JPH11164497A - Non-contact feeder system - Google Patents
Non-contact feeder systemInfo
- Publication number
- JPH11164497A JPH11164497A JP9329258A JP32925897A JPH11164497A JP H11164497 A JPH11164497 A JP H11164497A JP 9329258 A JP9329258 A JP 9329258A JP 32925897 A JP32925897 A JP 32925897A JP H11164497 A JPH11164497 A JP H11164497A
- Authority
- JP
- Japan
- Prior art keywords
- coil
- pickup coil
- contact
- circuit
- power supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/30—Constructional details of charging stations
- B60L53/35—Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
- B60L53/36—Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/12—Inductive energy transfer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/10—DC to DC converters
- B60L2210/14—Boost converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/30—AC to DC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/40—DC to AC converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
- Current-Collector Devices For Electrically Propelled Vehicles (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電動式の移動体に
非接触で電力を供給する非接触給電装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact power supply apparatus for supplying electric power to a motor-driven moving body in a non-contact manner.
【0002】[0002]
【従来の技術】図5は従来の非接触給電装置の構成を示
すブロック図である。この装置は、一次給電線1に高周
波電流を流すと発生する磁界により、一次給電線1に磁
気的に結合されたピックアップコイル2に電圧が誘起さ
れ、一次給電線1からピックアップコイル2に非接触で
電力を伝送する構成となっている。ピックアップコイル
2とコンデンサ3は共振回路を構成しており、無効電力
を少なくし、電力伝送効率を増大させている。ピックア
ップコイル2の出力は、整流回路4で整流され、定電圧
回路5で安定化され、インバータ6へ供給される。イン
バータ6は定電圧回路5の出力を交流に変換し、リニア
モータ7へ出力する。2. Description of the Related Art FIG. 5 is a block diagram showing a configuration of a conventional wireless power supply. In this device, a voltage is induced in a pickup coil 2 magnetically coupled to the primary feeder line 1 by a magnetic field generated when a high-frequency current flows through the primary feeder line 1, and the pickup coil 2 is not contacted with the primary feeder line 1. Is configured to transmit power. The pickup coil 2 and the capacitor 3 constitute a resonance circuit, which reduces reactive power and increases power transmission efficiency. The output of the pickup coil 2 is rectified by the rectifier circuit 4, stabilized by the constant voltage circuit 5, and supplied to the inverter 6. The inverter 6 converts the output of the constant voltage circuit 5 into AC and outputs the AC to the linear motor 7.
【0003】[0003]
【発明が解決しようとする課題】ところで、非接触給電
装置において何らかの原因で整流部4以降の負荷が解放
状態になると、ピックアップコイル2に過電流を生じ、
共振用コンデンサ3に過大電圧が印可される。あるいは
この他に、リニアモータ7に短絡などの異常が起こる
と、インバータ6の出力電圧の低下をきたし、インバー
タ6では一定電力を供給するために電圧が低下すれば電
流が増大し、その結果として整流部4、定電圧回路5、
インバータ6に過大電流が流れ、この状態で回路を解放
するとピックアップコイル2にも過大電流が生じる。こ
のように、過負荷状態に過電流が流れたり、素子の故障
などの異常が発生すると、各電源回路部品が発熱する。
そして、発熱を放置すると、これらの部品が過熱状態と
なって壊れたり、燃えたりする危険性がある。また、他
の装置や機器の故障によっても、非接触給電装置からの
電力供給を止める必要が生じてくる。When the load after the rectifying unit 4 is released for any reason in the contactless power supply device, an overcurrent is generated in the pickup coil 2, and
An excessive voltage is applied to the resonance capacitor 3. Alternatively, if an abnormality such as a short circuit occurs in the linear motor 7, the output voltage of the inverter 6 decreases. In the inverter 6, if the voltage decreases to supply a constant power, the current increases, and as a result, Rectifier 4, constant voltage circuit 5,
An excessive current flows through the inverter 6, and when the circuit is released in this state, an excessive current also occurs in the pickup coil 2. As described above, when an overcurrent flows in an overload state or an abnormality such as a failure of an element occurs, each power supply circuit component generates heat.
If the heat is left undisturbed, there is a danger that these components may be overheated, broken or burnt. In addition, it is necessary to stop the power supply from the contactless power supply device due to a failure of another device or device.
