[go: up one dir, main page]

JPH11163280A - Method for simulating ferroelectric - Google Patents

Method for simulating ferroelectric

Info

Publication number
JPH11163280A
JPH11163280A JP33143197A JP33143197A JPH11163280A JP H11163280 A JPH11163280 A JP H11163280A JP 33143197 A JP33143197 A JP 33143197A JP 33143197 A JP33143197 A JP 33143197A JP H11163280 A JPH11163280 A JP H11163280A
Authority
JP
Japan
Prior art keywords
ferroelectric
polarization
amount
simulation
polarization inversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33143197A
Other languages
Japanese (ja)
Inventor
Masato Takeo
昌人 竹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP33143197A priority Critical patent/JPH11163280A/en
Publication of JPH11163280A publication Critical patent/JPH11163280A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable to accurately perform a ferroelectric simulation, by calculating polarization inversion amount per unit time by subtracting product of the polarization inversion amount and a second polarization inversion speed factor from product of non inversion polarization amount and first polarization inversion speed factor. SOLUTION: First, rectangular wave pulse of pulse voltage is applied to a ferroelectric capacitor and a curve of variation with time of polarization amount is obtained by measurement (Pa1). Also, polarization inversion amount per unit time when rectangular wave pulse of pulse voltage is applied to the ferroelectric capacitor is integrated with time to obtain a curve of variation with time according to the ferroelectric simulation (Pa2). These operations are repeated with changing variables until the difference between the curve of variation with time of polarization amount according to the measurement and that according to the ferroelectric simulation reaches the specified value or smaller. Then a ferroelectric simulation is performed to calculate polarization inversion amount per unit time corresponding to the voltage applied to the ferroelectric capacitor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、強誘電体シミュレ
ーション方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferroelectric simulation method.

【0002】[0002]

【従来の技術】近年、強誘電体の分極ヒステリシス特性
を利用した強誘電体不揮発性メモリーの開発が盛んに行
われており、容量薄膜に強誘電体を用いたキャパシタ、
いわゆる強誘電体キャパシタを含む回路のシミュレーシ
ョン方法が重要となってきた。
2. Description of the Related Art In recent years, ferroelectric non-volatile memories utilizing polarization hysteresis characteristics of ferroelectrics have been actively developed, and capacitors using ferroelectrics as capacitor thin films,
A simulation method for a circuit including a so-called ferroelectric capacitor has become important.

【0003】図5は従来の強誘電体シミュレーション方
法における分極ヒステリシス曲線の測定装置の構成図で
ある。
FIG. 5 is a configuration diagram of a polarization hysteresis curve measuring device in a conventional ferroelectric simulation method.

【0004】図5において、1は強誘電体キャパシタ、
2はセンスキャパシタ、3は任意電圧波形発生器、4は
オシロスコープである。1aは強誘電体キャパシタ1の
第1の電極、2aはセンスキャパシタ2の第1の電極で
ある。センスキャパシタ2の容量は既知である。
In FIG. 5, 1 is a ferroelectric capacitor,
2 is a sense capacitor, 3 is an arbitrary voltage waveform generator, and 4 is an oscilloscope. 1a is a first electrode of the ferroelectric capacitor 1, and 2a is a first electrode of the sense capacitor 2. The capacitance of the sense capacitor 2 is known.

【0005】図6は従来の強誘電体シミュレーション方
法における強誘電体キャパシタの構成図である。強誘電
体キャパシタ1は、多数の強誘電体11から構成されて
いる。
FIG. 6 is a configuration diagram of a ferroelectric capacitor in a conventional ferroelectric simulation method. The ferroelectric capacitor 1 includes a large number of ferroelectrics 11.

【0006】図7は従来の強誘電体シミュレーション方
法のフローチャートである。図8は従来の強誘電体シミ
ュレーション方法において測定される分極ヒステリシス
曲線を示した図である。
FIG. 7 is a flowchart of a conventional ferroelectric simulation method. FIG. 8 is a diagram showing a polarization hysteresis curve measured by a conventional ferroelectric simulation method.

【0007】以下に、図5〜8を用いて、従来の強誘電
体シミュレーション方法について示す。
Hereinafter, a conventional ferroelectric simulation method will be described with reference to FIGS.

