JPH11160187A - Leakage detecting method - Google Patents
Leakage detecting methodInfo
- Publication number
- JPH11160187A JPH11160187A JP32856697A JP32856697A JPH11160187A JP H11160187 A JPH11160187 A JP H11160187A JP 32856697 A JP32856697 A JP 32856697A JP 32856697 A JP32856697 A JP 32856697A JP H11160187 A JPH11160187 A JP H11160187A
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- leak
- leakage
- sound
- detectors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title abstract description 12
- 238000001514 detection method Methods 0.000 claims abstract description 42
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 27
- 239000000463 material Substances 0.000 abstract description 12
- 230000000694 effects Effects 0.000 abstract description 2
- 230000000644 propagated effect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 9
- 239000012528 membrane Substances 0.000 description 9
- 239000007788 liquid Substances 0.000 description 7
- 230000001902 propagating effect Effects 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000005236 sound signal Effects 0.000 description 2
- 229920000544 Gore-Tex Polymers 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000009933 burial Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000030808 detection of mechanical stimulus involved in sensory perception of sound Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Landscapes
- Examining Or Testing Airtightness (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、水道管やガス管な
どの流体を流通させる埋設管路における漏洩位置の探査
を行う漏洩探知方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a leak detecting method for detecting a leak position in a buried conduit through which a fluid such as a water pipe or a gas pipe flows.
【0002】[0002]
【従来の技術】埋設管路の漏洩探知方法として、従来、
聴音式漏洩探知方法が知られている。この方法は、図7
に示すように、水道管などの埋設管路の漏洩点で発生
し、地中を伝播して地表面まで達した漏洩音を地上にお
いて加速度センサーなどの検出器で検出し、これを増幅
器で作業者が聴き取れる程度に増幅し、漏洩音の大きさ
やその変化により漏洩箇所を探知する方法である。2. Description of the Related Art Conventionally, as a method of detecting leakage of a buried pipeline,
Audible sound leak detection methods are known. This method is illustrated in FIG.
As shown in the figure, the leak sound that occurs at the leak point of a buried pipeline such as a water pipe, propagates in the ground and reaches the ground surface is detected on the ground with a detector such as an acceleration sensor, and this is worked with an amplifier. This is a method in which the sound is amplified to such an extent that a person can hear the sound, and the leaked part is detected based on the loudness of the leaked sound or its change.
【0003】しかし、この方法では、地中を伝播して地
表面に達するまでに漏洩音が減衰するため、騒音の中か
ら漏洩音を聞き分けるのに熟練する必要があり、漏洩音
が微小の場合には探知困難であるなどの問題があった。
このため最近では、相関式漏洩探知方法が採用されるこ
とも多くなっている。However, in this method, since the leaked sound is attenuated before it propagates through the ground and reaches the ground surface, it is necessary to be skilled in distinguishing the leaked sound from the noise. Had problems such as being difficult to detect.
For this reason, recently, a correlation type leak detection method is often used.
【0004】相関式漏洩探知方法は、図8に示すよう
に、埋設管路の適宜二箇所(例えばバルブやメータな
ど)に漏洩音検出器51,51を配設し、漏洩箇所で自
然に発生する漏洩音或いは埋設管路にガス又は液体を圧
送して強制的に発生させた漏洩音を各漏洩音検出器51
で検出し、検出された漏洩音信号をそれぞれ漏洩探知機
子機52,52で増幅した上、増幅信号を地上に配設し
た漏洩探知機親機53に送信し、漏洩探知機親機53に
おいて送信信号の時間差を算出し、漏水箇所から漏洩音
検出器51、51までの距離を測定する方法である。In the correlation type leak detection method, as shown in FIG. 8, leak sound detectors 51, 51 are disposed at two appropriate places (for example, a valve and a meter) in a buried pipeline, and naturally generated at the leak location. Each of the leak sound detectors 51 detects a leak sound which is generated or a leak sound which is forcibly generated by pumping gas or liquid into a buried pipeline.
, The detected leaked sound signal is amplified by each of the leak detector subunits 52 and 52, and the amplified signal is transmitted to the leak detector main unit 53 disposed on the ground. In this method, the time difference between the transmission signals is calculated, and the distance from the leak location to the leak sound detectors 51, 51 is measured.
