[go: up one dir, main page]

JPH11156564A - Heat resistant transparent member and manufacture - Google Patents

Heat resistant transparent member and manufacture

Info

Publication number
JPH11156564A
JPH11156564A JP9328285A JP32828597A JPH11156564A JP H11156564 A JPH11156564 A JP H11156564A JP 9328285 A JP9328285 A JP 9328285A JP 32828597 A JP32828597 A JP 32828597A JP H11156564 A JPH11156564 A JP H11156564A
Authority
JP
Japan
Prior art keywords
heat
mark
resistant transparent
main body
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9328285A
Other languages
Japanese (ja)
Inventor
Toshio Horikoshi
俊雄 堀越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP9328285A priority Critical patent/JPH11156564A/en
Publication of JPH11156564A publication Critical patent/JPH11156564A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/0025Other surface treatment of glass not in the form of fibres or filaments by irradiation by a laser beam
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B29/00Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins
    • C03B29/02Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins in a discontinuous way
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B29/00Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins
    • C03B29/02Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins in a discontinuous way
    • C03B29/025Glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Thermal Sciences (AREA)
  • Laser Beam Processing (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To form an internal mark without traces such as a crack, a cutting trace, and an indentation of an outer surface which cause the contamination by focusing a focal point of a transmission laser light on a required internal portion position inside a heat resistant transparent body, and concentrating the energy. SOLUTION: A scanning optical system is arranged at the position of 1/2 thickness of a body 5 of a quartz glass substrate for a photomask with, for example, thickness of 6.5 mm which is manufactured in a required dimension and washed cleanly, in a manner that a center shaft 13b of a second laser light 11b forming a fine focal point of 10 μm diameter is crossed at the angle of 15 deg. against a center shaft 13a of a first laser light 11a adjusted to focus a focal point 14a of the 2 mm diameter. The laser lights 11a, 11b are oscillated and a regular triangle is drawn on the focal point 14a face by the light 11b. Then, the energy density is heightened to dissolve the face by overlaying the lights 11a, 12b so as to form a vivid internal mark 12 which has the regular triangle at the internal position of the body 5 and comprises three lines.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は石英ガラスのような
耐熱性透明体に係わり、特にその本体内部にマークを付
けた耐熱性透明体およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant transparent body such as quartz glass, and more particularly, to a heat-resistant transparent body having a mark inside its main body and a method of manufacturing the same.

【0002】[0002]

【従来の技術】半導体産業の製造工程における工程管
理、在庫管理等のため半導体シリコンウェーハや製造工
程に使用される石英ガラス等の耐熱性透明体の外表面に
位置決めのマークや光学的読みとり可能な記号を付する
ことが行われている。
2. Description of the Related Art Positioning marks and optically readable marks on the outer surface of a semiconductor silicon wafer or a heat-resistant transparent material such as quartz glass used in a manufacturing process for process control and inventory control in the manufacturing process of the semiconductor industry. Signing has been done.

【0003】シリコンウェーハの外表面に付けられてい
るオリエンテーションフラットやノッチは代表的なマー
クであるが、これらオリエンテーションフラットやノッ
チから発生するパーティクル等は、半導体素子の超LS
I化に伴い、シリコンウェーハおよび製造工程の汚染問
題に影響を与えるために汚染問題対策が一段と重要にな
ってきている。
[0003] Orientation flats and notches provided on the outer surface of a silicon wafer are typical marks, but particles or the like generated from these orientation flats or notches are super LS of a semiconductor device.
With the introduction of I, measures against contamination problems have become more important in order to affect contamination problems in silicon wafers and manufacturing processes.

【0004】しかし、シリコンウェーハは不透明な材料
であるため外表面にマークを付けるしか方法がない。
However, since the silicon wafer is an opaque material, there is no other way than to mark the outer surface.

【0005】一方、石英ガラスは、高純度性、耐熱性、
低膨張牲、高硬度性、化学的耐性、高透明度性等多くの
優れた特性を有しているため、半導体工業、化学工業、
精密機械工業、宇宙産業等広い分野で使用されている。
On the other hand, quartz glass has high purity, heat resistance,
Because it has many excellent properties such as low expansion, high hardness, chemical resistance, high transparency, etc., semiconductor industry, chemical industry,
Used in a wide range of fields, such as the precision machinery industry and the space industry.

【0006】多くの用途において、精密な位置合せある
いは工程管理上必要となるため、石英ガラス製品にマー
クを付けることが要求されることが多い。
[0006] In many applications, it is often necessary to make a mark on a quartz glass product because precision alignment or process control is required.

【0007】この要求に応えるため半導体の製造工程に
使われるフォトマスクの石英ガラスの基板にも、図1に
示すように四角形フォトマスクの基板1の一個ないし複
数の角に機械的な加工方法で面取りをしてマーク用の切
欠2を付けていた。この面取りの部分からパーティクル
等が発生したり、飛散して工程中の汚れが面取り部に局
部的に付着したりして問題になっていた。
In order to meet this demand, a quartz glass substrate of a photomask used in a semiconductor manufacturing process is also mechanically formed on one or more corners of a square photomask substrate 1 as shown in FIG. A chamfer was made and a notch 2 for a mark was formed. Particles and the like are generated from the chamfered portion, or scattered, and contamination during the process is locally attached to the chamfered portion, which has been a problem.

