JPH11157881A - Low radiation glass-laminated body - Google Patents
Low radiation glass-laminated bodyInfo
- Publication number
- JPH11157881A JPH11157881A JP9352503A JP35250397A JPH11157881A JP H11157881 A JPH11157881 A JP H11157881A JP 9352503 A JP9352503 A JP 9352503A JP 35250397 A JP35250397 A JP 35250397A JP H11157881 A JPH11157881 A JP H11157881A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- thickness
- zinc
- oxide layer
- atmosphere
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 15
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims abstract description 196
- 239000011787 zinc oxide Substances 0.000 claims abstract description 98
- 229910052709 silver Inorganic materials 0.000 claims abstract description 62
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 56
- 239000004332 silver Substances 0.000 claims abstract description 56
- 239000011521 glass Substances 0.000 claims abstract description 55
- 239000011701 zinc Substances 0.000 claims abstract description 55
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims abstract description 53
- 229910001887 tin oxide Inorganic materials 0.000 claims abstract description 53
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 47
- 230000001681 protective effect Effects 0.000 claims abstract description 44
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 39
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 35
- 239000000758 substrate Substances 0.000 claims abstract description 9
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052751 metal Inorganic materials 0.000 claims description 69
- 239000002184 metal Substances 0.000 claims description 69
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 49
- 238000002834 transmittance Methods 0.000 claims description 33
- 229910045601 alloy Inorganic materials 0.000 claims description 26
- 239000000956 alloy Substances 0.000 claims description 26
- 239000005340 laminated glass Substances 0.000 claims description 9
- 239000005344 low-emissivity glass Substances 0.000 claims description 9
- 239000010410 layer Substances 0.000 claims description 3
- 238000010030 laminating Methods 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract description 11
- 239000004408 titanium dioxide Substances 0.000 abstract 2
- 230000002378 acidificating effect Effects 0.000 description 27
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 15
- 239000001301 oxygen Substances 0.000 description 15
- 229910052760 oxygen Inorganic materials 0.000 description 15
- 238000000576 coating method Methods 0.000 description 11
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 10
- 229910052786 argon Inorganic materials 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 10
- 229910006854 SnOx Inorganic materials 0.000 description 8
- 239000002253 acid Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000000151 deposition Methods 0.000 description 7
- 230000008021 deposition Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 229910052718 tin Inorganic materials 0.000 description 6
- 239000005357 flat glass Substances 0.000 description 5
- 229910001297 Zn alloy Inorganic materials 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 238000002845 discoloration Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 239000005354 aluminosilicate glass Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000005328 architectural glass Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000005329 float glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229940063729 oxygen 80 % Drugs 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000005341 toughened glass Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3618—Coatings of type glass/inorganic compound/other inorganic layers, at least one layer being metallic
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3657—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
- C03C17/366—Low-emissivity or solar control coatings
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3681—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating being used in glazing, e.g. windows or windscreens
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/70—Properties of coatings
- C03C2217/78—Coatings specially designed to be durable, e.g. scratch-resistant
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Laminated Bodies (AREA)
- Surface Treatment Of Glass (AREA)
- Glass Compositions (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、住宅やオフィス等
の建築用はもちろん車両用等の窓ガラス、さらには船舶
用や航空機用の窓ガラス等各種ガラス物品として有用な
低放射ガラス積層体に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low radiation glass laminate useful as a window glass for vehicles such as houses and offices as well as for vehicles, and also as various glass articles such as window glasses for ships and aircraft. .
【0002】[0002]
【従来技術とその解決すべき課題】最近、例えばオフィ
スや住宅等において、断熱性、保温性、遮熱性に優れた
低放射ガラスが、寒冷地を中心に用いられている。この
ガラスは、2枚のガラス間に乾燥空気を封入して構成さ
れる複層ガラスにおいて、中間空気層側に可視光線は透
過するが赤外線は反射する、いわゆる低放射膜をガラス
に被覆したものである。これらの被膜の主なものとして
は、金属層としてAgを用い、該Ag層の上下層をZn
OまたはSnO2等の非金属層で被覆するのが一般に知
られている。2. Description of the Related Art Recently, for example, in offices and houses, low-radiation glass having excellent heat insulation, heat retention and heat shielding properties is used mainly in cold regions. This glass is a multi-layered glass composed of two pieces of glass with dry air sealed in between the glass and a so-called low-radiation film that transmits visible light but reflects infrared light on the side of the intermediate air layer. It is. The main component of these coatings is that Ag is used as the metal layer, and the upper and lower layers of the Ag layer are formed of Zn.
It is coated with O or nonmetal layer of SnO 2 or the like are generally known.
【0003】例えば、特許登録第2598476号に
は、Ag層を挟む両酸化物層との界面にNi合金を介在
させる方法が示されているが、この方法では70%以上
の可視光線透過率を有する低放射ガラスを得ることは問
題がある。また、特公平6−62319号には亜鉛と錫
からなる合金をターゲットとして反応性スパッタによっ
て両成分の酸化物被膜を低放射ガラス積層体に用いる方
法が記載されているが、この方法では特別に合金を製造
してからターゲットに加工する必要があり、コストが高
くなることは避けられず、又得られる被膜も酸化錫の欠
点であるAg層との密着性と酸化亜鉛の欠点である化学
的耐久性に問題がある。さらに、特開平2−23913
5号及び特開平2−289449号には、Ag層の下層
または上層に15nm以下の厚みで酸化亜鉛層を設け、
その下層又は上層に酸化錫、酸化アルミ、酸化チタンな
どの酸化物層を設けた被覆ガラス材料が記載されてお
り、さらにAg層に接した金属にはチタン、アルミ、不
銹鋼、ビスマス、錫及びそれらの混合物が用いられてい
るが、酸化亜鉛とこれら金属との密着性に問題がある。
また、特開平4−357025号及び特開平5−426
24号には、ガラスから最も離れたAg層の外側に酸化
亜鉛層と酸化錫層とからなる酸化物層を配することが記
されており、酸化亜鉛被膜は内部応力が高いため膜厚を
20nm以下に分割して間に酸化錫を挟むことで被膜の
応力が緩和され、腐食に強い低放射ガラス積層体を得る
としているが、例えば保護金属層の直上に酸化錫を配し
た場合、必ずしも十分な耐久性のある被膜は得られない
と推察され、また最上層に酸化亜鉛を配した場合には、
弱酸、弱アルカリ性の耐久性が不十分であることが考え
られる。さらに、特開平8−104547号には、酸化
物層に酸化錫又は/及び酸化亜鉛がもちいられることが
記載されているが、酸化亜鉛と酸化錫の各々の特性につ
いては記述がなく、各成分の順序や膜厚にも言及されて
いない。For example, Japanese Patent No. 2598476 discloses a method in which a Ni alloy is interposed at the interface between the two oxide layers sandwiching the Ag layer. In this method, a visible light transmittance of 70% or more is obtained. There is a problem in obtaining a low-emission glass that has Japanese Patent Publication No. 6-62319 discloses a method in which an oxide film of both components is used for a low radiation glass laminate by reactive sputtering using an alloy composed of zinc and tin as a target. It is necessary to manufacture the alloy and then process it into a target, which inevitably increases the cost. Also, the obtained coating film has the disadvantages of adhesion to the Ag layer, which is a disadvantage of tin oxide, and chemical, which is a disadvantage of zinc oxide. There is a problem with durability. Further, JP-A-2-23913
No. 5 and JP-A-2-289449, a zinc oxide layer having a thickness of 15 nm or less is provided below or above an Ag layer,
A coated glass material in which an oxide layer such as tin oxide, aluminum oxide, or titanium oxide is provided as a lower or upper layer is described. In addition, metals in contact with an Ag layer include titanium, aluminum, stainless steel, bismuth, tin, and the like. Is used, but there is a problem in adhesion between zinc oxide and these metals.
Also, JP-A-4-357,025 and JP-A-5-426.
No. 24 describes that an oxide layer composed of a zinc oxide layer and a tin oxide layer is disposed outside the Ag layer farthest from the glass. The stress of the coating is relaxed by sandwiching tin oxide between 20 nm or less, and a low-emission glass laminate resistant to corrosion is obtained. For example, when tin oxide is disposed immediately above the protective metal layer, it is not necessarily It is presumed that a sufficiently durable coating cannot be obtained, and when zinc oxide is placed on the top layer,
It is considered that the durability of the weak acid and weak alkali is insufficient. Further, Japanese Patent Application Laid-Open No. 8-10447 describes that tin oxide and / or zinc oxide is used for the oxide layer, but the properties of zinc oxide and tin oxide are not described. No order or film thickness is mentioned.
【0004】[0004]
【課題を解決するための手段】本発明は、従来のかかる
課題に鑑みてなしたものであって、銀層の直下層に酸化
亜鉛層を、直上層には亜鉛または亜鉛を主成分とする保
護金属層を、さらにガラスの直上層と被膜の最上層には
酸化錫層及び/または酸化チタン層を形成することによ
り、放射率が小さく、70%以上の可視光線透過率と、
各層間の密着性向上による化学的耐久性の優れた低放射
ガラスが得られることを見出した。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has a zinc oxide layer immediately below a silver layer and zinc or zinc as a main component immediately above the silver layer. By forming a protective metal layer, a tin oxide layer and / or a titanium oxide layer on the glass directly above and on the top layer of the coating, the emissivity is small and the visible light transmittance is 70% or more;
It has been found that low radiation glass having excellent chemical durability can be obtained by improving the adhesion between the layers.
【0005】また本発明は、ガラス基板上に銀層を少な
くとも一層介在させて、被膜を多層に形成してなる積層
体において、銀層の直下層に酸化亜鉛層を、銀層の直上
層には亜鉛または亜鉛を主成分とした保護金属層をそれ
ぞれ成膜してなる低放射ガラス積層体に関する。[0005] The present invention also provides a laminate comprising a glass substrate and at least one silver layer interposed therebetween and a multilayer film formed thereon, wherein a zinc oxide layer is formed immediately below the silver layer and a zinc oxide layer is formed immediately above the silver layer. The present invention relates to a low-emissivity glass laminate formed by depositing zinc or a protective metal layer containing zinc as a main component.
【0006】なお、積層体の最下層及び/または積層体
の最上層は、酸化錫層及び/又は酸化チタン層を成膜し
てなることが好ましい。また本発明は、ガラス基体上
に、酸化錫層及び/又は酸化チタン層からなる第1層、
酸化亜鉛層からなる第2層、銀層からなる第3層、亜鉛
または亜鉛を主成分とする保護金属層よりなる第4層、
その上に酸化錫層及び/又は酸化チタン層を最上層とし
た第5層を積層してなる低放射ガラス積層体に関する。The lowermost layer of the laminate and / or the uppermost layer of the laminate are preferably formed by forming a tin oxide layer and / or a titanium oxide layer. The present invention also provides a first layer comprising a tin oxide layer and / or a titanium oxide layer on a glass substrate,
A second layer made of a zinc oxide layer, a third layer made of a silver layer, a fourth layer made of zinc or a protective metal layer containing zinc as a main component,
The present invention relates to a low-emissivity glass laminate in which a fifth layer having a tin oxide layer and / or a titanium oxide layer as an uppermost layer is laminated thereon.
