒が極低温まで冷却された時に水分や油分が
固化して冷媒回路を詰まらせないように構成されてい
る。従って、ドライヤ14及び16を交換する時には、
冷媒回路内の真空状態を維持させるために、各バルブ1
2、13及び15を閉弁してから作業を行い、ドライヤ
14及び15を交換した後は、バルブ18を介してドラ
イヤ装着部分を真空状態に戻してから各バルブ12、1
3及び16を開弁する。The cryogenic device configured as described above is configured to be driven at a low pressure and in a vacuum state. When the refrigerant is cooled to a cryogenic temperature, moisture and oil solidify. It is configured not to block the refrigerant circuit. Therefore, when replacing the dryers 14 and 16,
In order to maintain a vacuum state in the refrigerant circuit, each valve 1
After closing the valves 2, 13 and 15, the work is performed, and after the dryers 14 and 15 are replaced, the dryer mounting portion is returned to a vacuum state via the valve 18 and then the valves 12, 1 and 15 are replaced.
Open valves 3 and 16.
【0010】また、上記したように構成された極低温装
置は、冷却器8の除霜を行う除霜回路を備えている。こ
の除霜回路は、第1冷媒回路における凝縮器3の下流の
流路と冷却器8の流入口8aとをバイパスする第1の流
路20と、第1冷媒回路における冷却器8の下流の流路
と第1熱交換器4とをバイパスする第2の流路21とを
備えている。各流路20及び21には各々電磁弁20a
及び21aが設けられ、除霜運転時には、二つの電磁弁
20a及び21aを開弁して、冷媒を除霜回路に導くよ
うに構成されている。また、前記第1の流路20は、圧
縮機1の吐出口1aと油分離器10との繋ぐ流路の近傍
を通過するように配置され、これにより、除霜運転時
に、第1の流路20を通過する冷媒を、圧縮機1から吐
出して直ぐの高温の冷媒で加熱するように構成されてい
る。上記した構成により、除霜運転時には、凝縮器3の
第1流出口3bから流出した冷媒は、バルブ12、ドラ
イヤ14及びバルブ13を経て、図1に符号D1で示す
位置から第1の流路20に流れ込み、符号D2で示す位
置を通過する時に圧縮機1から吐出された冷媒によって
加熱され、さらに符号D3及びD4で示す位置を順に通
って電磁弁20を介して符号D5で示す位置から冷却器
8に入り除霜を行い、除霜後の冷媒は、符号D6で示す
位置を通って符号D7で示す位置から第2の流路21に
流れ込み、符号D8で示す位置を通って第1熱交換器4
の第2流路4bに流れ込み、そこから圧縮機1に戻され
る。The cryogenic device configured as described above has a defrost circuit for defrosting the cooler 8. The defrost circuit includes a first flow path 20 that bypasses a flow path downstream of the condenser 3 in the first refrigerant circuit and an inflow port 8a of the cooler 8, and a flow path downstream of the cooler 8 in the first refrigerant circuit. A second flow path 21 that bypasses the flow path and the first heat exchanger 4 is provided. Each flow path 20 and 21 has a solenoid valve 20a
And 21a are provided, and during the defrosting operation, the two solenoid valves 20a and 21a are opened to guide the refrigerant to the defrosting circuit. Further, the first flow path 20 is disposed so as to pass near a flow path connecting the discharge port 1a of the compressor 1 and the oil separator 10, whereby the first flow path is provided during the defrosting operation. The refrigerant passing through the passage 20 is configured to be heated by a high-temperature refrigerant immediately discharged from the compressor 1. With the above-described configuration, during the defrosting operation, the refrigerant flowing out of the first outlet 3b of the condenser 3 passes through the valve 12, the dryer 14, and the valve 13 from the position indicated by reference numeral D1 in FIG. 20, is heated by the refrigerant discharged from the compressor 1 when passing through the position indicated by reference numeral D2, and further passes through the positions indicated by reference numerals D3 and D4 in order, and cools from the position indicated by reference numeral D5 via the solenoid valve 20. The defrosted refrigerant enters the vessel 8 and the defrosted refrigerant flows from the position indicated by the reference sign D7 into the second flow path 21 through the position indicated by the reference sign D6, and passes through the position indicated by the reference sign D8 to the first heat Exchanger 4
And flows back to the compressor 1 from there.
