[go: up one dir, main page]

JPH11163310A - Semiconductor radiation detector - Google Patents

Semiconductor radiation detector

Info

Publication number
JPH11163310A
JPH11163310A JP9328659A JP32865997A JPH11163310A JP H11163310 A JPH11163310 A JP H11163310A JP 9328659 A JP9328659 A JP 9328659A JP 32865997 A JP32865997 A JP 32865997A JP H11163310 A JPH11163310 A JP H11163310A
Authority
JP
Japan
Prior art keywords
region
radiation detector
semiconductor
cathode
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9328659A
Other languages
Japanese (ja)
Other versions
JP4116123B2 (en
Inventor
Akinaga Yamamoto
晃永 山本
Kazuhisa Yamamura
和久 山村
Yoshihisa Hayama
義久 葉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP32865997A priority Critical patent/JP4116123B2/en
Publication of JPH11163310A publication Critical patent/JPH11163310A/en
Application granted granted Critical
Publication of JP4116123B2 publication Critical patent/JP4116123B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor radiation detector through which the breakdown strength of an insulating film can be increased. SOLUTION: A semiconductor radiation detector D1 has a semiconductor substrate 1, in which isolation regions 1 electrically isolating a plurality of cathode or anode regions 1k, 1a, from which signal currents are extracted in response to the incidence of radiation, are formed, and an insulating film 2 covering the isolation-region surfaces 11 of the semiconductor substrate 1. In the semiconductor radiation detector D1, the electric field concentration of the adjacent sections 1io of the isolation regions 1 by the irradiation of radiation such as high energy line can be inhibited because at least parts of the adjacent sections 1io of the isolation regions l are covered with electrodes 3 through the insulating film 2, and the deterioration of the breakdown strength of bias voltage can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、放射線を検出する
半導体放射線検出器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor radiation detector for detecting radiation.

【0002】[0002]

【従来の技術】半導体放射線検出器は、物理実験や宇宙
空間における高エネルギー線の検出に用いられている。
従来の半導体放射線検出器は、特開平1−220867
号公報(米国特許4896201号)に記載されてい
る。この検出器は、放射線の入射に応じて信号電流が取
り出される複数のアノード又はカソード領域を電気的に
隔離する隔離領域が内部に形成された半導体基板と、半
導体基板の隔離領域表面を覆う絶縁膜とを有してなる。
2. Description of the Related Art Semiconductor radiation detectors are used for physical experiments and detection of high energy rays in outer space.
A conventional semiconductor radiation detector is disclosed in Japanese Unexamined Patent Publication No. 1-220867.
(US Pat. No. 4,896,201). The detector includes a semiconductor substrate having an isolation region formed therein for electrically isolating a plurality of anode or cathode regions from which a signal current is extracted in response to the incidence of radiation, and an insulating film covering the surface of the isolation region of the semiconductor substrate. And

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな半導体放射線検出器においては、高エネルギー線の
入射等によって半導体基板の隔離領域近接部に電界が集
中し、バイアス電圧の耐圧が劣化する。本発明はこのよ
うな課題を解決するためになされたものであり、バイア
ス電圧の耐圧を向上可能な半導体放射線検出器を提供す
ることを目的とする。
However, in such a semiconductor radiation detector, an electric field concentrates on the vicinity of the isolation region of the semiconductor substrate due to the incidence of a high energy ray or the like, and the breakdown voltage of the bias voltage deteriorates. The present invention has been made to solve such a problem, and an object of the present invention is to provide a semiconductor radiation detector capable of improving the withstand voltage of a bias voltage.

【0004】[0004]

【課題を解決するための手段】本発明に係る半導体放射
線検出器は、放射線の入射に応じて信号電流が取り出さ
れる複数のアノード又はカソード領域を電気的に隔離す
る隔離領域が内部に形成された半導体基板と、半導体基
板の隔離領域表面を覆う絶縁膜とを有する半導体放射線
検出器において、絶縁膜を介して隔離領域近接部の少な
くとも一部分を覆う電極を備えることを特徴とする。本
半導体放射線検出器においては、電極が絶縁膜を介して
隔離領域近接部の少なくとも一部分を覆うため、高エネ
ルギー線の照射等による隔離領域近接部の電界集中を抑
制することができ、バイアス電圧の耐圧劣化を防止する
ことができる。
SUMMARY OF THE INVENTION In a semiconductor radiation detector according to the present invention, an isolation region for electrically isolating a plurality of anode or cathode regions from which a signal current is extracted in accordance with the incidence of radiation is formed. A semiconductor radiation detector including a semiconductor substrate and an insulating film covering the surface of the isolation region of the semiconductor substrate, further comprising an electrode that covers at least a part of the vicinity of the isolation region via the insulation film. In the present semiconductor radiation detector, since the electrode covers at least a part of the isolated region adjacent portion via the insulating film, electric field concentration in the isolated region adjacent portion due to irradiation of high energy rays or the like can be suppressed, and the bias voltage can be reduced. Withstand voltage deterioration can be prevented.

【0005】[0005]

【発明の実施の形態】以下、実施の形態に係る半導体放
射線検出器について説明する。同一要素又は同一機能を
有する要素には同一符号を用いるものとし、重複する説
明は省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A semiconductor radiation detector according to an embodiment will be described below. The same reference numerals are used for the same elements or elements having the same functions, and overlapping descriptions are omitted.