【0008】また、特開平8−245230号公報記載
の半導体製造プロセス用石英ガラス製品およびその製造
方法には、石英ガラスに符号を付けるために、高純度の
炭素、珪素、炭化珪素もしくは窒化珪素または石英ガラ
スとの混合物である着色剤3を、図2に示すような趣旨
の構造で半導体製造の酸化・拡散工程で使用される石英
ガラス製の炉芯管4の表面に塗布するもの、あるいは表
面の記号状の溝部に着色剤を塗布したものが開示されて
いる。
In addition, the quartz glass product for a semiconductor manufacturing process and the method for manufacturing the same described in Japanese Patent Application Laid-Open No. 8-245230 have a high purity carbon, silicon, silicon carbide or silicon nitride or A colorant 3 which is a mixture with quartz glass is applied to the surface of a quartz glass furnace core tube 4 used in the oxidation / diffusion process of semiconductor manufacturing in a structure having the structure shown in FIG. Are disclosed in which a colorant is applied to the symbol-shaped groove.

【0009】[0009]

【発明が解決しようとする課題】マークを外表面に機械
的、あるいは熱的な外力を加えて付けるものは基板表面
に何らかの傷痕が残り、パーティクルなどの発生源にな
ることがあった。
When a mark is applied to the outer surface by applying a mechanical or thermal external force, some scars remain on the substrate surface, which may be a source of particles or the like.

【0010】また、ガラスの表面に着色剤を塗布するか
あるいは表面に記号状に溝部に着色剤を塗布する特開平
8−245230号公報記載のものは、本体と異なる材
質の着色剤の塗布であり長期使用時の耐用性や信頼性に
疑問があるばかりでなく、超LSI生産のフォトリソグ
ラフィー工程で焼き付け回路のネガの役割を果たし、高
純度、超高平坦性、高平滑性が極端に要求される石英ガ
ラスのフォトマスクの基板には純度、平坦性、平滑性の
観点からも不適当である。
Japanese Patent Application Laid-Open No. 8-245230 discloses a method in which a colorant is applied to the surface of glass or a colorant is applied to grooves in a symbolic manner on the surface. Not only is there any doubt about the durability and reliability in long-term use, but also plays a role as a negative of the burn-in circuit in the photolithography process of ultra LSI production, and extremely demands for high purity, ultra-high flatness, and high smoothness It is unsuitable for the quartz glass photomask substrate from the viewpoints of purity, flatness, and smoothness.

【0011】特に、半導体工業や光学器械工業などの場
合は、パーティクルなどの汚れは極めて厳しく管理され
ており、高純度でシリコンウェーハや使用環境を汚染せ
ず、かつ高平坦性、高平滑性が保たれたフォトマスクの
基板等に適する石英ガラス等の耐熱性透明体が要望され
ていた。
Particularly, in the semiconductor industry and the optical instrument industry, dirt such as particles is extremely strictly controlled, and high purity, does not contaminate a silicon wafer and a use environment, and has high flatness and high smoothness. There has been a demand for a heat-resistant transparent body such as quartz glass that is suitable for a kept photomask substrate or the like.

【0012】本発明は上述した事情を考慮してなされた
もので、耐熱性で透明な本体内部の所定の位置にレーザ
光のエネルギー集中することにより付けられた内部マー
クを有することで、汚れの原因となる外表面の裂痕、削
り跡、圧痕等、いかなる痕跡もない耐熱性透明体ならび
にこの耐熱性透明体の製造方法を提供することを目的と
する。
The present invention has been made in view of the above-described circumstances, and has an internal mark formed by concentrating the energy of a laser beam at a predetermined position inside a heat-resistant and transparent main body, thereby reducing contamination. It is an object of the present invention to provide a heat-resistant transparent body having no traces such as cracks, shavings, indentations, etc. on the outer surface that cause the heat-resistant transparent bodies, and a method for producing the heat-resistant transparent bodies.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
になされた本願請求項1の発明は、耐熱性で透明な本体
とこの本体に付けられたマークとを有する耐熱性透明体
において、前記マークは前記本体内のマークが付けられ
る内部位置に発振レーザ光の焦点を合わせ、エネルギー
集中させて形成された内部マークであることを特徴とす
る耐熱性透明体を要旨としている。
Means for Solving the Problems To achieve the above object, the invention of claim 1 of the present application is directed to a heat-resistant transparent body having a heat-resistant and transparent main body and a mark attached to the main body. The mark is a heat-resistant transparent body characterized in that the mark is an internal mark formed by focusing the oscillation laser light at an internal position where the mark is provided in the main body and concentrating energy.

【0014】本願請求項2の発明は、耐熱性で透明な本
体内の所定内部位置に焦点を結ぶように複数のレーザ光
を同時に入射角度を異にして入射させ、発振レーザ光の
重畳作用でエネルギー密度を高め、前記本体内に内部マ
ークを形成することを特徴とする耐熱性透明体を要旨と
している。
According to a second aspect of the present invention, a plurality of laser beams are simultaneously incident at different incident angles so as to focus on a predetermined internal position in a heat-resistant and transparent main body. The gist of the present invention is to provide a heat-resistant transparent body characterized by increasing the energy density and forming an internal mark in the main body.

【0015】本願請求項3の発明は、耐熱性で透明な本
体が石英ガラスであることを特徴とする請求項1または
2記載の耐熱性透明体であることを要旨としている。
According to a third aspect of the present invention, there is provided a heat-resistant transparent body according to the first or second aspect, wherein the heat-resistant and transparent main body is made of quartz glass.