【0005】[0005]
【発明が解決しようとする課題】しかし、かかる従来の
相関式漏洩探知方法は、埋設管自体を伝播してくる音波
をバルブやメータに設置した漏洩音検出器51、51で
検出するものであるため、上記聴音式探知方法よりは影
響は少ないものの、やはり周囲の雑音が混入するため検
出精度が低下するばかりか、音波伝播性の低い埋設管の
場合には音波の検出が難しくなり、検出が不可能になる
という問題もあった。However, in such a conventional correlation type leak detection method, sound waves propagating in the buried pipe itself are detected by leak sound detectors 51, 51 installed in a valve or a meter. Therefore, although there is less influence than the above-mentioned acoustic detection method, the detection accuracy is not only lowered because the surrounding noise is mixed, but also in the case of a buried pipe with low sound wave propagation, detection of sound waves becomes difficult, and detection is difficult. There was also the problem that it became impossible.
【0006】本発明は、かかる従来の問題点に鑑みてな
されたものであり、検出精度に及ぼす環境の影響がより
少なく、しかも埋設管の材質を問わず精度の高い検出を
行うことができる漏洩探知方法を提供せんとする。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and has less influence of the environment on detection accuracy, and is capable of performing highly accurate detection regardless of the material of the buried pipe. No detection method is provided.
【0007】[0007]
【課題を解決するための手段】かかる課題を解決するた
め、本発明の漏洩探知方法は、埋設管路の少なくとも探
知区間内を大気圧未満好ましくは−0.01MPa以下
に減圧させて漏洩部から管内に空気を流入させ、空気が
流入する際に生じ、管内乃至管壁を伝播してきた音波を
検出することにより、漏洩箇所を探知することを特徴と
する。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, a leak detection method according to the present invention reduces the pressure of at least the detection section of a buried pipeline to a pressure lower than atmospheric pressure, preferably -0.01 MPa or less, and reduces the pressure from a leak portion. Air leaks into the pipe, and a leak point is detected by detecting a sound wave generated when the air flows and transmitted through the pipe or inside the pipe wall.
【0008】本発明の方法では、図5に示すように、小
孔又は亀裂である漏洩部から管内に流入した空気が管内
において気流渦となり、この気流渦が漏洩音を発生する
と共に、かかる気流が管内壁に衝突することによっても
漏洩音を発生する。そして、このように発生し管内乃至
管壁を伝播してきた音波を検出器で検出し、この検出デ
ータを解析することにより漏洩箇所を探知するものであ
る。これに対し、従来の相関式漏洩探知方法では、図6
に示すように、漏洩部から管外に気体又は液体が流出
し、この流出により生じた気流又は液流が管外の土砂等
の異物に衝突して音波を発生する。そして、このように
発生し管壁を伝播してきた音波を検出器で検出し、この
検出データを解析して漏洩箇所を探知するものである。
したがって、本発明によれば、従来の相関式漏洩探知方
法に比べ、周囲の雑音などの環境の影響及び埋設管の材
質の影響による検出精度の低下を格段に抑えることがで
きるから、僅かな漏洩音であっても確実に漏洩箇所の位
置を探知することができる。In the method of the present invention, as shown in FIG. 5, the air flowing into the pipe from the leaking portion, which is a small hole or a crack, forms an airflow vortex in the pipe. Also produces a leak sound due to collision with the inner wall of the pipe. The sound wave thus generated and transmitted through the inside of the pipe or the pipe wall is detected by a detector, and the leak data is detected by analyzing the detection data. On the other hand, in the conventional correlation type leak detection method, FIG.
As shown in (1), gas or liquid flows out of the pipe from the leaking part, and the gas or liquid flow generated by the outflow collides with foreign matter such as earth and sand outside the pipe to generate a sound wave. Then, the sound wave generated and transmitted through the pipe wall is detected by a detector, and the detection data is analyzed to detect a leaked portion.
Therefore, according to the present invention, compared with the conventional correlation type leak detection method, it is possible to remarkably suppress the deterioration of the detection accuracy due to the influence of the environment such as ambient noise and the influence of the material of the buried pipe, so that a small leak Even if it is a sound, it is possible to reliably detect the position of the leakage point.