【0004】この問題に対して、ピックアップコイル2
の二次側回路は共振回路なので、この二次側回路を短絡
すれば、共振状態から脱し、あたかもCT(変流器)の
ような状態となる。よって、ピックアップコイル2に流
れる過電流による過熱を防ぐことができる。また、定電
圧回路5の入力電圧がほとんど0Vとなるため、定電圧
回路5の制御素子の発熱を防ぐことができる。すなわ
ち、非接触給電装置に何らかの異常が生じたときには、
ピックアップコイル2や制御素子の発熱を感知し、二次
側を短絡すればよい。あるいは、ピックアップコイル2
からの入力を共振コンデンサ3よりも前で遮断してやれ
ばよい。To solve this problem, the pickup coil 2
Is a resonance circuit, so if this secondary circuit is short-circuited, it will escape from the resonance state and will be in a state like a CT (current transformer). Therefore, overheating due to an overcurrent flowing through the pickup coil 2 can be prevented. Further, since the input voltage of the constant voltage circuit 5 becomes almost 0 V, heat generation of the control element of the constant voltage circuit 5 can be prevented. That is, when any abnormality occurs in the contactless power supply device,
What is necessary is just to sense the heat generation of the pickup coil 2 and the control element and short-circuit the secondary side. Alternatively, pickup coil 2
It is sufficient to cut off the input from before the resonance capacitor 3.
【0005】しかしながら、非接触給電装置を電源とし
ており、全ての回路部分がピックアップコイル2からの
電力で動作している。よって、ピックアップコイル2を
短絡すると、定電圧回路5の電圧が殆ど0Vとなるた
め、制御系の電源も0Vとなり制御回路は機能しなくな
る。よって、ピックアップコイル2をリレー、スイッチ
ング素子(FET、トランジスタ)などの電気的手段で
短絡すれば、制御回路の電源がなくなるため、リレー、
スイッチング素子は再び短絡状態から解放状態となり電
源が投入され、一向に過熱状態から抜けられなくなる。
また、他の故障した装置や機器に再び電力を供給してし
まうため、二次故障などが生じる可能性もある。[0005] However, the non-contact power supply device is used as a power supply, and all the circuit parts operate with the power from the pickup coil 2. Therefore, when the pickup coil 2 is short-circuited, the voltage of the constant voltage circuit 5 becomes almost 0 V, so that the power supply of the control system also becomes 0 V and the control circuit does not function. Therefore, if the pickup coil 2 is short-circuited by an electrical means such as a relay or a switching element (FET, transistor), the power supply of the control circuit is lost, so that the relay,
The switching element changes from the short-circuit state to the release state again, the power is turned on, and the switching element cannot escape from the overheated state.
In addition, since power is supplied again to another failed device or device, a secondary failure may occur.
【0006】本発明はこのような点を考慮してなされた
もので、ピックアップコイルや素子の発熱、あるいは他
の装置、機器の故障を感知してピックアップコイルの二
次側を短絡、もしくは二次側入力部を遮断し、なおかつ
制御回路の電源がなくなっても短絡状態を保持すること
により、制御用電源喪失に伴う不具合事項を解消し、ピ
ックアップコイルや素子の過熱を防ぐことができる非接
触給電装置を提供することを目的とする。The present invention has been made in view of such a point, and detects the heat generation of a pickup coil or an element, or a failure of another device or apparatus, and short-circuits the secondary side of the pickup coil or performs secondary operation. Non-contact power supply that shuts off the side input section and maintains the short-circuit state even if the control circuit power supply is lost, eliminating problems associated with the loss of control power supply and preventing overheating of the pickup coil and elements. It is intended to provide a device.
【0007】[0007]
【課題を解決するための手段】請求項1記載の発明は、
高周波電流を供給される一次側電線と、前記一次側電線
と共振状態で電磁結合により電力を取り出す二次側ピッ
クアップコイルと、前記二次側ピックアップコイル出力
を整流し、安定化電源回路を介し、直流電源として出力
する非接触給電装置において、前記ピックアップコイル
の両端間もしくは整流回路の出力端間に、装置外部また
は装置内部において発生した異常信号を受けてオンとな
るメカラッチ式リレーを挿入したことを特徴とする非接
触給電装置である。請求項2記載の発明は、高周波電流
を供給される一次側電線と、前記一次側電線と共振状態
で電磁結合により電力を取り出す二次側ピックアップコ
イルと、前記二次側ピックアップコイル出力を整流し、
安定化電源回路を介し、直流電源として出力する非接触
給電装置において、前記ピックアップコイルと共振用コ
ンデンサ間の直列路に、装置外部または装置内部におい
て発生した異常信号を受けてオフとなるメカラッチ式リ
レーを挿入したことを特徴とする非接触給電装置であ
る。請求項3記載の発明は、請求項1〜請求項3のいず
れかの項記載の非接触給電装置において、前記異常信号
が、前記ピックアップコイルの温度が所定の値を越えた
時発生する信号であることを特徴とする。According to the first aspect of the present invention,
A primary-side electric wire to which a high-frequency current is supplied, a secondary-side pickup coil that takes out power by electromagnetic coupling in resonance with the primary-side electric wire, and rectifies the secondary-side pickup coil output, via a stabilized power supply circuit, In a non-contact power supply device that outputs a DC power, a mechanical latch type relay that is turned on in response to an abnormal signal generated outside the device or inside the device is inserted between both ends of the pickup coil or between output ends of the rectifier circuit. It is a non-contact power supply device characterized by the following. According to a second aspect of the present invention, a primary-side electric wire supplied with a high-frequency current, a secondary-side pickup coil for extracting electric power by electromagnetic coupling in resonance with the primary-side electric wire, and rectifying the secondary-side pickup coil output. ,
In a non-contact power supply device that outputs as a DC power supply through a stabilized power supply circuit, a mechanical latch relay that is turned off upon receiving an abnormal signal generated outside or inside the device on a series path between the pickup coil and a resonance capacitor. Is a non-contact power supply device characterized by inserting a. According to a third aspect of the present invention, in the wireless power supply device according to any one of the first to third aspects, the abnormal signal is a signal generated when the temperature of the pickup coil exceeds a predetermined value. There is a feature.