【0006】(第1実施形態)図1、図2及び図3は、
第1実施形態に係る半導体放射線検出器D1の平面図、
A−A’矢印断面図及びB−B’矢印断面図をそれぞれ
示す。半導体放射線検出器D1は、半導体基板1の表面
側にストライプ状に形成された複数のカソード領域1k
と、半導体基板1の裏面側に形成されたアノード領域1
aとを備えている。カソード領域1k及びアノード領域
1aはそれぞれ高濃度のn型及びp型半導体からなる。
(First Embodiment) FIG. 1, FIG. 2 and FIG.
Plan view of a semiconductor radiation detector D1 according to the first embodiment,
AA 'arrow sectional view and BB' arrow sectional view are shown, respectively. The semiconductor radiation detector D1 includes a plurality of cathode regions 1k formed in a stripe shape on the surface side of the semiconductor substrate 1.
And an anode region 1 formed on the back side of the semiconductor substrate 1
a. The cathode region 1k and the anode region 1a are made of high-concentration n-type and p-type semiconductors, respectively.

【0007】カソード領域1k及びアノード領域1a間
に逆バイアスを印加、すなわち、例えばn型カソード領
域1k側にカソード電極4を介して正電位を、p型アノ
ード領域1a側にアノード電極5を介して負電位を印加
すると、カソード又はアノード領域1k,1aとの接合
面から低濃度半導体基板1内に空乏層が広がる。放射線
が検出器D1内に入射すると、半導体基板1内部で発生
した電子及び正孔が内部電界に従ってそれぞれカソード
領域1k及びアノード領域1a内に流れ込み、これらは
信号電流としてそれぞれに設けられたカソード電極4及
びアノード電極5から取り出される。
A reverse bias is applied between the cathode region 1k and the anode region 1a, that is, for example, a positive potential is applied to the n-type cathode region 1k via the cathode electrode 4 and a positive potential is applied to the p-type anode region 1a via the anode electrode 5. When a negative potential is applied, a depletion layer spreads in the low-concentration semiconductor substrate 1 from the junction surface with the cathode or anode regions 1k and 1a. When radiation enters the detector D1, electrons and holes generated inside the semiconductor substrate 1 flow into the cathode region 1k and the anode region 1a, respectively, according to the internal electric field. And from the anode electrode 5.

【0008】カソード領域1k間にはこれと反対の導電
型、すなわちp型の隔離領域1iが複数整列してストラ
イプを構成している。隔離領域1iは、そのストライプ
領域全域を包囲する外枠領域を備え、併せて個々のカソ
ード領域1kを他のカソード領域1kから更に隔離して
いる。放射線の入射によって発生した電子は、近傍のカ
ソード領域1kに最も多く流れ込むが、これ以外のカソ
ード領域1kへの電子の流入は隔離領域1iによって抑
制される。
A plurality of isolation regions 1i of the opposite conductivity type, ie, p-type, are arranged between the cathode regions 1k to form a stripe. The isolation region 1i has an outer frame region surrounding the entire stripe region, and further isolates each cathode region 1k from other cathode regions 1k. Most of the electrons generated by the incidence of the radiation flow into the neighboring cathode region 1k, but the flow of electrons into the other cathode region 1k is suppressed by the isolation region 1i.

【0009】半導体基板1表面は酸化膜等の絶縁膜2で
被覆保護されており、したがって絶縁膜2はカソード領
域1k及び隔離領域1i表面上に位置する。それぞれの
カソード領域1k上には絶縁膜2を介して複数のカソー
ド電極4がそれぞれ設けられており、隔離領域1i上に
は絶縁膜2を介して電極3が設けられている。隔離領域
1iは単独で電子の隔離機能を有するが、本実施形態で
は電極3にカソード領域1kの電位よりも低い電位を与
えて内部電子が隔離領域1iからカソード領域1kに向
かう電界を生ぜしめ、隔離機能を向上させる。
The surface of the semiconductor substrate 1 is covered and protected by an insulating film 2 such as an oxide film, so that the insulating film 2 is located on the surfaces of the cathode region 1k and the isolation region 1i. A plurality of cathode electrodes 4 are provided on each cathode region 1k via an insulating film 2, and an electrode 3 is provided on the isolated region 1i via the insulating film 2. Although the isolation region 1i alone has an electron isolation function, in the present embodiment, a potential lower than the potential of the cathode region 1k is applied to the electrode 3 so that internal electrons generate an electric field from the isolation region 1i to the cathode region 1k. Improve the isolation function.