【0011】尚、上記したように構成された極低温装置
では、蓄熱器7と冷却器8の流入口8aとの間に毛細管
17を設けて、第1冷媒回路における冷媒の膨張を行っ
ているが、これは本実施例に限定されることなく、例え
ば膨張弁を設けて膨張させてもよい。In the cryogenic device configured as described above, a capillary tube 17 is provided between the regenerator 7 and the inlet 8a of the cooler 8 to expand the refrigerant in the first refrigerant circuit. However, this is not limited to the present embodiment, and may be expanded by, for example, providing an expansion valve.
【0012】[0012]
【発明の効果】以上説明したように、本発明に係る極低
温装置は、圧縮機の吐出側から吐出された液相冷媒が、
予備凝縮器を経て凝縮器に流入し、凝縮器の第1の流路
から流出して第1熱交換器の第1の流路、予備冷却器の
第1の流路、第2熱交換器の第1の流路、蓄熱器の第1
の流路及び膨張手段の順に通過して冷却器に入り、冷却
後の気相冷媒が、冷却器から流出して蓄熱器の第2の流
路、第2熱交換器の第2の流路、第1熱交換器の第2の
流路の順に通過して圧縮機の吸入側に戻る第1の冷媒循
環回路と、圧縮機の吐出側から吐出された液相冷媒が、
予備凝縮器を経て凝縮器に流入し、凝縮器の第2の流路
から流出して膨張弁及び予備冷却器の第2の流路を通
り、さらに、第1熱交換器の第1の流路を通過して圧縮
機の吸入側に戻る第2の冷媒循環回路とを備えているの
で、第1冷媒回路における冷却器を通過する前の冷媒
を、第2冷媒回路を通過する冷媒と、第1冷媒回路にお
ける冷却器通過後の冷媒とで効率的に冷却して−120
゜C以下の極低温まで冷却し、冷却器で−120゜C以
下の極低温雰囲気が得られ、従来の多元式冷凍装置のよ
うに独立した冷凍回路を複数必要とせずに、一つ冷凍回
路で極低温雰囲気が得られるという効果を奏し、その結
果、装置が小型化でき、また製造コストの低減が図れる
という効果を奏し、さらに、複数種類の冷媒を必要とし
ないので、冷媒に係る経費も節減できるという効果を奏
する。また、圧縮機も一つでよいため、運転に必要な動
力が従来の多元式冷凍装置に比べて極めて小さくなり、
効率的な冷凍効果が得られるという効果を奏する。ま
た、上記した構成により、高い冷凍効率が得られるた
め、従来から使用されてきた熱交換率の高いフロンガス
を利用しなくても、他の冷媒で十分な冷凍効果が得られ
るため経済面だけでなく環境面でも高い効果が得られ
る。従って、本発明に係る極低温装置は、装置が小型化
し、製造コストが安価であり、運転に係る経費も安くな
るので、様々な分野で手軽に極低温を利用できるように
なるという非常に高い効果を奏する。As described above, in the cryogenic device according to the present invention, the liquid refrigerant discharged from the discharge side of the compressor is:
After flowing into the condenser through the pre-condenser, flowing out of the first flow path of the condenser and flowing out of the first flow path of the first heat exchanger, the first flow path of the pre-cooler, the second heat exchanger Of the first flow path, the first of the regenerator
Pass through the flow path and the expansion means in order, enter the cooler, the cooled gas-phase refrigerant flows out of the cooler, the second flow path of the regenerator, the second flow path of the second heat exchanger A first refrigerant circulation circuit that passes through the second flow path of the first heat exchanger in order and returns to the suction side of the compressor, and a liquid-phase refrigerant discharged from the discharge side of the compressor,
It enters the condenser via the pre-condenser, flows out of the second flow path of the condenser, passes through the expansion valve and the second flow path of the pre-cooler, and further passes through the first flow of the first heat exchanger. A second refrigerant circulation circuit that passes through the path and returns to the suction side of the compressor, so that the refrigerant before passing through the cooler in the first refrigerant circuit, the refrigerant that passes through the second refrigerant circuit, Efficiently cools with the refrigerant after passing through the cooler in the first refrigerant circuit to -120
It cools down to cryogenic temperature of ゜ C or less, a cryogenic atmosphere of -120 ° C or less can be obtained with a cooler, and one refrigeration circuit is not required, unlike a conventional multi-component refrigeration system, which does not require a plurality of independent refrigeration circuits. This has the effect of obtaining a very low-temperature atmosphere, and as a result, has the effect of reducing the size of the device and reducing the manufacturing cost.Furthermore, since a plurality of types of refrigerants are not required, the cost of the refrigerant is also reduced. This has the effect of saving money. Also, since only one compressor is required, the power required for operation is extremely small as compared with the conventional multi-component refrigeration system,
An effect is obtained that an efficient freezing effect is obtained. In addition, with the above-described configuration, high refrigeration efficiency is obtained, so that a sufficient refrigeration effect can be obtained with other refrigerants without using a conventionally used high-fluorocarbon gas having a high heat exchange rate. It is also environmentally friendly. Therefore, the cryogenic device according to the present invention is very high in that the cryogenic device can be easily used in various fields because the device is downsized, the manufacturing cost is low, and the cost for operation is low. It works.