【0008】[0008]
【発明の実施の形態】以下、図面を参照して本発明の一
実施形態について説明する。図1は本発明の一実施形態
による非接触給電装置の構成を示すブロック図、図2は
同非接触給電装置が装備されたリニアモータ式搬送装置
の構成を示す概略断面図である。まず、図2において、
21は天井フレームであり、この天井フレーム21に、
垂直下方に伸びる支持フレーム22,22が取り付けら
れ、これらの支持フレーム22,22の下端部に長板状
の軌道板23が取り付けられている。そして、この軌道
板23の上面にガイドフレーム24が取り付けられてい
る。このガイドフレーム24は、内部に配置されたリニ
アモータ式搬送装置を移動自在に支持するもので、中央
部に長板状の永久磁石26が取り付けられた底板部24
aと、この底板部24aの両端に連接された垂直脚部2
4b,24bと、この垂直脚部24b,24bに連接さ
れた略コ字状のガイド部24c,24cとから構成され
ている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram illustrating a configuration of a non-contact power supply device according to an embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view illustrating a configuration of a linear motor-type transfer device equipped with the non-contact power supply device. First, in FIG.
Reference numeral 21 denotes a ceiling frame.
Support frames 22, 22 extending vertically downward are attached, and a long plate-shaped track plate 23 is attached to lower ends of these support frames 22, 22. A guide frame 24 is mounted on the upper surface of the track plate 23. The guide frame 24 movably supports a linear motor type transfer device disposed therein, and has a bottom plate portion 24 in which a long plate-shaped permanent magnet 26 is attached at the center.
a and a vertical leg 2 connected to both ends of the bottom plate 24a.
4b, 24b, and substantially U-shaped guides 24c, 24c connected to the vertical legs 24b, 24b.
【0009】また、ガイドフレーム24の内部に設けら
れたリニアモータ式搬送装置において、27は水平フレ
ームであり、この水平フレーム27の下面の左右方向中
央部にリニアモータコイル28が永久磁石26に対向し
て取り付けられ、このリニアモータコイル28を挟ん
で、水平フレーム27の下面に自在車輪29,29が取
り付けられている。また、水平フレーム27の上面中央
部には、内部に非接触給電の電源その他が収納されたブ
ロック30が取り付けられ、このブロック30の側面に
分岐メカ31,31が取り付けられ、この分岐メカ3
1,31の先端部にガイドローラ32,32が取り付け
られている。また、水平フレーム27の上面の両サイド
にもガイドローラ33,33が取り付けられている。In the linear motor type transfer device provided inside the guide frame 24, reference numeral 27 denotes a horizontal frame, and a linear motor coil 28 faces the permanent magnet 26 at the center of the lower surface of the horizontal frame 27 in the left-right direction. The universal wheels 29 are mounted on the lower surface of the horizontal frame 27 with the linear motor coil 28 interposed therebetween. At the center of the upper surface of the horizontal frame 27, a block 30 in which a power supply for non-contact power supply and the like are housed is mounted, and branch mechanisms 31, 31 are mounted on side surfaces of the block 30.
Guide rollers 32, 32 are attached to the distal end portions of the guide rollers 1, 31. Guide rollers 33, 33 are also attached to both sides of the upper surface of the horizontal frame 27.