【0016】本願請求項4の発明は、耐熱性で透明な本
体がフォトマスクの石英ガラスの基板であることを特徴
とする請求項1または2記載の耐熱性透明体であること
を要旨としている。
According to a fourth aspect of the present invention, there is provided a heat-resistant transparent body according to the first or second aspect, wherein the heat-resistant and transparent main body is a quartz glass substrate of a photomask. .

【0017】本願請求項5の発明は、内部マークが情報
媒体であることを特徴とする請求項1または2記載の耐
熱性透明体を要旨としている。
According to a fifth aspect of the present invention, there is provided a heat-resistant transparent body according to the first or second aspect, wherein the internal mark is an information medium.

【0018】本願請求項6の発明は、内部マークがバー
コードであることを特徴とする請求項1または2記載の
耐熱性透明体を要旨としている。
According to a sixth aspect of the present invention, there is provided a heat-resistant transparent body according to the first or second aspect, wherein the internal mark is a bar code.

【0019】本願請求項7の発明は、耐熱性で透明な本
体を用意し、この本体内の所定内部位置に発振レーザの
焦点を合わせてエネルギーを集中し、本体内に内部マー
クを付けることを特徴とする耐熱性透明体の製造方法を
要旨としている。
According to a seventh aspect of the present invention, a heat-resistant and transparent main body is prepared, the energy of the oscillation laser is focused on a predetermined internal position in the main body, and energy is concentrated to form an internal mark in the main body. The gist of the invention is a method for producing a heat-resistant transparent body.

【0020】本願請求項8の発明は、本体内の所要内部
位置に焦点を合わせるように複数の発振レーザ光を同時
に入射させ、発振レーザ光の重畳エネルギー密度を高
め、前記本体内に内部マークを付することを特徴とする
請求項7記載の耐熱性透明体の製造方法を要旨としてい
る。
According to an eighth aspect of the present invention, a plurality of oscillated laser beams are simultaneously incident so as to focus on a required internal position in the main body, the superimposed energy density of the oscillated laser beams is increased, and an internal mark is formed in the main body. The gist of the present invention is a method for producing a heat-resistant transparent body according to claim 7.

【0021】本願請求項9の発明は、耐熱性で透明な本
体がフォトマスクの石英ガラスの基板であることを特徴
とする請求項7または8記載の耐熱性透明体の製造方法
を要旨としている。
According to a ninth aspect of the present invention, there is provided a method for manufacturing a heat-resistant transparent body according to the seventh or eighth aspect, wherein the heat-resistant transparent body is a quartz glass substrate of a photomask. .

【0022】[0022]

【発明の実施の形態】以下、本発明に係る耐熱性透明体
およびその製造方法の実施の形態について添付図面に基
づき説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a heat-resistant transparent body and a method for producing the same according to the present invention will be described with reference to the accompanying drawings.

【0023】本発明に係る耐熱性透明体、例えば石英ガ
ラスの基板1は超LSI用フォトリソグラフィに用いら
れるフォトマスク用基板となるもので、SiO2を単一
成分として形成され、縦l;152mm、横w;152
mm、厚さt;6.3mmの平板状四角形をなしてい
る。
The heat-resistant transparent body according to the present invention, for example, a quartz glass substrate 1 is a substrate for a photomask used in photolithography for VLSI, is formed of SiO2 as a single component, and has a vertical length of 152 mm. Side w; 152
mm, thickness t: 6.3 mm.

【0024】この基板1の本体5は耐熱性に優れた透明
体であり、のちのフォトマスク製造工程でフォトレジス
トが塗布される表面6と、裏面7、側面8、角曲面9お
よび糸面取り部10からなっている。本体5の本体の所
要内部位置、例えば角曲面9の近傍でかつ本体5内部の
厚さ1/2の位置のところにはレーザ11によって付け
られた内部マーク12が設けられている。
The main body 5 of the substrate 1 is a transparent body excellent in heat resistance, and has a front surface 6 to which a photoresist is applied in a later photomask manufacturing process, a back surface 7, a side surface 8, a square curved surface 9, and a thread chamfered portion. It consists of ten. An internal mark 12 provided by the laser 11 is provided at a required internal position of the main body of the main body 5, for example, at a position near the curved surface 9 and at a position having a thickness of の inside the main body 5.

【0025】一般に、フォトマスクの基板として要求さ
れる品質は(1)表面欠陥(傷、汚れ、異物等)、
(2)内部欠陥(泡、異物、脈理等)、(3)面精度/
平坦度(そり、うねりを含む)、(4)外形加工精度
(大きさ、平均厚さ)、(5)透過率(at365、4
04、436nm)、(6)熱膨張率である。
In general, the quality required for a photomask substrate is (1) surface defects (scratch, dirt, foreign matter, etc.),
(2) Internal defects (bubbles, foreign matter, striae, etc.), (3) Surface accuracy /
Flatness (including warpage and undulation), (4) external processing accuracy (size, average thickness), (5) transmittance (at 365, 4
04, 436 nm) and (6) Coefficient of thermal expansion.

【0026】従って、本体5は高純度の石英ガラスであ
ることが必要であり、かつ表面6、裏面7はもとより、
側面8、角曲面9および糸面取り部10も高精度に光学
研磨されている。
Therefore, the main body 5 needs to be made of high-purity quartz glass, and the front surface 6 and the back surface 7 as well as
The side surface 8, the square curved surface 9, and the yarn chamfered portion 10 are also optically polished with high precision.