【0008】まず、工程P1において、任意電圧波形発
生器3により、強誘電体キャパシタ1の第1の電極1a
に台形波電圧パルスを印加すると共に、オシロスコープ
4によりセンスキャパシタ2の第1の電極2aの電位変
化を測定し、センスキャパシタ2の容量と測定されたセ
ンスキャパシタ2の第1の電極2aの電位変化から、分
極ヒステリシス曲線21を求める。次に、工程P2にお
いて、分極ヒステリシス曲線の電圧と分極量の値を納め
たデータベースを作成する。工程P3において、強誘電
体シミュレーションを行い、強誘電体キャパシタ1に印
加された電圧に対応する分極量を、データベースを参照
して求める。
First, in a step P1, the first electrode 1a of the ferroelectric capacitor 1 is
, A trapezoidal wave voltage pulse is applied, and the oscilloscope 4 measures the potential change of the first electrode 2a of the sense capacitor 2 to measure the capacitance of the sense capacitor 2 and the measured potential change of the first electrode 2a of the sense capacitor 2. , A polarization hysteresis curve 21 is obtained. Next, in step P2, a database containing the values of the polarization hysteresis curve voltage and the polarization amount is created. In step P3, a ferroelectric simulation is performed, and a polarization amount corresponding to the voltage applied to the ferroelectric capacitor 1 is obtained with reference to a database.

【0009】[0009]

【発明が解決しようとする課題】しかしながら上記従来
の構成では以下のような欠点がある。
However, the above-mentioned conventional configuration has the following disadvantages.

【0010】図8に示す、分極ヒステリシス曲線は、強
誘電体キャパシタに印加された電圧と強誘電体キャパシ
タの分極量の関係であり、分極が反転する速さが考慮さ
れていない。そのため、強誘電体不揮発性メモリーの回
路設計のように、分極の反転する速さが重要となる強誘
電体シミュレーションを正確に行うことができない。ま
た、図7に示す強誘電体シミュレーション方法では、電
圧印加の繰り返しによる強誘電体キャパシタの特性変動
を求めることができない。そのため、強誘電体不揮発性
メモリーの信頼性予測に使用することができない。
The polarization hysteresis curve shown in FIG. 8 is a relationship between the voltage applied to the ferroelectric capacitor and the amount of polarization of the ferroelectric capacitor, and does not take into account the speed at which the polarization is inverted. Therefore, it is impossible to accurately perform a ferroelectric simulation in which the speed at which the polarization is inverted is important, as in the circuit design of a ferroelectric nonvolatile memory. Further, in the ferroelectric simulation method shown in FIG. 7, it is not possible to obtain the characteristic fluctuation of the ferroelectric capacitor due to the repetition of the voltage application. Therefore, it cannot be used for predicting the reliability of the ferroelectric nonvolatile memory.

【0011】上記のような問題に鑑み、本発明は、強誘
電体不揮発性メモリーの回路設計に必要な、分極の反転
する速さが重要となる強誘電体シミュレーションを正確
に行える強誘電体シミュレーション方法を提供し、また
電圧印加の繰り返しによる強誘電体キャパシタの特性変
動を求めることができ、強誘電体不揮発性メモリーの信
頼性予測ができる強誘電体シミュレーション方法を提供
することを目的とする。
In view of the above problems, the present invention provides a ferroelectric simulation capable of accurately performing a ferroelectric simulation in which the speed of polarization inversion is important, which is necessary for circuit design of a ferroelectric nonvolatile memory. It is another object of the present invention to provide a ferroelectric simulation method capable of obtaining a characteristic change of a ferroelectric capacitor due to repetition of voltage application and capable of predicting the reliability of a ferroelectric nonvolatile memory.

【0012】[0012]

【課題を解決するための手段】この目的を達成するため
に、本発明の強誘電体シミュレーション方法は、強誘電
体に印加される電圧により、総分極量を未反転分極量と
既反転分極量に分配する工程と、単位時間当たりの分極
反転量を、未反転分極量と第1の分極反転速度係数の積
から、既反転分極量と第2の分極反転速度係数の積を差
し引いて算出する工程とを備えている。
In order to achieve this object, a ferroelectric simulation method according to the present invention uses a voltage applied to a ferroelectric to determine a total polarization amount and an uninverted polarization amount. And the polarization inversion amount per unit time is calculated by subtracting the product of the already-inverted polarization amount and the second polarization inversion speed coefficient from the product of the non-inversion polarization amount and the first polarization inversion speed coefficient. And a process.

【0013】これにより、任意の印加電圧の波形に対し
て、強誘電体の分極が反転する速さ、即ち単位時間当た
りの分極反転量を算出することができ、強誘電体不揮発
性メモリーの回路設計に必要な分極の反転する速さが重
要となる強誘電体シミュレーションを正確に行うことが
できる。
Thus, the speed at which the polarization of the ferroelectric is reversed, that is, the amount of polarization reversal per unit time can be calculated for an arbitrary applied voltage waveform, and the circuit of the ferroelectric nonvolatile memory can be calculated. It is possible to accurately perform a ferroelectric simulation in which the speed at which the polarization required for the design is reversed is important.