【0009】[0009]
【発明の実施の形態】以下、本発明を図面を参照しなが
ら説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.
【0010】図1は、本発明の漏洩探知方法を適用する
水道管路の配管を示した図であり、図2は、本発明の実
施形態の一例を示した装置構成図である。この図におい
て、1A−1B区間が漏洩探知区間である。なお、本発
明は、水道管路などの液体を送る埋設管路ばかりか、都
市ガスなどの気体を送る埋設管路の漏洩の探知にも適用
することができる。しかも、管の材質、口径、肉厚、更
には埋設深度を問わず適用することができる。FIG. 1 is a diagram showing piping of a water pipe to which the leak detection method of the present invention is applied, and FIG. 2 is a diagram showing an example of an apparatus according to an embodiment of the present invention. In this figure, a section 1A-1B is a leak detection section. The present invention can be applied not only to the detection of a leak in a buried pipeline for sending gas such as city gas, but also for a buried pipeline for sending a liquid such as a water pipe. Moreover, the present invention can be applied regardless of the material, diameter, wall thickness, and burial depth of the pipe.
【0011】先ず、図2に示した装置構成について説明
すると、探知区間1A−1Bを含む区間の両端に位置す
るメーター2、水栓3間の水抜きを行った後、メーター
ボックス内のメーター2を取り外し、この取り外した探
知区間側の管口に連結口4a及び取付口4bを備えた取
付治具4を取付け、その連結口4aに真空ポンプ6に一
端を接続したホース7の他端を連結し、その取付口4b
に検出器8を装着する。また、前記水栓3を取り外し、
この取り外した探知区間側の管口に取付口5aを備えた
取付治具5を取付け、その取付口5aに検出器9を装着
する。検出器8、9はそれぞれ、導線10、11を介し
てプリアンプを備えた漏洩探知機子機12、13と接続
し、これら漏洩探知機子機12、13は、無線により漏
洩探知機親機14と接続する。漏洩探知機親機14は、
漏洩探知機子機12、13から送信されてきた信号を解
析し、漏洩箇所から検出器8、9までに漏洩音が到達す
るまでの時間差を算出することができる。なお、水道管
路1を遮断する位置は、メータ2及び水栓3に限定する
ものではなく、探知する区間を含む区間の両側の適宜2
か所で遮断すればよい。First, the configuration of the apparatus shown in FIG. 2 will be described. After draining water between the meter 2 and the faucet 3 located at both ends of the section including the detection section 1A-1B, the meter 2 in the meter box is removed. And a mounting jig 4 having a connecting port 4a and a mounting port 4b is attached to the removed port of the detection section, and the other end of a hose 7 having one end connected to a vacuum pump 6 is connected to the connecting port 4a. And its mounting port 4b
Is attached with the detector 8. Also, the faucet 3 is removed,
A mounting jig 5 having a mounting port 5a is mounted on the removed port on the detection section side, and a detector 9 is mounted on the mounting port 5a. The detectors 8 and 9 are connected to the leak detector subunits 12 and 13 each having a preamplifier via conductors 10 and 11, respectively. These leak detector subunits 12 and 13 are wirelessly connected to the leak detector main unit 14 and Connect with The leak detector base unit 14
By analyzing the signals transmitted from the leak detectors 12 and 13, it is possible to calculate the time difference from when the leaked sound reaches the detectors 8 and 9 from the leak location. Note that the position at which the water pipe 1 is cut off is not limited to the meter 2 and the faucet 3, but may be any two positions on both sides of the section including the section to be detected.
You can shut it off at some point.
【0012】ここで、検出器8、9は、図3に示すよう
に、振動検出面に防水通気膜18を設置したことを特徴
とするものであり、本体14、コネクタ15及び蓋体1
6とよりなっている。本体14は、中空円筒状のケース
17の一端面に防水通気膜18を固着し、他端開口より
コネクタ15の一端部を挿入し、このコネクタ15の鍔
部をパッキングを介してケース17の他端面に押圧させ
ることにより、他端開口を密閉してなるものである。As shown in FIG. 3, each of the detectors 8 and 9 is characterized in that a waterproof gas permeable membrane 18 is provided on a vibration detecting surface, and a main body 14, a connector 15 and a lid 1 are provided.