【0007】なお、第5層は、酸化亜鉛層と酸化錫層及
び/又は酸化チタン層が積層された層からなることが好
ましい。またさらに、各層の膜厚については、第1層は
膜厚5〜27nm、第2層は膜厚3〜25nm、且つ第
1層と第2層の膜厚の合計は15〜30nmであり、第
3層は膜厚9〜25nm、第4層は膜厚1〜8nm、第
5層の膜厚は35〜55nmであり、且つ第5層中の酸
化亜鉛層の1層の膜厚が25nm以下であることが好ま
しい。It is preferable that the fifth layer be a layer in which a zinc oxide layer, a tin oxide layer and / or a titanium oxide layer are laminated. Further, regarding the thickness of each layer, the first layer has a thickness of 5 to 27 nm, the second layer has a thickness of 3 to 25 nm, and the total thickness of the first layer and the second layer is 15 to 30 nm. The third layer has a thickness of 9 to 25 nm, the fourth layer has a thickness of 1 to 8 nm, the fifth layer has a thickness of 35 to 55 nm, and one of the zinc oxide layers in the fifth layer has a thickness of 25 nm. The following is preferred.
【0008】また、前記5層からなる積層体は、太陽紫
外線透過率が37%以下、可視光線透過率が70〜90
%、太陽放射透過率が40〜70%であることが好まし
い。また本発明は、ガラス基体上に、酸化錫層及び/又
は酸化チタン層からなる第1層、酸化亜鉛層からなる第
2層、銀層からなる第3層、亜鉛または亜鉛を主成分と
する保護金属層よりなる第4層、その上に最上層が酸化
亜鉛層からなる第5層、さらに銀層からなる第6層、亜
鉛または亜鉛を主成分とする保護金属層よりなる第7
層、その上に酸化錫層及び/又は酸化チタン層を最上層
とした第8層を積層してなる低放射ガラス積層体に関す
る。[0008] The five-layer laminate has a solar ultraviolet transmittance of 37% or less and a visible light transmittance of 70 to 90%.
%, And the solar radiation transmittance is preferably 40 to 70%. Further, according to the present invention, on a glass substrate, a first layer composed of a tin oxide layer and / or a titanium oxide layer, a second layer composed of a zinc oxide layer, a third layer composed of a silver layer, and zinc or zinc as a main component. A fourth layer made of a protective metal layer, a fifth layer having a zinc oxide layer on the fourth layer, a sixth layer made of a silver layer, and a seventh layer made of a protective metal layer containing zinc or zinc as a main component.
The present invention relates to a low-emissivity glass laminate in which an eighth layer having a tin oxide layer and / or a titanium oxide layer as the uppermost layer is laminated thereon.
【0009】第5層及び第8層は、酸化亜鉛層と酸化錫
層及び/又は酸化チタン層が積層された層からなること
が好ましい。なお、第1層の膜厚が5〜37nmである
第1層、第2層の膜厚が3〜35nm、且つ第1層と第
2層の膜厚の合計が25〜40nm、第3層の膜厚が9
〜13nm、第4層の膜厚が1〜8nm、第5層の膜厚
が55〜80nmであり、しかも最上層の酸化亜鉛の膜
厚は1nm以上であり、第6層の膜厚は9〜13nm、
第7層の膜厚は1〜8nm、第8層の膜厚が25〜45
nmであり、しかも該第8層中の酸化亜鉛層の1層の膜
厚が25nm以下であることが好ましい。The fifth layer and the eighth layer are preferably composed of a layer in which a zinc oxide layer, a tin oxide layer and / or a titanium oxide layer are laminated. The first layer has a thickness of 5 to 37 nm, the second layer has a thickness of 3 to 35 nm, and the total thickness of the first and second layers is 25 to 40 nm. Film thickness of 9
The thickness of the fourth layer is 1 to 8 nm, the thickness of the fifth layer is 55 to 80 nm, the thickness of the uppermost layer of zinc oxide is 1 nm or more, and the thickness of the sixth layer is 9 ~ 13 nm,
The thickness of the seventh layer is 1 to 8 nm, and the thickness of the eighth layer is 25 to 45.
and the thickness of one of the zinc oxide layers in the eighth layer is preferably 25 nm or less.
【0010】さらに、前記8層からなる積層体は、太陽
紫外線透過率が25%以下、可視光線透過率が70〜8
5%、太陽放射透過率が40〜50%であることが好ま
しい。[0010] The eight-layer laminate has a solar ultraviolet ray transmittance of 25% or less and a visible ray transmittance of 70 to 8%.
It is preferable that the solar radiation transmittance is 5% and the solar radiation transmittance is 40 to 50%.
【0011】又さらに、保護金属層に用いる亜鉛金属
は、亜鉛を主成分としアルミニウムを2〜10原子%含
む合金であることことが好ましい。Further, the zinc metal used for the protective metal layer is preferably an alloy containing zinc as a main component and containing 2 to 10 atomic% of aluminum.
【0012】[0012]
【発明の実施の形態】本発明の低放射ガラス積層体は、
次のようにして得る。ガラス基板としては、自動車用な
らびに建築用ガラス等に通常用いられている普通板ガラ
ス、所謂フロート板ガラスなどであり、クリアをはじめ
グリ−ン、ブロンズ等各種着色ガラスや各種機能性ガラ
ス、強化ガラスやそれに類するガラス、合せガラスのほ
か複層ガラス等、さらに平板あるいは曲げ板等各種板ガ
ラス製品として使用できることは言うまでもない。ま
た、ガラスは透明プラスチック板等との積層体であって
もよい。なお、ガラスの組成は、ソーダ石灰ガラス、ア
ルミノシリケートガラス等であるが、これらに限定され
ないことは、言うまでもない。BEST MODE FOR CARRYING OUT THE INVENTION The low radiation glass laminate of the present invention comprises:
Obtained as follows. As the glass substrate, there are ordinary plate glass and so-called float plate glass which are usually used for automotive and architectural glass, etc., and various colored glass such as clear, green, bronze, various functional glass, tempered glass and so on. Needless to say, it can be used as similar glass, laminated glass, double-glazed glass, and various flat glass products such as flat and bent plates. Further, the glass may be a laminate with a transparent plastic plate or the like. The composition of the glass is soda-lime glass, aluminosilicate glass or the like, but it goes without saying that the glass is not limited to these.
【0013】酸化錫層及び/又は酸化チタン層よりなる
非晶質の被膜は、化学的にも機械的にも強く、且つ非晶
質のルーズな構造のためガラスとの密着力も強く、内部
応力も発生しにくい。従ってガラスの直上に被覆する第
1層被膜は酸化錫層及び/又は酸化チタン層が望まし
い。ガラスとの密着力を高め、アルカリイオンの影響を
断つための第1層の酸化錫層及び/又は酸化チタン層の
厚みは少なくとも5nmが必要である。しかし酸化錫層
及び/又は酸化チタン層は金属特にAgとの密着力が劣
り、酸化錫層、酸化チタン層/銀層界面での剥離が起こ
りやすい。又、酸化錫はそのイオン化傾向から分かるよ
うに酸素との結合が弱く、被膜内の酸素の化学的ポテン
シャルが高いため、Ag層に酸素が拡散しやすい。この
ためAg層の電気抵抗が上がり低い放射率を達成し難く
なる。以上より、酸化錫層及び/又は酸化チタン層より
なる層は銀層と接触させないことが好ましい。なお、酸
化錫層及び/または酸化チタン層には化学的、機械的特
性を向上し、またガラスとの密着力も強くする非晶質の
被膜成分としての元素が含まれても良い。An amorphous film composed of a tin oxide layer and / or a titanium oxide layer is chemically and mechanically strong, and has a strong adhesion to glass due to its amorphous structure, and has an internal stress. Is also less likely to occur. Therefore, the first layer coating directly over the glass is preferably a tin oxide layer and / or a titanium oxide layer. The thickness of the tin oxide layer and / or titanium oxide layer of the first layer for increasing the adhesion to glass and cutting off the influence of alkali ions must be at least 5 nm. However, the tin oxide layer and / or the titanium oxide layer have poor adhesion to metals, particularly Ag, and are likely to peel off at the tin oxide layer, the titanium oxide layer / silver layer interface. In addition, as can be seen from the ionization tendency, tin oxide has a weak bond with oxygen and has a high chemical potential of oxygen in the film, so that oxygen easily diffuses into the Ag layer. For this reason, the electrical resistance of the Ag layer increases and it is difficult to achieve a low emissivity. From the above, it is preferable that the layer composed of the tin oxide layer and / or the titanium oxide layer is not brought into contact with the silver layer. Note that the tin oxide layer and / or the titanium oxide layer may contain an element as an amorphous coating component that improves chemical and mechanical properties and enhances adhesion to glass.
【0014】酸化亜鉛はAg層との密着力が高く、又酸
素との高い結合力によって層内の酸素のポテンシャルが
低いため、銀層内に酸素が拡散しにくく、低い放射率が
達成しやすい。従ってAg層直下の層は酸化亜鉛層が望
ましい。その下の酸化錫層からの酸素の拡散を防ぎ、A
g層との強い密着力を得るための第2層の酸化亜鉛層の
厚みは少なくとも3nmは必要である。なお、酸化亜鉛
層には銀層との密着力を低下せず、銀層内に酸素が拡散
しにくくするような被膜の成分としての公知の元素が含
まれても良い。Zinc oxide has a high adhesion to the Ag layer and has a low oxygen potential in the layer due to a high bonding force with oxygen, so that oxygen hardly diffuses into the silver layer and a low emissivity is easily achieved. . Therefore, a layer immediately below the Ag layer is preferably a zinc oxide layer. Prevents diffusion of oxygen from the underlying tin oxide layer,
The thickness of the zinc oxide layer of the second layer for obtaining a strong adhesion to the g layer must be at least 3 nm. Note that the zinc oxide layer may contain a known element as a component of a film that does not decrease the adhesion to the silver layer and makes it difficult for oxygen to diffuse into the silver layer.
【0015】Ag層に接触する酸化物層中の酸素の化学
ポテンシャルはできる限り低く保つことが肝要で、酸化
亜鉛成膜時の雰囲気は酸素と共にできるだけ多くのアル
ゴンを添加するのが望ましい。望ましいアルゴンの添加
率は設備によって異なるが、概ね10〜30%である。
この値は酸素雰囲気から徐々にアルゴンを添加してい
き、ターゲットに掛かる電圧が急に上がるか、電流が急
に下がる現象を観測し、そこからアルゴンを若干減らす
ことで決められる。It is important to keep the chemical potential of oxygen in the oxide layer in contact with the Ag layer as low as possible, and it is desirable to add as much argon as possible together with oxygen to the atmosphere during the deposition of zinc oxide. The desirable argon addition rate varies depending on the equipment, but is generally about 10 to 30%.
This value is determined by gradually adding argon from an oxygen atmosphere, observing a sudden increase in the voltage applied to the target or a sudden decrease in the current, and then slightly reducing the argon.
【0016】ガラスと銀層間に成膜する第1層の酸化錫
層及び/又は酸化チタン層と第2層の酸化亜鉛層の合計
の膜厚は、高い可視光線透過率、とりわけ70%以上の
可視光線透過率を確保し、且つ反射色調を極力中性に保
つようにするためには、ガラス/酸化錫層及び/又は酸
化チタン層/酸化亜鉛層/銀層/保護金属層/第5層の
構成の場合には15〜30nmが好ましい。又 ガラス
/酸化錫層及び/又は酸化チタン層/酸化亜鉛層/銀層
/保護金属層/第5層/銀層/保護金属層/第8層の構
成の場合には25〜45nmが好ましい。この範囲を下
回っても、上回っても反射率が高くなり、従って透過率
が低くなる。The total film thickness of the first tin oxide layer and / or the titanium oxide layer and the second zinc oxide layer formed between the glass and the silver layer has a high visible light transmittance, especially 70% or more. In order to secure the visible light transmittance and keep the reflection color tone as neutral as possible, it is necessary to use glass / tin oxide layer and / or titanium oxide layer / zinc oxide layer / silver layer / protective metal layer / fifth layer. In the case of the configuration described above, the thickness is preferably 15 to 30 nm. In the case of glass / tin oxide layer and / or titanium oxide layer / zinc oxide layer / silver layer / protective metal layer / fifth layer / silver layer / protective metal layer / eighth layer, the thickness is preferably 25 to 45 nm. Above or below this range, the reflectance will be high and the transmittance will be low.