【0014】また、本発明の強誘電体シミュレーション
方法は、複数の強誘電体により構成される1つの強誘電
体キャパシタの単位時間当たりの分極反転量を、第1の
分極反転速度係数又は第2の分極反転速度係数の少なく
とも一方が異なる2つ以上の単位時間当たりの分極反転
量の和により、算出する工程を備えている。
Further, according to the ferroelectric simulation method of the present invention, the amount of polarization reversal per unit time of one ferroelectric capacitor composed of a plurality of ferroelectrics is determined by calculating the first polarization reversal rate coefficient or the second At least one of the polarization inversion rate coefficients different from each other is calculated from the sum of the polarization inversion amounts per unit time.

【0015】これにより、多数の分極領域からなる強誘
電体キャパシタについて、任意の印加電圧の波形に対し
て、強誘電体の分極が反転する速さ、即ち、単位時間当
たりの分極反転量を算出することができ、強誘電体不揮
発性メモリーの回路設計に必要な分極の反転する速さが
重要となる強誘電体シミュレーションを正確に行うこと
ができる。
Thus, for a ferroelectric capacitor composed of a large number of polarization regions, the speed at which the polarization of the ferroelectric is reversed, that is, the amount of polarization reversal per unit time, is calculated for an arbitrary applied voltage waveform. This makes it possible to accurately perform a ferroelectric simulation in which the speed of inversion of the polarization required for the circuit design of the ferroelectric nonvolatile memory is important.

【0016】さらに、本発明の強誘電体シミュレーショ
ン方法は、単位時間当たりの分極反転量の絶対値を時間
的に積算して、積算分極反転量を算出する工程と、積算
分極反転量の関数として総分極量とを算出する工程を備
えている。
Further, according to the ferroelectric simulation method of the present invention, the absolute value of the amount of polarization reversal per unit time is integrated over time to calculate the integrated amount of polarization reversal, A step of calculating the total amount of polarization is provided.

【0017】これにより、電圧印加の繰り返しによる強
誘電体の特性変動を求めることができ、強誘電体不揮発
性メモリーの信頼性予測ができる。
Thus, it is possible to obtain a change in the characteristics of the ferroelectric substance due to the repetition of the voltage application, and it is possible to predict the reliability of the ferroelectric nonvolatile memory.

【0018】[0018]

【発明の実施の形態】(実施の形態1)本発明の第1の
実施形態に係る強誘電体シミュレーション方法における
分極ヒステリシス曲線の測定装置は、従来の強誘電体シ
ミュレーション方法における分極ヒステリシス曲線の測
定装置と同じである。
(Embodiment 1) A polarization hysteresis curve measuring apparatus in a ferroelectric simulation method according to a first embodiment of the present invention measures a polarization hysteresis curve in a conventional ferroelectric simulation method. Same as the device.

【0019】図1は本発明の第1の実施形態に係る強誘
電体シミュレーション方法のフローチャートである。
FIG. 1 is a flowchart of a ferroelectric simulation method according to the first embodiment of the present invention.

【0020】図2は本発明の第1の実施形態に係る強誘
電体シミュレーション方法における分極量の時間変化曲
線を示した図である。
FIG. 2 is a diagram showing a time change curve of the polarization amount in the ferroelectric simulation method according to the first embodiment of the present invention.

【0021】図2において、101、102、103
は、矩形波電圧パルスのパルス電圧、実線で示された1
04、105、106は、各々、矩形波電圧パルスのパ
ルス電圧101、102、103における実測による分
極量の時間変化曲線、破線で示された107、108、
109は、各々、矩形波電圧パルスのパルス電圧10
1、102、103における強誘電体シミュレーション
による分極量の時間変化曲線である。
In FIG. 2, 101, 102, 103
Is the pulse voltage of the square wave voltage pulse, 1 shown by the solid line
Reference numerals 04, 105, and 106 denote time-varying curves of the measured polarization amounts at the pulse voltages 101, 102, and 103 of the rectangular-wave voltage pulses, and 107 and 108 indicated by broken lines, respectively.
Reference numeral 109 denotes a pulse voltage of the rectangular wave voltage pulse.
It is a time change curve of the amount of polarization by ferroelectric simulation in 1,102,103.

【0022】強誘電体キャパシタ1の単位時間当たりの
分極反転量DPは、i番目の強誘電体11の単位時間当
たりの分極反転量DPiにより、 DP=ΣDPi (数1) で表される。
The polarization reversal amount DP per unit time of the ferroelectric capacitor 1 is expressed by the following formula: DP = ΣDPi (Equation 1), based on the polarization reversal amount DPi of the i-th ferroelectric substance 11 per unit time.

【0023】i番目の強誘電体11の単位時間当たりの
分極反転量DPiは、その分極反転速度係数RAi、R
Biと、未反転分極量PAiと、既反転分極量PBiと
により、 DPi=RAi×PAi−RBi×PBi (数2) で表される。
The polarization reversal amount DPi of the i-th ferroelectric substance 11 per unit time is determined by the polarization reversal rate coefficients RAi and Ri.
DPi = RAi × PAi−RBi × PBi (Equation 2) is represented by Bi, the unreversed polarization PAi, and the already reversed polarization PBi.

