JPH11162029A - Magneto-optical recording medium - Google Patents
Magneto-optical recording mediumInfo
- Publication number
- JPH11162029A JPH11162029A JP33068597A JP33068597A JPH11162029A JP H11162029 A JPH11162029 A JP H11162029A JP 33068597 A JP33068597 A JP 33068597A JP 33068597 A JP33068597 A JP 33068597A JP H11162029 A JPH11162029 A JP H11162029A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- magnetic domain
- recording
- magneto
- domain expansion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、レーザ光等の照射
により2値情報を記録し、カー効果等の磁気光学効果で
情報を再生する光磁気記録媒体であって、磁区拡大再生
が可能なものに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording medium for recording binary information by irradiating a laser beam or the like and reproducing the information by a magneto-optical effect such as the Kerr effect. About things.
【0002】[0002]
【従来の技術】従来の磁区拡大再生が可能な光磁気記録
媒体(以下、媒体という)を図2に示す。同図は、従来
の媒体m2 の部分断面図であり、再生時の磁化方向の状
態を説明するものである。2. Description of the Related Art FIG. 2 shows a conventional magneto-optical recording medium (hereinafter, referred to as a medium) capable of reproducing magnetic domains. This drawing is a partial cross-sectional view of a conventional medium m2, and explains the state of the magnetization direction during reproduction.
【0003】同図において、11はGdFeCo等から
成る磁区拡大層、12はAl合金等から成る反射層、1
3はTbFeCo等から成る記録層、14は対物レン
ズ、15はレーザ光である。この構成において、再生時
に磁区拡大層11に対してレーザ15を照射し、ビーム
スポット付近の温度を120℃程度に昇温すると、磁区
拡大層11の面内磁化が垂直磁化に変化し、垂直磁化の
外部磁界によって磁化され易くなる。また、記録層13
の漏洩磁界も増大する結果、その磁化方向が磁区拡大層
11に転写される。In FIG. 1, reference numeral 11 denotes a magnetic domain expansion layer made of GdFeCo or the like, 12 denotes a reflection layer made of an Al alloy or the like,
3 is a recording layer made of TbFeCo or the like, 14 is an objective lens, and 15 is a laser beam. In this configuration, when the laser 15 is irradiated to the magnetic domain expansion layer 11 during reproduction and the temperature near the beam spot is raised to about 120 ° C., the in-plane magnetization of the magnetic domain expansion layer 11 changes to perpendicular magnetization, Is easily magnetized by the external magnetic field. Also, the recording layer 13
As a result, the magnetization direction is transferred to the magnetic domain expansion layer 11.
【0004】そして、磁区拡大層11に転写された磁化
方向と同じ方向に260Oe程度の外部磁界を印加する
と、磁区拡大層11の転写磁区がビームスポットとほぼ
同じ大きさまで拡大する。このとき、記録層13の磁性
材料は保磁力が高いので、熱や外部磁界の影響で磁化方
向が影響されることはない(日経エレクトロニクス19
97.6.16(no.691)、特開平1−1430
41号公報参照)。When an external magnetic field of about 260 Oe is applied in the same direction as the magnetization direction transferred to the magnetic domain enlarging layer 11, the transferred magnetic domain of the magnetic domain enlarging layer 11 expands to almost the same size as the beam spot. At this time, since the magnetic material of the recording layer 13 has a high coercive force, the magnetization direction is not affected by the influence of heat or an external magnetic field (Nikkei Electronics 19).
97.16.16 (No. 691), JP-A-1-1430
No. 41).
【0005】[0005]
【発明が解決しようとする課題】しかしながら、図2の
ように、記録層13の記録マークを小さくして線記録密
度を高くしようとすると、ビームスポットの中心付近の
複数の記録マークが磁区拡大層11に転写され、信号が
干渉してC/N比が低下するという問題点があった。However, as shown in FIG. 2, when the recording marks on the recording layer 13 are made smaller to increase the linear recording density, a plurality of recording marks near the center of the beam spot are formed on the magnetic domain enlarging layer. No. 11, there was a problem that the signal interfered and the C / N ratio was lowered.