【0010】半導体基板1の隔離領域1i外側の近接部
1io(隔離領域1iのエッジから数μmの領域)に
は、放射線の照射によって絶縁膜2内に発生した正電荷
による静電引力によって電子が蓄積されやすい状態とな
り、これらによって隔離領域1i外側近接部1io部に
電界が集中する。このような電界集中はバイアス電圧の
耐圧を劣化させる。本実施形態に係る半導体放射線検出
器D1は、隔離領域1i上に設けられた電極3が、隔離
領域1i外縁、すなわちエッジに隣接する近接部1io
を覆っているため、蓄積された電子を電極3に負電位を
印加することによって半導体基板1の隔離領域1i外縁
近傍から追い出して、電界集中を抑制し、耐圧の劣化を
防止する。さらに、上記蓄積電子はn型層を構成し、n
型カソード領域1kを含めたn型層間距離を短縮させて
寄生容量を増加させるが、本検出器D1においては、上
記蓄積電子の追い出しによって寄生容量の増加を抑制す
ることができる。
Electrons are generated in a proximity portion 1io (a region several μm from the edge of the isolation region 1i) outside the isolation region 1i of the semiconductor substrate 1 by electrostatic attraction due to positive charges generated in the insulating film 2 by irradiation of radiation. The electric field tends to be accumulated, whereby the electric field is concentrated on the proximity portion 1io outside the isolation region 1i. Such electric field concentration degrades the withstand voltage of the bias voltage. In the semiconductor radiation detector D1 according to the present embodiment, the electrode 3 provided on the isolation region 1i is arranged such that the electrode 3 provided on the outer edge of the isolation region 1i, that is, the proximity portion 1io adjacent to the edge.
, The accumulated electrons are expelled from the vicinity of the outer edge of the isolation region 1i of the semiconductor substrate 1 by applying a negative potential to the electrode 3, thereby suppressing the electric field concentration and preventing the withstand voltage from deteriorating. Further, the stored electrons constitute an n-type layer, and n
Although the parasitic capacitance is increased by shortening the n-type interlayer distance including the cathode region 1k, the detector D1 can suppress the increase in the parasitic capacitance due to the ejection of the accumulated electrons.

【0011】なお、半導体基板1は、低濃度であればp
型半導体であってもよいが、低濃度n型半導体であるこ
とが好ましい。半導体基板1は放射線、例えばプロトン
やニュートロンが照射され続けるとp型キャリア濃度が
増加し、検出器としての機能が十分に果たせなくなる。
そこで、半導体基板1は予めn型半導体としておき、p
型ドーパント濃度の増加を補償し、検出器の寿命を向上
させる。
The semiconductor substrate 1 has a low concentration of p
Although it may be a type semiconductor, it is preferably a low concentration n-type semiconductor. When the semiconductor substrate 1 is continuously irradiated with radiation, for example, protons or neutrons, the p-type carrier concentration increases, and the function as a detector cannot be sufficiently performed.
Therefore, the semiconductor substrate 1 is made to be an n-type semiconductor in advance, and
It compensates for the increase in the type dopant concentration and improves the life of the detector.

【0012】また、本検出器D1においては、複数のカ
ソード領域1kは個別に隔離されているので、検出器D
1に放射線が入射すると、対応するカソード領域1kと
絶縁膜2を介して容量結合しているカソード電極4から
交流電流が出力され、ストライプの伸延方向に直交する
方向、すなわちカソード電極4の整列方向の放射線入射
位置検出を行うことができる。なお、カソード電極4の
幾つかは、直流逆バイアス電圧印加用の電極としてカソ
ード領域1kに接触していもよい。また、検出器D1は
以下のように改良してもよい。
In the detector D1, since the plurality of cathode regions 1k are individually isolated, the detector D
When radiation is incident on the cathode electrode 1, an alternating current is output from the cathode electrode 4 which is capacitively coupled to the corresponding cathode region 1 k via the insulating film 2, and a direction orthogonal to the direction in which the stripe extends, that is, the direction in which the cathode electrodes 4 are aligned Can be detected. Some of the cathode electrodes 4 may be in contact with the cathode region 1k as electrodes for applying a DC reverse bias voltage. Further, the detector D1 may be improved as follows.

【0013】図4は、改良された半導体放射線検出器を
ストライプ状に配置された個々のカソード領域1kの伸
延方向に垂直に切った縦断面図である。なお、上述の近
接部1ioは電極3のエッジから数μm内の距離Lにあ
る領域である。本検出器では、アノード領域1a表面を
絶縁膜5xで覆い、絶縁膜5xの一部領域に形成された
開口を介してアノード電極5をアノード領域1aに接触
させ、半導体基板1裏面を安定化している。また、絶縁
膜2とカソード電極4との間に緩衝絶縁層2xを形成
し、カソード電極4の安定性を向上させている。ここ
で、カソード及びアノード電極4,5はアルミニウム、
緩衝絶縁層2xはシリコンナイトライド、絶縁膜2はシ
リコン酸化膜、半導体基板1はシリコンから構成されて
いる。
FIG. 4 is a longitudinal sectional view of the improved semiconductor radiation detector cut in a direction perpendicular to the direction of extension of the individual cathode regions 1k arranged in stripes. Note that the above-described proximity portion 1io is a region at a distance L within a few μm from the edge of the electrode 3. In this detector, the surface of the anode region 1a is covered with an insulating film 5x, and the anode electrode 5 is brought into contact with the anode region 1a through an opening formed in a partial region of the insulating film 5x to stabilize the back surface of the semiconductor substrate 1. I have. Further, a buffer insulating layer 2x is formed between the insulating film 2 and the cathode electrode 4 to improve the stability of the cathode electrode 4. Here, the cathode and anode electrodes 4 and 5 are made of aluminum,
The buffer insulating layer 2x is made of silicon nitride, the insulating film 2 is made of a silicon oxide film, and the semiconductor substrate 1 is made of silicon.