【0017】第3層の銀層の厚みは放射率と可視光線透
過率及び反射色調に影響し、放射率が約0.1程度以下
の低放射ガラスにおいては少なくとも9nmが必要であ
る。又高い可視光線透過率、とりわけ70%以上を確保
し、且つ赤い反射光を避けるためには25nm以下とす
ることが好ましい。なお、銀層は銀を主成分とし銀に
金、銅、白金、イリジウム等の通常被膜の成分として公
知の元素が含まれても良い。The thickness of the third silver layer affects the emissivity, the visible light transmittance and the reflection color tone, and at least 9 nm is required for low-emission glass having an emissivity of about 0.1 or less. Further, in order to ensure a high visible light transmittance, particularly 70% or more, and to avoid red reflected light, the thickness is preferably 25 nm or less. The silver layer may contain silver as a main component, and silver may contain a known element such as gold, copper, platinum, or iridium as a component of a normal coating.
【0018】第3層の銀層の直上部に形成する第4層の
保護金属層は、銀層と酸化物層の両方に高い密着性をも
つ亜鉛または亜鉛を主成分とした合金層が望ましい。な
お、ここでいう保護金属層とは、銀層の直上に第4層の
保護金属層を成膜した直後は全厚が金属層であるが、次
いで該金属層の上層に第5層あるいは第8層の酸化物層
を成膜する時、酸化性雰囲気(例えば酸素80%、アル
ゴン20%)で成膜するため、該金属層の上層部の一部
が酸化物に変換されるが、この上層部が酸化された酸化
物層と残った金属層を含めて保護金属層と呼ぶ。該保護
金属層の作用は、前記第5層或いは第8層の酸化物層を
成膜する際に、その酸化性雰囲気の影響が下部の銀層に
及ばないように該保護金属層を介在させて銀層が酸化さ
れるのを保護するためのものである。保護金属層とし
て、アルミニウムを2〜10原子%含む亜鉛合金は、酸
素との結合力が高く、最も効果的に銀層中に拡散してき
た酸素その他の腐食性イオンをトラップするので特に好
ましい。。保護金属層の厚みは厚いほど強い効果が長続
きすることは当然であるが、厚すぎると可視光線透過率
を下げてしまう。しかし次に酸化物を成膜する際、該保
護金属層の一部は酸化されるので、その酸化前の最初の
金属層の厚みは8nm以下であれば高い透過率が得られ
る。The fourth protective metal layer formed immediately above the third silver layer is preferably zinc or an alloy layer containing zinc as a main component, which has high adhesion to both the silver layer and the oxide layer. . The protective metal layer referred to here is a metal layer having the entire thickness immediately after the fourth protective metal layer is formed immediately above the silver layer. When forming the eight oxide layers, since a film is formed in an oxidizing atmosphere (for example, oxygen 80%, argon 20%), part of the upper layer of the metal layer is converted to oxide. The upper metal layer is referred to as a protective metal layer including the oxidized oxide layer and the remaining metal layer. The function of the protective metal layer is to interpose the protective metal layer so that the oxidizing atmosphere does not affect the lower silver layer when the fifth or eighth oxide layer is formed. To protect the silver layer from being oxidized. As a protective metal layer, a zinc alloy containing 2 to 10 atomic% of aluminum is particularly preferable because it has a high bonding force with oxygen and most effectively traps oxygen and other corrosive ions diffused into the silver layer. . It goes without saying that the thicker the protective metal layer, the longer the strong effect lasts, but if too thick, the visible light transmittance is reduced. However, when the oxide is formed next, a part of the protective metal layer is oxidized. Therefore, if the thickness of the first metal layer before the oxidation is 8 nm or less, a high transmittance can be obtained.
【0019】銀層が1層の積層体の場合、最上層の酸化
錫層及び/又は酸化チタン層からの酸素の拡散を防ぎ、
酸化錫層及び/又は酸化チタン層との密着性を高めるた
めには、保護金属層の上部に酸化亜鉛層を合計が0.5
nm以上設けることが好ましい。なお、その酸化亜鉛層
は保護金属層中の亜鉛によって形成されたあるいは亜鉛
以外の金属元素を含む酸化亜鉛でも良いし、もし保護金
属の酸化が不十分である場合には、第5層中の最下層に
酸化亜鉛層を設けてもよい。第5層中の酸化亜鉛層の厚
みの上限は、高い透過率と反射色の中性を保つための第
5層の厚みの適正範囲によって決まる。しかし酸化亜鉛
層は厚くなるほど内部応力が高くなる傾向があり、25
nm以下としてその上に酸化錫層及び/又は酸化チタン
層を設けるのが好ましい。When the silver layer is a single layered product, diffusion of oxygen from the uppermost tin oxide layer and / or titanium oxide layer is prevented,
In order to increase the adhesion with the tin oxide layer and / or the titanium oxide layer, a total of 0.5
It is preferable that the thickness be at least nm. The zinc oxide layer may be formed of zinc in the protective metal layer or may be a zinc oxide containing a metal element other than zinc. If the oxidation of the protective metal is insufficient, the zinc oxide layer in the fifth layer may be used. A zinc oxide layer may be provided as the lowermost layer. The upper limit of the thickness of the zinc oxide layer in the fifth layer is determined by an appropriate range of the thickness of the fifth layer for maintaining high transmittance and neutrality of the reflected color. However, as the thickness of the zinc oxide layer increases, the internal stress tends to increase.
It is preferable to provide a tin oxide layer and / or a titanium oxide layer thereon with a thickness of nm or less.
【0020】ここに酸化された保護金属、中でも酸化さ
れた亜鉛合金、とりわけ酸化されたアルミニウムを2〜
10原子%含む亜鉛合金(ZnAlOx)と酸化亜鉛
(ZnOx)の違いの一つは、後者が太陽光線に含まれ
る紫外線を強く吸収するのに対して、前者はその吸収が
弱い点である。これは不純物が添加されることによって
酸化亜鉛のバンドギャップが広がり、吸収域が短波長側
にずれるためである。更に今一つの相違点は、後者に比
べ前者の成膜速度が約70%に下がることである。この
原因は前者の、とりわけアルミニウムを2〜10原子%
含む亜鉛合金の融点が、亜鉛の420℃に対し約20℃
低ことから成膜に必要な電力をターゲットに十分に与え
られないためである。従って酸化亜鉛層は保護金属の酸
化による部分以外は不純物金属元素を多くとも2原子%
以上含まない純粋な酸化亜鉛層であることが好ましい。Here, the oxidized protective metal, especially oxidized zinc alloy, especially oxidized aluminum
One of the differences between a zinc alloy containing 10 atomic% (ZnAlO x ) and zinc oxide (ZnO x ) is that the latter strongly absorbs ultraviolet rays contained in sunlight, whereas the former weakly absorbs ultraviolet rays. . This is because the band gap of zinc oxide is widened by the addition of the impurity, and the absorption region shifts to the short wavelength side. Another difference is that the former film forming rate is reduced to about 70% compared to the latter. This is due to the former, especially aluminum being 2 to 10 atomic%.
The melting point of the containing zinc alloy is about 20 ° C compared to 420 ° C of zinc.
This is because the power required for film formation cannot be sufficiently supplied to the target because of its low power. Therefore, the zinc oxide layer contains at most 2 atomic% of the impurity metal element except for the portion caused by oxidation of the protective metal.
A pure zinc oxide layer containing no above is preferred.
【0021】酸化亜鉛層は緻密で大気中の腐食性ガスの
拡散を防ぐ効果があり、また太陽光線に含まれる紫外線
を吸収する働きがあるが化学的耐久性が低いため、酸化
亜鉛層の上には非晶質酸化物である酸化錫層及び/又は
酸化チタン層を設けるのが望ましい。該酸化錫及び/又
は酸化チタン層の膜厚は1nm以上が好ましい。The zinc oxide layer is dense and has an effect of preventing the diffusion of corrosive gas in the atmosphere, and has a function of absorbing ultraviolet rays contained in sunlight but has low chemical durability. Is preferably provided with a tin oxide layer and / or a titanium oxide layer which are amorphous oxides. The thickness of the tin oxide and / or titanium oxide layer is preferably 1 nm or more.
【0022】高い可視光線透過率と反射色調を極力中性
に保つためには、銀層1層の構成の場合の第5層の膜厚
は、合計で35〜55nmの範囲が適正であり、膜厚が
薄すぎても厚すぎても反射率が高くなり、従って透過率
が低くなる。従ってガラス/酸化錫層及び/又は酸化チ
タン層/酸化亜鉛層/銀層/保護金属層/第5層の構成
の場合、保護金属層中の酸化物層と第5層中の最下層の
酸化亜鉛層との膜厚の合計が0.5〜25nmで、さら
にその上層に順次酸化錫層及び/又は酸化チタン層10
〜40nm、酸化亜鉛層5〜25nm、酸化錫層及び/
又は酸化チタン層1〜39.5nmを成膜することがさ
らに好ましい。In order to keep the high visible light transmittance and the reflection color tone as neutral as possible, it is appropriate that the total thickness of the fifth layer in the case of a single silver layer is 35 to 55 nm. If the film thickness is too thin or too thick, the reflectance is high, and thus the transmittance is low. Therefore, in the case of the configuration of glass / tin oxide layer and / or titanium oxide layer / zinc oxide layer / silver layer / protective metal layer / fifth layer, oxidation of the oxide layer in the protective metal layer and the lowermost layer in the fifth layer The total thickness of the zinc layer and the zinc layer is 0.5 to 25 nm, and the tin oxide layer and / or the titanium oxide layer 10
4040 nm, zinc oxide layer 5-25 nm, tin oxide layer and / or
Alternatively, it is more preferable to form a titanium oxide layer having a thickness of 1 to 39.5 nm.
【0023】銀層2層を有するガラス/酸化錫層及び/
又は酸化チタン層/酸化亜鉛層/銀層/保護金属層/第
5層/銀層/保護金属層/第8層の構成の場合の第5層
は、該第5層の上層である第6層が銀層であるため、該
銀層の直下は前述の通り酸化亜鉛層であることが好まし
い。しかし第5層の下には保護金属層があることによっ
て、酸化錫層及び/又は酸化チタン層中の酸素のポテン
シャルが低く抑えられているため、該酸化亜鉛層の厚み
は1nm以上であればよい。なお、この場合大気からの
腐食性ガスの拡散はあまり問題でないから、保護金属層
及び銀層との接触部を除き酸化亜鉛層は不可欠ではない
が、太陽光線の中に含まれる紫外線を吸収させる目的で
酸化亜鉛層を設けることもできる。もしそのような酸化
亜鉛層を設け、その上下を5nm以上の酸化錫層及び/
又は酸化チタン層で挟むなら膜厚は40nmまで内部応
力の影響は出ない。40nm以上の膜厚にすると第5層
内で剥離などの現象が生じやすくなり、それがその上の
層の破壊を誘発しピンホール欠陥が発生しやすくなる。Glass / tin oxide layer having two silver layers and / or
Alternatively, the fifth layer in the structure of titanium oxide layer / zinc oxide layer / silver layer / protective metal layer / fifth layer / silver layer / protective metal layer / eighth layer is the sixth layer which is an upper layer of the fifth layer. Since the layer is a silver layer, the layer immediately below the silver layer is preferably a zinc oxide layer as described above. However, since the potential of oxygen in the tin oxide layer and / or the titanium oxide layer is suppressed low by the presence of the protective metal layer under the fifth layer, the thickness of the zinc oxide layer is 1 nm or more. Good. In this case, since the diffusion of corrosive gas from the atmosphere is not a problem, the zinc oxide layer is not indispensable except for the contact portion with the protective metal layer and the silver layer, but it absorbs ultraviolet rays contained in sunlight. A zinc oxide layer may be provided for the purpose. If such a zinc oxide layer is provided, a tin oxide layer of 5 nm or more above and below the zinc oxide layer and / or
Alternatively, if the film is sandwiched between titanium oxide layers, the thickness is not affected by internal stress up to 40 nm. When the thickness is 40 nm or more, phenomena such as peeling easily occur in the fifth layer, which causes destruction of a layer thereabove, and pinhole defects easily occur.