【0006】また、上記問題点を解消するために、磁区
拡大層11と記録層13との間にゲート層と呼ばれる磁
性層を設け、ゲート層により最も高温の1個の記録マー
クだけを抽出し、磁区拡大層11に転写する構成も提案
されている(日経エレクトロニクス 1997.6.1
6(no.691)参照)。しかし、従来、このゲート
層の磁気的特性等について詳しく言及した例はなかっ
た。In order to solve the above problem, a magnetic layer called a gate layer is provided between the magnetic domain expansion layer 11 and the recording layer 13, and only one recording mark having the highest temperature is extracted by the gate layer. A configuration in which the image is transferred to the magnetic domain expansion layer 11 has also been proposed (Nikkei Electronics 1997.6.1).
6 (No. 691)). However, there has been no example in which the magnetic characteristics and the like of the gate layer have been described in detail.
【0007】従って、本発明は上記事情に鑑みて完成さ
れたものであり、その目的は、磁区拡大再生が可能な媒
体において、磁区拡大層と記録層との間に設けられるゲ
ート層を特定の磁気的特性となるようにし、その結果再
生時の分解能、即ちC/N比等を向上させることにあ
る。Accordingly, the present invention has been completed in view of the above circumstances, and an object of the present invention is to specify a gate layer provided between a magnetic domain expansion layer and a recording layer in a medium capable of magnetic domain expansion reproduction. It is to improve the resolution at the time of reproduction, that is, the C / N ratio, etc. as a result of obtaining magnetic characteristics.
【0008】[0008]
【課題を解決するための手段】本発明の光磁気記録媒体
は、室温で面内磁化状態で所定温度以上で垂直磁化状態
に変化し得る磁区拡大層と、前記磁区拡大層よりも保磁
力が大きい記録層とを有する光磁気記録媒体であって、
前記磁区拡大層と記録層との間に、室温で面内磁化状態
であり、かつ前記磁区拡大層及び記録層よりもキュリー
温度が低いゲート層を設けたことを特徴とし、上記構成
により、記録層の記録マークの1個のみを抽出して拡大
再生できるようにし、その結果再生時の分解能、C/N
比等を向上し得る。The magneto-optical recording medium of the present invention has a magnetic domain expansion layer which can change its in-plane magnetization state at room temperature to a perpendicular magnetization state at a predetermined temperature or higher at room temperature, and has a coercive force higher than that of the magnetic domain expansion layer. A magneto-optical recording medium having a large recording layer,
A gate layer, which is in an in-plane magnetization state at room temperature and has a lower Curie temperature than the magnetic domain expansion layer and the recording layer, is provided between the magnetic domain expansion layer and the recording layer. Only one of the recording marks of the layer is extracted to enable enlarged reproduction, and as a result, the resolution at the time of reproduction, C / N
The ratio can be improved.
【0009】本発明において、好ましくは、前記磁区拡
大層と前記ゲート層との間に、これらの交換結合を遮断
する中間層を設ける。In the present invention, preferably, an intermediate layer is provided between the magnetic domain enlarging layer and the gate layer to block exchange coupling between them.
【0010】[0010]
【発明の実施の形態】本発明の媒体m1 を図1に示す。
同図は媒体m1 の部分断面図であり、温度による磁化状
態の変化を説明するためのものである。FIG. 1 shows a medium m1 of the present invention.
FIG. 3 is a partial cross-sectional view of the medium m1 for explaining a change in the magnetization state due to temperature.
【0011】同図において、1はGdFeCo等から成
る磁区拡大層、2はAl合金等から成る反射層を兼ねた
中間層、3はゲート層、4はTbFeCo等から成る記
録層、5は対物レンズ、6は再生用のレーザ光である。
これらの層は、ポリカーボネート等のプラスチック,ガ
ラス等の透明材料からなるディスク状等の透明基板(図
示せず)上に、磁区拡大層1から順次積層される。ま
た、サイアロン(Si,Al,O,Nの非晶質膜),イ
ットリウムサイアロン(Y,Si,Al,O,Nの非晶
質膜),Si3 N4 ,SiO2 ,AlN等から成る透明
誘電体層を、磁性層の酸化防止や損傷防止のために、透
明基板と磁区拡大層1との間、各層間、最外磁性層上な
どに設けてもよい。In FIG. 1, 1 is a magnetic domain expansion layer made of GdFeCo or the like, 2 is an intermediate layer also serving as a reflection layer made of an Al alloy or the like, 3 is a gate layer, 4 is a recording layer made of TbFeCo or the like, and 5 is an objective lens. , 6 are laser beams for reproduction.