【0010】上述した分岐メカ31,31の上面にはE
字型の磁性体コア34,34が取り付けられている。図
3はこの磁性体コア34の拡大図であり、この磁性体コ
ア34の上下に一次給電線1,1が配置されている。こ
の一次給電線1,1は、支持部材35,35の一端部に
取り付けられ、支持部材35,35の他端部がガイドフ
レーム24のガイド部24cに取り付けられている。ま
た、前記ブロック30の上部には、取付部材38が取り
付けられ、この取付部材38に、被搬送部材が収納され
る収納ボックス39が取り付けられている。On the upper surfaces of the above-mentioned branch mechanisms 31, 31, E
Character-shaped magnetic cores 34, 34 are attached. FIG. 3 is an enlarged view of the magnetic core 34, and primary feeder lines 1 and 1 are arranged above and below the magnetic core 34. The primary power supply lines 1 and 1 are attached to one ends of the support members 35 and 35, and the other ends of the support members 35 and 35 are attached to the guide portion 24c of the guide frame 24. A mounting member 38 is mounted on the upper portion of the block 30, and a storage box 39 for storing the transported member is mounted on the mounting member 38.
【0011】次に、図1において、1は一次給電線(図
2、図3参照)、2はピックアップコイル(図3)、3
は共振用コンデンサ、4は整流回路、5は定電圧回路、
6はインバータ、7は図2に示すコイル28と永久磁石
26から構成されるリニアモータであり、これらの構成
は図5に示すものと同一である。次に、図5と異なる点
を説明する。図1において、8はピックアップコイル2
の温度を検出する温度センサであり、検出回路9に接続
されている。検出回路9は、温度センサ8の出力が内部
に設定された一定値を越えた時異常信号をリレーRyに
出力する。 リレーRyはメカラッチ式リレーであり、一
旦接点が駆動されると、その後電源がオフとされても接
点のオン/オフ状態が保持される。このリレーRyのN
O(ノーマルオープン)接点ryがピックアップコイル
2の両端間に接続されている。Next, in FIG. 1, 1 is a primary power supply line (see FIGS. 2 and 3), 2 is a pickup coil (FIG. 3), 3
Is a resonance capacitor, 4 is a rectifier circuit, 5 is a constant voltage circuit,
Reference numeral 6 denotes an inverter, and reference numeral 7 denotes a linear motor including the coil 28 and the permanent magnet 26 shown in FIG. 2, and their configurations are the same as those shown in FIG. Next, differences from FIG. 5 will be described. In FIG. 1, 8 is a pickup coil 2
Is a temperature sensor for detecting the temperature of the sensor, and is connected to the detection circuit 9. The detection circuit 9 outputs an abnormal signal to the relay Ry when the output of the temperature sensor 8 exceeds a fixed value set inside. The relay Ry is a mechanical latch type relay. Once the contact is driven, the on / off state of the contact is maintained even if the power is turned off thereafter. N of this relay Ry
An O (normally open) contact ry is connected between both ends of the pickup coil 2.
【0012】次に、上述した非接触給電装置の動作を説
明する。まず、装置各部が正常に動作している場合は、
図5に示す装置と全く同じ動作となる。次に、整流回路
4、定電圧回路5、インバータ6、リニアモータ7のい
ずれかで異常が発生し、これにより、ピックアップコイ
ル2に過電流が流れると、同コイル2の温度が上昇す
る。ピックアップコイル2の温度が上昇し、温度センサ
8の出力が上述した一定値を越えると、検出回路9から
異常信号が出力され、リレーRyへ供給される。これに
より、リレーRyが駆動され、NO接点ryがオンとな
り、ピックアップコイル2の両端間が短絡される。この
結果、整流回路4の出力電圧が0となり、従って、定電
圧回路5の出力電圧も0となるが、リレーRyの接点状
態は変化せず、接点ryがオン状態を続ける。Next, the operation of the above-described non-contact power feeding device will be described. First, if each part of the device is operating normally,
The operation is exactly the same as that of the device shown in FIG. Next, when an abnormality occurs in any of the rectifier circuit 4, the constant voltage circuit 5, the inverter 6, and the linear motor 7, and an overcurrent flows through the pickup coil 2, the temperature of the pickup coil 2 increases. When the temperature of the pickup coil 2 rises and the output of the temperature sensor 8 exceeds the above-mentioned fixed value, an abnormal signal is output from the detection circuit 9 and supplied to the relay Ry. As a result, the relay Ry is driven, the NO contact ry is turned on, and both ends of the pickup coil 2 are short-circuited. As a result, the output voltage of the rectifier circuit 4 becomes 0, and thus the output voltage of the constant voltage circuit 5 also becomes 0. However, the contact state of the relay Ry does not change, and the contact ry remains on.
【0013】このように、上記の実施形態によれば、メ
カラッチ式リレーRyを用いているので、異常時に電源
なしの状態でもピックアップコイル2の両端の短絡状態
を維持することができる。なお、上記実施形態によれ
ば、リレーRyのNO接点ryをピックアップコイル2の
両端間に挿入しているが、これに代えて、整流回路4の
出力端間に挿入してもよい(図1の破線参照)。As described above, according to the above-described embodiment, since the mechanical latch type relay Ry is used, the short-circuit state at both ends of the pickup coil 2 can be maintained even when there is no power supply in an abnormal state. According to the above-described embodiment, the NO contact ry of the relay Ry is inserted between both ends of the pickup coil 2, but may be inserted between the output terminals of the rectifier circuit 4 instead (see FIG. 1). Dashed line).