It consists of six. In the main body 14, a waterproof gas-permeable membrane 18 is fixed to one end surface of a hollow cylindrical case 17, one end of the connector 15 is inserted through the other end opening, and the flange of the connector 15 is connected to the other part of the case 17 via packing. By pressing against the end face, the other end opening is sealed.
【0013】防水通気膜18は、図4に示すように、ポ
リエステル不織布よりなる支持材層18a上に気体を通
して液体を通さない選択通過性を有する多孔質膜、例え
ばゴアテックス(登録商標)からなる防水通気材層18
bを形成し、さらに、防水通気材層18bの周辺部上に
粘着材層18cを形成してなっており、支持材層18
a、粘着材層18c、防水通気材層18bからなる3層
構造を構成し、かつ、支持材層18a、防水通気材層1
8b間の界面において、水や硫酸、硝酸等の液体は通過
できないが、空気や水蒸気などの気体は通過できるよう
に構成してある。As shown in FIG. 4, the waterproof gas permeable membrane 18 is made of a porous membrane having a selective permeability that does not allow gas to pass through a liquid, such as Gore-Tex (registered trademark), on a support material layer 18a made of a polyester nonwoven fabric. Waterproof breathable material layer 18
b, and an adhesive layer 18c is formed on the periphery of the waterproof breathable material layer 18b.
a, an adhesive material layer 18c, and a waterproof gas-permeable material layer 18b to form a three-layer structure, and a support material layer 18a and a waterproof gas-permeable material layer 1
At the interface between 8b, liquids such as water, sulfuric acid and nitric acid cannot pass, but gas such as air and water vapor can pass.
【0014】また、ケース17内の一端部には、弾性部
材よりなる保持部材19により保持し、その検知面を防
水通気膜18に近接してマイクロフォン20を配置し、
該マイクロフォン20の各導線はコネクタ15の各端子
ピンに接続し、その接続部には密閉のためエポキシ樹脂
を被覆してある。なお、マイクロフォン20には、防水
通気膜18を通過した漏洩音を検出するため、通過方向
に指向性を有する単一指向性コンデンサ型のものを使用
してある。これにより、マイクロフォン20の検出方向
前後の空気圧P1 、P2 に差異がなくなり、測定精度を
安定的に確保することができる。A microphone 20 is disposed at one end of the case 17 by a holding member 19 made of an elastic member, and a microphone 20 is disposed near a detection surface thereof near the waterproof gas-permeable membrane 18.
Each lead wire of the microphone 20 is connected to each terminal pin of the connector 15, and the connection portion is coated with epoxy resin for sealing. The microphone 20 is of a unidirectional condenser type having directivity in the passing direction in order to detect a leaked sound that has passed through the waterproof gas-permeable membrane 18. As a result, there is no difference between the air pressures P 1 and P 2 before and after the detection direction of the microphone 20, and stable measurement accuracy can be ensured.
【0015】このような構成からなる検出器8、9によ
れば、防水通気材層18bの界面において、水分その他
の液体は通過できず、気体のみが通過でき、漏水音の音
圧を確実に検出することができ、しかも、防水通気膜1
8に近接して単一指向性コンデンサ型のマイクロフォン
19を配置してあるので、漏水音の音圧を精度良く検出
することができる。According to the detectors 8 and 9 having such a configuration, at the interface of the waterproof gas-permeable material layer 18b, moisture and other liquids cannot pass, only gas can pass, and the sound pressure of the water leakage sound can be reliably reduced. Can be detected, and the waterproof breathable membrane 1
Since the microphone 19 of the unidirectional condenser type is arranged close to 8, the sound pressure of the water leakage sound can be detected with high accuracy.
【0016】以下、本探知方法を実行する手順について
説明する。The procedure for executing the detection method will be described below.
【0017】真空ポンプ6を作動させ、水道管路1内の
気体を吸引して気圧を大気圧未満、好ましくは−0.0
1MPa以下に調整する。気圧を所望範囲に調整した
後、真空ポンプ6の作動を一旦停止させる。これによ
り、真空ポンプ6の作動音と水道管路1内の気体の脈動
を除去せしめ、漏洩音のみを検出できるようにする。The vacuum pump 6 is operated to suck the gas in the water pipe 1 to reduce the pressure to less than atmospheric pressure, preferably -0.0
Adjust to 1 MPa or less. After adjusting the atmospheric pressure to a desired range, the operation of the vacuum pump 6 is temporarily stopped. As a result, the operation sound of the vacuum pump 6 and the pulsation of the gas in the water pipe 1 are eliminated, and only the leakage sound can be detected.