【0024】i番目の強誘電体11の総分極量Piは、 Pi=PAi+PBi (数3) で表される。The total amount of polarization Pi of the i-th ferroelectric substance 11 is represented by the following equation: Pi = PAi + PBi (Equation 3)

【0025】分極反転速度係数RAiは、i番目の強誘
電体11に印加される電圧Vと、その温度に依存して変
化する変数AAi、BAiとにより、 RAi=exp(AAi×V+BAi) (数4) で表される。
The polarization reversal rate coefficient RAi is determined by the voltage V applied to the i-th ferroelectric substance 11 and the variables AAi and BAi that change depending on the temperature. RAi = exp (AAi × V + BAi) 4) It is represented by.

【0026】分極反転速度係数RBiは、i番目の強誘
電体11に印加される電圧Vと、その温度に依存して変
化する変数ABi、BBiとにより、 RBi=exp(ABi×V+BBi) (数5) で表される。
The polarization reversal rate coefficient RBi is determined by the voltage V applied to the i-th ferroelectric substance 11 and the variables ABi and BBi that vary depending on the temperature. RBi = exp (ABi × V + BBi) 5) is represented by

【0027】以下に、本発明の第1の実施形態に係る強
誘電体シミュレーション方法について示す。
The ferroelectric simulation method according to the first embodiment of the present invention will be described below.

【0028】まず、工程Pa1において、強誘電体キャ
パシタ1にパルス電圧101、102、103の矩形波
電圧パルスを印加し、実測による分極量の時間変化曲線
104、105、106を求める。工程Pa2におい
て、強誘電体キャパシタ1にパルス電圧101、10
2、103の矩形波電圧パルスを印加したときの、単位
時間当たりの分極反転量DPを時間的に積算して、強誘
電体シミュレーションによる分極量の時間変化曲線10
7、108、109を求める。変数AAi、ABi、B
Ai、BBiを変化させて、実測による分極量の時間変
化曲線104、105、106と強誘電体シミュレーシ
ョンによる分極量の時間変化曲線107、108、10
9との差が、所定の値以下となるまで工程Pa2を繰り
返す。工程Pa3において、強誘電体シミュレーション
を行い、強誘電体キャパシタ1に印加された電圧に対応
する単位時間当たりの分極反転量DPを算出する。
First, in step Pa1, rectangular wave voltage pulses of pulse voltages 101, 102, and 103 are applied to the ferroelectric capacitor 1, and time-varying curves 104, 105, and 106 of the amount of polarization by actual measurement are obtained. In the process Pa2, the pulse voltages 101 and 10 are applied to the ferroelectric capacitor 1.
The polarization change amount DP per unit time when the rectangular wave voltage pulses of 2, 103 are applied is temporally integrated, and the time change curve 10 of the polarization amount by the ferroelectric simulation is obtained.
7, 108 and 109 are obtained. Variables AAi, ABi, B
By changing Ai and BBi, the time change curves 104, 105, and 106 of the polarization amount by actual measurement and the time change curves 107, 108, and 10 of the polarization amount by the ferroelectric simulation.
Step Pa2 is repeated until the difference from No. 9 becomes equal to or less than a predetermined value. In step Pa3, a ferroelectric simulation is performed to calculate a polarization reversal amount DP per unit time corresponding to the voltage applied to the ferroelectric capacitor 1.

【0029】本発明の第1の実施形態による、強誘電体
シミュレーションでは、単位時間当たりの分極反転量の
時間的積算により、分極量の変化を求めているので、強
誘電体不揮発性メモリーの回路設計のように、分極の反
転する速さが重要となる強誘電体シミュレーションを正
確に行うことができる。また、強誘電体キャパシタ1の
分極量の変化を、複数の強誘電体11の分極量の変化の
総和により求めているので、強誘電体キャパシタ1の実
測による分極量の時間変化を、高精度に強誘電体シミュ
レーションにより再現できる。
In the ferroelectric simulation according to the first embodiment of the present invention, the change in the amount of polarization is obtained by the time integration of the amount of polarization inversion per unit time. As in the case of design, a ferroelectric simulation in which the speed at which the polarization is inverted is important can be accurately performed. Further, since the change in the polarization amount of the ferroelectric capacitor 1 is obtained by the sum of the changes in the polarization amounts of the plurality of ferroelectrics 11, the time change of the polarization amount by the actual measurement of the ferroelectric capacitor 1 can be obtained with high accuracy. Can be reproduced by ferroelectric simulation.