These layers are sequentially laminated from a magnetic domain enlarging layer 1 on a disk-shaped transparent substrate (not shown) made of a transparent material such as plastic such as polycarbonate or glass or the like. Also, a transparent material made of sialon (amorphous film of Si, Al, O, N), yttrium sialon (amorphous film of Y, Si, Al, O, N), Si 3 N 4 , SiO 2 , AlN, etc. The dielectric layer may be provided between the transparent substrate and the magnetic domain expansion layer 1, between layers, on the outermost magnetic layer, or the like to prevent oxidation and damage of the magnetic layer.
【0012】同図に示すように、レーザ光6のビームス
ポットが照射された媒体m1 の部分は温度が上昇し、1
20℃程度でゲート層3の磁化が弱まるか消失して、漏
洩磁場(白矢印)による静磁結合でもって、記録層4の
磁化方向と同方向の磁化が磁区拡大層1に生じる。As shown in FIG. 1, the temperature of the portion of the medium m1 irradiated with the beam spot of the laser beam 6 rises,
At about 20 ° C., the magnetization of the gate layer 3 weakens or disappears, and due to magnetostatic coupling due to a stray magnetic field (white arrow), magnetization in the same direction as the magnetization direction of the recording layer 4 is generated in the magnetic domain expansion layer 1.
【0013】上記各磁性層は、基本的にCr,Fe,C
o,Ni,Cu等の遷移金属元素(Transition Metal e
lementで、以下、TMという)と、Nd,Sm,Gd,
Tb,Dy,Ho等の希土類元素(Rare Earth element
で、以下、REという)との非晶質合金から成る。例え
ば、各磁性層はTbFe,TbFeCo,GdFeC
o,GdTbFeCo等から成る。Each of the above magnetic layers is basically made of Cr, Fe, C
Transition metal elements such as o, Ni, and Cu
lement, hereinafter referred to as TM), Nd, Sm, Gd,
Rare Earth element such as Tb, Dy, Ho, etc.
, Hereinafter referred to as RE). For example, each magnetic layer is made of TbFe, TbFeCo, GdFeC.
o, GdTbFeCo and the like.
【0014】本発明のゲート層3は、室温で面内磁化状
態であり、上記磁区拡大層1及び記録層4よりもキュリ
ー温度が低い。つまり、前記磁区拡大層1はキュリー温
度が320℃程度で、120℃以上では面内磁化が垂直
磁化に変化し、その際記録層4の漏洩磁場により磁化方
向が転写され、また記録層4は室温から再生時の最高温
度までの範囲(室温〜150℃程度)内でその垂直磁化
を保持する必要があるため、キュリー温度は270℃程
度と高い。従って、ゲート層3のキュリー温度は100
〜140℃程度(120℃前後)が好ましく、100℃
未満では再生時の温度(120℃程度)で図1の漏洩磁
場が広くなりすぎ、即ちゲートが広くなりすぎて周囲の
記録層4の磁化方向が転写されるため、分解能が劣化す
る。一方、ゲート層3のキュリー温度が140℃を超え
ると、逆にゲートが狭くなり、磁化方向の転写速度が遅
くなる。より好ましくは、110〜130℃である。The gate layer 3 of the present invention is in an in-plane magnetization state at room temperature and has a lower Curie temperature than the magnetic domain expansion layer 1 and the recording layer 4. That is, the magnetic domain expansion layer 1 has a Curie temperature of about 320 ° C., and at 120 ° C. or higher, the in-plane magnetization changes to perpendicular magnetization. At this time, the magnetization direction is transferred by the leakage magnetic field of the recording layer 4. The Curie temperature is as high as about 270 ° C. because its perpendicular magnetization must be maintained within the range from room temperature to the maximum temperature for reproduction (from room temperature to about 150 ° C.). Therefore, the Curie temperature of the gate layer 3 is 100
About 140 ° C. (about 120 ° C.), preferably 100 ° C.
When the temperature is less than the above, the leakage magnetic field in FIG. 1 becomes too wide at the reproducing temperature (about 120 ° C.), that is, the gate becomes too wide, and the magnetization direction of the surrounding recording layer 4 is transferred, so that the resolution is deteriorated. On the other hand, if the Curie temperature of the gate layer 3 exceeds 140 ° C., on the other hand, the gate becomes narrower, and the transfer speed in the magnetization direction decreases. More preferably, it is 110 to 130 ° C.