【0014】以上、説明したように、本半導体放射線検
出器D1においては、電極3が絶縁膜2を介して隔離領
域1i近接部1ioの少なくとも一部分を覆うため、高
エネルギー線等の放射線の照射による隔離領域1i近接
部1io部の電界集中を抑制することができ、バイアス
電圧の耐圧劣化を防止することができる。また、カソー
ド領域1k及び隔離領域1iがストライプ状に配置され
ているので、カソード領域1kの整列方向に沿った1次
元の放射線入射位置検出を行うことができる。
As described above, in the present semiconductor radiation detector D1, since the electrode 3 covers at least a portion of the isolation region 1i adjacent portion 1io via the insulating film 2, the radiation 3 such as a high energy beam is applied. The concentration of the electric field in the isolation region 1i adjacent portion 1io can be suppressed, and the withstand voltage degradation of the bias voltage can be prevented. In addition, since the cathode region 1k and the isolation region 1i are arranged in a stripe shape, it is possible to perform one-dimensional radiation incident position detection along the alignment direction of the cathode region 1k.

【0015】(第2実施形態)図5、図6及び図7は、
第2実施形態に係る半導体放射線検出器D2の平面図、
A−A’矢印断面図及びB−B’矢印断面図をそれぞれ
示す。本検出器D2は、第1実施形態の検出器D1と比
較して、電極3が絶縁膜2の開口を介して隔離領域1i
に接触している点のみが異なる。また、この接触は、図
24に示すようにAl電極3’を介して間接的に電気的
接続をしても良い。すなわち、隔離領域1i上、その図
面左方近接部1io上、及び図面右方近接部1io上を
ポリシリコン電極3で覆い、さらにポリシリコン電極3
と隔離領域1iとを、ポリシリコン電極3上の絶縁膜3
xに設けれたコンタクトホールを介してAl電極3’で
接続し、コンタクト抵抗の増加を抑制する。この場合、
電極3は隔離領域1iと同電位となるが、第1実施形態
と同様に隔離領域1i近接部1io部の電界集中を抑制
する効果を有する。電極3には直流的に負電位が印加さ
れる。また、検出器D1は以下のように改良してもよ
い。
(Second Embodiment) FIGS. 5, 6 and 7 show
Plan view of a semiconductor radiation detector D2 according to the second embodiment,
AA 'arrow sectional view and BB' arrow sectional view are shown, respectively. The detector D2 is different from the detector D1 of the first embodiment in that the electrode 3 has an isolated region 1i through the opening of the insulating film 2.
The only difference is that they are in contact. In addition, as shown in FIG. 24, this contact may be indirectly electrically connected via an Al electrode 3 '. That is, the polysilicon electrode 3 covers the isolation region 1i, the upper left portion 1io in the drawing, and the upper right portion 1io in the drawing.
And the isolation region 1 i are connected to the insulating film 3 on the polysilicon electrode 3.
The connection is made by an Al electrode 3 ′ via a contact hole provided in x, thereby suppressing an increase in contact resistance. in this case,
The electrode 3 has the same potential as the isolation region 1i, but has the effect of suppressing the electric field concentration in the vicinity of the isolation region 1i as in the first embodiment. A negative potential is applied to the electrode 3 in a DC manner. Further, the detector D1 may be improved as follows.

【0016】図8は、改良された半導体放射線検出器を
ストライプ状に配置された個々のカソード領域1kの伸
延方向に垂直に切った縦断面図である。本検出器は、図
4に示した検出器と比較して電極3の一部分が絶縁膜2
の開口を通って隔離領域1iと接触して隔離領域1iと
導電位となっている点のみが異なる。
FIG. 8 is a longitudinal sectional view of the improved semiconductor radiation detector cut in a direction perpendicular to the direction of extension of the individual cathode regions 1k arranged in stripes. In this detector, compared to the detector shown in FIG.
Only in that it is in contact with the isolation region 1i through the opening and has a conductive potential with the isolation region 1i.

【0017】(第3実施形態)図9、図10、図11及
び図12は、第3実施形態に係る半導体放射線検出器D
3の平面図、底面図、A−A’矢印断面図及びB−B’
矢印断面図をそれぞれ示す。本検出器D3は、第1実施
形態の検出器D1と比較して、裏面側のアノード領域1
aをストライプ状に整列した複数のアノード領域1a’
として構成し、半導体基板1のアノード領域1a’表面
を絶縁膜2’で被覆し、個々のアノード領域1a’に対
応させて絶縁膜2’上にアノード電極5を設けた点のみ
が異なる。個々のアノード領域1a’の整列方向は、カ
ソード領域1kの整列方向と直交しているか任意を角度
を有している。
(Third Embodiment) FIGS. 9, 10, 11 and 12 show a semiconductor radiation detector D according to a third embodiment.
3 is a plan view, a bottom view, an AA 'arrow sectional view, and BB'.
The arrows show cross-sectional views, respectively. This detector D3 is different from the detector D1 of the first embodiment in that the anode region 1
a in a plurality of anode regions 1a '
And the surface of the anode region 1a 'of the semiconductor substrate 1 is covered with an insulating film 2', and the anode electrode 5 is provided on the insulating film 2 'corresponding to each anode region 1a'. The alignment direction of each anode region 1a 'is orthogonal to the alignment direction of the cathode region 1k or has an arbitrary angle.