【0027】次に、本体5の内部にマーク12が設けら
れた基板1の製造方法について、図6に基づき説明す
る。
Next, a method of manufacturing the substrate 1 having the mark 12 provided inside the main body 5 will be described with reference to FIG.

【0028】合成法により石英ガラスのインゴットを製
造し、このインゴットを所定の大きさ、例えば155m
m角の柱状に成型機で成形する。しかるのち、この成形
体を所定の厚さ、例えば6.5mmに切断して平板を作
る。この平板を研削して平面出しを行い、次に面取りを
行い、さらに平滑化のために2度目の研削を行う。
A quartz glass ingot is manufactured by a synthesis method, and the ingot is sized to a predetermined size, for example, 155 m.
It is formed into a m-shaped column by a molding machine. Thereafter, the molded body is cut into a predetermined thickness, for example, 6.5 mm to form a flat plate. This flat plate is ground to obtain a flat surface, then chamfered, and further subjected to a second grinding for smoothing.

【0029】その後鏡面仕上げのための研磨を行なった
のち、研磨剤を落とすための洗浄を行う。
After polishing for mirror finishing, cleaning is performed to remove the abrasive.

【0030】所定の寸法に製作され、きれいに洗浄され
た基板1の本体5の所要内部位置に以下に詳述する方法
で図示しないレーザ装置から発振されたレーザ光11
a、11bを用いて内部マーク12を付ける。
A laser beam 11 oscillated from a laser device (not shown) by a method described in detail below at a required internal position of the main body 5 of the substrate 1 manufactured to a predetermined size and cleaned.
The internal mark 12 is attached using a and 11b.

【0031】所定の位置に基板1を載置し、所定の大き
さ、例えば直径2mmの焦点を作り出し、かつ中心軸1
3aを有する第1のレーザ光11aがその焦点14aを
本体5の厚さの例えば1/2、すなわち表面3から3.
2mm離れたところで結ぶように図示しない走査光学系
の集光レンズあるいは凹面鏡の設定位置を調節する。次
に、別のレーザ装置から発振される第2レーザ光11b
を用いる。この第2レーザ光11bで所定の大きさ、例
えば直径10μmの微小な焦点を作り出し、かつ第2の
レーザ11bはの中心軸13bが第1のレーザ光11a
の中心軸13aと例えば15゜の交差角度をなし、かつ
第1のレーザ光11aの焦点14aと同一位置に焦点1
4bを結ぶように図示しない走査光学系を配置する。
The substrate 1 is placed at a predetermined position, a focal point having a predetermined size, for example, a diameter of 2 mm is created, and the central axis 1
The first laser beam 11a having the center 3a has its focal point 14a set to, for example, 1/2 of the thickness of the main body 5, that is, from the surface 3.
The setting position of the condenser lens or the concave mirror of the scanning optical system (not shown) is adjusted so as to be connected at a distance of 2 mm. Next, the second laser beam 11b oscillated from another laser device
Is used. The second laser beam 11b produces a minute focus of a predetermined size, for example, a diameter of 10 μm, and the center axis 13b of the second laser beam 11b is set to the first laser beam 11a.
Of the first laser beam 11a at the same position as the focal point 14a of the first laser beam 11a.
A scanning optical system (not shown) is arranged so as to connect 4b.

【0032】しかるのち、レーザ光11aを発振して直
径2mmの焦点14aを本体5内の所要内部位置に作り
出す一方、第2のレーザ光11bを発振して焦点11a
と同一位置に焦点14bを作り出し、焦点11aの中心
部に正三角形ができるように焦点14a面をレーザ光1
1bでけがく。このとき第2のレーザ11bでけがいた
焦点11aの位置には、第1のレーザ光11aと第2の
レーザ光11bの重畳によってエネルギーが集中しエネ
ルギー密度が高められて溶解し、焦点14aと同一位置
の本体5の所要内部位置に正三角形を有し3本線からな
る内部マーク12が鮮明に形成される。
Thereafter, the laser beam 11a is oscillated to create a focal point 14a having a diameter of 2 mm at a required internal position in the main body 5, while the second laser beam 11b is oscillated to produce the focal point 11a.
A focal point 14b is created at the same position as that of the laser light 1 so that an equilateral triangle is formed at the center of the focal point 11a.
Injured at 1b. At this time, at the position of the focal point 11a injured by the second laser 11b, the energy is concentrated by the superposition of the first laser light 11a and the second laser light 11b, the energy density is increased, and the laser is melted. An internal mark 12 having an equilateral triangle and consisting of three lines is clearly formed at a required internal position of the main body 5 at the position.

【0033】このようにして、本体5内部にマーク12
が付けられた基板1は検査され、出荷される。この検査
の段階でも、レーザ光11a、11bにより基板1と非
接触でかつ本体2内部にマーク12を形成したので、基
板1に機械的な加工方法で面取りをしてマーク用の切欠
2を付ける必要がないばかりでなく、表面6はもとより
裏面7、側面8、角曲面9および糸面取り部10にも汚
れの原因となる外表面の裂痕、削り跡、圧痕等、いかな
る痕跡もできない。
In this manner, the mark 12 is provided inside the main body 5.
The substrate 1 marked with is inspected and shipped. Also at this inspection stage, since the marks 12 were formed in the main body 2 without contact with the substrate 1 by the laser beams 11a and 11b, the substrate 1 was chamfered by a mechanical processing method to form the notch 2 for the marks. Not only is it unnecessary, but also the surface 6, as well as the back surface 7, the side surface 8, the square curved surface 9, and the yarn chamfered portion 10, can not have any traces such as cracks, cuts, indentations, etc. on the outer surface that cause dirt.