【0018】水道管路1内は管外の気圧より低くなって
いるから、図5に示すように、漏洩部から管内に流入し
た空気が管内において気流渦となり、この気流渦が漏洩
音を発生すると共に、漏洩部から管内に流入した空気が
管内壁に衝突し、この衝突によっても漏洩音を発生し、
これらの漏洩音は管内乃至管壁を伝播して検出器8、9
に到達する。検出器8、9で検出した音波を電気信号に
変換し漏洩探知機子機12、13で増幅した上で漏洩探
知機親機14に送信する。漏洩探知機親機14ではこの
送信信号を解析し、漏洩箇所から検出器8、9に漏洩音
が到達するまでの時間差を算出し、検出器8、9から漏
洩箇所までの距離を算出する。Since the pressure inside the water pipe 1 is lower than the pressure outside the pipe, as shown in FIG. 5, the air that has flowed into the pipe from the leak portion becomes an air vortex in the pipe, and this air vortex generates a leak sound. At the same time, the air flowing into the pipe from the leak part collides with the pipe inner wall, and this collision also generates a leak sound,
These leak sounds propagate through the inside of the pipe or the pipe wall, and the detectors 8 and 9
To reach. The sound waves detected by the detectors 8 and 9 are converted into electric signals, amplified by the leak detectors 12 and 13, and transmitted to the leak detector master unit 14. The leak detector main unit 14 analyzes this transmission signal, calculates the time difference between the leak location and the leak sound reaching the detectors 8 and 9, and calculates the distance from the detectors 8 and 9 to the leak location.
【0019】〔漏洩点の検出試験〕実際に各種の方法に
よって水道管路の漏洩探知を行い、測定結果を比較して
本発明の効果を検討した。[Detection Test of Leak Point] The leak of water pipes was actually detected by various methods, and the effects of the present invention were examined by comparing the measurement results.
【0020】本試験において、探知対象となる水道管路
としては、硬質塩化ビニル製、口径20mm、肉厚2.
7mmの水道管を適宜本数連結し、適宜箇所に0.5m
m径の漏洩孔を穿設したものを使用した。In this test, the water pipe to be detected is made of hard vinyl chloride, having a diameter of 20 mm and a wall thickness of 2.
Connect 7 mm water pipes as appropriate, and place 0.5 m
A perforated hole having a diameter of m was used.
【0021】試験1〜4では、水道管路の漏洩孔を穿設
した位置からそれぞれ両側に4.23mと3.43m離
れた位置に検出器(防水通気膜付音波検出器、フジテコ
ム社製「ポータコール」LC−2100のセンサー)
8、9を設置し、上述の本発明の探知方法の手順に従っ
て、ポンプ(試験1及び2では圧縮ポンプ、試験3及び
4では真空ポンプ)を使用して水道管路内を表1の各種
気圧に調整した。そして、管内を伝播してくる音波を検
出器8、9で検出して電気信号に変換し、この音波を漏
洩探知機子機12(フジテコム社製「ポータコール」L
C−2100のプリアンプ)において増幅し、漏洩探知
装置親機14(フジテコム社製、「ポータコール」LC
−2100の本体)に送信し、得られた漏洩音データの
解析波形をそれぞれ図9〜12に示した。なお、各図に
おいて(図13も同様)、縦軸は相関度合を、横軸はT
d(遅れ時間)を示しており、又、「LEAK B」は
一方の検出器8(色がBRUE)からの距離を、「LE
AK R」は他方の検出器9(色がRED)からの距離
を、「F」はフィルターの設定値(例えば高域2500
Hz、低域180Hz)を、「Td」はピークの遅れ時
間(例えばTd1.3msとは、ピーク(漏洩点)の位
置が1.3ms分だけ中央より赤の検出器側にあること
を示す。)を、「SUM」はサンプル数を、「YZ」は
相関度合の表示倍数(例えばYZ3は、相関波形を縦軸
に3倍している。)を、それぞれ示している。In tests 1 to 4, a detector (a sound wave detector with a waterproof gas-permeable membrane, manufactured by Fujitecom Co., Ltd.) was placed at a distance of 4.23 m and 3.43 m on both sides from the position where the leak hole of the water pipe was formed. Portacol LC-2100 sensor)
8 and 9 were installed, and in accordance with the above-described procedure of the detection method of the present invention, the water pressure in the water pipe was changed by using a pump (a compression pump in tests 1 and 2 and a vacuum pump in tests 3 and 4) as shown in Table 1. Was adjusted. Then, the sound waves propagating in the pipe are detected by the detectors 8 and 9 and converted into electric signals, and the sound waves are detected by the leak detector subunit 12 (“Portacol” L manufactured by Fujitecom Co., Ltd.).