【0030】なお、本発明の第1の実施形態では、工程
Pa3において、強誘電体キャパシタ1について、強誘
電体シミュレーションを行っているが、強誘電体キャパ
シタ1と同等の製造プロセスにより製作された他の強誘
電体キャパシタを含む任意の回路構成について、同様に
強誘電体シミュレーションを行えることはいうまでもな
い。
In the first embodiment of the present invention, the ferroelectric capacitor 1 is subjected to the ferroelectric simulation in the step Pa3. However, the ferroelectric capacitor 1 is manufactured by the same manufacturing process as that of the ferroelectric capacitor 1. Needless to say, a ferroelectric simulation can be similarly performed for any circuit configuration including another ferroelectric capacitor.

【0031】また、(数4)、(数5)は、分極反転速
度係数RAi、RBiの算出方法の一例であり、本発明
の第1の実施形態は、これに限定されない。
(Equation 4) and (Equation 5) are examples of a method of calculating the polarization inversion rate coefficients RAi and RBi, and the first embodiment of the present invention is not limited to this.

【0032】(実施の形態2)本発明の第2の実施形態
に係る強誘電体シミュレーション方法における分極ヒス
テリシス曲線の測定装置は、従来の強誘電体シミュレー
ション方法における分極ヒステリシス曲線の測定装置と
同じである。
(Embodiment 2) The polarization hysteresis curve measuring device in the ferroelectric simulation method according to the second embodiment of the present invention is the same as the polarization hysteresis curve measuring device in the conventional ferroelectric simulation method. is there.

【0033】図3は本発明の第2の実施形態に係る強誘
電体シミュレーション方法のフローチャートである。
FIG. 3 is a flowchart of a ferroelectric simulation method according to the second embodiment of the present invention.

【0034】図4は本発明の第2の実施形態に係る強誘
電体シミュレーション方法における交流電圧ストレス印
加後の分極量の時間変化曲線を示した図である。
FIG. 4 is a diagram showing a time change curve of the polarization amount after an AC voltage stress is applied in the ferroelectric simulation method according to the second embodiment of the present invention.

【0035】図4において、実線で示された204、2
05、206は、各々、矩形波電圧パルスのパルス電圧
101、102、103における実測による分極量の時
間変化曲線、破線で示された207、208、209
は、各々、矩形波電圧パルスのパルス電圧101、10
2、103における強誘電体シミュレーションによる分
極量の時間変化曲線である。
In FIG. 4, 204, 2
Reference numerals 05 and 206 denote time-varying curves of the measured polarization amount at the pulse voltages 101, 102, and 103 of the rectangular wave voltage pulses, and 207, 208, and 209 indicated by broken lines.
Are the pulse voltages 101, 10 of the rectangular wave voltage pulse, respectively.
5 is a time change curve of a polarization amount by a ferroelectric simulation in Nos. 2 and 103.

【0036】強誘電体11に起こる分極反転の時間的積
算量SPiは、強誘電体11の単位時間当たりの分極反
転量DPiの絶対値を時間で積分したものである。
The temporal integration amount SPi of the polarization inversion occurring in the ferroelectric material 11 is obtained by integrating the absolute value of the polarization inversion amount DPi per unit time of the ferroelectric material 11 with respect to time.

【0037】i番目の強誘電体11が分極反転を、分極
反転の時間的積算量SPiだけ経験した後の、i番目の
強誘電体11の総分極量PSiは、その初期状態におけ
る総分極量Piと、総分極量の減少係数SRiと、分極
反転の時間的積算量SPiとにより PSi=Pi×SRiSPi (数6) で表される。
After the i-th ferroelectric substance 11 has undergone the polarization inversion by the time integration amount SPi of the polarization inversion, the total polarization quantity PSi of the i-th ferroelectric substance 11 is the total polarization quantity in its initial state. PSi = Pi × SRi SPi ( Equation 6) represents Pi, the decrease coefficient SRi of the total polarization amount, and the temporal integration amount SPi of the polarization inversion.

【0038】以下に、本発明の第2の実施形態に係る強
誘電体シミュレーション方法について示す。
Hereinafter, a ferroelectric simulation method according to the second embodiment of the present invention will be described.