【0015】上記の磁気的特性を得るためには、ゲート
層3の組成はGdFe,GdFeCo等が好ましい。G
dFeの場合、その組成比は、28at(原子)%≦G
d≦34at%,66at%≦Fe≦72at%が良
く、Gdが34at%を超えるとキュリー温度が100
℃未満となり、また全動作温度範囲で垂直磁化にならな
い。一方、Gdが28at%未満の場合、キュリー温度
が150℃以上となり、また室温で垂直磁化状態にな
る。In order to obtain the above magnetic characteristics, the composition of the gate layer 3 is preferably GdFe, GdFeCo, or the like. G
In the case of dFe, the composition ratio is 28 at (atomic)% ≦ G
d ≦ 34 at%, 66 at% ≦ Fe ≦ 72 at% is good, and if Gd exceeds 34 at%, the Curie temperature becomes 100.
° C, and no perpendicular magnetization over the entire operating temperature range. On the other hand, when Gd is less than 28 at%, the Curie temperature becomes 150 ° C. or higher, and a perpendicular magnetization state occurs at room temperature.
【0016】このゲート層3の厚みは50〜200Åが
よく、50Å未満では、面内磁化のマスク層として作用
するには、飽和磁化と膜厚の積で決定される磁化が小さ
すぎる。また、200Åを超えると、記録層4からの漏
洩磁場が弱くなり、記録層4から磁区拡大層1への磁化
方向の転写が不十分となる。The thickness of the gate layer 3 is preferably 50 to 200 °. If the thickness is less than 50 °, the magnetization determined by the product of the saturation magnetization and the film thickness is too small to function as a mask layer for in-plane magnetization. On the other hand, if it exceeds 200 °, the leakage magnetic field from the recording layer 4 becomes weak, and the transfer of the magnetization direction from the recording layer 4 to the magnetic domain expansion layer 1 becomes insufficient.
【0017】本発明において、前記磁区拡大層1と前記
ゲート層3との間に、これらの交換結合を遮断する中間
層を設けるのが好ましく、この中間層により、記録層4
から磁区拡大層1に磁化方向を転写し磁区拡大する際
に、ゲート層3の交換結合力の影響を受けない。即ち、
ゲート層3及び記録層4に含まれるTMとREの各々の
磁化方向の作用を、磁区拡大層1に含まれるTMとRE
が受けることがなく、これらの磁性層は静磁結合するも
のであればよいことになる。従って、これらの磁性層の
組成の選択度(自由度)が飛躍的に増すことになる。ま
た、中間層により記録層4から磁区拡大層1に作用する
静磁結合の強さを調整することができる。In the present invention, it is preferable to provide an intermediate layer between the magnetic domain expansion layer 1 and the gate layer 3 for interrupting exchange coupling between them.
When the magnetization direction is transferred to the magnetic domain enlarging layer 1 and the magnetic domain is expanded, the exchange coupling force of the gate layer 3 is not affected. That is,
The effect of the magnetization direction of each of the TM and RE included in the gate layer 3 and the recording layer 4 is compared with the TM and RE included in the magnetic domain expansion layer 1.
And these magnetic layers need only be magnetostatically coupled. Therefore, the selectivity (degree of freedom) of the composition of these magnetic layers is dramatically increased. Further, the strength of the magnetostatic coupling acting on the magnetic domain expansion layer 1 from the recording layer 4 can be adjusted by the intermediate layer.
【0018】このような特性を有する中間層の組成は、
アモルファスAlN(a−AlNと表記),a−Si
N,a−SiO,a−TiN,a−TiO,a−Ta
O,サイアロン,イットリウムサイアロン等がよく、こ
れらは非磁性材料でありスパッタリング法等で容易に成
膜できる。また、中間層の厚さは10〜200Åが好ま
しく、10Å未満では、光磁気ディスク等のディスク状
の媒体において、ディスクの周方向の転写特性の分布が
大きくなる。また、200Åを超えると磁区拡大層1と
記録層4との間の静磁結合が弱くなり、磁化方向の転写
が不十分となる。The composition of the intermediate layer having such characteristics is as follows:
Amorphous AlN (denoted as a-AlN), a-Si
N, a-SiO, a-TiN, a-TiO, a-Ta
O, Sialon, Yttrium Sialon, and the like are preferable. These are nonmagnetic materials and can be easily formed by a sputtering method or the like. Further, the thickness of the intermediate layer is preferably from 10 to 200 °, and if it is less than 10 °, the distribution of the transfer characteristics in the circumferential direction of the disk becomes large in a disk-shaped medium such as a magneto-optical disk. If it exceeds 200 °, the magnetostatic coupling between the magnetic domain expansion layer 1 and the recording layer 4 becomes weak, and the transfer of the magnetization direction becomes insufficient.