【0018】検出器D3に逆バイアスを印加した状態で
放射線が半導体基板1内に入射すると、内部で発生した
電子及び正孔がそれぞれ発生位置近傍のカソード領域1
k及びアノード領域1a’内に流入する。したがって、
これらの電荷の流入した位置のカソード領域1k及びア
ノード領域1a’からは信号電流がそれぞれのカソード
電極4及びアノード電極5から取り出される。個々のア
ノード領域1a’の整列方向は、カソード領域1kの整
列方向に対して所定角度を有するので、本検出器D3は
2次元の放射線入射位置検出を行うことができる。
When radiation enters the semiconductor substrate 1 in a state where a reverse bias is applied to the detector D3, electrons and holes generated inside the cathode region 1 near the generating position are respectively generated.
k and the anode region 1a '. Therefore,
From the cathode region 1k and the anode region 1a 'at the position where these charges have flowed in, signal current is extracted from the respective cathode electrode 4 and anode electrode 5. Since the alignment direction of each anode region 1a 'has a predetermined angle with respect to the alignment direction of the cathode region 1k, the detector D3 can perform two-dimensional radiation incident position detection.

【0019】(第4実施形態)図13、図14、図15
及び図16は、第4実施形態に係る半導体放射線検出器
D4の平面図、底面図、A−A’矢印断面図及びB−
B’矢印断面図をそれぞれ示す。本検出器D4は、第3
実施形態の検出器D3と比較して、表面側の隔離領域1
iに絶縁膜2の開口を介して電極3が接触して隔離領域
1iと同電位になっている点のみが異なり、本検出器D
4においても2次元の放射線入射位置検出を行うことが
できる。また、第2実施形態と同様に隔離領域1iは電
極3と間接的に電気的接触をしていても良い。
(Fourth Embodiment) FIGS. 13, 14, and 15
16 is a plan view, a bottom view, an AA ′ arrow cross-sectional view, and a B-B view of a semiconductor radiation detector D4 according to the fourth embodiment.
B ′ arrow sectional views are respectively shown. This detector D4 is the third
Compared to the detector D3 of the embodiment, the isolation region 1 on the front surface side
The only difference is that the electrode 3 comes into contact with the electrode i through the opening of the insulating film 2 and has the same potential as the isolated region 1i.
4, the two-dimensional radiation incident position can be detected. Further, similarly to the second embodiment, the isolation region 1i may be in indirect electrical contact with the electrode 3.

【0020】(第5実施形態)図17、図18及び図1
9は、第5実施形態に係る半導体放射線検出器D5の平
面図、A−A’矢印断面図及びB−B’矢印断面図をそ
れぞれ示す。本検出器D5は、第1実施形態の検出器D
1と比較して、半導体基板1表面側の隔離領域1iが縦
横それぞれ2以上の開口領域を有する格子を構成するよ
うに配置し、隔離領域1iの各開口領域内にカソード領
域1を配置し、隔離領域1i及びカソード領域1k上に
それぞれ電極3及び4を設けた点のみが異なる。
(Fifth Embodiment) FIGS. 17, 18 and 1
9 shows a plan view, an AA ′ arrow sectional view, and a BB ′ arrow sectional view of the semiconductor radiation detector D5 according to the fifth embodiment, respectively. This detector D5 is the detector D of the first embodiment.
1, the isolation region 1i on the surface side of the semiconductor substrate 1 is arranged so as to form a lattice having two or more opening regions in each of the vertical and horizontal directions, and the cathode region 1 is arranged in each opening region of the isolation region 1i. The only difference is that electrodes 3 and 4 are provided on the isolation region 1i and the cathode region 1k, respectively.

【0021】検出器D5に逆バイアスを印加した状態で
放射線が半導体基板1内に入射すると、内部で発生した
電子及び正孔がそれぞれ発生位置近傍のカソード領域1
k及びアノード領域1a内に流入する。それぞれのカソ
ード領域1kは隔離領域1iで隔離された状態で2×2
以上のマトリクス状に配置されているので、本検出器D
5は2次元の放射線入射位置検出を行うことができる。
本検出器D5は、上記ストライプ構造の検出器と比較し
て単一ピクセル当たりの寄生容量を小さくすることがで
き、応答速度及びノイズ耐性を向上させることができ
る。
When radiation enters the semiconductor substrate 1 in a state where a reverse bias is applied to the detector D5, electrons and holes generated inside the cathode region 1 near the generating position are respectively generated.
k and the anode region 1a. Each cathode region 1k is 2 × 2 in a state of being isolated by the isolation region 1i.
Since these detectors are arranged in a matrix,
Reference numeral 5 can perform two-dimensional radiation incident position detection.
The present detector D5 can reduce the parasitic capacitance per single pixel as compared with the above-mentioned detector having the stripe structure, and can improve the response speed and the noise resistance.

【0022】(第6実施形態)図20、図21及び図2
2は、第6実施形態に係る半導体放射線検出器D6の平
面図、A−A’矢印断面図及びB−B’矢印断面図をそ
れぞれ示す。本検出器D6は、第2実施形態の検出器D
2と比較して、半導体基板1表面側の隔離領域1iが縦
横それぞれ2以上の開口領域を有する格子を構成するよ
うに配置し、隔離領域1iの各開口領域内にカソード領
域1kを配置し、隔離領域1i及びカソード領域1k上
にそれぞれ電極3及び4を設けた点のみが異なる。
(Sixth Embodiment) FIGS. 20, 21 and 2
2 shows a plan view, an AA 'arrow cross-sectional view, and a BB' arrow cross-sectional view of the semiconductor radiation detector D6 according to the sixth embodiment. This detector D6 is the detector D of the second embodiment.
2, the isolation region 1i on the front surface side of the semiconductor substrate 1 is arranged so as to form a lattice having two or more opening regions in the vertical and horizontal directions, and the cathode region 1k is arranged in each opening region of the isolation region 1i. The only difference is that electrodes 3 and 4 are provided on the isolation region 1i and the cathode region 1k, respectively.