【0034】なお、上述実施の形態の他に次に説明する
マークを付することも可能である。
Note that, in addition to the above-described embodiment, marks described below can be added.

【0035】図4のようにレーザ光11a、レーザ光1
1bを直交する2側面8から発信し、角曲面9の近傍に
レーザ11aの焦点14aおよびレーザ11bの焦点1
4bを結ぶようにしてエネルギーを集中し、垂直線状の
マーク12を作ることもできる。
As shown in FIG. 4, the laser beam 11a and the laser beam 1
1b is transmitted from two orthogonal side surfaces 8, and the focal point 14a of the laser 11a and the focal point 1
The energy can be concentrated so as to connect the lines 4b to form the vertical linear mark 12.

【0036】図5のように第1のレーザ光11aの焦点
14aおよび第2のレーザ11bの焦点14bを結ぶよ
うにしてエネルギーを集中し、レーザ光8bでバーコー
ドを設けるようにけがけば、内部マーク12としてバー
コードができ、光学読取装置を用いて効率的な生産管理
が行える。
As shown in FIG. 5, when the energy is concentrated so as to connect the focal point 14a of the first laser beam 11a and the focal point 14b of the second laser beam 11b, and the laser beam 8b is used to scribe the bar code, A bar code is formed as the internal mark 12, and efficient production management can be performed using an optical reading device.

【0037】なお、バーコードを設けることは、レーザ
光8bのみを用いバーコードを設けるようにけがけば、
2個のレーザ光8a、8bを用いるのに比べて長時間に
発信が必要となるが可能である。この場合レーザ光8b
の出力を上げることで時間の短縮は可能である。
It should be noted that the provision of the bar code is performed by using only the laser beam 8b so that the bar code is provided.
It is possible to transmit for a longer time than using two laser beams 8a and 8b. In this case, the laser beam 8b
It is possible to reduce the time by increasing the output of.

【0038】図6のように、1個のレーザ光11aのみ
を用い角曲面9の近傍に焦点14aを合わせエネルギー
を集中し、円形のマーク12を付することも可能であ
る。
As shown in FIG. 6, it is also possible to focus on the focal point 14a in the vicinity of the curved surface 9 using only one laser beam 11a, concentrate energy, and form a circular mark 12.

【0039】本発明に係わる耐熱性透明体は、本体5内
部にマーク12を形成したので、基板1の表面6に本体
と異なる材質の着色剤を塗布してマークを付する必要が
なくなり、半導体製造の酸化・拡散工程等過酷な条件下
で使用される石英ガラス製の炉芯管の長期使用でも信頼
性に全く問題がない。
In the heat-resistant transparent body according to the present invention, since the mark 12 is formed inside the main body 5, there is no need to apply a colorant made of a different material from the main body to the surface 6 of the substrate 1 to make the mark. There is no problem in reliability at all even when the quartz glass furnace core tube used under severe conditions such as the oxidation / diffusion process of manufacture is used for a long time.

【0040】本発明に係わる耐熱性透明体をフォトマス
クの石英ガラスの基板1として実施する場合には、本体
5内部にマーク12を形成したので、高純度、超高平坦
性、高平滑性が極端に要求されるフォトマスクの基板に
は純度、平坦性、平滑性の観点からも最適である。
When the heat-resistant transparent body according to the present invention is used as the quartz glass substrate 1 of the photomask, since the mark 12 is formed inside the main body 5, high purity, ultra-high flatness and high smoothness are obtained. It is optimal for a substrate of a photomask which is extremely required from the viewpoint of purity, flatness, and smoothness.

【0041】また、マーク12を基準とし、光学装置を
用いあるいは目視により正確な位置決めが可能になり、
半導体製造の生産性向上にも寄与する。
Further, accurate positioning can be performed by using an optical device or visually with reference to the mark 12,
It also contributes to improving the productivity of semiconductor manufacturing.

【0042】[0042]

【実施例】実施例1 縦l;152mm、横w;152mm、厚さt;6.3
mmの平板状四角形の石英ガラスの試料1を製作し、図
3で説明した方法で発振レーザ光8a、8bを焦点が表
面から3.2mm離れたところ結ぶように調節、発振
し、3.2mmの所要内部位置に中心部に正三角形を有
し3本線からなる鮮明な内部マーク12を得た。
EXAMPLES Example 1 Length l: 152 mm, width w: 152 mm, thickness t: 6.3
A flat quartz glass sample 1 having a thickness of 2 mm was manufactured, and the oscillation laser beams 8a and 8b were adjusted and oscillated by the method described with reference to FIG. A clear internal mark 12 having an equilateral triangle at the center and consisting of three lines was obtained at the required internal position.

【0043】実施例2 縦l;152mm、横w;152mm、厚さt;6.3
mmの平板状四角形の石英ガラスの試料2を製作し、図
4で説明した方法で、レーザ光11a、11bを表面6
から3.2mm離れた本体5内の位置で、かつ各側面8
から3mm離れた位置を中心に一辺2mmの正方形の平
板状の焦点13aを形成し、さらにこの焦点13aと直
交するレーザ光13bの焦点13bを形成する。両焦点
13あと13bが交わってできる交線に直線状の長さ2
mmの内部マーク12ができた。
Example 2 Length l: 152 mm, width w: 152 mm, thickness t: 6.3
A sample 2 of a flat rectangular quartz glass having a thickness of 2 mm was manufactured, and the laser beams 11a and 11b were applied to the surface 6 by the method described with reference to FIG.
At a position in the main body 5 that is 3.2 mm away from the
A focal point 13a of a square flat plate having a side of 2 mm is formed at a position 3 mm away from the center, and a focal point 13b of a laser beam 13b orthogonal to the focal point 13a is formed. Straight line length 2 at the intersection formed by the two focal points 13 and 13b
mm internal mark 12 was obtained.