【0024】また、銀層2層の場合の第5層の厚みは、
好ましい光学的特性から55〜80nmの範囲が好まし
く、第5層の構成は保護金属中の酸化物層と第5層中の
酸化亜鉛層の膜厚の合計が0.5〜25nm、酸化錫層
及び/又は酸化チタン層15〜78.5nm、さらにそ
の上層に、酸化亜鉛層1〜25nmと成膜するか、又は
保護金属層中の酸化物層と第5層中の酸化亜鉛層の膜厚
の合計が0.5〜25nm、酸化錫層及び/又は酸化チ
タン層5nm以上、酸化亜鉛層〜40nm以下、酸化錫
層及び/又は酸化チタン層5nm以上、酸化亜鉛層1〜
25nmと順次成膜することが好ましい。The thickness of the fifth layer in the case of two silver layers is as follows:
The range of 55 to 80 nm is preferable in terms of preferable optical characteristics, and the fifth layer has a total thickness of the oxide layer in the protective metal and the zinc oxide layer in the fifth layer of 0.5 to 25 nm, and a tin oxide layer. And / or a titanium oxide layer of 15 to 78.5 nm, and further thereon a zinc oxide layer of 1 to 25 nm or a film thickness of an oxide layer in the protective metal layer and a zinc oxide layer in the fifth layer 0.5 to 25 nm, tin oxide layer and / or titanium oxide layer 5 nm or more, zinc oxide layer to 40 nm or less, tin oxide layer and / or titanium oxide layer 5 nm or more, zinc oxide layer 1 to
It is preferable to sequentially form a film with a thickness of 25 nm.
【0025】第6層、第7層の考え方は第3層、第4層
と同様である。第8層はガラス/酸化錫層及び/又は酸
化チタン層/酸化亜鉛層/銀層/保護金属層/第5層の
構成の場合の第4〜5層と同様に考え、高い可視光線透
過率と反射色調を極力中性に保つために第8層の膜厚は
合計で25〜45nmの範囲が適正であり、膜厚が薄す
ぎても厚すぎても反射率が高くなり、従って透過率が低
くなることから、第7層〜第8層の構成は、保護金属層
からの酸化亜鉛層と第5層からの酸化亜鉛層の膜厚の合
計が0.5〜25nm、さらにその上層に順次酸化錫層
及び/又は酸化チタン層10〜40nm、酸化亜鉛層5
〜25nm、酸化錫層及び/又は酸化チタン層1〜2
9.5nmと成膜することが好ましい。The concept of the sixth and seventh layers is the same as that of the third and fourth layers. The eighth layer is considered to be the same as the fourth to fifth layers in the case of the configuration of glass / tin oxide layer and / or titanium oxide layer / zinc oxide layer / silver layer / protective metal layer / fifth layer, and has a high visible light transmittance. In order to keep the reflection color tone as neutral as possible, it is appropriate that the total thickness of the eighth layer is in the range of 25 to 45 nm. Is reduced, the configuration of the seventh to eighth layers is such that the total thickness of the zinc oxide layer from the protective metal layer and the zinc oxide layer from the fifth layer is 0.5 to 25 nm, and Sequentially a tin oxide layer and / or a titanium oxide layer 10 to 40 nm, a zinc oxide layer 5
~ 25 nm, tin oxide layer and / or titanium oxide layer 1-2
It is preferable to form a film having a thickness of 9.5 nm.
【0026】[0026]
【実施例】以下、実施例により本発明を具体的に説明す
る。なお、成膜はDCマグネトロンスパッタリング法に
より行った。ただし本発明は係る実施例に限定されるも
のではない。The present invention will be described below in detail with reference to examples. The film was formed by DC magnetron sputtering. However, the present invention is not limited to such an embodiment.
【0027】実施例1 大きさが1800mm×24000mm×約3mmのフ
ロートガラス上に、下記順序で被膜を形成した。スパッ
タ装置は、カソードに予めSn、Zn(3台)、Ag、
ZnAl(Al含有率4原子%)の各金属ターゲットを
取り付けたのち、成膜前の圧力が5×10-5Torrとな
るまで真空チャンバー内の排気を充分に行った。本方法
は、真空チャンバー内のターゲットの下方に搬送ロール
が設置され、そのロール上をガラス板が往復動する時に
電力が印可されたターゲットより所定の金属層あるいは
金属酸化物層がガラス板上に成膜されるようになってい
る。Example 1 A coating was formed on a float glass having a size of 1800 mm × 24000 mm × about 3 mm in the following order. The sputtering apparatus has Sn, Zn (three), Ag,
After attaching each metal target of ZnAl (Al content 4 atomic%), the inside of the vacuum chamber was sufficiently evacuated until the pressure before film formation reached 5 × 10 −5 Torr. In this method, a transfer roll is installed below a target in a vacuum chamber, and when a glass plate reciprocates on the roll, a predetermined metal layer or metal oxide layer is applied to the glass plate from the target to which power is applied. A film is formed.
【0028】先ず1パス目として、成膜室の雰囲気を酸
性雰囲気(O2:Ar=8:2)に保持し、Snターゲ
ットにより第1層としてのSnOx層を10nm成膜し
た後、 第1層と同条件でZnターゲットにより第2層
のZnOx層を12nm成膜した。次に2パス目として
雰囲気をAr100%の還元性雰囲気に保持し、Agタ
ーゲットにより第3層としてのAg層を10nm、Zn
Alターゲットにより第4層のZnAl合金層(いわゆ
る保護金属層)を2nm成膜した。3パス目として成膜
室の雰囲気を再び酸性雰囲気(O2:Ar=8:2)に
保持し、第5層のZnAlOx層を2nm、SnOx層を
10nm、ZnOx層を11nmを順次成膜し、さらに
4パス目として3パス目と同じ雰囲気でZnOx層を1
1nm、SnOx層を10nm成膜した後、ガラスを成
膜室より排出した。なお、第4層のZnAl合金層(保
護金属層)の上層に酸化性雰囲気でZnAlOx層を成
膜するとき、一部のZnAl合金層は酸化されていた。First, as the first pass, the atmosphere in the film forming chamber is kept in an acidic atmosphere (O 2 : Ar = 8: 2), and a SnO x layer as a first layer is formed to a thickness of 10 nm by a Sn target. A ZnO x layer as a second layer was formed to a thickness of 12 nm by using a Zn target under the same conditions as the first layer. Next, in a second pass, the atmosphere is maintained in a reducing atmosphere of Ar 100%, and an Ag layer serving as a third layer is formed to a thickness of 10 nm by using an Ag target.
A 4 nm thick ZnAl alloy layer (a so-called protective metal layer) was formed to a thickness of 2 nm using an Al target. At the third pass, the atmosphere in the film forming chamber is again kept in an acidic atmosphere (O 2 : Ar = 8: 2), and the fifth ZnAlO x layer is 2 nm, the SnO x layer is 10 nm, and the ZnO x layer is 11 nm in order. A ZnO x layer is formed as a fourth pass in the same atmosphere as in the third pass.
After forming a 1 nm and 10 nm SnO x layer, the glass was discharged from the film forming chamber. When the ZnAlO x layer was formed in an oxidizing atmosphere on the fourth ZnAl alloy layer (protective metal layer), some ZnAl alloy layers were oxidized.
【0029】また、各被膜の膜厚Dは搬送速度とカソー
ド電力で調整し、その値は予め100nm前後の厚さに
電力E0、搬送速度V0で成膜した被膜を部分的にエッチ
ングによって除去し、その段差を触針式表面粗さ計で測
定して厚みD0を求め、実施例におけるカソード電力
E、搬送速度をVとして、D=D0×E/E0×V0/Vの
式に従って求めた。なお、表−1の膜組成の欄の数字
は、各被膜の膜厚(nm)を示す。また、該膜組成欄の
保護金属層の膜厚は、該金属層を成膜した直後の金属層
の全厚を示すものであり、その後保護金属層中の上層部
が酸化されたものは(→)印で示した。また、表1の膜
構成における実施例1、2、3、6の第5層は( )で
表示し、実施例4、5の第5層と第8層は( )で表示
し、さらに実施例7の第1層と第5層も( )で表示し
た。The film thickness D of each film is adjusted by the transfer speed and the cathode power, and the value is adjusted by partially etching the film previously formed at a power E 0 and the transfer speed V 0 to a thickness of about 100 nm. The thickness D 0 was determined by measuring the step with a stylus-type surface roughness meter, and D = D 0 × E / E 0 × V 0 / V, where cathode power E and transfer speed were V in the examples. Was determined according to the following equation. The numbers in the column of the film composition in Table 1 indicate the film thickness (nm) of each film. The film thickness of the protective metal layer in the column of the film composition indicates the total thickness of the metal layer immediately after the formation of the metal layer. →) The fifth layer of Examples 1, 2, 3, and 6 in the film configuration of Table 1 is indicated by (), and the fifth and eighth layers of Examples 4 and 5 are indicated by (). The first and fifth layers of Example 7 are also shown in parentheses.
【0030】得られた低放射ガラスの紫外線、可視光
線、太陽放射の各透過率と放射率は分光光度計によって
測定した。又耐湿性の評価は、30℃、RH90%の環
境試験機の中で2週間暴露した後、膜面に発生した0.
3mm以上の径のピンホールの1m2当たりの数を数
え、20個以上を×、10〜20個を△、5〜10個を
○、4個以下を◎として評価した。The transmittance and emissivity of the obtained low emission glass for ultraviolet light, visible light, and solar radiation were measured by a spectrophotometer. The moisture resistance was evaluated by evaluating the moisture resistance of the film after exposure for 2 weeks in an environmental tester at 30 ° C. and 90% RH.
Counting the number of 1 m 2 per pinholes or more diameter 3 mm, × 20 or more, 10 to 20 pieces of △, 5 to 10 ○, was evaluated 4 or less as ◎.
【0031】又耐酸性の評価は、PH3に調整したアジ
ピン酸水溶液中に低放射ガラスを浸漬し、10秒以内に
変色する物を×、3分以内に変色する物を△、10分以
内に変色する物を○、10分で変色が認められない物を
◎として肉眼で評価した。The acid resistance was evaluated by immersing low-emission glass in an aqueous solution of adipic acid adjusted to pH 3 and changing the color within 10 seconds. A substance which changed color was evaluated as ○, and a substance which did not show discoloration in 10 minutes was evaluated as ◎.
【0032】実施例1で得られた低放射ガラスの品質評
価をした結果、紫外線、可視光線、太陽放射の各透過率
と放射率は、表−1に示す良好な光学特性がえられた。
一方、耐湿性および耐酸性においてもピンホールは2〜
3個と少なく、化学的耐久性は良好であった。As a result of evaluating the quality of the low-emission glass obtained in Example 1, excellent optical characteristics shown in Table 1 were obtained for the transmittance and emissivity of ultraviolet light, visible light, and solar radiation.