【0039】まず、工程Pb1において、初期状態の強
誘電体キャパシタ1にパルス電圧101、102、10
3の矩形波電圧パルスを印加し、実測による分極量の時
間変化曲線104、105、106を求める。工程Pb
2において、強誘電体キャパシタ1に交流電圧ストレス
を印加する。工程Pb3において、交流電圧ストレス印
加後の強誘電体キャパシタ1にパルス電圧101、10
2、103の矩形波電圧パルスを印加し、実測による分
極量の時間変化曲線204、205、206を求める。
工程Pb4において、強誘電体キャパシタ1にパルス電
圧101、102、103の矩形波電圧パルスを印加し
たときの、単位時間当たりの分極反転量DPを時間的に
積算して、強誘電体シミュレーションによる分極量の時
間変化曲線107、108、109、207、208、
209を求める。変数AAi、ABi、BAi、BB
i、SRiを変化させて、実測による分極量の時間変化
曲線104、105、106、204、205、206
と強誘電体シミュレーションによる分極量の時間変化曲
線107、108、109、207、208、209と
の差が、所定の値以下となるまで工程Pb4を繰り返
す。工程Pb5において、強誘電体シミュレーションを
行い、強誘電体キャパシタ1に印加された電圧に対応す
る単位時間当たりの分極反転量DPを算出する。
First, in step Pb1, pulse voltages 101, 102, and 10 are applied to the ferroelectric capacitor 1 in the initial state.
Then, a rectangular wave voltage pulse of No. 3 is applied, and time-varying curves 104, 105, and 106 of the polarization amount by actual measurement are obtained. Process Pb
In 2, an AC voltage stress is applied to the ferroelectric capacitor 1. In step Pb3, the pulse voltages 101 and 10 are applied to the ferroelectric capacitor 1 after the application of the AC voltage stress.
2, 103 rectangular wave voltage pulses are applied to obtain time-dependent curves 204, 205, and 206 of the amount of polarization by actual measurement.
In the process Pb4, the polarization reversal amount DP per unit time when the rectangular wave voltage pulse of the pulse voltage 101, 102, 103 is applied to the ferroelectric capacitor 1 is integrated over time, and the polarization by the ferroelectric simulation is obtained. Time-varying curves 107, 108, 109, 207, 208,
209. Variables AAi, ABi, BAi, BB
i, SRi are changed, and the time-varying curves 104, 105, 106, 204, 205, 206 of the polarization amount by the actual measurement.
Step Pb4 is repeated until the difference between the time variation curves 107, 108, 109, 207, 208, and 209 of the polarization amounts obtained by the ferroelectric simulation becomes equal to or smaller than a predetermined value. In step Pb5, a ferroelectric simulation is performed to calculate a polarization reversal amount DP per unit time corresponding to the voltage applied to the ferroelectric capacitor 1.

【0040】本発明の第2の実施形態による強誘電体シ
ミュレーションでは、単位時間当たりの分極反転量の時
間的積算により、分極量の変化を求めているので、強誘
電体不揮発性メモリーの回路設計のように、分極の反転
する速さが重要となる強誘電体シミュレーションを正確
に行うことができる。また、強誘電体キャパシタ1の分
極量の変化を、複数の強誘電体11の分極量の変化の総
和により求めているので、強誘電体キャパシタ1の実測
による分極量の時間変化を、高精度に強誘電体シミュレ
ーションにより再現できる。さらに、交流電圧ストレス
印加後の強誘電体11の総分極量を、分極反転の時間的
積算量の関数としており、強誘電体不揮発性メモリーの
信頼性予測ができる。
In the ferroelectric simulation according to the second embodiment of the present invention, since the change in the amount of polarization is obtained by the time integration of the amount of polarization inversion per unit time, the circuit design of the ferroelectric nonvolatile memory is performed. As described above, it is possible to accurately perform a ferroelectric simulation in which the speed at which the polarization is inverted is important. Further, since the change in the polarization amount of the ferroelectric capacitor 1 is obtained by the sum of the changes in the polarization amounts of the plurality of ferroelectrics 11, the time change of the polarization amount by the actual measurement of the ferroelectric capacitor 1 can be obtained with high accuracy. Can be reproduced by ferroelectric simulation. Further, the total amount of polarization of the ferroelectric 11 after the application of the AC voltage stress is made a function of the time integration amount of the polarization inversion, so that the reliability of the ferroelectric nonvolatile memory can be predicted.

【0041】なお、本発明の第2の実施形態では、工程
Pb5において、強誘電体キャパシタ1について、強誘
電体シミュレーションを行っているが、強誘電体キャパ
シタ1と同等の製造プロセスにより製作された他の強誘
電体キャパシタを含む任意の回路構成について、同様に
強誘電体シミュレーションを行えることはいうまでもな
い。
In the second embodiment of the present invention, the ferroelectric capacitor 1 is subjected to the ferroelectric simulation in step Pb5. However, the ferroelectric capacitor 1 was manufactured by the same manufacturing process as that of the ferroelectric capacitor 1. Needless to say, a ferroelectric simulation can be similarly performed for any circuit configuration including another ferroelectric capacitor.

【0042】[0042]

【発明の効果】以上のように本発明は、単位時間当たり
の分極反転量の時間的積算により、分極量の変化を求め
ている。したがって、分極の反転する速さが重要となる
強誘電体シミュレーションを正確に行うことができる。
As described above, according to the present invention, the change in the amount of polarization is obtained by the time integration of the amount of polarization inversion per unit time. Therefore, it is possible to accurately perform a ferroelectric simulation in which the speed at which the polarization is inverted is important.