【0019】上記磁区拡大層1は、室温で面内磁化状態
で所定温度(120℃程度)以上で垂直磁化状態に変化
するという特性を得るには、その組成はGdFeCo,
GdTbFe,GdTbFeCo,GdDyFeCo,
GdDyFe等からなるのがよい。また、磁区拡大層1
の厚さは100〜300Åがよく、100Å未満ではレ
ーザ光が透過し易くなり、反射されないためC/N比が
低下する。また、300Åを超えると、磁区の拡大及び
収縮の速度が低下して分解能が劣化する。In order to obtain the characteristic that the magnetic domain expansion layer 1 changes to a perpendicular magnetization state at a predetermined temperature (about 120 ° C.) or more in an in-plane magnetization state at room temperature, its composition is GdFeCo,
GdTbFe, GdTbFeCo, GdDyFeCo,
It is preferably made of GdDyFe or the like. In addition, the magnetic domain expansion layer 1
The thickness is preferably 100 to 300 °, and if it is less than 100 °, the laser light is easily transmitted and is not reflected, so that the C / N ratio is lowered. On the other hand, if it exceeds 300 °, the speed of expansion and contraction of the magnetic domain decreases, and the resolution deteriorates.
【0020】記録層4については、磁区拡大層1よりも
保磁力が大きいという特性を有するためには、室温付近
に補償温度を有し、キュリー温度が約180℃〜280
℃が好適である。180℃未満ではC/N比が低下し、
280℃超では記録補助層がある場合にそのキュリー温
度と同等以上となるため、記録補助層から記録層4へ転
写する際の転写可能な温度幅が狭くなり、記録パワーの
設定が困難になる。The recording layer 4 must have a compensation temperature near room temperature and a Curie temperature of about 180 ° C. to 280 in order to have a characteristic that the coercive force is larger than that of the magnetic domain expansion layer 1.
C is preferred. Below 180 ° C., the C / N ratio decreases,
When the temperature exceeds 280 ° C., the temperature becomes equal to or higher than the Curie temperature of the recording auxiliary layer, if any, so that the transferable temperature range when transferring from the recording auxiliary layer to the recording layer 4 becomes narrow, and it becomes difficult to set the recording power. .
【0021】また、上記特性を得るための記録層4の組
成は、TbFeCo,TbDyFeCo,TbGdFe
Co,TbGdDyFeCo等が良い。The composition of the recording layer 4 for obtaining the above characteristics is TbFeCo, TbDyFeCo, TbGdFe
Co, TbGdDyFeCo and the like are preferable.
【0022】そして、記録層4の組成比は、TbFeC
oの場合、20at(原子)%<Tb<28at%,6
6at%<Fe<72at%,8at%<Co<14a
t%、TbDyFeCoの場合、18at%<Tb<2
6at%,1at%<Dy<4at%,66at%<F
e<72at%,9at%<Co<15at%が好まし
い。また、TbGdFeCoの場合、18at%<Tb
<26at%,1at%<Gd<4at%,66at%
<Fe<74at%,7at%<Co<13at%、T
bGdDyFeCoの場合、16at%<Tb<24a
t%,1at%<Gd<4at%,1at%<Dy<4
at%,66at%<Fe<74at%,8at%<C
o<14at%が好適である。The composition ratio of the recording layer 4 is TbFeC
In the case of o, 20 at (atomic)% <Tb <28 at%, 6
6 at% <Fe <72 at%, 8 at% <Co <14a
t%, in the case of TbDyFeCo, 18 at% <Tb <2
6 at%, 1 at% <Dy <4 at%, 66 at% <F
e <72 at%, 9 at% <Co <15 at% are preferred. In the case of TbGdFeCo, 18 at% <Tb
<26 at%, 1 at% <Gd <4 at%, 66 at%
<Fe <74 at%, 7 at% <Co <13 at%, T
In the case of bGdDyFeCo, 16 at% <Tb <24 a
t%, 1 at% <Gd <4 at%, 1 at% <Dy <4
at%, 66 at% <Fe <74 at%, 8 at% <C
Preferably, o <14 at%.