【0044】実施例3 縦l;152mm、横w;152mm、厚さt;6.3
mmの平板状四角形の石英ガラスの試料3を作製し、図
6のように、1個の11aのみを用い角曲面の近傍に焦
点を合わせエネルギーを集中し、直径2mmの円形のマ
ークを得た。
Example 3 Length l: 152 mm, width w: 152 mm, thickness t: 6.3
6 mm plate-shaped square quartz glass sample 3 was prepared, and as shown in FIG. 6, using only one piece 11a, focusing was performed near a square curved surface, and energy was concentrated to obtain a circular mark having a diameter of 2 mm. .

【0045】[0045]

【発明の効果】以上に述べたように本発明に係る耐熱性
透明体およびその製造方法において、レーザ光を用いマ
ークを耐熱性透明体の本体内部に形成するので、半導体
製造の酸化・拡散工程等過酷な条件下で使用される石英
ガラス製の炉芯管の長期使用でも信頼性に全く問題がな
く、またフォトマスクの石英ガラスの基板として実施す
る場合には、純度、平坦性、平滑性の観点からも最適
で、かつマークを基準としより正確な位置決めが可能に
なり半導体製造の生産性向上にも寄与する。
As described above, in the heat-resistant transparent body and the method of manufacturing the same according to the present invention, the mark is formed inside the main body of the heat-resistant transparent body by using a laser beam. There is no problem with the reliability even when the quartz glass furnace core tube used under severe conditions is used for a long time, and when used as a quartz glass substrate for photomasks, purity, flatness, smoothness From the viewpoint of the above, it is possible to perform more accurate positioning based on the mark and to contribute to improvement in the productivity of semiconductor manufacturing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来のフォトマスクの石英ガラスの基板の一部
切欠図。
FIG. 1 is a partially cutaway view of a quartz glass substrate of a conventional photomask.

【図2】従来の炉芯管の斜視図。FIG. 2 is a perspective view of a conventional furnace core tube.

【図3】本発明の耐熱性透明体およびその製造方法を示
す概略図。
FIG. 3 is a schematic view showing a heat-resistant transparent body of the present invention and a method for producing the same.

【図4】本発明の他の実施の形態を示す一部切欠図。FIG. 4 is a partially cutaway view showing another embodiment of the present invention.

【図5】本発明の他の実施の形態を示す一部切欠図。FIG. 5 is a partially cutaway view showing another embodiment of the present invention.

【図6】本発明の耐熱性透明体の製造工程図。FIG. 6 is a manufacturing process diagram of the heat-resistant transparent body of the present invention.

【符号の説明】 1 基板 2 切欠 3 着色剤 4 炉芯管 5 本体 6 耐火物 7 裏面 8 側面 9 角曲面 10 糸面取り部 11a レーザ光 11b レーザ光 12 マーク 13a 中心線 13b 中心線 14a 焦点 14b 焦点DESCRIPTION OF SYMBOLS 1 Substrate 2 Notch 3 Colorant 4 Furnace tube 5 Main body 6 Refractory 7 Back surface 8 Side surface 9 Square curved surface 10 Thread chamfered portion 11a Laser beam 11b Laser beam 12 Mark 13a Center line 13b Center line 14a Focus 14b Focus

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // H01L 21/205 H01L 21/205 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI // H01L 21/205 H01L 21/205

