[go: up one dir, main page]

JPH11166999A - Calorific value measuring device - Google Patents

Calorific value measuring device

Info

Publication number
JPH11166999A
JPH11166999A JP35245897A JP35245897A JPH11166999A JP H11166999 A JPH11166999 A JP H11166999A JP 35245897 A JP35245897 A JP 35245897A JP 35245897 A JP35245897 A JP 35245897A JP H11166999 A JPH11166999 A JP H11166999A
Authority
JP
Japan
Prior art keywords
calorific value
measured
air
temperature
temporary storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35245897A
Other languages
Japanese (ja)
Inventor
Shigekazu Namiki
繁和 並木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
Ishikawajima Harima Heavy Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishikawajima Harima Heavy Industries Co Ltd filed Critical Ishikawajima Harima Heavy Industries Co Ltd
Priority to JP35245897A priority Critical patent/JPH11166999A/en
Publication of JPH11166999A publication Critical patent/JPH11166999A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

(57)【要約】 【課題】 他の検査や測定のために仮置きされた状態の
まま発熱量を測定することで、他の検査・測定を含む全
検査測定時間の短縮を図り、測定項目が少なく、簡単で
高精度に測定することができる発熱量測定装置を提供す
ること。 【解決手段】 仮置き場ピット11にキャニスター2を
載せる支持架台16を設けてその周囲に設けた仕切壁1
4でキャニスター2の区画13に仕切り、この区画13
を流れる空気15の流量が一定になるようにオリフィス
17を設けて全体の空気量から各区画13を流れる流量
を知り、各区画13の空気入口温度と出口温度を温度径
18,19で測定する。これにより、温度の測定だけ
で、仮置きしている時間を利用して簡単に発熱量をコン
ピュータ20で求める。
(57) [Summary] [Problem] To measure the calorific value in a state temporarily placed for other inspections and measurements, thereby shortening the entire inspection measurement time including other inspections and measurements, and measuring items. Provided is a calorific value measuring device which has a small amount of heat and can be measured simply and with high accuracy. SOLUTION: A support base 16 for mounting a canister 2 on a temporary storage pit 11 is provided, and a partition wall 1 provided around the support base 16 is provided.
4 to partition 13 into canister 2,
The orifice 17 is provided so that the flow rate of the air 15 flowing through the section 13 is constant, the flow rate flowing through each section 13 is known from the total amount of air, and the air inlet temperature and the outlet temperature of each section 13 are measured with the temperature diameters 18 and 19. . In this way, the calorific value can be easily obtained by the computer 20 by using the temporary storage time only by measuring the temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、発熱量測定装置
に関し、原子力施設の燃料再処理などの際に発生する高
レベル放射性廃棄物を入れたガラス固化体密封容器の発
熱量を各検査・測定の間に簡単かつ高精度に測定できる
ようにしたものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a calorific value measuring device, and inspects and measures the calorific value of a vitrified sealed container containing high-level radioactive waste generated at the time of fuel reprocessing at a nuclear facility. The measurement can be performed easily and with high accuracy during the measurement.

【0002】[0002]

【従来の技術】発熱量を測定する必要がある場合の一つ
に原子力プラントの使用済み燃料の再処理などによって
生じる高レベル廃液を密封容器(キャニスター)にいれ
たガラス固化体があり、高レベル放射性廃棄物貯蔵設備
に長期にわたって安全に保管するため、ガラス固化体自
ら発生する熱を予め測定する必要があるとともに、規則
で定められている他の検査や測定も行う必要がある。
2. Description of the Related Art One of the cases where it is necessary to measure the calorific value is a vitrified material in which a high-level waste liquid generated by the reprocessing of spent fuel in a nuclear power plant is placed in a sealed container (canister). In order to store safely in a radioactive waste storage facility for a long period of time, it is necessary to measure in advance the heat generated by the vitrified material itself, and also to perform other inspections and measurements prescribed by regulations.

【0003】使用済み燃料の再処理工場などで処理され
たガラス固化体は複数本が輸送容器に入れられて貯蔵施
設に運ばれる。
[0003] A plurality of vitrified wastes processed in a spent fuel reprocessing plant or the like are put in a transport container and transported to a storage facility.