【0023】記録層4の厚みは200〜600Åが良
く、200Å未満では記録層4から磁区拡大層1への静
磁結合が弱まるため磁化の転写が困難になり、600Å
超では、記録補助層が存在する場合、記録補助層から記
録層4への交換結合力による磁化の転写が困難になる。The thickness of the recording layer 4 is preferably 200 to 600 °. If the thickness is less than 200 °, the magnetostatic coupling from the recording layer 4 to the magnetic domain expansion layer 1 is weakened, so that the transfer of magnetization becomes difficult.
If the recording auxiliary layer is present, if the recording auxiliary layer is present, it is difficult to transfer the magnetization from the recording auxiliary layer to the recording layer 4 by the exchange coupling force.
【0024】更に、記録層4上に記録補助層,制御層,
初期化層等を設けて、オーバーライト可能なものとして
もよい。また、記録層4と記録補助層との間に、これら
の交換結合力を調整するための交換結合力調整層を設け
てもよい。Further, on the recording layer 4, a recording auxiliary layer, a control layer,
An initialization layer or the like may be provided to enable overwriting. Further, an exchange coupling force adjusting layer for adjusting the exchange coupling force may be provided between the recording layer 4 and the recording auxiliary layer.
【0025】かくして、本発明は、記録層の記録マーク
の1個のみを抽出して拡大再生できるようにし、複数の
記録マークが再生されることによる複数の信号の干渉を
防ぎ、その結果再生時の分解能、C/N比等を向上し得
るという作用効果を有する。Thus, according to the present invention, only one of the recording marks on the recording layer can be extracted and enlarged and reproduced, and interference of a plurality of signals due to reproduction of the plurality of recording marks can be prevented. And the C / N ratio can be improved.
【0026】また、本発明において、各磁性層を基板の
両面に積層するか、片面に各磁性層を積層した2枚の基
板を貼り付けることにより、2倍の記録密度としてもよ
い。In the present invention, the recording density may be doubled by laminating each magnetic layer on both sides of the substrate or by sticking two substrates having each magnetic layer laminated on one surface.
【0027】尚、本発明は上記の実施形態に限定される
ものではなく、本発明の要旨を逸脱しない範囲内で種々
の変更は何等差し支えない。It should be noted that the present invention is not limited to the above embodiment, and various changes may be made without departing from the scope of the present invention.
【0028】[0028]
【実施例】本発明の実施例を以下に説明する。図1の媒
体m1 を以下のように構成した。ポリカーボネートから
成るディスク状の透明基板(図示せず)上に、アモルフ
ァスSiN(800Å)から成る透明誘電体層(図示せ
ず)をスパッタリング法により成膜した。Embodiments of the present invention will be described below. The medium m1 in FIG. 1 was constructed as follows. A transparent dielectric layer (not shown) made of amorphous SiN (800 °) was formed on a disk-shaped transparent substrate (not shown) made of polycarbonate by a sputtering method.
【0029】次いで、REリッチ,膜厚約200Å,キ
ュリー温度約320℃のGd30Fe45Co25から成る磁
区拡大層1、膜厚約100Åのa−AlNから成る反射
層(中間層)2、REリッチ,膜厚約100Å,キュリ
ー温度約120℃のGd30Fe70から成るゲート層3、
室温で補償組成,膜厚約400Å,キュリー温度約27
0℃のTb25Fe65Co10から成る記録層4、a−Si
N(800Å)から成る透明誘電体層(図示せず)を順
次スパッタリング法により成膜し、さらにその上に紫外
線防止用の樹脂保護層(図示せず)をコートして光磁気
ディスクを作製した。Next, a magnetic domain enlarging layer 1 made of Gd 30 Fe 45 Co 25 having an RE-rich thickness of about 200 ° and a Curie temperature of about 320 ° C., a reflective layer (intermediate layer) 2 made of a-AlN having a thickness of about 100 °, A gate layer 3 made of Gd 30 Fe 70 having RE richness, a film thickness of about 100 ° and a Curie temperature of about 120 ° C.
Compensation composition at room temperature, film thickness about 400mm, Curie temperature about 27
Recording layer 4 made of Tb 25 Fe 65 Co 10 at 0 ° C., a-Si
A transparent dielectric layer (not shown) made of N (800 °) was sequentially formed by a sputtering method, and a resin protective layer (not shown) for preventing ultraviolet rays was further coated thereon to produce a magneto-optical disk. .