【0023】検出器D6に逆バイアスを印加した状態で
放射線が半導体基板1内に入射すると、内部で発生した
電子及び正孔がそれぞれ発生位置近傍のカソード領域1
k及びアノード領域1a内に流入する。それぞれのカソ
ード領域1kは隔離領域1iで隔離された状態で2×2
以上のマトリクス状に配置されているので、本検出器D
5においても2次元の放射線位置検出を行うことができ
る。
When radiation enters the semiconductor substrate 1 in a state where a reverse bias is applied to the detector D6, electrons and holes generated inside the cathode region 1 near the generating position are respectively generated.
k and the anode region 1a. Each cathode region 1k is 2 × 2 in a state of being isolated by the isolation region 1i.
Since these detectors are arranged in a matrix,
5, a two-dimensional radiation position detection can be performed.

【0024】以上、説明したように、上記実施形態に係
る半導体放射線検出器D1〜D6は、放射線の入射に応
じて信号電流が取り出される複数のカソード又はアノー
ド領域1k,1a(1a’)を電気的に隔離する隔離領
域1iが内部に形成された半導体基板1と、半導体基板
1の隔離領域表面1iを覆う絶縁膜2とを有する。検出
器D1は、絶縁膜2を介して隔離領域1i近接部1io
の少なくとも一部分を覆う電極3を備える。上記実施形
態に係る半導体放射線検出器D1〜D6においては、電
極3が絶縁膜2を介して隔離領域1i近接部1ioの少
なくとも一部分を覆うため、高エネルギー線等の放射線
の照射や逆バイアスによるピンチオフ等による隔離領域
1i近接部1io部の電界集中を抑制することができ、
バイアス電圧の耐圧劣化を防止することができる。
As described above, the semiconductor radiation detectors D1 to D6 according to the above embodiment electrically connect the plurality of cathode or anode regions 1k and 1a (1a ') from which signal currents are taken out in accordance with the incidence of radiation. The semiconductor device includes a semiconductor substrate in which an isolation region for isolating the semiconductor substrate is formed, and an insulating film covering an isolation region surface of the semiconductor substrate. The detector D1 is provided with the isolation region 1i and the proximity portion 1io via the insulating film 2.
And an electrode 3 that covers at least a portion of the electrode 3. In the semiconductor radiation detectors D1 to D6 according to the above embodiment, since the electrode 3 covers at least a part of the isolated region 1i adjacent portion 1io via the insulating film 2, pinch-off due to irradiation of radiation such as high energy rays or reverse bias. And the like, it is possible to suppress the electric field concentration in the isolated region 1i adjacent portion 1io portion due to
Deterioration of the withstand voltage of the bias voltage can be prevented.

【0025】なお、カソード電極4及びアノード電極5
の形状は、上記に限定されるものではなく、信号電流を
取り出すことができれば、円形や三角形等の形状であっ
てもよい。さらに、カソード電極4及びアノード電極5
をそれぞれカソード領域1k及びアノード領域1aに接
触させて、半導体基板1内部で発生した電荷を直流的に
読みだしても良い。また、各半導体領域1a,1k,1
iは、不純物拡散法の他、イオン注入法やエピタキシャ
ル成長法等を用いて形成することができる。
The cathode electrode 4 and the anode electrode 5
Is not limited to the above, and may be circular or triangular as long as a signal current can be extracted. Further, the cathode electrode 4 and the anode electrode 5
May be brought into contact with the cathode region 1k and the anode region 1a, respectively, to read out the charges generated inside the semiconductor substrate 1 in a DC manner. Further, each of the semiconductor regions 1a, 1k, 1
i can be formed using an ion implantation method, an epitaxial growth method, or the like in addition to the impurity diffusion method.

【0026】最後に、放射線の照射による絶縁膜2の耐
圧劣化について評価した。上記第2実施形態の半導体放
射線検出器D2を1つ(実施例)、隔離領域1i近接部
1ioを電極3が覆っていないもの、すなわち電極3が
近接部1ioよりも隔離領域1iの内側にあるものを2
つ(比較例1,2)、合計3つのサンプルを作製した。
それぞれのサンプルの放射線照射後のバイアス電圧とリ
ーク電流との関係を図23に示す。放射線の照射量は
1.33×1014P/cm2であり、測定温度は−8℃
である。同図から明らかなように、実施例に係る構造の
半導体放射線検出器D2は放射線照射後もリーク電流が
少なく、耐圧の劣化が抑制されている。
Finally, evaluation was made on the deterioration of the breakdown voltage of the insulating film 2 due to the irradiation of radiation. One semiconductor radiation detector D2 of the second embodiment (Example), one in which the electrode 3 does not cover the isolation region 1i and the proximity portion 1io, that is, the electrode 3 is located inside the isolation region 1i than the proximity portion 1io. Two things
(Comparative Examples 1 and 2), a total of three samples were produced.
FIG. 23 shows the relationship between the bias voltage and the leakage current of each sample after irradiation. The radiation dose is 1.33 × 10 14 P / cm 2 and the measurement temperature is -8 ° C.
It is. As is clear from the figure, the semiconductor radiation detector D2 having the structure according to the example has a small leak current even after irradiation, and the deterioration of the breakdown voltage is suppressed.