【0004】この貯蔵施設では、図3に示すように、ガ
ラス固化体受入建屋Aの天井クレーンBで輸送容器Cを
一時保管区域Dに降ろし、輸送容器搬送台車Eでガラス
固化体抜出し室Fに移送する。ここで、輸送容器C内の
気体をサンプリングして放射性物質の濃度を測定した
後、補助クレーンGを遠隔捜査して輸送容器Cの蓋を取
り外し、ガラス固化体仮置き場Hの仮置き架台I上にガ
ラス固化体Jを一時的に仮置きする。
In this storage facility, as shown in FIG. 3, the transport container C is lowered to the temporary storage area D by the overhead crane B of the vitrified waste receiving building A, and is transferred to the vitrified material extraction chamber F by the transport container transport vehicle E. Transfer. Here, after the gas in the transport container C is sampled and the concentration of the radioactive substance is measured, the auxiliary crane G is remotely searched to remove the lid of the transport container C, and on the temporary storage stand I of the vitrified temporary storage site H. Temporarily put the vitrified body J in the room.

【0005】そして、このガラス固化体仮置き場Hから
順次ガラス固化体Jを取り出し、各ガラス固化体Jにつ
いて、安全に貯蔵するために必要な7項目の検査や測定
を行う。
[0005] Then, the vitrified materials J are sequentially taken out from the vitrified material temporary storage place H, and seven items of inspection and measurement necessary for safe storage of each vitrified material J are performed.

【0006】こうして検査・測定が終了したガラス固化
体は床面走行クレーンKで搬送室Lに運ばれ、貯蔵ピッ
トMの収納管Nにたて積みにされて貯蔵される。
The vitrified product which has been inspected / measured in this way is carried to the transfer room L by the floor traveling crane K, and is piled up and stored in the storage pipe N of the storage pit M.

【0007】このようなガラス固化体Jの発熱量の測定
は、例えば図4に示すように、回転台1上にキャニスタ
ー2に入れられたガラス固化体を載せ、熱流束計3を駆
動装置4によってキャニスター2の側面に接近させると
ともに、側面に沿って上下動させながら熱流束を測定
し、予め求めてあるキャニスター2の表面積などから総
発熱量を演算で求めている。
As shown in FIG. 4, for example, the calorific value of the vitrified body J is measured by placing the vitrified body placed in the canister 2 on the turntable 1 and driving the heat flux meter 3 to the driving device 4. The heat flux is measured while moving close to the side surface of the canister 2 and moving up and down along the side surface, and the total calorific value is obtained by calculation from the surface area of the canister 2 obtained in advance.

【0008】[0008]

【発明が解決しようとする課題】ところが、このような
熱流束計3を用い、その結果から総発熱量を演算する場
合には、熱流束計3での測定値に被測定面であるキャニ
スター2の側面の熱輻射の影響を受け易く、この熱輻射
の影響を補正しなければならないという問題がある。
However, when using such a heat flux meter 3 and calculating the total calorific value from the result, the measured value of the heat flux meter 3 is used for the canister 2 which is the surface to be measured. There is a problem that the side surface is easily affected by the heat radiation, and the influence of the heat radiation must be corrected.

【0009】また、熱流束計3では、ガンマ線の形態で
散熱するエネルギを測定することができず、このための
補正もしなければならないという問題もある。
In addition, the heat flux meter 3 cannot measure the energy dissipated in the form of gamma rays, and there is also a problem that the heat must be corrected.

【0010】そこで、熱輻射の影響の補正やガンマ線の
影響を受けずに測定できる方法として、カロリーメータ
方式が考えられ、例えば図5に示すように、断熱密閉容
器5内にガラス固化体が収納されたキャニスター2を入
れ、ファン6で空気を吸引し、この空気の流量を流量計
7で測定するとともに、空気の入口温度と出口温度を温
度検出器8,9で測定することで発熱量を求めるもので
あるが、熱的に定常状態にならなければ正確に測定する
ことが出来ず、測定に長時間を要し、他の種々の検査・
測定を完了するまでの時間も長くなってしまうという問
題がある。
Therefore, a calorimeter method can be considered as a method of correcting the influence of thermal radiation and measuring without being affected by gamma rays. For example, as shown in FIG. The drawn canister 2 is put in, the air is sucked by the fan 6, the flow rate of the air is measured by the flow meter 7, and the inlet temperature and the outlet temperature of the air are measured by the temperature detectors 8 and 9, so that the calorific value is reduced. Although it is required, accurate measurements cannot be made unless it is in a steady state thermally, and it takes a long time to perform measurements.
There is a problem that the time required to complete the measurement is also long.