【0030】そして、図3は記録層4の記録マーク長
(μm)を変化させたときの再生時のC/N比特性のグ
ラフであり、丸印のデータaは本実施例のもの、三角印
のデータbは図2の従来例、四角印のデータcは比較例
を示しゲート層3を変えた以外は図1の本実施例と同様
のものである。データbの場合、媒体m2 はゲート層が
なく、反射層12を膜厚約200Åのa−AlNから構
成した以外は本実施例と同様である。また、データcの
場合、ゲート層3をREリッチ,膜厚約100Å,キュ
リー温度約300℃のGd30Fe50Co30で構成したも
のである。FIG. 3 is a graph of the C / N ratio characteristics during reproduction when the recording mark length (μm) of the recording layer 4 is changed. Marked data b is a conventional example of FIG. 2 and square data c is a comparative example, which is the same as that of the embodiment of FIG. 1 except that the gate layer 3 is changed. In the case of data b, the medium is the same as that of the present embodiment except that the medium m2 has no gate layer and the reflective layer 12 is made of a-AlN having a thickness of about 200 °. In the case of data c, the gate layer 3 is made of RE-rich, Gd 30 Fe 50 Co 30 having a thickness of about 100 ° and a Curie temperature of about 300 ° C.
【0031】同図のグラフに示すように、C/N比は実
用上45dB程度以上が必要なのに対し、本実施例(デ
ータa)では記録マーク長が0.050μmでも45d
Bを超えている。従来例(データc)では、記録マーク
長が0.150μm以上でC/N比が45dB以上とな
っており、本実施例と比較してC/N比が劣化した。ま
た、比較例(データb)では、記録マーク長が0.12
5μm以上でC/N比が45dB以上となった。As shown in the graph of FIG. 2, the C / N ratio is required to be about 45 dB or more in practical use, whereas in the present embodiment (data a), even when the recording mark length is 0.050 μm, the C / N ratio is 45 d.
B is exceeded. In the conventional example (data c), the C / N ratio was 45 dB or more when the recording mark length was 0.150 μm or more, and the C / N ratio was deteriorated as compared with this embodiment. In the comparative example (data b), the recording mark length was 0.12.
At 5 μm or more, the C / N ratio became 45 dB or more.
【0032】比較例(データb)の場合、ゲート層3の
ビームスポット中心付近で垂直磁化になっている領域が
本実施例に比較して広がっており(図1のゲート層3の
一点鎖線部)、これは周囲の記録マークの影響を受けて
いるためと考えられ、従ってゲート層3が完全に機能し
ておらず、その結果C/N比が劣化したものと推定され
る。In the case of the comparative example (data b), the region where the magnetization is perpendicular near the center of the beam spot of the gate layer 3 is wider than that of the present embodiment (the dashed line portion of the gate layer 3 in FIG. 1). This is considered to be due to the influence of the surrounding recording marks. Therefore, it is presumed that the gate layer 3 did not function completely, and as a result, the C / N ratio deteriorated.
【0033】[0033]
【発明の効果】本発明は、磁区拡大層と記録層との間
に、室温で面内磁化状態であり、前記磁区拡大層と記録
層よりもキュリー温度が低いゲート層が設けられている
ことにより、記録層の記録マークの1個のみを抽出して
拡大再生できるようにし、複数の記録マークが再生され
ることによる信号の干渉を防ぎ、その結果再生時のC/
N比等が向上するという作用効果を有する。According to the present invention, a gate layer which is in an in-plane magnetization state at room temperature and has a lower Curie temperature than the magnetic domain expansion layer and the recording layer is provided between the magnetic domain expansion layer and the recording layer. As a result, only one of the recording marks on the recording layer can be extracted and enlarged and reproduced, signal interference due to reproduction of a plurality of recording marks can be prevented, and as a result, C /
This has the effect of improving the N ratio and the like.
【0034】また、本発明の光磁気記録媒体は磁区拡大
再生が可能なものであればよく、光磁気ディスク、光磁
気カード、光磁気テープ等に応用可能なものである。The magneto-optical recording medium of the present invention is not limited as long as it can perform magnetic domain expansion reproduction, and can be applied to a magneto-optical disk, a magneto-optical card, a magneto-optical tape, and the like.
【図1】本発明の光磁気記録媒体の再生時の磁化状態を
説明するもので、媒体m1 の部分断面図である。FIG. 1 is a partial cross-sectional view of a medium m1 for explaining a magnetization state during reproduction of a magneto-optical recording medium of the present invention.
【図2】従来の光磁気記録媒体の再生時の磁化状態を説
明するもので、媒体m2 の部分断面図である。FIG. 2 is a partial cross-sectional view of a medium m2 for explaining a magnetization state during reproduction of a conventional magneto-optical recording medium.