【0027】[0027]

【発明の効果】以上、説明したように、本発明の半導体
放射線検出器においては、その電極が絶縁膜を介して隔
離領域近接部の少なくとも一部分を覆うため、高エネル
ギー線の照射等による隔離領域部の電界集中を抑制する
ことができ、バイアス電圧の耐圧劣化を防止して検出器
の寿命を向上させることができる。
As described above, in the semiconductor radiation detector of the present invention, since the electrode covers at least a part of the vicinity of the isolation region via the insulating film, the isolation region is irradiated by high energy rays or the like. It is possible to suppress the electric field concentration in the portion, prevent deterioration of the withstand voltage of the bias voltage, and improve the life of the detector.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施形態に係る半導体放射線検出器の平面
図。
FIG. 1 is a plan view of a semiconductor radiation detector according to a first embodiment.

【図2】第1実施形態に係る半導体放射線検出器のA−
A’矢印縦断面図。
FIG. 2 is a view A- of the semiconductor radiation detector according to the first embodiment;
A 'arrow vertical sectional view.

【図3】第1実施形態に係る半導体放射線検出器のB−
B’矢印縦断面図。
FIG. 3 is a diagram illustrating a semiconductor radiation detector according to the first embodiment;
B 'arrow vertical sectional view.

【図4】第1実施形態に係る半導体放射線検出器を改良
したものの縦断面図。
FIG. 4 is a longitudinal sectional view of an improved semiconductor radiation detector according to the first embodiment.

【図5】第2実施形態に係る半導体放射線検出器の平面
図。
FIG. 5 is a plan view of a semiconductor radiation detector according to a second embodiment.

【図6】第2実施形態に係る半導体放射線検出器のA−
A’矢印縦断面図。
FIG. 6 is a view A- of the semiconductor radiation detector according to the second embodiment;
A 'arrow vertical sectional view.

【図7】第2実施形態に係る半導体放射線検出器のB−
B’矢印縦断面図。
FIG. 7 is a diagram illustrating a semiconductor radiation detector according to a second embodiment;
B 'arrow vertical sectional view.

【図8】第2実施形態に係る半導体放射線検出器を改良
したものの縦断面図。
FIG. 8 is a longitudinal sectional view of an improved semiconductor radiation detector according to the second embodiment.

【図9】第3実施形態に係る半導体放射線検出器の平面
図。
FIG. 9 is a plan view of a semiconductor radiation detector according to a third embodiment.

【図10】第3実施形態に係る半導体放射線検出器の底
面図。
FIG. 10 is a bottom view of the semiconductor radiation detector according to the third embodiment.

【図11】第3実施形態に係る半導体放射線検出器のA
−A’矢印縦断面図。
FIG. 11 illustrates a semiconductor radiation detector according to a third embodiment.
-A 'arrow longitudinal section.

【図12】第3実施形態に係る半導体放射線検出器のB
−B’矢印縦断面図。
FIG. 12 is a view B of the semiconductor radiation detector according to the third embodiment;
-B 'arrow longitudinal section.

【図13】第4実施形態に係る半導体放射線検出器の平
面図。
FIG. 13 is a plan view of a semiconductor radiation detector according to a fourth embodiment.

【図14】第4実施形態に係る半導体放射線検出器の底
面図。
FIG. 14 is a bottom view of the semiconductor radiation detector according to the fourth embodiment.

【図15】第4実施形態に係る半導体放射線検出器のA
−A’矢印縦断面図。
FIG. 15 illustrates a semiconductor radiation detector according to a fourth embodiment.
-A 'arrow longitudinal section.

【図16】第4実施形態に係る半導体放射線検出器のB
−B’矢印縦断面図。
FIG. 16 is a view B of the semiconductor radiation detector according to the fourth embodiment;
-B 'arrow longitudinal section.

【図17】第5実施形態に係る半導体放射線検出器の平
面図。
FIG. 17 is a plan view of a semiconductor radiation detector according to a fifth embodiment.

【図18】第5実施形態に係る半導体放射線検出器のA
−A’矢印縦断面図。
FIG. 18 illustrates a semiconductor radiation detector according to a fifth embodiment.
-A 'arrow longitudinal section.

【図19】第5実施形態に係る半導体放射線検出器のB
−B’矢印縦断面図。
FIG. 19 is a view B of the semiconductor radiation detector according to the fifth embodiment;
-B 'arrow longitudinal section.

【図20】第6実施形態に係る半導体放射線検出器の平
面図。
FIG. 20 is a plan view of a semiconductor radiation detector according to a sixth embodiment.

【図21】第6実施形態に係る半導体放射線検出器のA
−A’矢印縦断面図。
FIG. 21 illustrates a semiconductor radiation detector according to a sixth embodiment.
-A 'arrow longitudinal section.