【0011】この発明は、かかる従来技術の有する課題
に鑑みてなされたもので、他の検査や測定のために仮置
きされた状態のまま発熱量を測定することで、他の検査
・測定を含む全検査測定時間の短縮を図ることができ、
しかも測定項目が少なく、簡単かつ高精度に測定するこ
とができる発熱量測定装置を提供しようとするものであ
る。
[0011] The present invention has been made in view of the above-mentioned problems of the prior art, and measures the amount of heat generated while being temporarily placed for other inspections and measurements, thereby enabling other inspections and measurements to be performed. The total inspection and measurement time can be shortened,
Moreover, it is an object of the present invention to provide a calorific value measuring device which has a small number of measurement items and can measure easily and with high accuracy.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するこの
発明の請求項1記載の発熱量測定装置は、複数の被測定
体が仮置きされる仮置き場に、各被測定体が載置される
支持架台を設けるとともに、各支持架台上の前記被測定
体の周囲を仕切る仕切壁を設け、各仕切壁で囲まれた空
間内を流れる空気量を均一にする流量調整手段を前記支
持架台と前記仕切壁との間に設け、これら仕切壁で仕切
られた空間への空気の入口温度と出口温度を測定する温
度測定手段を設け、この温度測定手段からの測定結果と
予め既知の前記仮置き場への全空気量とから各被測定体
の発熱量を演算する演算手段を設けてなることを特徴と
するものである。
According to a first aspect of the present invention, there is provided a calorific value measuring apparatus in which a plurality of objects to be measured are placed in a temporary storage place where a plurality of objects to be measured are temporarily stored. And a partition wall for partitioning the periphery of the object to be measured on each of the support frames, and a flow adjusting means for equalizing the amount of air flowing in the space surrounded by each partition wall with the support frame. A temperature measuring means provided between the partition wall and the inlet and outlet temperatures of air into the space partitioned by the partition walls, and a measurement result from the temperature measuring means and the previously known temporary storage area And a calculating means for calculating the calorific value of each object to be measured from the total amount of air supplied to the measuring object.

【0013】この発熱量測定装置によれば、仮置き場に
被測定体を載せる支持架台を設けてその周囲に設けた仕
切壁で各被測定体の置かれる空間を仕切り、この空間を
流れる空気の流量が一定になるようにオリフィスなど流
量調整手段を設けておき、全体を流れる空気量から各被
測定体の空間を流れる流量を知り、各被測定体の置かれ
る空間の空気入口温度と出口温度を温度測定手段で測定
するようにしており、温度の測定だけで、仮置きしてい
る時間を利用して簡単に発熱量を演算手段で求めること
ができるようになる。
According to this calorific value measuring device, a support base for mounting the object to be measured is provided in the temporary storage place, and the space where each object to be measured is placed is partitioned by a partition wall provided around the support base, and the air flowing through this space is separated. A flow control means such as an orifice is provided so that the flow rate is constant, and the flow rate flowing through the space of each measured object is known from the amount of air flowing through the whole, and the air inlet temperature and outlet temperature of the space where each measured object is placed Is measured by the temperature measuring means, and the calorific value can be easily obtained by the calculating means only by measuring the temperature and utilizing the temporarily placed time.

【0014】これにより、熱輻射の影響を受けずに精度
の高い測定ができるとともに、発熱量を測定するために
別に時間をとる必要がなく測定時間の短縮化を図ること
ができるようになる。
[0014] Thus, high-precision measurement can be performed without being affected by heat radiation, and it is not necessary to take extra time to measure the amount of heat generation, so that the measurement time can be shortened.

【0015】また、この発明の請求項2記載の発熱量測
定装置は、請求項1記載の構成に加え、前記被測定体を
ガラス固化体が収納された密封容器とすることを特徴と
するものである。
According to a second aspect of the present invention, there is provided a calorific value measuring apparatus according to the first aspect, wherein the object to be measured is a sealed container containing a vitrified body. It is.

【0016】この発熱量測定装置によれば、被測定体を
ガラス固化体密封容器としており、仮置き場に仮置きし
ている間に簡単かつ高精度にガラス固化体密封容器の発
熱量を求めることができ、他の検査・測定を含む全体の
検査・測定時間を短縮することができるようになる。
According to this calorific value measuring apparatus, the object to be measured is a vitrified sealed container, and the calorific value of the vitrified sealed container can be determined easily and accurately while temporarily placed in a temporary storage place. And the overall inspection and measurement time including other inspection and measurement can be shortened.