On the other hand, the pinholes are 2 to 2 in moisture resistance and acid resistance.
The number was as small as three, and the chemical durability was good.
【0033】実施例2 実施例1と同様に、カソードには予めSn、Zn(3
台)、Ag、ZnAlの各金属ターゲットを取り付け
た。先ず1パス目として、成膜室の雰囲気を酸性雰囲気
(O2:Ar=8:2)に保持し、実施例1と同じ方法
で第1層としてのSnOx層を10nm、第2層のZn
Ox層を12nm成膜した。次に2パス目として雰囲気
をAr100%の還元性雰囲気に保持し、第3層として
のAg層を10nm、第4層のZnAl合金層を5nm
成膜した。3パス目として成膜室の雰囲気を再び酸性雰
囲気(O2:Ar=8:2)に保持し、第5層のSnOx
層を16nm、ZnOx層を19nmを順次成膜し、さ
らに4パス目として3パス目と同じ雰囲気でZnOx層
を4nm、SnOx層を4nm成膜したのち、ガラスを
成膜室より排出した。実施例1と同様に、第4層のZn
Al合金層5nmの一部は酸化していた。評価結果は、
表−1に示す通り全て良好な結果が得られた。Example 2 As in Example 1, Sn and Zn (3
), Ag and ZnAl. First, as the first pass, the atmosphere in the film forming chamber is kept in an acidic atmosphere (O 2 : Ar = 8: 2), and the SnO x layer as the first layer is 10 nm and the second layer is Zn
The O x layer was deposited 12nm. Next, in the second pass, the atmosphere is kept in a reducing atmosphere of 100% Ar, the Ag layer as the third layer is 10 nm, and the ZnAl alloy layer as the fourth layer is 5 nm.
A film was formed. In the third pass, the atmosphere in the film formation chamber is again kept in an acidic atmosphere (O 2 : Ar = 8: 2), and the fifth layer SnO x
A 16-nm layer and a 19-nm ZnO x layer were sequentially formed. A fourth pass was formed to form a 4-nm ZnO x layer and a 4-nm SnO x layer in the same atmosphere as in the third pass, and then the glass was discharged from the deposition chamber. . As in the first embodiment, the fourth layer Zn
A part of the Al alloy layer 5 nm was oxidized. The evaluation result is
As shown in Table 1, good results were all obtained.
【0034】実施例3 実施例1と同様に、カソードには予めSn(3台)、Z
n、Ag、ZnAlの各金属ターゲットを取り付けた。
先ず1パス目として、成膜室の雰囲気を酸性雰囲気(O
2:Ar=8:2)に保持し、実施例1と同じ方法で第
1層としてのSnOx層を20nm、第2層のZnOx層
を3nm成膜した。次に2パス目として雰囲気をAr1
00%の還元性雰囲気に保持し、第3層としてのAg層
を20nm、第4層のZnAl合金層を2nm成膜し
た。3パス目として成膜室の雰囲気を再び酸性雰囲気
(O2:Ar=8:2)に保持し、第5層のZnAlOx
層を2nm、SnOx層を19nm、ZnOx層を2nm
を順次成膜し、さらに4パス目として3パス目と同じ雰
囲気でZnOx層を2nm、SnOx層を19nm成膜
し、ガラスを成膜室より排出した。実施例1と同様に、
第4層のZnAl合金層2nmの一部は酸化していた。
評価結果は、表−1に示す通り全て良好な結果が得られ
た。Example 3 In the same manner as in Example 1, Sn (three), Z
Each metal target of n, Ag, and ZnAl was attached.
First, as the first pass, the atmosphere in the film forming chamber is changed to an acidic atmosphere (O
2 : Ar = 8: 2), and a SnO x layer as the first layer was formed to 20 nm, and a ZnO x layer as the second layer was formed to 3 nm in the same manner as in Example 1. Next, the atmosphere is Ar1 as the second pass.
While maintaining a reducing atmosphere of 00%, an Ag layer as a third layer was formed to a thickness of 20 nm, and a ZnAl alloy layer as a fourth layer was formed to a thickness of 2 nm. In the third pass, the atmosphere in the film forming chamber is again kept in an acidic atmosphere (O 2 : Ar = 8: 2), and ZnAlO x of the fifth layer is formed.
Layer 2 nm, SnO x layer 19 nm, ZnO x layer 2 nm
Were sequentially formed, and as a fourth pass, a ZnO x layer was formed to a thickness of 2 nm and a SnO x layer was formed to a thickness of 19 nm in the same atmosphere as in the third pass, and the glass was discharged from the deposition chamber. As in Example 1,
A part of the 4 nm ZnAl alloy layer was partially oxidized.
As shown in Table 1, good evaluation results were obtained.
【0035】実施例4 実施例1と同様に、カソードには予めSn、Zn(3
台)、Ag、ZnAlの各金属ターゲットを取り付け
た。先ず1パス目として、成膜室の雰囲気を酸性雰囲気
(O2:Ar=8:2)に保持し、実施例1と同じ方法
で第1層としてのSnOx層を17nm、第2層のZn
Ox層を19nm成膜した。次に2パス目として雰囲気
をAr100%の還元性雰囲気に保持し、第3層として
のAg層を10nm、第4層のZnAl合金層を8nm
成膜した。3パス目として成膜室の雰囲気を再び酸性雰
囲気(O2:Ar=8:2)に保持し、第5層としての
SnOx層を24nm、ZnOx層を28nmを順次成膜
し、さらに4パス目として3パス目と同じ雰囲気でZn
Ox層を4nm、SnOx層を4nm成膜し、さらに5
パス目として4パス目と同じ雰囲気でSnOx層を4n
m、ZnOx層を4nm成膜した。次いで、6パス目と
して雰囲気をAr100%の還元性雰囲気に保持し、第
6層としてのAg層を12nm、第7層のZnAl合金
層を8nm成膜した。さらに、7パス目として成膜室の
雰囲気を再び酸性雰囲気(O2:Ar=8:2)に保持
し、第8層としてのSnOx層を14nm、ZnOx層を
16nmを順次成膜し、さらに8パス目として7パス目
と同じ雰囲気でZnOx層を4nm、SnOx層を4nm
成膜した。次いで、ガラスを成膜室より排出した。な
お、銀層の上層の第4層ZnAl合金層8nm及び第7
層のZnAl合金層8nmの一部は酸化していた。評価
結果は、表−1に示す通り全て良好な結果が得られた。Example 4 As in Example 1, Sn and Zn (3
), Ag and ZnAl. First, in the first pass, the atmosphere in the film forming chamber is kept in an acidic atmosphere (O 2 : Ar = 8: 2), and the SnO x layer as the first layer is 17 nm in the same manner as in the first embodiment, and the second layer is Zn
The O x layer was deposited 19nm. Next, in the second pass, the atmosphere is kept in a reducing atmosphere of Ar 100%, the Ag layer as the third layer is 10 nm, and the ZnAl alloy layer as the fourth layer is 8 nm.
A film was formed. In the third pass, the atmosphere in the film forming chamber is again kept in an acidic atmosphere (O 2 : Ar = 8: 2), and a SnO x layer as a fifth layer is formed to 24 nm and a ZnO x layer is formed to 28 nm in order. As the fourth pass, Zn in the same atmosphere as the third pass
An Ox layer is formed to a thickness of 4 nm and a SnO x layer is formed to a thickness of 4 nm.
4n of SnO x layer in the same atmosphere as the fourth pass as the pass
m, a ZnO x layer was formed to a thickness of 4 nm. Next, as a sixth pass, the atmosphere was kept in a reducing atmosphere of 100% Ar, and an Ag layer as a sixth layer was formed to a thickness of 12 nm, and a seventh layer of a ZnAl alloy layer was formed to a thickness of 8 nm. Further, in the seventh pass, the atmosphere in the film forming chamber is again kept in an acidic atmosphere (O 2 : Ar = 8: 2), and a SnO x layer as an eighth layer and a ZnO x layer are successively formed in a thickness of 14 nm and 16 nm, respectively. Then, as the eighth pass, the ZnO x layer is 4 nm and the SnO x layer is 4 nm in the same atmosphere as the seventh pass.
A film was formed. Next, the glass was discharged from the film forming chamber. The fourth ZnAl alloy layer 8 nm above the silver layer and the seventh
A part of the ZnAl alloy layer having a thickness of 8 nm was oxidized. As shown in Table 1, good evaluation results were obtained.
【0036】実施例5 実施例1と同様に、カソードには予めSn(3台)、Z
n、Ag、ZnAlの各金属ターゲットを取り付けた。
先ず1パス目として、成膜室の雰囲気を酸性雰囲気(O
2:Ar=8:2)に保持し、実施例1と同じ方法で第
1層としてのSnOx層を32nm、第2層のZnOx層
を4nm成膜した。次に2パス目として雰囲気をAr1
00%の還元性雰囲気に保持し、第3層としてのAg層
を10nm、第4層のZnAl合金層を2nm成膜し
た。3パス目として成膜室の雰囲気を再び酸性雰囲気
(O2:Ar=8:2)に保持し、第5層としてのZn
AlOx層を3nm、SnOx層を42nm、ZnOx層
を5nmを順次成膜し、さらに4パス目として3パス目
と同じ雰囲気でZnOx層を1nm、SnOx層を11n
m成膜し、さらに5パス目として4パス目と同じ雰囲気
でSnOx層を11nm、ZnOx層を1nm成膜した。
次いで、6パス目として雰囲気をAr100%の還元性
雰囲気に保持し、第6層としてのAg層を12nm、第
7層のZnAl合金層を2nm成膜した。さらに、7パ
ス目として成膜室の雰囲気を再び酸性雰囲気(O2:A
r=8:2)に保持し、第8層としてのZnAlOx層
を2nm、SnOx層を22nm、ZnOx層を3nmを
順次成膜し、さらに8パス目として7パス目と同じ雰囲
気でZnOx層を1nm、SnOx層を11nm成膜し
た。次いで、ガラスを成膜室より排出した。。なお、銀
層の上層の第4層ZnAl合金層2nm及び第7層のZ
nAl合金層2nmの一部は酸化していた。評価結果
は、表−1に示す通り全て良好な結果が得られた。Example 5 As in Example 1, the cathode was previously provided with Sn (three), Z
Each metal target of n, Ag, and ZnAl was attached.
First, as the first pass, the atmosphere in the film forming chamber is changed to an acidic atmosphere (O
2 : Ar = 8: 2), and a SnO x layer as the first layer was formed to 32 nm and a ZnO x layer as the second layer was formed to 4 nm in the same manner as in Example 1. Next, the atmosphere is Ar1 as the second pass.
While maintaining a reducing atmosphere of 00%, an Ag layer as a third layer was formed to a thickness of 10 nm, and a fourth ZnAl alloy layer was formed to a thickness of 2 nm. In the third pass, the atmosphere in the film forming chamber is again kept in an acidic atmosphere (O 2 : Ar = 8: 2), and Zn as the fifth layer is formed.
An AlO x layer of 3 nm, a SnO x layer of 42 nm, and a ZnO x layer of 5 nm are sequentially formed. Further, as the fourth pass, the ZnO x layer is 1 nm and the SnO x layer is 11 n in the same atmosphere as the third pass.
Then, as the fifth pass, a SnO x layer was formed to have a thickness of 11 nm and a ZnO x layer was formed to have a thickness of 1 nm in the same atmosphere as the fourth pass.