【図1】 本発明に係る極低温装置の概略配管図であ
る。FIG. 1 is a schematic piping diagram of a cryogenic device according to the present invention.
【図2】 出願人が図1に示した極低温装置を実際に2
00V交流電源を40Hz、50Hz、及び60Hzの
3種類の周波数で用いて運転し、冷却器8にて得られた
温度を測定した実験結果を示すグラフである。FIG. 2 shows the cryogenic apparatus shown in FIG.
It is a graph which shows the experiment result which operated using the 00V alternating current power supply at three types of frequency of 40 Hz, 50 Hz, and 60 Hz, and measured the temperature obtained by the cooler 8.
1 圧縮機 1a 吐出口 1b 吸入口 2 予備凝縮器 3 凝縮器 3a 流入口 3b 第1流出口 3c 第2流出口 4 第1熱交換器 4a 第1流路 4b 第2流路 5 予備冷却器 5a 第1流路 5b 第2流路 6 第2熱交換器 6a 第1流路 6b 第2流路 7 蓄熱器 7a 第1流路 7b 第2流路 8 冷却器 8a 流入口 8b 流出口 9 膨張弁 10 油分離器 11 CHV 12 バルブ 13 バルブ 14 ドライヤ 15 バルブ 16 ドライヤ 17 毛細管 18 バルブ 20 第1の流路 20a 電磁弁 21 第2の流路 21a 電磁弁 DESCRIPTION OF SYMBOLS 1 Compressor 1a Discharge port 1b Suction port 2 Precondenser 3 Condenser 3a Inflow port 3b 1st outflow port 3c 2nd outflow port 4 1st heat exchanger 4a 1st flow path 4b 2nd flow path 5 Precooler 5a 1st flow path 5b 2nd flow path 6 2nd heat exchanger 6a 1st flow path 6b 2nd flow path 7 regenerator 7a 1st flow path 7b 2nd flow path 8 cooler 8a inflow 8b outflow 9 expansion valve Reference Signs List 10 oil separator 11 CHV 12 valve 13 valve 14 dryer 15 valve 16 dryer 17 capillary tube 18 valve 20 first flow path 20a solenoid valve 21 second flow path 21a solenoid valve
Claims (1)
相冷媒が、予備凝縮器(2)を経て凝縮器(3)に流入し、凝
縮器(3)の第1の流路(3b)から流出して第1熱交換器(4)
の第1の流路(4a)、予備冷却器(5)の第1の流路(5a)、
第2熱交換器(6)の第1の流路(6a)、蓄熱器(7)の第1の
流路(7a)及び膨張手段(17)の順に通過して冷却器(8)に
入り、冷却後の気相冷媒が、冷却器(9)から流出して蓄
熱器(7)の第2の流路(7b)、第2熱交換器(6)の第2の流
路(6b)、第1熱交換器(4)の第2の流路(4b)の順に通過
して圧縮機(1)の吸入側(1b)に戻る第1の冷媒循環回路
と、 圧縮機(1)の吐出側(1a)から吐出された液相冷媒が、予
備凝縮器(2)を経て凝縮器(3)に流入し、凝縮器(3)の第
2の流路(3b)から流出して膨張弁(9)及び予備冷却器(5)
の第2の流路(5b)を通り、さらに、第1熱交換器(4)の
第1の流路(4b)を通過して圧縮機(1)の吸入側(1b)に戻
る第2の冷媒循環回路とを備えていることを特徴とする
極低温装置。A liquid-phase refrigerant discharged from a discharge side (1a) of a compressor (1) flows into a condenser (3) through a pre-condenser (2), and is supplied to a first condenser (3) of the condenser (3). Out of the flow path (3b) of the first heat exchanger (4)
A first flow path (4a), a first flow path (5a) of the pre-cooler (5),
It passes through the first flow path (6a) of the second heat exchanger (6), the first flow path (7a) of the regenerator (7) and the expansion means (17) in this order, and enters the cooler (8). The cooled gas-phase refrigerant flows out of the cooler (9), and flows through the second flow path (7b) of the regenerator (7) and the second flow path (6b) of the second heat exchanger (6). A first refrigerant circulation circuit passing through the second flow path (4b) of the first heat exchanger (4) and returning to the suction side (1b) of the compressor (1); The liquid-phase refrigerant discharged from the discharge side (1a) flows into the condenser (3) through the pre-condenser (2), flows out from the second flow path (3b) of the condenser (3), and expands. Valve (9) and pre-cooler (5)