【図22】第6実施形態に係る半導体放射線検出器のB
−B’矢印縦断面図。
FIG. 22 shows B of the semiconductor radiation detector according to the sixth embodiment.
-B 'arrow longitudinal section.

【図23】放射線照射後のバイアス電圧とリーク電流と
の関係を示すグラフ。
FIG. 23 is a graph showing a relationship between a bias voltage and a leakage current after irradiation.

【図24】図8に示した放射線検出器の変形例の縦断面
図。
FIG. 24 is a longitudinal sectional view of a modified example of the radiation detector shown in FIG. 8;

【符号の説明】[Explanation of symbols]

1k…カソード領域、1a…アノード領域、1i…隔離
領域、1…半導体基板、2…絶縁膜、1io…近接部。
1k: Cathode region, 1a: Anode region, 1i: Isolation region, 1 ... Semiconductor substrate, 2 ... Insulating film, 1io ... Proximity.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 放射線の入射に応じて信号電流が取り出
される複数のアノード又はカソード領域を電気的に隔離
する隔離領域が内部に形成された半導体基板と、前記半
導体基板の前記隔離領域表面を覆う絶縁膜とを有する半
導体放射線検出器において、前記絶縁膜を介して前記隔
離領域近接部の少なくとも一部分を覆う電極を備えるこ
とを特徴とする半導体放射線検出器。
1. A semiconductor substrate having an isolation region formed therein for electrically isolating a plurality of anode or cathode regions from which a signal current is extracted in response to the incidence of radiation, and covering a surface of the isolation region of the semiconductor substrate. A semiconductor radiation detector comprising: an insulating film; and an electrode that covers at least a part of the isolation region adjacent portion via the insulating film.
JP32865997A 1997-11-28 1997-11-28 Semiconductor radiation detector Expired - Lifetime JP4116123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32865997A JP4116123B2 (en) 1997-11-28 1997-11-28 Semiconductor radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32865997A JP4116123B2 (en) 1997-11-28 1997-11-28 Semiconductor radiation detector

Publications (2)

Publication Number Publication Date
JPH11163310A true JPH11163310A (en) 1999-06-18
JP4116123B2 JP4116123B2 (en) 2008-07-09

Family

ID=18212740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32865997A Expired - Lifetime JP4116123B2 (en) 1997-11-28 1997-11-28 Semiconductor radiation detector

Country Status (1)

Country Link
JP (1) JP4116123B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008130522A1 (en) * 2007-04-17 2008-10-30 Redlen Technologies, Inc. Multi-functional cathode packaging design for solid-state radiation detectors
US7955992B2 (en) 2008-08-08 2011-06-07 Redlen Technologies, Inc. Method of passivating and encapsulating CdTe and CZT segmented detectors
US8614423B2 (en) 2009-02-02 2013-12-24 Redlen Technologies, Inc. Solid-state radiation detector with improved sensitivity
US9202961B2 (en) 2009-02-02 2015-12-01 Redlen Technologies Imaging devices with solid-state radiation detector with improved sensitivity

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008130522A1 (en) * 2007-04-17 2008-10-30 Redlen Technologies, Inc. Multi-functional cathode packaging design for solid-state radiation detectors
US7462833B2 (en) 2007-04-17 2008-12-09 Redlen Technologies Multi-functional cathode packaging design for solid-state radiation detectors
US7955992B2 (en) 2008-08-08 2011-06-07 Redlen Technologies, Inc. Method of passivating and encapsulating CdTe and CZT segmented detectors
US8614423B2 (en) 2009-02-02 2013-12-24 Redlen Technologies, Inc. Solid-state radiation detector with improved sensitivity
US9202961B2 (en) 2009-02-02 2015-12-01 Redlen Technologies Imaging devices with solid-state radiation detector with improved sensitivity

Also Published As

Publication number Publication date
JP4116123B2 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
US10411051B2 (en) Coplanar electrode photodiode array and manufacturing method thereof
US8093652B2 (en) Breakdown voltage for power devices
EP3477710B1 (en) Avalanche photodiode and method of manufacturing the avalanche photodiode
US8928101B2 (en) Semiconductor device
EP0146194A2 (en) Semiconductor devices
JP7118033B2 (en) semiconductor equipment
US6147381A (en) Field effect-controllable semiconductor component
US20030094623A1 (en) Semiconductor component and method of producing it
US6646304B1 (en) Universal semiconductor wafer for high-voltage semiconductor components
US20220375933A1 (en) Semiconductor device
US20090206436A1 (en) Semiconductor apparatus
JP4116123B2 (en) Semiconductor radiation detector
US4355320A (en) Light-controlled transistor
WO2007077286A1 (en) Semiconductor radiation detector detecting visible light
US4503450A (en) Accumulation mode bulk channel charge-coupled devices
JP2003338624A (en) Semiconductor device
US8698091B2 (en) Semiconductor MOS entrance window for radiation detectors
US20080230811A1 (en) Semiconductor Structure
US20230066769A1 (en) Spad structure
US6184562B1 (en) Strip detector
US12205948B2 (en) Semiconductor device
US5583352A (en) Low-noise, reach-through, avalanche photodiodes
US20220123108A1 (en) Semiconductor device
RU2383968C2 (en) Integrated bi-mos radiation detector cell
RU2427942C1 (en) Integral cell for radiation detector based on bipolar transistor with cellular base

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040722

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

EXPY Cancellation because of completion of term