【0014】図4は本発明の他の実施形態による非接触
給電装置の構成を示す図である。この実施形態によれ
ば、メカラッチ式リレーRyのNC(ノーマルクロー
ス)接点rbピックアップコイル2に直列に挿入してい
る。これにより、ピックアップコイル2の温度が上昇
し、温度センサ8出力が一定値を越えると、リレーRy
のNC接点rbがオフとなる。これにより、ピックアッ
プコイル2の回路が遮断され、整流回路4以降の回路へ
の電源供給が停止される。なお、上述した図1,図4の
実施形態においては、温度センサ8によってピックアッ
プコイル2の温度を検出し、この結果によって回路動作
の異常を検出しているが、これに代えて、整流回路4の
整流素子(ダイオード等)、定電圧回路5内の制御素子
(トランジスタ等)等の異常時に発熱する素子の温度に
基づいて異常検出を行ってもよい。また、温度以外の何
らかの異常、故障を検知してリレーRyを駆動してもよ
く、さらに装置外部からの異常信号に基づいてリレーR
yを駆動するようにしてもよい。FIG. 4 is a diagram showing a configuration of a wireless power supply device according to another embodiment of the present invention. According to this embodiment, the mechanical latch type relay Ry is inserted in series with the NC (normally closed) contact rb pickup coil 2. As a result, when the temperature of the pickup coil 2 rises and the output of the temperature sensor 8 exceeds a certain value, the relay Ry
NC contact rb is turned off. As a result, the circuit of the pickup coil 2 is cut off, and the power supply to the circuits after the rectifier circuit 4 is stopped. In the embodiments of FIGS. 1 and 4 described above, the temperature of the pickup coil 2 is detected by the temperature sensor 8 and the abnormality of the circuit operation is detected by the result. Abnormality detection may be performed based on the temperature of an element that generates heat when an abnormality occurs, such as a rectifying element (such as a diode) and a control element (such as a transistor) in the constant voltage circuit 5. Further, the relay Ry may be driven by detecting any abnormality or failure other than the temperature, and furthermore, the relay Ry may be driven based on an abnormality signal from outside the device.
y may be driven.
【0015】[0015]
【発明の効果】以上説明したように、本発明によれば、
異常時においてピックアップコイルを短絡または解放す
ることができ、さらに、その状態を電源がない状態にお
いても保持することができる。As described above, according to the present invention,
The pickup coil can be short-circuited or released at the time of abnormality, and the state can be maintained even without power.
【図1】 本発明の一実施形態による非接触給電装置の
構成を示すブロック図である。FIG. 1 is a block diagram illustrating a configuration of a wireless power supply device according to an embodiment of the present invention.
【図2】 同非接触給電装置が装備されたリニアモータ
式搬送装置の構成を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing a configuration of a linear motor-type transfer device equipped with the contactless power supply device.
【図3】 図2の磁性体コアの拡大図である。FIG. 3 is an enlarged view of the magnetic core of FIG. 2;
【図4】 本発明の他の実施形態による非接触給電装置
の構成を示す図である。FIG. 4 is a diagram illustrating a configuration of a wireless power supply device according to another embodiment of the present invention.
【図5】 従来のリニアモータ式搬送車に搭載された非
接触給電装置の構成を示すブロック図である。FIG. 5 is a block diagram showing a configuration of a non-contact power supply device mounted on a conventional linear motor type carrier.
Ry.リレーコイル ry.リレー接点 2.ピックアップコイル 3.コンデンサ 4.整流回路 5.定電圧回路部 6.インバータ 7.リニアモータ 8.温度センサ 9.検出回路 Ry. Relay coil ry. Relay contact 2. Pickup coil 3. Capacitor 4. Rectifier circuit 5. Constant voltage circuit section 6. Inverter 7. Linear motor 8. Temperature sensor 9. Detection circuit
Claims (3)
前記一次側電線と共振状態で電磁結合により電力を取り
出す二次側ピックアップコイルと、前記二次側ピックア
ップコイル出力を整流し、安定化電源回路を介し、直流
電源として出力する非接触給電装置において、 前記ピックアップコイルの両端間もしくは整流回路の出
力端間に、装置外部または装置内部において発生した異
常信号を受けてオンとなるメカラッチ式リレーを挿入し
たことを特徴とする非接触給電装置。1. A primary electric wire supplied with a high-frequency current,
In the non-contact power feeding device that rectifies the output of the secondary-side pickup coil, rectifies the output of the secondary-side pickup coil, and outputs the DC power as a DC power, A non-contact power supply device, wherein a mechanical latch type relay which is turned on in response to an abnormal signal generated outside or inside the device is inserted between both ends of the pickup coil or between output ends of the rectifier circuit.