Through the second flow path (5b) and further through the first flow path (4b) of the first heat exchanger (4) and returning to the suction side (1b) of the compressor (1). A cryogenic device, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34024697A JPH11173683A (en) | 1997-12-10 | 1997-12-10 | Cryogenic apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34024697A JPH11173683A (en) | 1997-12-10 | 1997-12-10 | Cryogenic apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11173683A true JPH11173683A (en) | 1999-07-02 |
Family
ID=18335105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34024697A Pending JPH11173683A (en) | 1997-12-10 | 1997-12-10 | Cryogenic apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11173683A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003535299A (en) * | 2000-05-30 | 2003-11-25 | アイジーシー ポリコールド システムズ インコーポレイテッド | Cryogenic refrigeration system with controlled cooling and heating rates and long-term heating function |
-
1997
- 1997-12-10 JP JP34024697A patent/JPH11173683A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003535299A (en) * | 2000-05-30 | 2003-11-25 | アイジーシー ポリコールド システムズ インコーポレイテッド | Cryogenic refrigeration system with controlled cooling and heating rates and long-term heating function |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6698234B2 (en) | Method for increasing efficiency of a vapor compression system by evaporator heating | |
KR102477314B1 (en) | A method for reducing the temperature of the coolant in the receiver of the refrigeration cycle system and improving the cooling performance of the evaporator | |
JP5323023B2 (en) | Refrigeration equipment | |
JP4411349B2 (en) | Condensation heat converter and refrigeration system using the same | |
JP2001147050A (en) | Refrigerating system for refrigerator equipped with two evaporators | |
WO2007080994A1 (en) | Refrigeration apparatus | |
US20110162396A1 (en) | Capacity boosting during pulldown | |
JP4317793B2 (en) | Cooling system | |
CA2911696A1 (en) | Carbon dioxide based auxiliary cooling system | |
US6615591B1 (en) | Cryogenic refrigeration system | |
KR100756880B1 (en) | Chiller of refrigerator | |
JP3756711B2 (en) | Cryogenic refrigerator | |
JPH11173683A (en) | Cryogenic apparatus | |
JP2003004346A (en) | Cooling equipment | |
JP2007051788A (en) | Refrigeration equipment | |
KR20240138139A (en) | Refrigerant circulation device and refrigerant circulation method for lowering the receiver temperature of the refrigeration cycle system | |
KR100594423B1 (en) | Deep temperature freezing system using binary cycle | |
EP4123242B1 (en) | Evaporatively cooled refrigeration system and method | |
KR102777197B1 (en) | Compressor refrigerant bypass circulation method in winter refrigerant cycle | |
KR20140115837A (en) | Method for controlling refrigerator | |
KR100512418B1 (en) | condensation system using refrigerant | |
KR100543941B1 (en) | Small refrigerator with defrost means by cycle conversion | |
JP3589434B2 (en) | Cryogenic refrigeration equipment | |
KR20240078692A (en) | Unit cooler refrigeration cycle using free-cooling | |
KR19980030479A (en) | Expansion device of air conditioner |