【0017】[0017]

【発明の実施の形態】以下、この発明の一実施の形態に
ついて図面に基づき詳細に説明する。図1および図2
は、この発明の発熱量測定装置をガラス固化体密封容器
の発熱量の測定に適用した一実施の形態にかかり、図1
は部分拡大断面図、図2は全体の平面図およびA−A断
面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings. 1 and 2
FIG. 1 shows an embodiment in which the calorific value measuring apparatus of the present invention is applied to the measurement of the calorific value of a vitrified sealed container.
Is a partially enlarged sectional view, and FIG. 2 is an overall plan view and an AA sectional view.

【0018】この発熱量測定装置10では、ガラス固化
体が入れられたキャニスター2の仮置き場全体を発熱量
測定装置とするものであり、図2に示すように、仮置き
場ピット11の上下に格子状にH型鋼の支持部材12が
配置されて断面正方形状の区画13に仕切られ、各区画
13に1つずつキャニスター2を収納できる大きさとし
てある。
In this calorific value measuring device 10, the entire temporary storage space of the canister 2 containing the vitrified material is used as a calorific value measuring device. As shown in FIG. An H-shaped steel support member 12 is arranged in a shape, and is divided into sections 13 each having a square cross section, and each section 13 has such a size that the canister 2 can be stored one by one.

【0019】各区画13には、円筒状の仕切壁14が配
置されて支持部材12に取付けられ、キャニスター2の
外周を仕切るようになっており、内径がキャニスター2
より大きく形成され、仕切壁14の内周とキャニスター
2の外周との隙間を冷却用の空気15が流れるようにし
てある。そして、この仕切壁14は隣接する区画に収納
されるキャニスター2との間で熱の影響を受けないよう
に断熱材を充填するなどの断熱構造としてある。
In each section 13, a cylindrical partition wall 14 is arranged and attached to the support member 12 so as to partition the outer periphery of the canister 2.
The cooling air 15 flows through a gap between the inner periphery of the partition wall 14 and the outer periphery of the canister 2. The partition wall 14 has a heat insulating structure such as filling a heat insulating material so as not to be affected by heat between the partition wall 14 and the canister 2 stored in the adjacent section.

【0020】この断熱構造の仕切壁14の下部には、キ
ャニスター2を載せる断面円形状の支持架台16が仮置
き場ピット11の底部から所定の高さを保って設けられ
ている。この支持架台16の仮置き場ピット11からの
所定の高さは、仕切壁14とキャニスター2との間の隙
間を流れる空気15が隣接する区画13同士で干渉せず
に流すことができるようにするためのものである。
A support base 16 having a circular cross section on which the canister 2 is placed is provided below the partition wall 14 of the heat insulating structure at a predetermined height from the bottom of the temporary storage pit 11. The predetermined height of the support base 16 from the temporary storage pit 11 allows the air 15 flowing in the gap between the partition wall 14 and the canister 2 to flow without interference between the adjacent sections 13. It is for.

【0021】また、支持架台16には、図1に示すよう
に、各区画13の位置にかかわらず空気15が同一量均
一に流れるようにするため流量調整手段としてオリフィ
ス17が取付けてあり、仕切壁14の内周と支持架台1
6の外周との間の隙間を狭めて調整している。
Also, as shown in FIG. 1, an orifice 17 is attached to the support base 16 as a flow control means so that the air 15 can flow uniformly by the same amount regardless of the position of each section 13. Inner circumference of wall 14 and support base 1
6 is adjusted by narrowing the gap with the outer periphery.

【0022】なお、各区画13のオリフィス17の外径
は一定である必要はなく、空気15の流量が区画13の
位置によって異なる場合には、オリフィス17の径を変
えて各区画13で均一になるようにする。また、流量調
整手段としてオリフィスを用いたが支持架台自体の外周
部分でオリフィス効果を持たせて流量調整を行うように
しても良く、他のバルブなどの流量調整手段を設けても
良い。
The outer diameter of the orifice 17 in each section 13 does not need to be constant. If the flow rate of the air 15 differs depending on the position of the section 13, the diameter of the orifice 17 is changed to make the orifice 17 uniform in each section 13. To be. Although the orifice is used as the flow rate adjusting means, the flow rate may be adjusted by giving an orifice effect at the outer peripheral portion of the support base itself, or a flow rate adjusting means such as another valve may be provided.