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 耐熱性で透明な本体とこの本体に付けら
れたマークとを有する耐熱性透明体において、前記マー
クは本体内の所要内部位置に発振レーザ光の焦点を合わ
せ、エネルギー集中させて形成された内部マークである
ことを特徴とする耐熱性透明体。
1. In a heat-resistant transparent body having a heat-resistant and transparent main body and a mark attached to the main body, the mark focuses an oscillation laser beam at a required internal position in the main body and concentrates energy. A heat-resistant transparent body, which is a formed internal mark.
【請求項2】 耐熱性で透明な本体内の所定内部位置に
焦点を結ぶように複数の発振レーザ光を同時に入射角度
を異にして入射させ、発振レーザ光の重畳作用でエネル
ギー密度を高め、前記本体内に内部マークを形成するこ
とを特徴とする耐熱性透明体。
2. A plurality of oscillating laser beams are simultaneously incident at different incident angles so as to focus on a predetermined internal position in a heat-resistant and transparent main body, and the energy density is increased by a superimposing action of the oscillating laser beams. A heat-resistant transparent body, wherein an internal mark is formed in the main body.
【請求項3】 耐熱性で透明な本体が石英ガラスである
ことを特徴とする請求項1または2記載の耐熱性透明
体。
3. The heat-resistant transparent body according to claim 1, wherein the heat-resistant and transparent main body is made of quartz glass.
【請求項4】 耐熱性で透明な本体がフォトマスクの石
英ガラスの基板であることを特徴とする請求項1または
2記載の耐熱性透明体。
4. The heat-resistant transparent body according to claim 1, wherein the heat-resistant transparent body is a quartz glass substrate of a photomask.
【請求項5】 内部マークが情報媒体であることを特徴
とする請求項1または2記載の耐熱性透明体。
5. The heat-resistant transparent body according to claim 1, wherein the internal mark is an information medium.
【請求項6】 内部マークがバーコードであることを特
徴とする請求項1または2記載の耐熱性透明体。
6. The heat-resistant transparent body according to claim 1, wherein the internal mark is a bar code.
【請求項7】 耐熱性で透明な本体を用意し、この本体
内の所要内部位置に発振レーザ光の焦点を合わせてエネ
ルギーを集中し、本体内に内部マークを付けることを特
徴とする耐熱性透明体の製造方法。
7. A heat-resistant transparent body, wherein an oscillation laser beam is focused on a required internal position in the body, energy is concentrated, and an internal mark is provided in the body. A method for producing a transparent body.
【請求項8】 本体内の所要内部位置に焦点をあわせる
ように複数の発振レーザ光を同時に入射させ、上記発振
レーザ光の重畳作用でエネルギー密度を高め、前記本体
内に内部マークを付けることを特徴とする請求項7記載
の耐熱性透明体の製造方法。
8. A method in which a plurality of oscillating laser beams are simultaneously incident so as to focus on a required internal position in the main body, an energy density is increased by an overlapping action of the oscillating laser beams, and an internal mark is formed in the main body. The method for producing a heat-resistant transparent body according to claim 7, characterized in that:
【請求項9】 耐熱性で透明な本体がフォトマスクの石
英ガラスの基板であることを特徴とする請求項7または
8記載の耐熱性透明体の製造方法。
9. The method for producing a heat-resistant transparent body according to claim 7, wherein the heat-resistant transparent body is a quartz glass substrate of a photomask.
JP9328285A 1997-11-28 1997-11-28 Heat resistant transparent member and manufacture Pending JPH11156564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9328285A JPH11156564A (en) 1997-11-28 1997-11-28 Heat resistant transparent member and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9328285A JPH11156564A (en) 1997-11-28 1997-11-28 Heat resistant transparent member and manufacture

Publications (1)

Publication Number Publication Date
JPH11156564A true JPH11156564A (en) 1999-06-15

Family

ID=18208527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9328285A Pending JPH11156564A (en) 1997-11-28 1997-11-28 Heat resistant transparent member and manufacture

Country Status (1)

Country Link
JP (1) JPH11156564A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001457A (en) * 2000-09-13 2003-01-08 Hamamatsu Photonics Kk Laser beam machining method
JPWO2005032707A1 (en) * 2003-10-03 2007-11-15 独立行政法人産業技術総合研究所 Fluid control method
US7396742B2 (en) 2000-09-13 2008-07-08 Hamamatsu Photonics K.K. Laser processing method for cutting a wafer-like object by using a laser to form modified regions within the object
US7566635B2 (en) 2002-03-12 2009-07-28 Hamamatsu Photonics K.K. Substrate dividing method
US8058103B2 (en) 2003-09-10 2011-11-15 Hamamatsu Photonics K.K. Semiconductor substrate cutting method
KR101177728B1 (en) * 2004-03-09 2012-09-13 아사히 가라스 가부시키가이샤 Photomask substrate made of synthetic quartz glass and photomask
CN103413754A (en) * 2013-08-22 2013-11-27 上海宏力半导体制造有限公司 Method for processing glass wafer, glass wafer and method for detecting glass wafer
US8865566B2 (en) 2002-12-03 2014-10-21 Hamamatsu Photonics K.K. Method of cutting semiconductor substrate
US8969752B2 (en) 2003-03-12 2015-03-03 Hamamatsu Photonics K.K. Laser processing method
WO2016117224A1 (en) * 2015-01-20 2016-07-28 東レエンジニアリング株式会社 Marking device and method, pattern generation device, and workpiece

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03124486A (en) * 1989-10-07 1991-05-28 Hoya Corp Laser marking
JPH0471792A (en) * 1990-07-10 1992-03-06 Fujitsu Ltd Marking method
JPH09128578A (en) * 1995-10-27 1997-05-16 Precision:Kk Mold number managing method by engraved die number on glass vessel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03124486A (en) * 1989-10-07 1991-05-28 Hoya Corp Laser marking
JPH0471792A (en) * 1990-07-10 1992-03-06 Fujitsu Ltd Marking method
JPH09128578A (en) * 1995-10-27 1997-05-16 Precision:Kk Mold number managing method by engraved die number on glass vessel