Amplified by the C-2100 preamplifier and leak detector parent device 14 ("Portacol" LC, manufactured by Fujitecom)
9 to 12), and the analysis waveforms of the obtained leaked sound data are shown in FIGS. In each figure (similarly in FIG. 13), the vertical axis represents the degree of correlation, and the horizontal axis represents T.
d (delay time), and “LEAK B” indicates the distance from one detector 8 (color BRUE) to “LEAK B”.
“AKR” is the distance from the other detector 9 (color is RED), and “F” is the set value of the filter (for example, high range 2500).
Hz, low frequency 180 Hz), "Td" indicates that the delay time of the peak (for example, Td 1.3 ms) indicates that the position of the peak (leakage point) is 1.3 ms closer to the red detector side than the center. ), “SUM” indicates the number of samples, and “YZ” indicates a display multiple of the degree of correlation (for example, YZ3 triples the correlation waveform on the vertical axis).
【0022】試験5では、従来の相関式漏洩探知方法、
すなわち図8に示すように、漏出孔からそれぞれ両側に
4.06mと3.2m離れた位置の管路外周面に漏洩音
検出器51、51(フジテコム社製圧電型加速度センサ
ー、電圧感度5V/g(600Hz))を設置し、水道
管路内に0.3MPa〜0.4MPaの圧力で水を送り
込み、管壁を伝播してくる漏洩音を漏洩音検出器51、
51で検出し、検出された漏洩音信号を漏洩探知機子機
52,52(フジテコム社製「ポータコール」LC−2
100のプリアンプ)で増幅し、漏洩探知装置親機53
(フジテコム社製、「ポータコール」LC−2100の
本体)に送信し、ここで受信した信号を波形として図1
3に示した。In test 5, the conventional correlation type leak detection method,
That is, as shown in FIG. 8, leak sound detectors 51 and 51 (piezoelectric acceleration sensors manufactured by Fujitecom, voltage sensitivity 5 V / g (600 Hz)), water is fed into the water pipe at a pressure of 0.3 MPa to 0.4 MPa, and a leak sound propagating through the pipe wall is detected by a leak sound detector 51,
The leak sound signal detected by the detector 51 is detected by the leak detector subunits 52, 52 ("Portacol" LC-2 manufactured by Fujitecom Inc.).
100 preamplifiers), and the leakage detector parent device 53
(The main body of "Portacol" LC-2100, manufactured by Fujitecom), and the received signal is converted into a waveform as shown in FIG.
3 is shown.
【0023】以上の結果に基づいて、各試験において相
関結果を取れたか否かを以下の表1にまとめた。なお、
相関結果が取れたか否かの判断は、図9〜図13の各図
において、漏洩点のピークが現れているか否かによって
判断した。Based on the above results, whether or not a correlation result was obtained in each test is summarized in Table 1 below. In addition,
Whether the correlation result was obtained or not was determined based on whether or not the peak of the leak point appeared in each of FIGS. 9 to 13.