【図3】本発明の光磁気記録媒体の記録マーク長とC/
N比の相関を示すグラフである。FIG. 3 shows the recording mark length and C / C of the magneto-optical recording medium of the present invention.
It is a graph which shows the correlation of N ratio.
1:磁区拡大層 2:反射層(中間層) 3:ゲート層 4:記録層 5:対物レンズ 6:レーザ光 1: magnetic domain expansion layer 2: reflection layer (intermediate layer) 3: gate layer 4: recording layer 5: objective lens 6: laser beam
Claims (2)
磁化状態に変化し得る磁区拡大層と、前記磁区拡大層よ
りも保磁力が大きい記録層とを有する光磁気記録媒体で
あって、前記磁区拡大層と記録層との間に、室温で面内
磁化状態であり、かつ前記磁区拡大層及び記録層よりも
キュリー温度が低いゲート層を設けたことを特徴とする
光磁気記録媒体。1. A magneto-optical recording medium comprising: a magnetic domain expansion layer capable of changing to a perpendicular magnetization state at a predetermined temperature or more in an in-plane magnetization state at room temperature; and a recording layer having a larger coercive force than the magnetic domain expansion layer. A magneto-optical recording medium, wherein a gate layer which is in an in-plane magnetization state at room temperature and has a lower Curie temperature than the magnetic domain expansion layer and the recording layer is provided between the magnetic domain expansion layer and the recording layer. .
これらの交換結合を遮断する中間層を設けた請求項1記
載の光磁気記録媒体。2. The method according to claim 1, wherein the magnetic domain expansion layer and the gate layer are
2. The magneto-optical recording medium according to claim 1, further comprising an intermediate layer for interrupting the exchange coupling.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33068597A JPH11162029A (en) | 1997-12-01 | 1997-12-01 | Magneto-optical recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33068597A JPH11162029A (en) | 1997-12-01 | 1997-12-01 | Magneto-optical recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11162029A true JPH11162029A (en) | 1999-06-18 |
Family
ID=18235440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33068597A Pending JPH11162029A (en) | 1997-12-01 | 1997-12-01 | Magneto-optical recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11162029A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6477120B1 (en) | 1998-11-30 | 2002-11-05 | Sharp Kabushiki Kaisha | Magneto-optical recording medium |
-
1997
- 1997-12-01 JP JP33068597A patent/JPH11162029A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6477120B1 (en) | 1998-11-30 | 2002-11-05 | Sharp Kabushiki Kaisha | Magneto-optical recording medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2910250B2 (en) | Magneto-optical recording medium | |
JP3230388B2 (en) | Magneto-optical recording medium and method of reproducing information recorded on the medium | |
US6147939A (en) | Magneto-optical recording medium having intermediate layer of in-plane magnetization | |
JP3477384B2 (en) | Magneto-optical recording medium | |
JP2809991B2 (en) | Magneto-optical recording medium and method of reproducing information recorded on the medium | |
EP0513668B1 (en) | Magneto-optical recording medium | |
EP0588636A1 (en) | Over-write capable magnetooptical recording medium having reading layer | |
JPH056588A (en) | Magneto-optical recording medium and magneto-optical recording method | |
JP3474464B2 (en) | Magneto-optical recording medium | |
US6844083B2 (en) | Magneto-optical recording medium possessing a magnetic assist layer | |
JPH11162029A (en) | Magneto-optical recording medium | |
JP2766198B2 (en) | Magneto-optical recording medium | |
EP0385786A1 (en) | Magnetooptical recording medium | |
JP3092363B2 (en) | Magneto-optical recording medium | |
JPH11328762A (en) | Magneto-optical recording medium | |
JP3592399B2 (en) | Magneto-optical recording medium | |
JP2000339788A (en) | Magneto-optical recording medium and its reproducing method | |
JP3075048B2 (en) | Magneto-optical recording medium and reproducing method thereof | |
JPH08241544A (en) | Magneto-optical medium | |
JP2001195792A (en) | Magneto-optical recording medium and reproducing method thereof | |
JPH1125533A (en) | Magneto-optical recording medium | |
JPH10162439A (en) | Magneto-optical recording medium | |
JPH07192330A (en) | Magneto-optical recording medium | |
JPH09134553A (en) | Magneto-optical recording medium | |
JPH10214442A (en) | Magneto-optical recording medium |