前記一次側電線と共振状態で電磁結合により電力を取り
出す二次側ピックアップコイルと、前記二次側ピックア
ップコイル出力を整流し、安定化電源回路を介し、直流
電源として出力する非接触給電装置において、 前記ピックアップコイルと共振用コンデンサ間の直列路
に、装置外部または装置内部において発生した異常信号
を受けてオフとなるメカラッチ式リレーを挿入したこと
を特徴とする非接触給電装置。2. A primary-side electric wire supplied with a high-frequency current,
In the non-contact power feeding device that rectifies the output of the secondary-side pickup coil, rectifies the output of the secondary-side pickup coil, and outputs the DC power as a DC power, A non-contact power feeding device, wherein a mechanical latch type relay that is turned off in response to an abnormal signal generated outside or inside the device is inserted into a series path between the pickup coil and the resonance capacitor.
ルの温度が所定の値を越えた時発生する信号であること
を特徴とする請求項1〜請求項3のいずれかの項記載の
非接触給電装置。3. The wireless power supply according to claim 1, wherein the abnormal signal is a signal generated when the temperature of the pickup coil exceeds a predetermined value. apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9329258A JPH11164497A (en) | 1997-11-28 | 1997-11-28 | Non-contact feeder system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9329258A JPH11164497A (en) | 1997-11-28 | 1997-11-28 | Non-contact feeder system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11164497A true JPH11164497A (en) | 1999-06-18 |
Family
ID=18219441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9329258A Pending JPH11164497A (en) | 1997-11-28 | 1997-11-28 | Non-contact feeder system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11164497A (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001352699A (en) * | 2000-06-08 | 2001-12-21 | Shinko Electric Co Ltd | Noncontact power supplier and resonance load matching monitor circuit |
JP2002084686A (en) * | 2000-09-04 | 2002-03-22 | Tsubakimoto Chain Co | Feeder system, and carrier vehicle and system |
JP2002109495A (en) * | 2000-10-04 | 2002-04-12 | Matsushita Electric Ind Co Ltd | Contactless ic card and reader/writer |
US7138614B2 (en) | 2003-12-10 | 2006-11-21 | Samsung Electronics Co., Ltd. | Non-contact feeder system |
EP1962406A2 (en) | 2007-02-20 | 2008-08-27 | Sony Ericsson Mobile Communications Japan, Inc. | Electronic device |
WO2010032309A1 (en) * | 2008-09-19 | 2010-03-25 | トヨタ自動車株式会社 | Noncontact power receiving device and vehicle equipped with it |
JP2011010443A (en) * | 2009-06-25 | 2011-01-13 | Panasonic Electric Works Co Ltd | Rechargeable electric device |
JP2011066985A (en) * | 2009-09-16 | 2011-03-31 | Toyota Motor Corp | Contactless power receiving apparatus and electric vehicle equipped therewith |
JP2011072066A (en) * | 2009-09-24 | 2011-04-07 | Toyota Motor Corp | Noncontact power receiver and electric vehicle equipped with the same |
JP2011114985A (en) * | 2009-11-27 | 2011-06-09 | Sanyo Electric Co Ltd | Apparatus with built-in battery and charging pad |
WO2011121800A1 (en) | 2010-03-30 | 2011-10-06 | 株式会社日本自動車部品総合研究所 | Voltage detector, abnormality detection device, non-contact power transfer device, non-contact power receiver device, and vehicle |
US8084991B2 (en) | 2008-05-09 | 2011-12-27 | Seiko Epson Corporation | Power reception device, electronic apparatus, and non-contact power transmission system |
JP2012527214A (en) * | 2009-05-12 | 2012-11-01 | オークランド ユニサービシズ リミテッド | Inductive power transmission device and electric autocycle charging device equipped with the same |
US9356474B2 (en) | 2011-09-28 | 2016-05-31 | Tdk Corporation | Wireless power feeder and wireless power transmission system |
EP2431212A4 (en) * | 2009-05-14 | 2017-08-16 | Toyota Jidosha Kabushiki Kaisha | Non-contact power reception device and vehicle equipped with same |
JP2017169410A (en) * | 2016-03-18 | 2017-09-21 | 株式会社日立製作所 | Power reception device |
JP2018029485A (en) * | 2017-11-24 | 2018-02-22 | ソニー株式会社 | Terminal device |
JP2019017167A (en) * | 2017-07-05 | 2019-01-31 | 株式会社ダイヘン | Power transmission system and non-contact power supply system |
US10819150B2 (en) | 2012-09-14 | 2020-10-27 | Sony Corporation | Non-contact electric power feeding system, terminal device, non-contact electric power feeding device, and non-contact electric power feeding method |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60261362A (en) * | 1984-06-08 | 1985-12-24 | Sony Corp | Switching power source circuit |