【0024】[0024]
【表1】 [Table 1]
【0025】この結果、管路内に水を送り込んだ場合、
及び0.4MPa以上で空気を圧送した場合は相関結果
を得られなかった。すなわち、漏洩孔の位置を求めるこ
とはできなかった。これに対し、0.1MPa以下で空
気を圧送した場合、及び空気を吸引して減圧にした場合
には、相関結果を得られ、漏洩孔の位置を求めることが
できた。しかしながら、0.1MPa以下で空気を圧送
した場合、図10において縦軸の強度(相関の度合)を
3倍にして表示していることからも分かるように、ピー
ク値が低くすなわち測定できる強度が弱いため、探知長
が長くなると探知不能になることが予想される。このた
め、埋設管の漏洩箇所の探知においては、探知区間内の
空気を吸引して大気圧未満に減圧させる方法が好ましい
と考えられる。As a result, when water is fed into the pipeline,
And when the air was pumped at 0.4 MPa or more, no correlation results could be obtained. That is, the position of the leak hole could not be determined. On the other hand, when the air was pumped at 0.1 MPa or less, or when the pressure was reduced by sucking the air, the correlation result was obtained, and the position of the leak hole could be obtained. However, when air is pumped at a pressure of 0.1 MPa or less, the peak value is low, that is, the measurable intensity is low, as can be seen from the fact that the intensity (correlation degree) on the vertical axis is tripled and displayed in FIG. Because it is weak, it is expected that detection will become impossible if the detection length is long. For this reason, it is considered preferable to detect the leakage point of the buried pipe by suctioning air in the detection section and reducing the pressure to below the atmospheric pressure.
【図1】本発明の漏洩探知方法を適用する水道管路の配
設を示した断面図である。FIG. 1 is a cross-sectional view showing an arrangement of a water pipe to which a leak detection method of the present invention is applied.
【図2】本発明の漏洩探知方法の実施形態の一例を示し
た断面図である。FIG. 2 is a cross-sectional view illustrating an example of an embodiment of a leak detection method according to the present invention.
【図3】図1の検出器の一例を示した断面図である。FIG. 3 is a sectional view showing an example of the detector of FIG.
【図4】防水通気膜の断面図である。FIG. 4 is a sectional view of a waterproof gas-permeable membrane.
【図5】管内を減圧した場合の漏洩部における空気の流
れを説明する断面図である。FIG. 5 is a cross-sectional view illustrating the flow of air in a leak portion when the pressure in the pipe is reduced.
【図6】管内を加圧した場合の漏洩部における空気の流
れを説明する断面図である。FIG. 6 is a cross-sectional view illustrating the flow of air in a leak portion when the inside of a pipe is pressurized.
【図7】従来の聴音式漏洩探知方法を説明する断面図で
ある。FIG. 7 is a cross-sectional view illustrating a conventional sound-based leak detection method.
【図8】従来の相関式漏洩探知方法を説明する断面図で
ある。FIG. 8 is a cross-sectional view illustrating a conventional correlation type leak detection method.
【図9】管内気圧を0.3MPa〜0.4MPaに調整
した場合の漏洩音データの解析波形である。FIG. 9 is an analysis waveform of leak sound data when the pressure in the pipe is adjusted to 0.3 MPa to 0.4 MPa.
【図10】管内気圧を0.06MPa〜0.1MPaに調
整した場合の漏洩音データの解析波形である。FIG. 10 is an analysis waveform of leak sound data when the pressure in the pipe is adjusted to 0.06 MPa to 0.1 MPa.
【図11】管内気圧を−0.05MPaに調整した場合の
漏洩音データの解析波形である。FIG. 11 is an analysis waveform of leak sound data when the pressure in the pipe is adjusted to −0.05 MPa.
【図12】管内気圧を−0.01MPaに調整した場合の
漏洩音データの解析波形である。FIG. 12 is an analysis waveform of leak sound data when the pressure in the pipe is adjusted to −0.01 MPa.
【図13】管内に水を供給し、管内水圧を0.3MPa〜
0.4MPaに調整した場合に検出器が探知した音波を
波形として示したグラフである。FIG. 13: Water is supplied into the pipe, and the water pressure in the pipe is 0.3 MPa to
It is the graph which showed the sound wave which the detector detected when it adjusted to 0.4MPa as a waveform.