【0023】このような流量調整手段としてのオリフィ
ス17を各区画13に設けたので、いずれの区画13で
も同一流量の空気15が流れることから仮置き場ピット
11に供給される空気量を知るなどで、各区画13の空
気15の流量を測定する必要がない。
Since the orifice 17 as such a flow rate adjusting means is provided in each section 13, the same amount of air 15 flows in each section 13 so that the amount of air supplied to the temporary storage pit 11 can be known. It is not necessary to measure the flow rate of the air 15 in each section 13.

【0024】各区画13の仕切壁14の上部に空気15
の入口温度を測定する温度測定手段としての温度計18
が設けられるとともに、仕切壁14の下部に空気15の
出口温度を測定する温度測定手段としての温度計19が
設けてある。
Air 15 is placed above partition wall 14 of each section 13.
18 as a temperature measuring means for measuring the inlet temperature of the
Is provided, and a thermometer 19 as a temperature measuring means for measuring the outlet temperature of the air 15 is provided below the partition wall 14.

【0025】そして、温度計18,19の測定結果が制
御室(図示せず)に設置した演算手段であるコンピュー
タ20に入力されるようになっている。このコンピュー
タ20には、予め各区画13を流れる空気量が入力して
ある。
Then, the measurement results of the thermometers 18 and 19 are inputted to a computer 20 which is a computing means installed in a control room (not shown). The amount of air flowing through each section 13 is input to the computer 20 in advance.

【0026】このように構成した発熱量測定装置10で
は、ガラス固化体の仮置き場ピット11の各区画13の
支持架台16上にガラス固化体が入れられたキャニスタ
ー2を載置した状態にし、冷却用の空気15を流した状
態にする。
In the calorific value measuring apparatus 10 configured as described above, the canister 2 containing the vitrified material is placed on the support base 16 of each section 13 of the temporary storage pit 11 for the vitrified material, and cooled. The air 15 for use.

【0027】この状態でキャニスター2を仮置き状態に
して、ある程度の時間が経過すると熱的定常状態とな
る。
In this state, the canister 2 is temporarily placed, and after a certain period of time, the canister 2 is in a thermal steady state.

【0028】そこで、各区画13の仕切壁14の内側を
流れる空気15の入口温度と出口温度を温度計18,1
9で測定し、コンピュータ20に入力する。
Therefore, the inlet and outlet temperatures of the air 15 flowing inside the partition wall 14 of each section 13 are measured by thermometers 18 and 1.
It measures at 9 and inputs it to the computer 20.

【0029】すると、各仕切壁14の内側を流れる空気
15の流量が既知であり、その温度差が求められること
から、演算で個々のキャニスター2の発熱量を演算で求
めることができる。
Then, since the flow rate of the air 15 flowing inside each partition wall 14 is known and the temperature difference is obtained, the calorific value of each canister 2 can be obtained by calculation.

【0030】したがって、空気15の入口温度と出口温
度を温度計18,19で測定するだけで、あとは演算で
発熱量を求めることができ、測定系を簡素化することが
できる。
Therefore, only by measuring the inlet temperature and the outlet temperature of the air 15 with the thermometers 18 and 19, the calorific value can be obtained by calculation thereafter, and the measuring system can be simplified.

【0031】また、キャニスター2の周囲を流れる空気
15の温度差から発熱量を求めるので、熱輻射の影響を
受けず、高精度の測定ができるとともに、仮置き時間を
利用して発熱量を測定でき、ガラス固化体で必要な7項
目の検査・測定に要する全検査・測定時間を短縮するこ
とができる。
Since the calorific value is obtained from the temperature difference of the air 15 flowing around the canister 2, the measurement can be performed with high accuracy without being affected by heat radiation, and the calorific value can be measured using the temporary storage time. It is possible to shorten the total inspection / measurement time required for the inspection / measurement of seven items necessary for the vitrified body.

【0032】なお、上記実施の形態では、被測定体をガ
ラス固化体のキャニスターとしたが、これに限らず、他
の発熱量を測定する必要のあるものであっても良い。
In the above embodiment, the measured object is a canister of a vitrified body. However, the invention is not limited to this, and another object that needs to measure the calorific value may be used.