JPS62157926A (en) * | 1985-12-28 | 1987-07-13 | Minolta Camera Co Ltd | Constant voltage power unit for microcomputer |
JPH0461435U (en) * | 1990-09-27 | 1992-05-26 | ||
JPH05328508A (en) * | 1992-05-22 | 1993-12-10 | Daifuku Co Ltd | Facility for supplying electric power to movable body noncontactly |
JPH05338765A (en) * | 1992-06-11 | 1993-12-21 | Daifuku Co Ltd | Noncontact power feed facility for jig pallet |
JPH09285113A (en) * | 1996-04-10 | 1997-10-31 | Tohoku Ricoh Co Ltd | Dc-dc converter |
JPH1118206A (en) * | 1997-06-27 | 1999-01-22 | Yamaha Motor Co Ltd | Non-contacting feeding device for traveling object |
JPH1127870A (en) * | 1997-07-03 | 1999-01-29 | Toyota Autom Loom Works Ltd | Charge method, charging equipment, charger, and vehicle |
-
1997
- 1997-11-28 JP JP9329258A patent/JPH11164497A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60261362A (en) * | 1984-06-08 | 1985-12-24 | Sony Corp | Switching power source circuit |
JPS62157926A (en) * | 1985-12-28 | 1987-07-13 | Minolta Camera Co Ltd | Constant voltage power unit for microcomputer |
JPH0461435U (en) * | 1990-09-27 | 1992-05-26 | ||
JPH05328508A (en) * | 1992-05-22 | 1993-12-10 | Daifuku Co Ltd | Facility for supplying electric power to movable body noncontactly |
JPH05338765A (en) * | 1992-06-11 | 1993-12-21 | Daifuku Co Ltd | Noncontact power feed facility for jig pallet |
JPH09285113A (en) * | 1996-04-10 | 1997-10-31 | Tohoku Ricoh Co Ltd | Dc-dc converter |
JPH1118206A (en) * | 1997-06-27 | 1999-01-22 | Yamaha Motor Co Ltd | Non-contacting feeding device for traveling object |
JPH1127870A (en) * | 1997-07-03 | 1999-01-29 | Toyota Autom Loom Works Ltd | Charge method, charging equipment, charger, and vehicle |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001352699A (en) * | 2000-06-08 | 2001-12-21 | Shinko Electric Co Ltd | Noncontact power supplier and resonance load matching monitor circuit |
JP4613394B2 (en) * | 2000-06-08 | 2011-01-19 | シンフォニアテクノロジー株式会社 | Non-contact power supply device and resonant load matching monitor circuit |
JP2002084686A (en) * | 2000-09-04 | 2002-03-22 | Tsubakimoto Chain Co | Feeder system, and carrier vehicle and system |
US6721159B2 (en) | 2000-09-04 | 2004-04-13 | Tsubakimoto Chain Co. | Power feeding apparatus, transporter and transport system |
JP2002109495A (en) * | 2000-10-04 | 2002-04-12 | Matsushita Electric Ind Co Ltd | Contactless ic card and reader/writer |
US7138614B2 (en) | 2003-12-10 | 2006-11-21 | Samsung Electronics Co., Ltd. | Non-contact feeder system |
EP1962406A2 (en) | 2007-02-20 | 2008-08-27 | Sony Ericsson Mobile Communications Japan, Inc. | Electronic device |
JP2008206296A (en) * | 2007-02-20 | 2008-09-04 | Sony Ericsson Mobilecommunications Japan Inc | Electronics |
EP1962406A3 (en) * | 2007-02-20 | 2012-09-05 | Sony Mobile Communications Japan, Inc. | Electronic device |
US8084991B2 (en) | 2008-05-09 | 2011-12-27 | Seiko Epson Corporation | Power reception device, electronic apparatus, and non-contact power transmission system |
US8421409B2 (en) | 2008-09-19 | 2013-04-16 | Toyota Jidosha Kabushiki Kaisha | Noncontact power receiving apparatus for electrically-powered vehicle and vehicle including the same |
EP2330716A1 (en) * | 2008-09-19 | 2011-06-08 | Toyota Jidosha Kabushiki Kaisha | Noncontact power receiving device and vehicle equipped with it |
EP2330716A4 (en) * | 2008-09-19 | 2012-08-29 | Toyota Motor Co Ltd | CONTACT-FREE POWER SUPPLY UNIT AND VEHICLE EQUIPPED THEREwith |
JP5152338B2 (en) * | 2008-09-19 | 2013-02-27 | トヨタ自動車株式会社 | Non-contact charging device and non-contact power receiving device |
WO2010032309A1 (en) * | 2008-09-19 | 2010-03-25 | トヨタ自動車株式会社 | Noncontact power receiving device and vehicle equipped with it |
JP2012527214A (en) * | 2009-05-12 | 2012-11-01 | オークランド ユニサービシズ リミテッド | Inductive power transmission device and electric autocycle charging device equipped with the same |
EP2431212A4 (en) * | 2009-05-14 | 2017-08-16 | Toyota Jidosha Kabushiki Kaisha | Non-contact power reception device and vehicle equipped with same |