Next, as the sixth pass, the atmosphere was kept in a reducing atmosphere of 100% Ar, and an Ag layer as a sixth layer was formed to a thickness of 12 nm, and a seventh layer of a ZnAl alloy layer was formed to a thickness of 2 nm. Further, in the seventh pass, the atmosphere in the film forming chamber is again changed to an acidic atmosphere (O 2 : A
r = 8: 2), a ZnAlO x layer serving as an eighth layer was formed to a thickness of 2 nm, a SnO x layer was formed to a thickness of 22 nm, and a ZnO x layer was formed to a thickness of 3 nm. A ZnO x layer was formed to a thickness of 1 nm, and a SnO x layer was formed to a thickness of 11 nm. Next, the glass was discharged from the film forming chamber. . It should be noted that the fourth layer ZnAl alloy layer 2 nm above the silver layer and the Z layer
A part of the nAl alloy layer 2 nm was oxidized. As shown in Table 1, good evaluation results were obtained.
【0037】実施例6 実施例1と同様に、カソードには予めTi(3台)、Z
n、Ag、ZnAlの各金属ターゲットを取り付けた。
先ず1パス目として、成膜室の雰囲気を酸性雰囲気(O
2:Ar=8:2)に保持し、実施例1と同じ方法で第
1層としてのTiOx層を8nm、第2層のZnOx層を
14nm成膜した。次に2パス目として雰囲気をAr1
00%の還元性雰囲気に保持し、第3層としてのAg層
を10nm、第4層のZnAl合金層を2nm成膜し
た。3パス目として成膜室の雰囲気を再び酸性雰囲気
(O2:Ar=8:2)に保持し、第5層のZnAlOx
層を7nm、TiOx層を7nm、ZnOx層を12nm
を順次成膜し、さらに4パス目として3パス目と同じ雰
囲気でZnOx層を12nm、TiOx層を7nm成膜
し、ガラスを成膜室より排出した。実施例1と同様に、
第4層のZnAl合金層2nmの一部は酸化していた。
評価結果は、表−1に示す通り全て良好な結果が得られ
た。Embodiment 6 As in the case of Embodiment 1, Ti (three) and Z
Each metal target of n, Ag, and ZnAl was attached.
First, as the first pass, the atmosphere in the film forming chamber is changed to an acidic atmosphere (O
2 : Ar = 8: 2), and a TiO x layer as the first layer was formed to 8 nm and a ZnO x layer as the second layer was formed to 14 nm in the same manner as in Example 1. Next, the atmosphere is Ar1 as the second pass.
While maintaining a reducing atmosphere of 00%, an Ag layer as a third layer was formed to a thickness of 10 nm, and a fourth ZnAl alloy layer was formed to a thickness of 2 nm. In the third pass, the atmosphere in the film forming chamber is again kept in an acidic atmosphere (O 2 : Ar = 8: 2), and ZnAlO x of the fifth layer is formed.
7nm layer, 7nm a TiO x layer, the ZnO x layer 12nm
Were sequentially formed, and as a fourth pass, a ZnO x layer was formed to a thickness of 12 nm and a TiO x layer was formed to a thickness of 7 nm in the same atmosphere as in the third pass, and the glass was discharged from the deposition chamber. As in Example 1,
A part of the 4 nm ZnAl alloy layer was partially oxidized.
As shown in Table 1, good evaluation results were obtained.
【0038】実施例7 実施例1と同様に、カソードには予めSn、Ti(2
台)、Zn、Ag、ZnAlの各金属ターゲットを取り
付けた。先ず1パス目として、成膜室の雰囲気を酸性雰
囲気(O2:Ar=8:2)に保持し、実施例1と同じ
方法で第1層としてのSnOx層を14nm及びTiOx
層を2nm、第2層のZnOx層を6nm成膜した。次
に2パス目として雰囲気をAr100%の還元性雰囲気
に保持し、第3層としてのAg層を10nm、第4層の
ZnAl合金層を2nm成膜した。3パス目として成膜
室の雰囲気を再び酸性雰囲気(O2:Ar=8:2)に
保持し、第5層のZnAlOx層を3nm、SnOx層を
14nm、TiOx層を2nm、ZnOx層を6nmを順
次成膜し、さらに4パス目として3パス目と同じ雰囲気
でZnOx層を6nm、TiOx層を2nm、SnOx層
を14nm成膜したのち、ガラスを成膜室より排出し
た。実施例1と同様に、第4層のZnAl合金層2nm
の一部は酸化していた。評価結果は、表−1に示す通り
全て良好な結果が得られた。Example 7 As in Example 1, the cathode was previously made of Sn, Ti (2
), Zn, Ag and ZnAl. First, in the first pass, the atmosphere in the film forming chamber is kept in an acidic atmosphere (O 2 : Ar = 8: 2), and the SnO x layer as the first layer is formed to 14 nm and TiO x by the same method as in the first embodiment.
A 2 nm thick ZnO x layer and a 6 nm thick ZnO x layer were formed. Next, as a second pass, the atmosphere was kept in a reducing atmosphere of 100% Ar, and an Ag layer as a third layer was formed to a thickness of 10 nm, and a fourth layer of a ZnAl alloy layer was formed to a thickness of 2 nm. At the third pass, the atmosphere in the film forming chamber is again kept in an acidic atmosphere (O 2 : Ar = 8: 2), and the fifth ZnAlO x layer is 3 nm, the SnO x layer is 14 nm, the TiO x layer is 2 nm, and the ZnO layer is 5 nm. An x layer is sequentially formed to a thickness of 6 nm, and a fourth pass is performed, and a ZnO x layer is formed to a thickness of 6 nm, a TiO x layer is formed to a thickness of 2 nm, and a SnO x layer is formed to a thickness of 14 nm in the same atmosphere as in the third pass. Discharged. As in the first embodiment, the ZnAl alloy layer of the fourth layer is 2 nm.
Some were oxidized. As shown in Table 1, good evaluation results were obtained.
【0039】比較例1 実施例1と同様に、カソードには予めSn(4台)、Z
n、Ag、の各金属ターゲットを取り付けた。先ず1パ
ス目として、成膜室の雰囲気を酸性雰囲気(O 2:Ar
=8:2)に保持し、第1層としてのSnOx層を23
nm成膜した。次に2パス目として雰囲気をAr100
%の還元性雰囲気に保持し、次いでAg層を10nm、
第4層のZn層を2nm成膜した。3パス目として成膜
室の雰囲気を再び酸性雰囲気(O2:Ar=8:2)に
保持し、次にSnOx層を23nm成膜し、さらに4パ
ス目として3パス目と同じ雰囲気で、SnOx層を15
nm成膜し、ガラスを成膜室より排出した。なお、Zn
金属層2nmの一部は酸化していた。評価結果は、表−
1に示す通り紫外線透過率が40%以上と大きく、さら
に耐湿試験においてピンホールが多数(20個以上)発
生した。なお、比較例1は実施例1と銀層の膜厚は同じ
10nmであるが、実施例1と比較して放射率が0.1
2と大きくなった。Comparative Example 1 In the same manner as in Example 1, Sn (4 units), Z
Each metal target of n and Ag was attached. First one
In the next step, the atmosphere in the film forming chamber was changed to an acidic atmosphere (O Two: Ar
= 8: 2) and SnO as the first layerx23 layers
nm. Next, the atmosphere was Ar100 as the second pass.
% Reducing atmosphere, then the Ag layer is 10 nm,
A second Zn layer was formed to a thickness of 2 nm. Film formation as the third pass
The atmosphere of the room is changed to an acidic atmosphere (OTwo: Ar = 8: 2)
Hold, then SnOxA 23 nm layer, and then
In the same atmosphere as the third pass, SnOx15 layers
The glass was discharged from the film forming chamber. Note that Zn
A part of the metal layer 2 nm was oxidized. The evaluation results are shown in Table-
As shown in FIG. 1, the ultraviolet transmittance was as large as 40% or more.
Many pinholes (more than 20) in moisture resistance test
I was born. The thickness of the silver layer in Comparative Example 1 was the same as that in Example 1.
10 nm, but the emissivity is 0.1 compared to Example 1.
It has grown to two.
【0040】比較例2 実施例1と同様に、カソードには予めAg、ZnAl
(5台)の各金属ターゲットを取り付けた。先ず1パス
目として、成膜室の雰囲気を酸性雰囲気(O2:Ar=
8:2)に保持し、第1層としてのZnAlOx層を3
6nm成膜した。次に2パス目として雰囲気をAr10
0%の還元性雰囲気に保持し、次いでAg層を10n
m、ZnAl合金層を2nm成膜した。3パス目として
成膜室の雰囲気を再び酸性雰囲気(O2:Ar=8:
2)に保持し、ZnAlOx層を23nm成膜し、さら
に4パス目として3パス目と同じ雰囲気でZnAlOx
層を23nm成膜し、さらに5パス目として4パス目と
同じ雰囲気でZnAlOx層を23nm成膜した。次い
で、6パス目として雰囲気をAr100%の還元性雰囲
気に保持し、Ag層を12nm、ZnAl合金層を2n
m成膜した。さらに、7パス目として成膜室の雰囲気を
再び酸性雰囲気(O2:Ar=8:2)に保持し、最上
層としてのZnAlOx層を20nm成膜し、さらに8
パス目として7パス目と同じ雰囲気でZnAlOx層を
20nm成膜し、次いで、ガラスを成膜室より排出し
た。なお、銀層の上層の各ZnAl合金層2nmの一部
は酸化していた。評価結果は、表−1に示す通り、耐酸
試験においては浸漬後10秒以内に被膜の変色が認めら
れた。Comparative Example 2 As in Example 1, the cathode was previously made of Ag and ZnAl.
(5) Each metal target was attached. First, as a first pass, the atmosphere in the film formation chamber is changed to an acidic atmosphere (O 2 : Ar =
8: 2), and the ZnAlOx layer as the first layer is 3
A 6 nm film was formed. Next, the atmosphere was Ar10 as the second pass.
0% reducing atmosphere and then Ag layer
m, a ZnAl alloy layer was formed to a thickness of 2 nm. In the third pass, the atmosphere in the film forming chamber is again changed to an acidic atmosphere (O 2 : Ar = 8:
Held in 2), and 23nm deposited ZnAlO x layer, ZnAlO x As yet the fourth pass in the same atmosphere as the third pass
A layer was formed to a thickness of 23 nm, and a ZnAlO x layer was formed to a thickness of 23 nm as the fifth pass in the same atmosphere as in the fourth pass. Next, in the sixth pass, the atmosphere was maintained in a reducing atmosphere of 100% Ar, the Ag layer was 12 nm, and the ZnAl alloy layer was 2 n.
m was formed. Further, as the seventh pass, the atmosphere in the film forming chamber is again kept in an acidic atmosphere (O 2 : Ar = 8: 2), and a ZnAlO x layer as the uppermost layer is formed to a thickness of 20 nm.
As the pass, a ZnAlO x layer was formed to a thickness of 20 nm in the same atmosphere as in the seventh pass, and then the glass was discharged from the deposition chamber. In addition, a part of each ZnAl alloy layer 2 nm above the silver layer was oxidized. As shown in the evaluation results, as shown in Table 1, in the acid resistance test, discoloration of the coating was observed within 10 seconds after immersion.