【0033】[0033]

【発明の効果】以上、一実施の形態とともに詳細に説明
したように、この発明の請求項1記載の発熱量測定装置
によれば、仮置き場に被測定体を載せる支持架台を設け
てその周囲に設けた仕切壁で各被測定体の置かれる空間
を仕切り、この空間を流れる空気の流量が一定になるよ
うにオリフィスなど流量調整手段を設けておき、全体を
流れる空気量から各被測定体の空間を流れる流量を知
り、各被測定体の置かれる空間の空気入口温度と出口温
度を温度測定手段で測定するようにしたので、温度の測
定だけで、仮置きしている時間を利用して簡単に発熱量
を演算手段で求めることができる。
As described above in detail with one embodiment, according to the calorific value measuring apparatus according to the first aspect of the present invention, a support base for mounting a measurement object on a temporary storage place is provided and its surroundings are provided. The space in which each DUT is placed is partitioned by a partition wall provided in the unit, and flow rate adjusting means such as an orifice is provided so that the flow rate of the air flowing through this space is constant. Since the flow rate flowing through the space is known and the air inlet temperature and outlet temperature of the space where each object is placed are measured by the temperature measuring means, only the temperature measurement is used, The calorific value can be easily obtained by the calculation means.

【0034】これにより、熱輻射の影響を受けずに精度
の高い測定ができるとともに、発熱量を測定するために
別に時間をとる必要がなく測定時間の短縮化を図ること
ができる。
[0034] Thus, high-precision measurement can be performed without being affected by heat radiation, and it is not necessary to take extra time for measuring the amount of generated heat, thereby shortening the measurement time.

【0035】また、この発明の請求項2記載の発熱量測
定装置によれば、被測定体をガラス固化体密封容器とし
たので、仮置き場に仮置きしている間に簡単かつ高精度
にガラス固化体密封容器の発熱量を求めることができ、
他の検査・測定を含む全体の検査・測定時間を短縮する
ことができる。
According to the calorific value measuring apparatus according to the second aspect of the present invention, since the object to be measured is a vitrified sealed container, the glass can be easily and highly accurately placed in a temporary storage place. The calorific value of the solidified sealed container can be obtained,
The entire inspection and measurement time including other inspection and measurement can be shortened.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の発熱量測定装置をガラス固化体密封
容器の発熱量の測定に適用した一実施の形態にかかる部
分拡大断面図である。
FIG. 1 is a partially enlarged cross-sectional view of an embodiment in which a calorific value measuring device of the present invention is applied to measurement of a calorific value of a vitrified sealed container.

【図2】この発明の発熱量測定装置をガラス固化体密封
容器の発熱量の測定に適用した一実施の形態にかかる全
体の平面図およびA−A断面図である。
FIG. 2 is an overall plan view and an AA cross-sectional view of an embodiment in which the calorific value measuring apparatus of the present invention is applied to the measurement of the calorific value of a vitrified sealed container.

【図3】ガラス固化体の貯蔵施設の概略構成図である。FIG. 3 is a schematic configuration diagram of a storage facility for a vitrified body.

【図4】従来のガラス固化体の発熱量を熱流束から求め
る測定装置の概略構成図である。
FIG. 4 is a schematic configuration diagram of a conventional measuring device for obtaining a calorific value of a vitrified body from a heat flux.

【図5】従来のガラス固化体の発熱量を空気の温度変化
から求める測定装置の概略構成図である。
FIG. 5 is a schematic configuration diagram of a conventional measuring device for obtaining a calorific value of a vitrified body from a temperature change of air.

【符号の説明】[Explanation of symbols]