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8937264B2 (en) 2000-09-13 2015-01-20 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US10796959B2 (en) 2000-09-13 2020-10-06 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US7396742B2 (en) 2000-09-13 2008-07-08 Hamamatsu Photonics K.K. Laser processing method for cutting a wafer-like object by using a laser to form modified regions within the object
US7547613B2 (en) 2000-09-13 2009-06-16 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US9837315B2 (en) 2000-09-13 2017-12-05 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US7592238B2 (en) * 2000-09-13 2009-09-22 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US7615721B2 (en) * 2000-09-13 2009-11-10 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US7626137B2 (en) 2000-09-13 2009-12-01 Hamamatsu Photonics K.K. Laser cutting by forming a modified region within an object and generating fractures
JP2003001457A (en) * 2000-09-13 2003-01-08 Hamamatsu Photonics Kk Laser beam machining method
US8969761B2 (en) 2000-09-13 2015-03-03 Hamamatsu Photonics K.K. Method of cutting a wafer-like object and semiconductor chip
US8946589B2 (en) 2000-09-13 2015-02-03 Hamamatsu Photonics K.K. Method of cutting a substrate, method of cutting a wafer-like object, and method of manufacturing a semiconductor device
US8946591B2 (en) 2000-09-13 2015-02-03 Hamamatsu Photonics K.K. Method of manufacturing a semiconductor device formed using a substrate cutting method
US8946592B2 (en) 2000-09-13 2015-02-03 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US8927900B2 (en) 2000-09-13 2015-01-06 Hamamatsu Photonics K.K. Method of cutting a substrate, method of processing a wafer-like object, and method of manufacturing a semiconductor device
US8933369B2 (en) 2000-09-13 2015-01-13 Hamamatsu Photonics K.K. Method of cutting a substrate and method of manufacturing a semiconductor device
US9543207B2 (en) 2002-03-12 2017-01-10 Hamamatsu Photonics K.K. Substrate dividing method
US9711405B2 (en) 2002-03-12 2017-07-18 Hamamatsu Photonics K.K. Substrate dividing method
US11424162B2 (en) 2002-03-12 2022-08-23 Hamamatsu Photonics K.K. Substrate dividing method
US10622255B2 (en) 2002-03-12 2020-04-14 Hamamatsu Photonics K.K. Substrate dividing method
US8889525B2 (en) 2002-03-12 2014-11-18 Hamamatsu Photonics K.K. Substrate dividing method
US9142458B2 (en) 2002-03-12 2015-09-22 Hamamatsu Photonics K.K. Substrate dividing method
US9287177B2 (en) 2002-03-12 2016-03-15 Hamamatsu Photonics K.K. Substrate dividing method
US10068801B2 (en) 2002-03-12 2018-09-04 Hamamatsu Photonics K.K. Substrate dividing method
US7566635B2 (en) 2002-03-12 2009-07-28 Hamamatsu Photonics K.K. Substrate dividing method
US9543256B2 (en) 2002-03-12 2017-01-10 Hamamatsu Photonics K.K. Substrate dividing method
US9548246B2 (en) 2002-03-12 2017-01-17 Hamamatsu Photonics K.K. Substrate dividing method
US9553023B2 (en) 2002-03-12 2017-01-24 Hamamatsu Photonics K.K. Substrate dividing method
US8865566B2 (en) 2002-12-03 2014-10-21 Hamamatsu Photonics K.K. Method of cutting semiconductor substrate
US8969752B2 (en) 2003-03-12 2015-03-03 Hamamatsu Photonics K.K. Laser processing method
US8058103B2 (en) 2003-09-10 2011-11-15 Hamamatsu Photonics K.K. Semiconductor substrate cutting method
JPWO2005032707A1 (en) * 2003-10-03 2007-11-15 独立行政法人産業技術総合研究所 Fluid control method
KR101177728B1 (en) * 2004-03-09 2012-09-13 아사히 가라스 가부시키가이샤 Photomask substrate made of synthetic quartz glass and photomask
CN103413754A (en) * 2013-08-22 2013-11-27 上海宏力半导体制造有限公司 Method for processing glass wafer, glass wafer and method for detecting glass wafer
WO2016117224A1 (en) * 2015-01-20 2016-07-28 東レエンジニアリング株式会社 Marking device and method, pattern generation device, and workpiece

Similar Documents

Publication Publication Date Title
JP5098665B2 (en) Laser processing apparatus and laser processing method
JP5169163B2 (en) Method for finishing a pre-polished glass substrate surface
TWI414383B (en) Angle processing device
JP3213563B2 (en) Manufacturing method of notchless wafer
US11309191B2 (en) Method for modifying substrates based on crystal lattice dislocation density
TWI625186B (en) Laser processing method and laser processing device
US6795170B2 (en) Structure for attaching a pellicle to a photo-mask
KR20170055909A (en) METHOD OF SEPARATING SiC SUBSTRATE
KR100509651B1 (en) Method of forming scribe line on semiconductor wafer, and scribe line forming device
JPH11156564A (en) Heat resistant transparent member and manufacture
JP2013088793A (en) Glass substrate for semiconductor and manufacturing method for the same
US20020187407A1 (en) Photolithography method, photolithography mask blanks, and method of making
TW200936290A (en) Method for chamfering/machining brittle material substrate and chamfering/machining apparatus
JP2008012542A (en) Laser beam machining method
KR20030023508A (en) Internally Marked Quartz Glass, Quartz Glass Substrate for Optical Member, and Marking Method
WO2013039012A1 (en) Laser machining method and laser machining device
CN105300663A (en) Method for preparing synthetic quartz glass substrate
TW201005428A (en) A mask blank glass substrate and method for manufacturing the same, method of manufacturing a mask blank, and method for manufacturing a mask
US20050134868A1 (en) Method of checking a laser processed deteriorated layer
TWI475315B (en) A low-expansion glass substrate for a reflection type mask and a method for processing the same, and a reflection type mask using the glass substrate
JP2007185664A (en) Laser internal scribing method
Yamada et al. Photoelastic observation of stress distributions in laser cleaving of glass substrates
WO2000060582A1 (en) Method for correcting surface shape of magnetic head slider and magnetic head slider
JP2006179790A (en) Laser cutting method and member that can be cut by it
JP2015074003A (en) Internal processing layer-forming single crystal member, and manufacturing method for the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050208