EP2267865A3 (en) * | 2009-06-25 | 2014-03-05 | Panasonic Corporation | Chargeable electric device |
JP2011010443A (en) * | 2009-06-25 | 2011-01-13 | Panasonic Electric Works Co Ltd | Rechargeable electric device |
JP2011066985A (en) * | 2009-09-16 | 2011-03-31 | Toyota Motor Corp | Contactless power receiving apparatus and electric vehicle equipped therewith |
JP2011072066A (en) * | 2009-09-24 | 2011-04-07 | Toyota Motor Corp | Noncontact power receiver and electric vehicle equipped with the same |
JP2011114985A (en) * | 2009-11-27 | 2011-06-09 | Sanyo Electric Co Ltd | Apparatus with built-in battery and charging pad |
JP2011211854A (en) * | 2010-03-30 | 2011-10-20 | Nippon Soken Inc | Voltage detector, abnormality detection device, non-contact power transmitting device, non-contact power receiving device, non-contact power supply system, and vehicle |
US8907680B2 (en) | 2010-03-30 | 2014-12-09 | Nippon Soken, Inc. | Voltage detector, malfunction detecting device, contactless power transmitting device, contactless power receiving device, and vehicle |
WO2011121800A1 (en) | 2010-03-30 | 2011-10-06 | 株式会社日本自動車部品総合研究所 | Voltage detector, abnormality detection device, non-contact power transfer device, non-contact power receiver device, and vehicle |
US9356474B2 (en) | 2011-09-28 | 2016-05-31 | Tdk Corporation | Wireless power feeder and wireless power transmission system |
US10819150B2 (en) | 2012-09-14 | 2020-10-27 | Sony Corporation | Non-contact electric power feeding system, terminal device, non-contact electric power feeding device, and non-contact electric power feeding method |
JP2017169410A (en) * | 2016-03-18 | 2017-09-21 | 株式会社日立製作所 | Power reception device |
JP2019017167A (en) * | 2017-07-05 | 2019-01-31 | 株式会社ダイヘン | Power transmission system and non-contact power supply system |
JP2018029485A (en) * | 2017-11-24 | 2018-02-22 | ソニー株式会社 | Terminal device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11164497A (en) | Non-contact feeder system | |
US6721159B2 (en) | Power feeding apparatus, transporter and transport system | |
US6310465B2 (en) | Battery charging device | |
JP4915600B2 (en) | Rechargeable electrical equipment | |
US7923971B2 (en) | Non-contact electric power transmission apparatus | |
US6400043B1 (en) | Modular uninterruptable power supply | |
JP2012044762A (en) | Non-contact power feeder with overvoltage protection | |
JP2001258182A (en) | Noncontact power transmitter | |
CN110192318A (en) | Apparatus and method for supplying and/or providing energy to a plurality of energy storage components | |
KR102005945B1 (en) | Uninterruptible wireless power transfer system having multi fail-over function | |
KR100919499B1 (en) | Non-contact charging system for unmanned guided vehicle | |
JP2011083094A (en) | Non-contact charger | |
KR20130130277A (en) | Protection circuit for wireless power transfer apparatus | |
TW546909B (en) | Fault detecting circuit for brake switching element of frequency transformer and frequency transformer | |
KR100463333B1 (en) | Protective Device of Non-Contact Feeder System | |
JP3890714B2 (en) | Non-contact power feeding device | |
CN104685752B (en) | Circuit arrangement with controlled resonant converter and the method for running controlled resonant converter | |
JP2004194400A (en) | Non-contact power supply unit | |
JPH0543800U (en) | Inverter device | |
JP3567890B2 (en) | Automatic guided vehicle system | |
KR101977657B1 (en) | Self cooling device for transformer | |
JP2001112190A (en) | Noncontact power and signal transmission system | |
WO2020144963A1 (en) | Contactless power transmission system | |
EP1372165B1 (en) | Transformer having a temperature detecting capability and an electric appliance utilizing the same | |
JP2000078764A (en) | Non-contact feeding device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041101 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060221 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060424 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060606 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060802 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20060811 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20060922 |