【0043】また、本発明は、強誘電体キャパシタの分
極量の変化を、複数の強誘電体の分極量の変化の総和に
より求めている。したがって、多結晶から構成される強
誘電体キャパシタの分極量の時間変化を高精度に再現で
きる。
Further, according to the present invention, the change in the amount of polarization of the ferroelectric capacitor is obtained by summing the change in the amount of polarization of a plurality of ferroelectrics. Therefore, it is possible to accurately reproduce the time-dependent change in the polarization amount of the ferroelectric capacitor composed of polycrystal.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態に係る強誘電体シミュ
レーション方法のフローチャート
FIG. 1 is a flowchart of a ferroelectric simulation method according to a first embodiment of the present invention.

【図2】本発明の第1の実施形態に係る強誘電体シミュ
レーション方法における分極量の時間変化曲線を示した
FIG. 2 is a diagram showing a time change curve of a polarization amount in the ferroelectric simulation method according to the first embodiment of the present invention.

【図3】本発明の第2の実施形態に係る強誘電体シミュ
レーション方法のフローチャート
FIG. 3 is a flowchart of a ferroelectric simulation method according to a second embodiment of the present invention.

【図4】本発明の第2の実施形態に係る強誘電体シミュ
レーション方法における交流電圧ストレス印加後の分極
量の時間変化曲線を示した図
FIG. 4 is a diagram showing a time change curve of a polarization amount after an AC voltage stress is applied in a ferroelectric simulation method according to a second embodiment of the present invention.

【図5】従来の強誘電体シミュレーション方法における
分極ヒステリシス曲線の測定装置の構成図
FIG. 5 is a configuration diagram of an apparatus for measuring a polarization hysteresis curve in a conventional ferroelectric simulation method.

【図6】従来の強誘電体シミュレーション方法における
強誘電体キャパシタの構成図
FIG. 6 is a configuration diagram of a ferroelectric capacitor in a conventional ferroelectric simulation method.

【図7】従来の強誘電体シミュレーション方法のフロー
チャート
FIG. 7 is a flowchart of a conventional ferroelectric simulation method.

【図8】従来の強誘電体シミュレーション方法において
測定される分極ヒステリシス曲線を示した図
FIG. 8 is a diagram showing a polarization hysteresis curve measured by a conventional ferroelectric simulation method.

【符号の説明】[Explanation of symbols]

1 強誘電体キャパシタ 2 センスキャパシタ 3 任意電圧波形発生器 4 オシロスコープ 11 強誘電体 Reference Signs List 1 ferroelectric capacitor 2 sense capacitor 3 arbitrary voltage waveform generator 4 oscilloscope 11 ferroelectric

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 29/788 29/792 // G06F 17/00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 29/788 29/792 // G06F 17/00

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 強誘電体に印加される電圧により、総分
極量を未反転分極量と既反転分極量とに分配する工程
と、単位時間当たりの分極反転量を、前記未反転分極量
と第1の分極反転速度係数との積から、前記既反転分極
量と第2の分極反転速度係数との積を差し引いて算出す
る工程とを備えていることを特徴とする強誘電体シミュ
レーション方法。
A step of distributing a total polarization amount to an uninverted polarization amount and an already-inverted polarization amount by a voltage applied to the ferroelectric, and determining a polarization inversion amount per unit time by the uninverted polarization amount. A step of subtracting the product of the already-inverted polarization amount and the second polarization inversion velocity coefficient from the product of the first polarization inversion velocity coefficient to calculate the ferroelectric substance.
【請求項2】 複数の前記強誘電体により構成される1
つの強誘電体キャパシタの単位時間当たりの分極反転量
を、前記第1の分極反転速度係数又は前記第2の分極反
転速度係数の少なくとも一方が異なる2つ以上の前記単
位時間当たりの分極反転量の和により算出する工程を備
えていることを特徴とする請求項1に記載の強誘電体シ
ミュレーション方法。
2. A semiconductor device comprising: a plurality of ferroelectrics;
The amount of polarization inversion per unit time of the two ferroelectric capacitors is determined by calculating two or more polarization inversion amounts per unit time in which at least one of the first polarization inversion speed coefficient or the second polarization inversion speed coefficient is different. 2. The ferroelectric simulation method according to claim 1, further comprising a step of calculating by a sum.
【請求項3】 前記第1の分極反転速度係数又は前記第
2の分極反転速度係数の少なくとも一方を、前記強誘電
体に印加される電圧の関数として算出する工程を備えて
いることを特徴とする請求項1又は請求項2に記載の強
誘電体シミュレーション方法。
3. The method according to claim 1, further comprising the step of calculating at least one of the first polarization inversion velocity coefficient and the second polarization inversion velocity coefficient as a function of a voltage applied to the ferroelectric. The ferroelectric simulation method according to claim 1 or 2, wherein
【請求項4】 前記第1の分極反転速度係数又は前記第
2の分極反転速度係数の少なくとも一方を、前記強誘電
体の温度の関数として算出する工程を備えていることを
特徴とする請求項1ないし請求項3のいずれかに記載の
強誘電体シミュレーション方法。
4. The method according to claim 1, further comprising the step of calculating at least one of the first domain inversion rate coefficient and the second domain inversion rate coefficient as a function of the temperature of the ferroelectric. The ferroelectric simulation method according to claim 1.
【請求項5】 前記単位時間当たりの分極反転量の絶対
値を時間的に積算して、積算分極反転量を算出する工程
と、前記積算分極反転量の関数として前記総分極量を算
出する工程とを備えていることを特徴とする請求項1な
いし請求項4のいずれかに記載の強誘電体シミュレーシ
ョン方法。
5. A step of calculating an integrated polarization inversion amount by temporally integrating the absolute value of the polarization inversion amount per unit time, and a step of calculating the total polarization amount as a function of the integrated polarization inversion amount. The ferroelectric simulation method according to any one of claims 1 to 4, further comprising:
JP33143197A 1997-12-02 1997-12-02 Method for simulating ferroelectric Pending JPH11163280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33143197A JPH11163280A (en) 1997-12-02 1997-12-02 Method for simulating ferroelectric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33143197A JPH11163280A (en) 1997-12-02 1997-12-02 Method for simulating ferroelectric