1 水道管路 2 メータ 3 水栓 4,5 取付治具 6 真空ポンプ 7 ホース 8,9 検出器 10 導線 12,13 漏洩探知機子機 14 漏洩探知機親機 Reference Signs List 1 water pipe 2 meter 3 faucet 4,5 mounting jig 6 vacuum pump 7 hose 8,9 detector 10 conductor 12,13
Claims (2)
圧未満に減圧させて、漏洩部から管内に空気を流入さ
せ、空気が流入する際に生じ、管内乃至管壁を伝播して
きた音波を検出することにより、漏洩箇所を探知するこ
とを特徴とする漏洩探知方法。At least a detection section of a buried pipeline is depressurized to a pressure lower than the atmospheric pressure, air flows into the pipe from a leak portion, and a sound wave generated when the air flows in and transmitted through the pipe or the pipe wall is generated. A leak detection method characterized by detecting a leak location by detecting.
圧させることを特徴とする請求項1に記載の漏洩探知方
法。2. The leak detection method according to claim 1, wherein the pressure in the detection section is reduced to −0.01 MPa or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32856697A JPH11160187A (en) | 1997-11-28 | 1997-11-28 | Leakage detecting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32856697A JPH11160187A (en) | 1997-11-28 | 1997-11-28 | Leakage detecting method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11160187A true JPH11160187A (en) | 1999-06-18 |
Family
ID=18211713
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32856697A Pending JPH11160187A (en) | 1997-11-28 | 1997-11-28 | Leakage detecting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11160187A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106404300A (en) * | 2016-11-18 | 2017-02-15 | 贵州望江气体有限公司 | High-pressure container air tightness detection device |
CN113155441A (en) * | 2021-04-06 | 2021-07-23 | 郭堂培 | Durability detection system and method for air valve for chemical industry |
JP2023006112A (en) * | 2021-06-30 | 2023-01-18 | 株式会社小島製作所 | Drainage facility leakage examination system |
-
1997
- 1997-11-28 JP JP32856697A patent/JPH11160187A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106404300A (en) * | 2016-11-18 | 2017-02-15 | 贵州望江气体有限公司 | High-pressure container air tightness detection device |
CN113155441A (en) * | 2021-04-06 | 2021-07-23 | 郭堂培 | Durability detection system and method for air valve for chemical industry |
JP2023006112A (en) * | 2021-06-30 | 2023-01-18 | 株式会社小島製作所 | Drainage facility leakage examination system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3295087B2 (en) | Apparatus and method for locating leaks in a conduit network | |
GB2269900A (en) | Acoustic leak detection method for liquid storage tanks | |
US20200284764A1 (en) | Steady State Fluid Flow Verification for Sample Takeoff | |
US5127267A (en) | Acoustic method for locating concealed pipe | |
GB2250820A (en) | Method of and apparatus for detecting leaks in liquid storage tanks acoustically | |
KR101791953B1 (en) | Leak sensing system and leak sensing method using the same | |
JP3032185B2 (en) | Piping leak detection system | |
ATE252726T1 (en) | LEAK DETECTOR ARRANGEMENT AND SYSTEM | |
US20080074460A1 (en) | Sonic leak testing on ink delivery systems and ink jet heads | |
US5027644A (en) | Method and apparatus for injecting acoustic signals into live gas mains | |
JPH11160187A (en) | Leakage detecting method | |
CN102374880A (en) | Gas flow meter, portable detection device based on ion migration, gas flow measurement method | |
JPH0587669A (en) | Pipe-leakage inspecting method | |
JP2017090258A (en) | Liquid leakage sound detection sensor and liquid leakage detection system using the same | |
JPWO2016185726A1 (en) | State determination device, state determination method, and program recording medium | |
JP6141647B2 (en) | Leak detection device and leak detection method | |
Khulief et al. | On the in-pipe measurements of acoustic signature of leaks in water pipelines | |
JPH10185744A (en) | External Noise Judgment Method in Pipe Leak Location Identification Method | |
JP6216277B2 (en) | Leak detection device | |
JPH11316000A (en) | Mounting structure of water leak sound detection sensor | |
CN107990152A (en) | A kind of gas pipe leakage localization method based on same dual sensor | |
JPH11160186A (en) | Leakage sound detecting device | |
JP2002365371A (en) | Piping connection confirmation device and method | |
JP2018077123A (en) | In-pipe sound detector | |
JP4978870B2 (en) | Leakage pipe inspection method and inspection apparatus |