2 キャニスター(ガラス固化体) 10 発熱量測定装置 11 仮置き場ピット 12 支持部材 13 区画 14 仕切壁 15 空気 16 支持架台 17 オリフィス(流量調整手段) 18 温度計(空気入口) 19 温度計(空気出口) 20 コンピュータ(演算手段) 2 Canister (vitrified body) 10 Calorific value measuring device 11 Temporary storage pit 12 Support member 13 Section 14 Partition wall 15 Air 16 Support gantry 17 Orifice (flow control means) 18 Thermometer (air inlet) 19 Thermometer (air outlet) 20 Computers (arithmetic means)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数の被測定体が仮置きされる仮置き場
に、各被測定体が載置される支持架台を設けるととも
に、各支持架台上の前記被測定体の周囲を仕切る仕切壁
を設け、各仕切壁で囲まれた空間内を流れる空気量を均
一にする流量調整手段を前記支持架台と前記仕切壁との
間に設け、これら仕切壁で仕切られた空間への空気の入
口温度と出口温度を測定する温度測定手段を設け、この
温度測定手段からの測定結果と予め既知の前記仮置き場
への全空気量とから各被測定体の発熱量を演算する演算
手段を設けてなることを特徴とする発熱量測定装置。
A support base on which each of the measured objects is placed is provided in a temporary storage area where a plurality of measured objects are temporarily placed, and a partition wall that partitions the periphery of the measured object on each of the support frames is provided. And a flow rate adjusting means for equalizing the amount of air flowing in the space surrounded by each partition wall is provided between the support base and the partition wall, and the inlet temperature of the air into the space partitioned by these partition walls is provided. And temperature measuring means for measuring the outlet temperature, and calculating means for calculating the calorific value of each object to be measured from the measurement result from the temperature measuring means and the total amount of air to the temporary storage area known in advance. A calorific value measuring device, characterized in that:
【請求項2】 前記被測定体をガラス固化体が収納され
た密封容器とすることを特徴とする請求項1記載の発熱
量測定装置。
2. The calorific value measuring apparatus according to claim 1, wherein the object to be measured is a sealed container containing a vitrified body.
JP35245897A 1997-12-05 1997-12-05 Calorific value measuring device Pending JPH11166999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35245897A JPH11166999A (en) 1997-12-05 1997-12-05 Calorific value measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35245897A JPH11166999A (en) 1997-12-05 1997-12-05 Calorific value measuring device

Publications (1)

Publication Number Publication Date
JPH11166999A true JPH11166999A (en) 1999-06-22

Family

ID=18424218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35245897A Pending JPH11166999A (en) 1997-12-05 1997-12-05 Calorific value measuring device

Country Status (1)

Country Link
JP (1) JPH11166999A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300251A (en) * 2008-06-13 2009-12-24 Toshihisa Shirakawa Bwr fuel pool (7)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300251A (en) * 2008-06-13 2009-12-24 Toshihisa Shirakawa Bwr fuel pool (7)

Similar Documents

Publication Publication Date Title
EP3441707B1 (en) Method and apparatus for dehydrating high level waste based on dew point temperature measurements
US4768158A (en) Apparatus and method for diagnosing deterioration of smokestack
JP4755061B2 (en) Nuclear facility leakage monitoring system and leakage monitoring method thereof
CN105551542B (en) A kind of water cooling containment simulator
CN103364818A (en) Device and method for radioactive surface source to automatically imitate and mark gas source detection efficiency
TWI839480B (en) Method and device for detecting loss of seal of tank and tank and storage container made of concrete
JPH11166999A (en) Calorific value measuring device
JP2020525799A (en) Analyzer for detecting fission products by measuring radioactivity
Hino et al. Stainless steel tank production and tests for the JSNS2 neutrino detector
Madruga et al. Application of infrared thermography to the fabrication process of nuclear fuel containers
Higley et al. Effect of basket/rail gap on temperature prediction in the TN-32 cask under storage and drying conditions
RU2355055C1 (en) Method of controlling air-tightness of fuel element can of nuclear reactor
JPH0219754A (en) Method and apparatus for heat conductivity test of non-plane heat insulating material
RU2113737C1 (en) Method for inspecting lithium hydride shadow radiation shielding for geometry
JP2004264162A (en) Sealing monitoring equipment and method for monitoring sealing of radioactive material storage container
Mostafa et al. Radon Equilibrium Equivalent Concentration Uncertainty of Calibration System With Alpha Self-Absorption Consideration
Johnson Jr et al. Assessment of the integrity of spent fuel assemblies used in dry storage demonstrations at the Nevada Test Site
JP2004184390A (en) Apparatus and method for detecting state of radioactive substance vessel
Hidaka et al. Deposition of cesium iodide particles in bends and sections of vertical pipe under severe accident conditions
JP2000235100A (en) Inspection equipment for vitrified solids
Ensslin et al. Attribute and Semiquantitative Measurements
Croce et al. Calorimetric Assay Instruments
Creer et al. Development of a water boil-off spent-fuel calorimeter system.[To measure decay heat generation rate]
Durbin et al. Results for the Aboveground Configuration of the Boiling Water Reactor Dry Cask Simulator
Cetiner et al. Dual-Purpose Canister Filling Demonstration Project Progress Report, Rev. 1