Publications (1)

Publication Number Publication Date
JPH11163280A true JPH11163280A (en) 1999-06-18

Family

ID=18243596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33143197A Pending JPH11163280A (en) 1997-12-02 1997-12-02 Method for simulating ferroelectric

Country Status (1)

Country Link
JP (1) JPH11163280A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329840A (en) * 2001-02-27 2002-11-15 Fujitsu Ltd Circuit simulation method and apparatus
JP2005345119A (en) * 2004-05-31 2005-12-15 Canon Inc Analytical method, and program and information processor for executing analytical method
CN1324611C (en) * 2001-09-25 2007-07-04 旺宏电子股份有限公司 Circuit structure for simulating polarization relaxation in ferroelectric memory
US7624001B2 (en) 2004-05-31 2009-11-24 Canon Kabushiki Kaisha Analysis method, program for performing the method, and information processing apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329840A (en) * 2001-02-27 2002-11-15 Fujitsu Ltd Circuit simulation method and apparatus
CN1324611C (en) * 2001-09-25 2007-07-04 旺宏电子股份有限公司 Circuit structure for simulating polarization relaxation in ferroelectric memory
JP2005345119A (en) * 2004-05-31 2005-12-15 Canon Inc Analytical method, and program and information processor for executing analytical method
US7624001B2 (en) 2004-05-31 2009-11-24 Canon Kabushiki Kaisha Analysis method, program for performing the method, and information processing apparatus

Similar Documents

Publication Publication Date Title
Traynor et al. Capacitor test simulation of retention and imprint characteristics for ferroelectric memory operation
Bartic et al. Preisach model for the simulation of ferroelectric capacitors
US6008659A (en) Method of measuring retention performance and imprint degradation of ferroelectric films
KR0146641B1 (en) Method of simulating hot carrier deterioration of an mos transistor
Shekhani et al. Characterization of piezoelectric ceramics using the burst/transient method with resonance and antiresonance analysis
Melnick et al. Recent results on switching, fatigue and electrical characterization of sol-gel based PZT capacitors
JPH11163280A (en) Method for simulating ferroelectric
US4095176A (en) Method and apparatus for evaluating corrosion protection
Dietz et al. How to analyse relaxation and leakage currents of dielectric thin films: Simulation of voltage-step and voltage-ramp techniques
KR19990047223A (en) How to Evaluate the Characteristics of Ferroelectric Memory Using Cell Test Patterns
KR100377512B1 (en) Acceleration test method of semiconductor memory device
US6327558B1 (en) Apparatus for simulating electrical characteristics of a circuit including a ferroelectric device and a method for simulating electrical characteristics of a circuit including a ferroelectric device
Kulkarni et al. A circuit model for a thin film ferroelectric memory device
JP4059552B2 (en) Fatigue life test method and test apparatus for ferroelectric materials
Kuhn et al. A dynamic ferroelectric capacitance model for circuit simulators
CN101943721B (en) Method for fast measuring imprinting effect of ferroelectric film
JPH0575137A (en) Manufacture of ferroelectric memory
JP4136510B2 (en) Manufacturing method of semiconductor memory device
JP2002304897A (en) Ferroelectric memory device, evaluation device and evaluation method thereof
KR20060051474A (en) Reliability Test Method of Ferroelectric Memory Device
Schuermeyer Test results on an MNOS memory array
JP2584093B2 (en) Insulation film reliability evaluation method
RU2338461C2 (en) Device for diagnostics of condition of biological objects
JP3361268B2 (en) Method for evaluating polarization characteristics of ferroelectric capacitor
JP4893622B2 (en) Circuit simulation method, circuit simulation apparatus, and circuit simulation program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20041214

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080610