【0041】比較例3 実施例1と同様に、カソードには予めSn(4台)、Z
n、Ag、の各金属ターゲットを取り付けた。先ず1パ
ス目として、成膜室の雰囲気を酸性雰囲気(O 2:Ar
=8:2)に保持し、第1層としてのSnOx層を37
nm成膜した。次に2パス目として雰囲気をAr100
%の還元性雰囲気に保持し、Ag層を10nm、Zn層
を2nm成膜した。3パス目として成膜室の雰囲気を再
び酸性雰囲気(O2:Ar=8:2)に保持し、SnOx
層を23nm成膜し、さらに4パス目として3パス目と
同じ雰囲気で、SnOx層を23nm成膜し、さらに5
パス目として4パス目と同じ雰囲気で、SnOx層を2
3nm成膜した。次いで、6パス目として雰囲気をAr
100%の還元性雰囲気に保持し、Ag層を12nm、
第7層のZn層を2nm成膜した。7パス目として成膜
室の雰囲気を再び酸性雰囲気(O2:Ar=8:2)に
保持し、SnOx層を21nm成膜し、さらに8パス目
として7パス目と同じ雰囲気で、SnOx層を21nm
成膜した後、ガラスを成膜室より排出した。なお、各Z
n金属層2nmの一部は酸化していた。評価結果は、表
−1に示す通り紫外線透過率が高く、さらに耐湿試験に
おいてピンホールが多数(20個以上)発生した。な
お、比較例3は、実施例4、5と比較して銀層の膜厚は
同じ10、および12nmであるが、実施例4、5に比
較して放射率は0.08と大きくなった。Comparative Example 3 In the same manner as in Example 1, Sn (4 units) and Z
Each metal target of n and Ag was attached. First one
In the next step, the atmosphere in the film forming chamber was changed to an acidic atmosphere (O Two: Ar
= 8: 2), and the SnOx layer as the first layer is 37
nm. Next, the atmosphere was Ar100 as the second pass.
% Reducing atmosphere, the Ag layer is 10 nm, the Zn layer
Was deposited to a thickness of 2 nm. In the third pass, the atmosphere in the deposition chamber is
And acidic atmosphere (OTwo: Ar = 8: 2), and SnOx
A layer is formed to a thickness of 23 nm, and a fourth pass is performed as a fourth pass.
In the same atmosphere, SnOxA 23 nm layer is deposited and
In the same atmosphere as the fourth pass, SnOxLayer 2
3 nm was formed. Next, the atmosphere is Ar as the sixth pass.
Keeping in 100% reducing atmosphere, Ag layer was 12 nm,
A second Zn layer was formed to a thickness of 2 nm. Film formation as the 7th pass
The atmosphere of the room is changed to an acidic atmosphere (OTwo: Ar = 8: 2)
Hold, SnOxThe layer is formed to a thickness of 21 nm, and the eighth pass is performed.
In the same atmosphere as the 7th pass, SnOx21 nm layer
After forming the film, the glass was discharged from the film forming chamber. Note that each Z
A part of the n-metal layer 2 nm was oxidized. The evaluation results are shown in the table.
High UV transmittance as shown in -1
Many pinholes (20 or more) occurred. What
The thickness of the silver layer of Comparative Example 3 was smaller than that of Examples 4 and 5.
Same 10 and 12 nm, but compared to Examples 4 and 5.
In comparison, the emissivity was increased to 0.08.
【0042】比較例4 実施例1と同様に、カソードには予めZn(5台)、A
gの各金属ターゲットを取り付けた。先ず1パス目とし
て、成膜室の雰囲気を酸性雰囲気(O2:Ar=8:
2)に保持し、第1層としてのZnOx層を37nm成
膜した。次に2パス目として雰囲気をAr100%の還
元性雰囲気に保持し、Ag層を10nm、第4層のZn
層を2nm成膜した。3パス目として成膜室の雰囲気を
再び酸性雰囲気(O2:Ar=8:2)に保持し、Zn
Ox層を23nm成膜し、さらに4パス目として3パス
目と同じ雰囲気で、ZnOx層を23nm成膜し、さら
に5パス目として4パス目と同じ雰囲気で、ZnOx層
を23nm成膜した。次いで、6パス目として雰囲気を
Ar100%の還元性雰囲気に保持し、Ag層を12n
m、Zn層を2nm成膜した。7パス目として成膜室の
雰囲気を再び酸性雰囲気(O2:Ar=8:2)に保持
し、ZnOx層を20nm成膜し、さらに8パス目とし
て7パス目と同じ雰囲気で、ZnOx層を20nm成膜
した後、ガラスを成膜室より排出した。なお、各Zn金
属層各2nmの一部は酸化していた。評価結果は、表−
1に示す通り耐湿試験においてピンホールが多数(20
個以上)発生し、耐酸試験においては、浸漬後10秒以
内に被膜が変色した。Comparative Example 4 In the same manner as in Example 1, Zn (5 units) and A
g of each metal target was attached. First, as a first pass, the atmosphere in the film forming chamber is changed to an acidic atmosphere (O 2 : Ar = 8:
2), a 37 nm thick ZnO x layer was formed as the first layer. Next, in the second pass, the atmosphere is maintained in a reducing atmosphere of Ar 100%, the Ag layer is 10 nm, and the fourth layer is Zn.
The layer was deposited to a thickness of 2 nm. In the third pass, the atmosphere in the film forming chamber was again maintained in an acidic atmosphere (O 2 : Ar = 8: 2), and Zn
The O x layer was 23nm deposited, at the same atmosphere as the third pass as the fourth pass, the ZnO x layer was 23nm deposited, at the same atmosphere as the fourth pass as a fifth pass, 23nm formed a ZnO x layer Filmed. Next, as a sixth pass, the atmosphere was maintained in a reducing atmosphere of Ar 100%, and the Ag layer was
m and Zn layers were formed to a thickness of 2 nm. As the seventh pass, the atmosphere in the film forming chamber is again kept in an acidic atmosphere (O 2 : Ar = 8: 2), a ZnO x layer is deposited to a thickness of 20 nm, and as the eighth pass, ZnO x is deposited in the same atmosphere as the seventh pass. After forming the x layer to a thickness of 20 nm, the glass was discharged from the film forming chamber. Note that a part of each Zn metal layer was oxidized at 2 nm. The evaluation results are shown in Table-
As shown in FIG. 1, many pinholes (20
And in the acid resistance test, the coating was discolored within 10 seconds after immersion.
【0043】評価した結果は表1に示すように、実施例
1〜7は光学特性および耐湿性、耐酸性、放射率ともに
全て満足している。一方、比較例1は、紫外線透過率お
よび耐湿性試験で不合格であった。比較例2は、耐酸性
試験において不合格であった。比較例3は、紫外線透過
率及び耐湿性試験において不合格であった。比較例4
は、耐湿性および耐酸性試験で不合格であった。As shown in Table 1, Examples 1 to 7 satisfy all of the optical characteristics, moisture resistance, acid resistance, and emissivity. On the other hand, Comparative Example 1 failed the UV transmittance and humidity resistance tests. Comparative Example 2 failed the acid resistance test. Comparative Example 3 failed in the UV transmittance and humidity resistance tests. Comparative Example 4
Failed the moisture and acid resistance tests.
【0044】[0044]
【表1】 [Table 1]
【0045】[0045]
【発明の効果】本発明は、銀層の直下層に酸化亜鉛層
を、銀層の直上層に亜鉛または亜鉛を主成分とする保護
金属層を形成することにより、銀層の抵抗率が低く保持
され、小さな放射率を有し、各層がバランスのとれた膜
厚とすることにより70%以上の高い可視光線透過率を
保持し、反射色調は刺激性のない中性色であり、各層の
適切な構成による各層間の密着性向上による優れた化学
的耐久性等を有する優れた低放射ガラスを得ることがで
きるものである。According to the present invention, the resistivity of the silver layer is reduced by forming a zinc oxide layer immediately below the silver layer and a protective metal layer containing zinc or zinc as a main component immediately above the silver layer. Is maintained, has a small emissivity, and each layer has a well-balanced film thickness to maintain a high visible light transmittance of 70% or more. The reflection color tone is a neutral color without irritation. It is possible to obtain an excellent low-emission glass having excellent chemical durability and the like by improving the adhesion between the layers by an appropriate configuration.
フロントページの続き (72)発明者 村治 寛之 三重県松阪市大口町1521−2 セントラル 硝子株式会社松阪工場内Continued on the front page (72) Inventor Hiroyuki Muraharu 1521-2 Oguchi-cho, Matsusaka-shi, Mie Central Matsusaka Factory
Claims (11)
させて、被膜を多層に形成してなる積層体において、銀
層の直下層に酸化亜鉛層を、銀層の直上層には亜鉛また
は亜鉛を主成分とした保護金属層をそれぞれ成膜してな
る低放射ガラス積層体。A laminate comprising a glass substrate and at least one silver layer interposed therebetween and a multilayer film formed thereon, wherein a zinc oxide layer is formed immediately below the silver layer and zinc or zinc is formed immediately above the silver layer. A low-emissivity glass laminate formed by forming a protective metal layer containing zinc as a main component.
層は、非晶質酸化物としての酸化錫層及び/又は酸化チ
タン層を成膜してなる請求項1記載の低放射ガラス積層
体。2. The low emission glass according to claim 1, wherein the lowermost layer of the laminate and / or the uppermost layer of the laminate are formed by forming a tin oxide layer and / or a titanium oxide layer as an amorphous oxide. Laminate.
チタン層からなる第1層、酸化亜鉛層からなる第2層、
銀層からなる第3層、亜鉛または亜鉛を主成分とする保
護金属層よりなる第4層、その上に酸化錫層及び/又は
酸化チタン層を最上層とした第5層を積層してなる低放
射ガラス積層体。3. A first layer comprising a tin oxide layer and / or a titanium oxide layer, a second layer comprising a zinc oxide layer on a glass substrate,
A third layer composed of a silver layer, a fourth layer composed of zinc or a protective metal layer containing zinc as a main component, and a fifth layer having a tin oxide layer and / or a titanium oxide layer as an uppermost layer laminated thereon. Low radiation glass laminate.
酸化チタン層が積層された層からなる請求項3記載の低
放射ガラス積層体4. The low-emission glass laminate according to claim 3, wherein the fifth layer comprises a layer in which zinc oxide, tin oxide and / or titanium oxide are laminated.
3〜25nm、且つ第1層と第2層の膜厚の合計は15
〜30nmであり、第3層は膜厚9〜25nm、第4層
は膜厚1〜8nm、第5層の膜厚は35〜55nmであ
り、且つ第5層中の酸化亜鉛層の1層の膜厚が25nm
以下である請求項3または4記載の低放射ガラス積層
体。5. The first layer has a thickness of 5 to 27 nm, the second layer has a thickness of 3 to 25 nm, and the total thickness of the first layer and the second layer is 15 nm.
The third layer has a thickness of 9 to 25 nm, the fourth layer has a thickness of 1 to 8 nm, the fifth layer has a thickness of 35 to 55 nm, and one layer of the zinc oxide layer in the fifth layer. Film thickness is 25 nm
The low-emissivity glass laminate according to claim 3 or 4, wherein:
透過率が70〜90%、太陽放射透過率が40〜70%
である請求項3、4または5記載の低放射ガラス積層
体。6. A solar ultraviolet ray transmittance of 37% or less, a visible ray transmittance of 70 to 90%, and a solar radiation transmittance of 40 to 70%.
The low-emission glass laminate according to claim 3, 4, or 5.
チタン層からなる第1層、酸化亜鉛層からなる第2層、
銀層からなる第3層、亜鉛または亜鉛を主成分とする保
護金属層よりなる第4層、その上に最上層が酸化亜鉛層
からなる第5層、さらに銀層からなる第6層、亜鉛また
は亜鉛を主成分とする保護金属層よりなる第7層、その
上に酸化錫層及び/又は酸化チタン層を最上層とした第
8層を積層してなる低放射ガラス積層体。7. A first layer comprising a tin oxide layer and / or a titanium oxide layer, a second layer comprising a zinc oxide layer on a glass substrate,
A third layer composed of a silver layer, a fourth layer composed of zinc or a protective metal layer containing zinc as a main component, a fifth layer having an uppermost layer composed of a zinc oxide layer, a sixth layer composed of a silver layer, and zinc Alternatively, a low-emissivity glass laminate in which a seventh layer made of a protective metal layer containing zinc as a main component and an eighth layer having a tin oxide layer and / or a titanium oxide layer as the uppermost layer are laminated thereon.
及び/又は酸化チタン層が積層された層からなる請求項
7記載の低放射ガラス積層体8. The low-emissivity glass laminate according to claim 7, wherein the fifth layer and the eighth layer are formed by laminating zinc oxide, tin oxide and / or titanium oxide.
厚が3〜35nm、且つ第1層と第2層の膜厚の合計が
25〜40nm、第3層の膜厚が9〜13nm、第4層
の膜厚が1〜8nm、第5層の膜厚が55〜80nmで
あり、且つ第5層中の酸化亜鉛の膜厚は1nm以上であ
り、第6層の膜厚は9〜13nm、第7層の膜厚は1〜
8nm、第8層の膜厚が25〜45nmであり、しかも
該第8層中の酸化亜鉛層の1層の膜厚が25nm以下で
ある請求項7または8記載の低放射ガラス積層体。9. A third layer film wherein the first layer has a thickness of 5 to 37 nm, the second layer has a thickness of 3 to 35 nm, and the total thickness of the first layer and the second layer is 25 to 40 nm. A thickness of 9 to 13 nm, a thickness of the fourth layer of 1 to 8 nm, a thickness of the fifth layer of 55 to 80 nm, a thickness of zinc oxide in the fifth layer of 1 nm or more, and a thickness of the sixth layer. Has a thickness of 9 to 13 nm, and the seventh layer has a thickness of 1 to 13.
The low emissivity glass laminate according to claim 7 or 8, wherein the thickness of the eighth layer is 8 to 25 nm, and the thickness of one zinc oxide layer in the eighth layer is 25 nm or less.
線透過率が70〜85%、太陽放射透過率が40〜50
%である請求項7、8または9記載の低放射ガラス積層
体。10. A solar ultraviolet ray transmittance of 25% or less, a visible ray transmittance of 70 to 85%, and a solar radiation transmittance of 40 to 50.
%. The low emissivity glass laminate according to claim 7, 8 or 9.
主成分としアルミニウムを2〜10原子%含む合金であ
ることを特徴とする請求項1乃至10記載の低放射ガラ
ス積層体。11. The low radiation glass laminate according to claim 1, wherein the zinc metal used for the protective metal layer is an alloy containing zinc as a main component and containing 2 to 10 atomic% of aluminum.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35250397A JP3724936B2 (en) | 1997-09-18 | 1997-12-22 | Low emission glass laminate |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25346597 | 1997-09-18 | ||
JP9-253465 | 1997-09-18 | ||
JP35250397A JP3724936B2 (en) | 1997-09-18 | 1997-12-22 | Low emission glass laminate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11157881A true JPH11157881A (en) | 1999-06-15 |
JP3724936B2 JP3724936B2 (en) | 2005-12-07 |
Family
ID=26541215
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35250397A Expired - Fee Related JP3724936B2 (en) | 1997-09-18 | 1997-12-22 | Low emission glass laminate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3724936B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6919133B2 (en) | 2002-03-01 | 2005-07-19 | Cardinal Cg Company | Thin film coating having transparent base layer |
WO2007029494A1 (en) * | 2005-09-06 | 2007-03-15 | Nippon Sheet Glass Company, Limited | Low-radiation double glazing |
JP2007197237A (en) * | 2006-01-25 | 2007-08-09 | Nippon Sheet Glass Co Ltd | Low-radiation double glazing |
US7632571B2 (en) | 2005-03-31 | 2009-12-15 | Cardinal Cg Company | Haze-resistant low-emissivity coatings |
WO2010055832A1 (en) * | 2008-11-11 | 2010-05-20 | 旭硝子株式会社 | Electrically conductive laminate, and protective plate for plasma display |
WO2012143704A1 (en) * | 2011-04-21 | 2012-10-26 | Pilkington Group Limited | Heat treatable coated glass pane |
JP2013505198A (en) * | 2009-09-25 | 2013-02-14 | エルジー・ハウシス・リミテッド | Low emission glass containing dielectric layer and method for producing the same |
WO2013191285A1 (en) * | 2012-06-21 | 2013-12-27 | 日東電工株式会社 | Light transmitting substrate with infrared light reflecting function |
WO2015133370A1 (en) * | 2014-03-03 | 2015-09-11 | 日東電工株式会社 | Infrared reflecting substrate and method for producing same |
JP2016508109A (en) * | 2012-12-17 | 2016-03-17 | サン−ゴバン グラス フランスSaint−Gobain Glass France | Transparent flat glass with conductive coating |
CN107867804A (en) * | 2016-09-27 | 2018-04-03 | 四川南玻节能玻璃有限公司 | Can the downward tempering of film surface Low emissivity energy-saving glass |
WO2018180127A1 (en) * | 2017-03-30 | 2018-10-04 | 富士フイルム株式会社 | Optical member |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5471293B2 (en) | 2008-10-23 | 2014-04-16 | 三菱化学株式会社 | Heat ray reflective film, laminate thereof and coating solution for forming heat ray reflective layer |
-
1997
- 1997-12-22 JP JP35250397A patent/JP3724936B2/en not_active Expired - Fee Related
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7037589B2 (en) | 2002-03-01 | 2006-05-02 | Cardinal Cg Company | Thin film coating having niobium-titanium layer |
US7192648B2 (en) | 2002-03-01 | 2007-03-20 | Cardinal Cg Company | Thin film coating having transparent base layer |
US6919133B2 (en) | 2002-03-01 | 2005-07-19 | Cardinal Cg Company | Thin film coating having transparent base layer |
US7632571B2 (en) | 2005-03-31 | 2009-12-15 | Cardinal Cg Company | Haze-resistant low-emissivity coatings |
WO2007029494A1 (en) * | 2005-09-06 | 2007-03-15 | Nippon Sheet Glass Company, Limited | Low-radiation double glazing |
JP2007197237A (en) * | 2006-01-25 | 2007-08-09 | Nippon Sheet Glass Co Ltd | Low-radiation double glazing |
WO2010055832A1 (en) * | 2008-11-11 | 2010-05-20 | 旭硝子株式会社 | Electrically conductive laminate, and protective plate for plasma display |
JPWO2010055832A1 (en) * | 2008-11-11 | 2012-04-12 | 旭硝子株式会社 | Conductive laminate and protective plate for plasma display |
JP2013505198A (en) * | 2009-09-25 | 2013-02-14 | エルジー・ハウシス・リミテッド | Low emission glass containing dielectric layer and method for producing the same |
JP2014512329A (en) * | 2011-04-21 | 2014-05-22 | ピルキントン グループ リミテッド | Heat-treatable coated glass pane |
US20140087160A1 (en) * | 2011-04-21 | 2014-03-27 | Pilkington Group Limited | Heat treatable coated glass pane |
WO2012143704A1 (en) * | 2011-04-21 | 2012-10-26 | Pilkington Group Limited | Heat treatable coated glass pane |
US9630875B2 (en) * | 2011-04-21 | 2017-04-25 | Pilkington Group Limited | Heat treatable coated glass pane |
US9477023B2 (en) | 2012-06-21 | 2016-10-25 | Nitto Denko Corporation | Visible light-transmissive and infrared-reflective substrate |
WO2013191285A1 (en) * | 2012-06-21 | 2013-12-27 | 日東電工株式会社 | Light transmitting substrate with infrared light reflecting function |
US10464292B2 (en) | 2012-12-17 | 2019-11-05 | Saint-Gobain Glass France | Transparent pane with electrically conductive coating |
JP2016508109A (en) * | 2012-12-17 | 2016-03-17 | サン−ゴバン グラス フランスSaint−Gobain Glass France | Transparent flat glass with conductive coating |
US9855726B2 (en) | 2012-12-17 | 2018-01-02 | Saint-Gobain Glass France | Transparent pane with electrically conductive coating |
AU2015225134B2 (en) * | 2014-03-03 | 2017-04-20 | Nitto Denko Corporation | Infrared reflecting substrate and method for producing same |
JP2015166141A (en) * | 2014-03-03 | 2015-09-24 | 日東電工株式会社 | Infrared reflection substrate and method for producing the same |
WO2015133370A1 (en) * | 2014-03-03 | 2015-09-11 | 日東電工株式会社 | Infrared reflecting substrate and method for producing same |
CN107867804A (en) * | 2016-09-27 | 2018-04-03 | 四川南玻节能玻璃有限公司 | Can the downward tempering of film surface Low emissivity energy-saving glass |
CN107867804B (en) * | 2016-09-27 | 2024-02-06 | 四川南玻节能玻璃有限公司 | Low-radiation energy-saving glass that can be tempered with the film side down |
WO2018180127A1 (en) * | 2017-03-30 | 2018-10-04 | 富士フイルム株式会社 | Optical member |
CN110476092A (en) * | 2017-03-30 | 2019-11-19 | 富士胶片株式会社 | Optical component |
JPWO2018180127A1 (en) * | 2017-03-30 | 2020-01-16 | 富士フイルム株式会社 | Optical components |
US10696015B2 (en) | 2017-03-30 | 2020-06-30 | Fujifilm Corporation | Optical member |
Also Published As
Publication number | Publication date |
---|---|
JP3724936B2 (en) | 2005-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110573467B (en) | Coated article with low-E coating having protective doped silver layer and method of making same | |
US5279722A (en) | Method for manufacturing panes with high transmissivity in the visible range of the spectrum and with high reflectivity for thermal radiation | |
JP2876325B2 (en) | Coated glass material and its coating method | |
FI90050B (en) | PRODUKT MED HOEG GENOMSLAEPPLIGHET OCH LITEN EMISSIONSFOERMAOGA OCH FOERFARANDE FOER DESS FRAMSTAELLNING | |
US9499437B2 (en) | Coated article with low-E coating having multilayer overcoat and method of making same | |
RU2406704C2 (en) | Sun-screening layered structure | |
US10025010B2 (en) | Solar control glazing with low solar factor | |
US6472072B1 (en) | Glazing panel | |
RU2421419C2 (en) | Thermally treated window glass with coating | |
RU2747376C2 (en) | Substrate equipped with a set having thermal properties, its application and its manufacture | |
JP4988342B2 (en) | Transparent substrate with thin film multilayers and reflective in the range of infrared and / or solar radiation | |
US6180247B1 (en) | Thermally-insulating coating system | |
JP2002528372A (en) | Laminates for transparent substrates | |
JPH0791089B2 (en) | Heat ray reflective glass | |
JPH11157881A (en) | Low radiation glass-laminated body | |
EP3081605B1 (en) | Low-emissivity coating film, method for manufacturing same, and functional construction material for window and doors including same | |
JP4114429B2 (en) | Laminates and structures | |
JP3053668B2 (en) | Heat shielding film | |
CA2261080A1 (en) | Sunlight shielding translucent glass panel and sunlight shielding translucent multilayer glass panel assembly | |
JP3335384B2 (en) | Heat shielding film | |
JPH1134216A (en) | Laminates and glass laminates for windows | |
CN88101655A (en) | Bismuth/tin oxide spray coating | |
JP3732349B2 (en) | Low emissivity glass and its manufacturing method | |
JP2001226765A (en) | High heat resistant reflective film and laminate using this reflective film | |
JPH03187735A (en) | Selective permeable membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040603 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041119 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050426 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050607 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050920 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050920 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080930 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090930 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090930 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090930 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100930 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100930 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110930 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110930 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120930 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120930 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120930 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120930 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130930 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |