JPH11156145A - Gas decomposition disposal method and apparatus for the same - Google Patents
Gas decomposition disposal method and apparatus for the sameInfo
- Publication number
- JPH11156145A JPH11156145A JP9323235A JP32323597A JPH11156145A JP H11156145 A JPH11156145 A JP H11156145A JP 9323235 A JP9323235 A JP 9323235A JP 32323597 A JP32323597 A JP 32323597A JP H11156145 A JPH11156145 A JP H11156145A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- internal electrode
- honeycomb structure
- solid dielectric
- external electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000354 decomposition reaction Methods 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 title claims abstract description 16
- 239000007787 solid Substances 0.000 claims abstract description 24
- 230000005684 electric field Effects 0.000 claims abstract description 18
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 7
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims abstract description 5
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims abstract description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims abstract description 3
- 229910001928 zirconium oxide Inorganic materials 0.000 claims abstract description 3
- 239000003989 dielectric material Substances 0.000 claims description 3
- 230000000630 rising effect Effects 0.000 claims 1
- 230000005284 excitation Effects 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 17
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- -1 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 2
- 229910052815 sulfur oxide Inorganic materials 0.000 description 2
- 239000012855 volatile organic compound Substances 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000010485 coping Effects 0.000 description 1
- 230000003009 desulfurizing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
Landscapes
- Treating Waste Gases (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、窒素酸化物、硫黄
酸化物、揮発性有機化合物等の有害ガスをプラズマ励起
させて分解処理する、ガス分解処理方法及びその装置に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for decomposing a harmful gas such as nitrogen oxides, sulfur oxides, volatile organic compounds and the like by plasma excitation.
【0002】[0002]
【従来の技術】近年環境配慮の声が高まり、窒素酸化
物、硫黄酸化物、揮発性有機化合物等の有害ガスを分解
処理する方法が多数提案されている。特にコロナ放電、
プラズマ放電等を利用して有害ガスを分解する技術は、
クリ−ンで低濃度の有害ガスにも対応できるものとして
注目されている。一方、上記放電を利用した処理方法
は、高いエネルギ−を投入する必要があり、処理効率の
向上と投入電力のバランスが実用化の鍵となっていた。2. Description of the Related Art In recent years, environmental concerns have been raised, and many methods for decomposing harmful gases such as nitrogen oxides, sulfur oxides, and volatile organic compounds have been proposed. Especially corona discharge,
The technology to decompose harmful gas using plasma discharge etc.
It is attracting attention as being clean and capable of coping with low-concentration harmful gases. On the other hand, the above-described processing method using discharge requires input of high energy, and the improvement of processing efficiency and the balance of input power have been the keys to practical application.
【0003】例えば、特開平7−26562号にハニカ
ム状電極とワイヤ型電極を組み合わせて用いる方法が、
特開平2−115024号に固体誘電体を用いる技術が
開示されている。しかし、まだ低電力化と処理効率に改
善の必要があった。[0003] For example, Japanese Patent Application Laid-Open No. 7-26562 discloses a method using a combination of a honeycomb electrode and a wire electrode.
Japanese Patent Application Laid-Open No. HEI 2-15024 discloses a technique using a solid dielectric. However, there was still a need to reduce power consumption and improve processing efficiency.
【0004】[0004]
【発明が解決しようとする課題】本発明は、上記問題を
鑑み、低電力で安定した放電を維持することにより分解
効率が改善されたガス分解処理方法及びその装置を提供
する。SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and provides a gas decomposition treatment method and apparatus for improving the decomposition efficiency by maintaining stable discharge at low power.
【0005】[0005]
【課題を解決するための手段】本発明のガス分解処理方
法は、ハニカム構造を有する外部電極と、該ハニカム構
造のセル中央に位置する内部電極間に電界を印加するこ
とにより、該ハニカム構造のセル内を流通している気体
をプラズマ励起させてガス分解処理を行う方法であっ
て、外部電極及び/又は内部電極の電極対向面に固体誘
電体が配設されてなることを特徴とする。According to the gas decomposition treatment method of the present invention, an electric field is applied between an external electrode having a honeycomb structure and an internal electrode located at the center of a cell of the honeycomb structure, whereby the honeycomb structure is formed. A method for performing gas decomposition treatment by exciting a gas flowing in a cell by plasma, characterized in that a solid dielectric is disposed on an electrode facing surface of an external electrode and / or an internal electrode.
【0006】上記外部電極と内部電極は通常の金属から
なるものを使用できる。外部電極は一般にハニカム構造
と呼ばれているものであり、代表的なものとしては断面
正六角形の角筒体が複数組み合わされてなるものが挙げ
られる。内部電極は外部電極がなすハニカム構造のセル
中央に位置すればよく、表面に凹凸のない方が好まし
い。外部電極に沿った形状の内部電極、すなわち正六角
形の角筒体セルの中央に六角形の角柱体の内部電極を位
置させてもよい。The external electrodes and the internal electrodes can be made of ordinary metals. The external electrode is generally called a honeycomb structure, and a typical example is a combination of a plurality of rectangular cylinders having a regular hexagonal cross section. The internal electrode may be located at the center of the cell of the honeycomb structure formed by the external electrode, and preferably has no irregularities on the surface. An internal electrode shaped along the external electrode, that is, an internal electrode of a hexagonal prism may be located at the center of a regular hexagonal prismatic cell.
【0007】上記固体誘電体は、上記外部電極及び内部
電極の双方の電極対向面、あるいは外部電極又は内部電
極のいずれか一方の電極対向面に配設されてなる。双方
の対向面に配設した方が好ましい。また、双方の対向面
に配設された場合は固体誘電体同士の間隔が、一方の対
向面に配設された場合は電極と固体誘電体の間の間隔が
略平行になるようにすることがより好ましい。[0007] The solid dielectric is disposed on the electrode-facing surface of both the external electrode and the internal electrode, or on either electrode surface of the external electrode or the internal electrode. It is preferable to dispose them on both opposing surfaces. In addition, when disposed on both opposing surfaces, the distance between the solid dielectrics should be substantially parallel, and when disposed on one opposing surface, the distance between the electrodes and the solid dielectric should be substantially parallel. Is more preferred.
【0008】上記固体誘電体としては、ポリテトラフル
オロエチレン、ポリエチレンテレフタレート等のプラス
チック、ガラス、二酸化珪素、酸化アルミニウム、二酸
化ジルコニウム、二酸化チタン等の金属酸化物、チタン
酸バリウム等の複酸化物等が挙げられる。Examples of the solid dielectric include plastics such as polytetrafluoroethylene and polyethylene terephthalate, glass, metal oxides such as silicon dioxide, aluminum oxide, zirconium dioxide and titanium dioxide, and double oxides such as barium titanate. No.
【0009】また、上記固体誘電体は、比誘電率(25
°C環境下、以下同)が2以上であることが好ましく、
より好ましくは10以上である。特に好ましい例とし
て、酸化チタニウム5〜50重量%、酸化アルミニウム
50〜95重量%で混合された金属酸化物皮膜、又は、
酸化ジルコニウムを含有する金属酸化物皮膜が挙げられ
る。上記被膜の厚みは10〜1000μmであるものが
好ましい。The solid dielectric has a relative dielectric constant (25).
° C environment, the same applies hereinafter) is preferably 2 or more,
More preferably, it is 10 or more. As a particularly preferred example, a metal oxide film mixed with 5 to 50% by weight of titanium oxide and 50 to 95% by weight of aluminum oxide, or
A metal oxide film containing zirconium oxide may be used. The thickness of the coating is preferably from 10 to 1000 μm.
【0010】[0010]
【実施の態様】図1は本発明の装置例の斜視図である。
被処理ガスは図に示した方向に流れ、ハニカムセル内を
通る間にプラズマ励起され、無害な形態あるいは捕集さ
れやすい形態に変換される。本発明の装置中に、アンモ
ニア、石灰等の脱硝脱硫剤、固定化剤を吹き込んだり、
本発明の装置の流路の先にバグフィルタ−を設ける等の
公知の手段により有害ガスを固定化することが出来る。FIG. 1 is a perspective view of an apparatus according to the present invention.
The gas to be processed flows in the direction shown in the figure, is plasma-excited while passing through the inside of the honeycomb cell, and is converted into a harmless form or a form easily collected. In the apparatus of the present invention, ammonia, a denitrifying desulfurizing agent such as lime, or blowing a fixing agent,
The harmful gas can be fixed by known means such as providing a bag filter at the end of the flow path of the apparatus of the present invention.
【0011】図2は固体誘電体の設置例の図である。図
2(a)は内部電極2にのみ固体誘電体3を設置した
例、図2(b)は外部電極1と内部電極2の双方を固体
誘電体3によって被覆した例である。図中lで示した電
極と固体誘電体又は固体誘電体同士がなす対向面の間隔
は5〜30mmが好ましい。5mm未満では被処理ガス
の流路として効率的が悪く、30mmを超えると長時間
安定化した放電状態を維持しにくく、省電力化の観点か
らも好ましくない。FIG. 2 is a diagram showing an example of installation of a solid dielectric. 2A shows an example in which the solid dielectric 3 is provided only on the internal electrode 2, and FIG. 2B shows an example in which both the external electrode 1 and the internal electrode 2 are covered with the solid dielectric 3. The distance between the electrode indicated by l in the figure and the opposing surface formed by the solid dielectric or the solid dielectric is preferably 5 to 30 mm. If it is less than 5 mm, the efficiency of the flow path of the gas to be treated is poor.
【0012】本発明では、上記外部電極と内部電極間に
電界を印加することにより、該ハニカム構造の外部電極
セル内を流通している気体をプラズマ励起させてガス分
解処理を行うのであるが、放電状態を安定させ、長時間
連続した処理を行うという観点から、電圧立ち上がり時
間が100μs以下、電界強度が1〜100kV/c
m、周波数が1〜100kHzであるパルス電界を印加
することが好ましい。パルス電圧波形はインパルス型、
方形パルス型、変調型、正又は負のいずれかの極性側に
電圧を印加する片波状パルス型等が挙げられ、特に限定
されない。In the present invention, a gas flowing through the external electrode cell having the honeycomb structure is plasma-excited by applying an electric field between the external electrode and the internal electrode to perform a gas decomposition process. From the viewpoint of stabilizing the discharge state and performing continuous processing for a long time, the voltage rise time is 100 μs or less, and the electric field intensity is 1 to 100 kV / c.
It is preferable to apply a pulsed electric field having a frequency of 1 to 100 kHz. The pulse voltage waveform is impulse type,
Examples thereof include a square pulse type, a modulation type, and a single wave pulse type in which a voltage is applied to either the positive or negative polarity side, and are not particularly limited.
【0013】上記パルス立ち上がり時間、電界強度、周
波数を満たすような高速パルス電界を用いることは放電
状態の安定化とガス分解効率の向上に極めて効果的であ
る。なお、ここでいう立ち上がり時間とは、電圧変化が
連続して正である時間を指すものとする。The use of a high-speed pulse electric field that satisfies the pulse rise time, electric field strength, and frequency is extremely effective in stabilizing the discharge state and improving the gas decomposition efficiency. Here, the rise time refers to a time during which the voltage change is continuously positive.
【0014】また、上記パルス電界におけるパルス継続
時間は、500μs以下であることが好ましい。500
μsを超えると放電状態が安定しにくくなる。より好ま
しくは、3μs〜200μsである。上記パルス継続時
間とは、ON、OFFの繰り返しからなるパルス電界に
おける、連続するON時間を言う。Preferably, the pulse duration in the pulse electric field is 500 μs or less. 500
If the time exceeds μs, it becomes difficult to stabilize the discharge state. More preferably, it is 3 μs to 200 μs. The pulse duration refers to a continuous ON time in a pulse electric field formed by repetition of ON and OFF.
【0015】図3に、このようなパルス電界を印加する
際の電源の等価回路図を示す。図3にSWと記されてい
るのはスイッチとして機能する半導体素子である。上記
スイッチとして500ns以下のターンオン時間及びタ
ーンオフ時間を有する半導体素子を用いることにより、
上記のような電界強度が1〜100kV/cmであり、
かつ、パルス立ち上がり時間が100μs以下であるよ
うな高電圧かつ高速のパルス電界を実現することが出来
る。FIG. 3 shows an equivalent circuit diagram of a power supply when such a pulsed electric field is applied. SW in FIG. 3 is a semiconductor element functioning as a switch. By using a semiconductor device having a turn-on time and a turn-off time of 500 ns or less as the switch,
The electric field strength as described above is 1 to 100 kV / cm,
In addition, a high-voltage and high-speed pulse electric field having a pulse rise time of 100 μs or less can be realized.
【0016】[0016]
【発明の効果】本発明ではハニカム構造の電極を採用
し、かつ、上記固体誘電体を電極間に設けることによっ
て、大量の被処理ガスに対して、省電力で安定した処理
を長時間連続して行うことが出来る。さらに、特定の周
波数で立ち上がりの早い高速パルス電界を用いることに
より、より一層放電状態が安定し、高い分解効率で安定
した処理を行うことが出来る。According to the present invention, a honeycomb-structured electrode is employed, and the solid dielectric is provided between the electrodes, so that a large amount of gas to be processed can be continuously processed for a long time with low power consumption. Can be done. Furthermore, by using a high-speed pulse electric field with a fast rise at a specific frequency, the discharge state can be further stabilized, and stable processing can be performed with high decomposition efficiency.
【0017】[0017]
【図1】 ガス分解処理装置例の斜視図FIG. 1 is a perspective view of an example of a gas decomposition processing apparatus.
【図2】 ガス分解処理装置における固体誘電体設置例
の説明図FIG. 2 is an explanatory diagram of an example of setting a solid dielectric in a gas decomposition processing apparatus.
【図3】 パルス電界を発生させる電源の等価回路図FIG. 3 is an equivalent circuit diagram of a power supply that generates a pulse electric field.
1 外部電極 2 内部電極 3 固体誘電体 4 電源 1 external electrode 2 internal electrode 3 solid dielectric 4 power supply
Claims (5)
ニカム構造のセル中央に位置する内部電極間に電界を印
加することにより、該ハニカム構造のセル内を流通して
いる気体をプラズマ励起させてガス分解処理を行う方法
であって、外部電極及び/又は内部電極の電極対向面に
固体誘電体が配設されてなることを特徴とするガス分解
処理方法。An electric field is applied between an external electrode having a honeycomb structure and an internal electrode located at the center of a cell of the honeycomb structure to excite a gas flowing in the cell of the honeycomb structure into plasma. A method for performing a gas decomposition treatment, wherein a solid dielectric is provided on an electrode facing surface of an external electrode and / or an internal electrode.
るいは、固体誘電体同士が略平行の間隔を保って対向し
ていることを特徴とする請求項1に記載のガス分解処理
方法。2. The gas decomposition treatment method according to claim 1, wherein the solid dielectric and the external electrode or the internal electrode, or the solid dielectrics face each other with a substantially parallel interval therebetween.
重量%、酸化アルミニウム50〜95重量%で混合され
た金属酸化物皮膜、又は、酸化ジルコニウムを含有する
金属酸化物皮膜であることを特徴とする請求項1又は2
に記載のガス分解処理方法。3. The method according to claim 1, wherein the solid dielectric is titanium oxide 5 to 50.
3. A metal oxide film mixed with 50% by weight of aluminum oxide and 50 to 95% by weight of aluminum oxide, or a metal oxide film containing zirconium oxide.
The gas decomposition treatment method according to 1.
り時間が100μs以下、電界強度が1〜100kV/
cm、周波数が1〜100kHzであるパルス電界を印
加することを特徴とする請求項1から3のいずれかに記
載のガス分解処理方法。4. A voltage rising time between an external electrode and an internal electrode is 100 μs or less, and an electric field intensity is 1 to 100 kV /
The gas decomposition treatment method according to any one of claims 1 to 3, wherein a pulse electric field having a frequency of 1 cm to 100 kHz is applied.
ニカム構造のセル中央に位置する内部電極と、外部電極
と内部電極間に電界を印加する電源を備え、外部電極及
び/又は内部電極の電極対向面に固体誘電体が配設され
て固体誘電体同士、あるいは固体誘電体と外部電極又は
内部電極が略平行の間隔を保って対向してなることを特
徴とするガス分解処理装置。5. An external electrode having a honeycomb structure, an internal electrode located at the center of a cell of the honeycomb structure, and a power supply for applying an electric field between the external electrode and the internal electrode, wherein the external electrode and / or the electrode of the internal electrode are provided. A gas decomposition treatment apparatus, wherein a solid dielectric is provided on an opposite surface, and the solid dielectrics face each other, or the solid dielectric and an external electrode or an internal electrode face each other with a substantially parallel interval therebetween.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9323235A JPH11156145A (en) | 1997-11-25 | 1997-11-25 | Gas decomposition disposal method and apparatus for the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9323235A JPH11156145A (en) | 1997-11-25 | 1997-11-25 | Gas decomposition disposal method and apparatus for the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11156145A true JPH11156145A (en) | 1999-06-15 |
Family
ID=18152520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9323235A Withdrawn JPH11156145A (en) | 1997-11-25 | 1997-11-25 | Gas decomposition disposal method and apparatus for the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11156145A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020023728A (en) * | 2001-12-12 | 2002-03-29 | 김기호 | the manufacturing method of the plasma occurrence unit. |
KR20020023727A (en) * | 2001-12-12 | 2002-03-29 | 김기호 | the manufacturing method of the plasma occurrence unit. |
KR20030065067A (en) * | 2002-01-29 | 2003-08-06 | 사단법인 고등기술연구원 연구조합 | A Plasma Reactor for Purifying Poisonous Gas with Dielectric Barrier Structure |
KR100517875B1 (en) * | 2002-01-30 | 2005-09-30 | 주식회사 에이치앤드티 네트웍스 | Method for generating arced plasma and apparatus for eliminating noxious material using the same |
JP2006068743A (en) * | 1999-05-06 | 2006-03-16 | Japan Science & Technology Agency | Oxidative decomposition equipment for trace hazardous substances |
CN100344860C (en) * | 2003-09-24 | 2007-10-24 | 丰田自动车株式会社 | Exhaust gas purification system |
JP2009501580A (en) * | 2005-07-20 | 2009-01-22 | アルファテック インターナショナル リミテッド | Air purifier / sterilizer |
WO2013099992A1 (en) * | 2011-12-27 | 2013-07-04 | 日本碍子株式会社 | Discharge device |
CN111217337A (en) * | 2020-03-11 | 2020-06-02 | 长沙恒辉环保科技发展有限公司 | Single-electrode double-dielectric barrier discharge low-temperature plasma ozone generating device |
CN111298974A (en) * | 2020-03-23 | 2020-06-19 | 长沙恒辉环保科技发展有限公司 | Dielectric barrier discharge's concatenation formula honeycomb electric field structure |
-
1997
- 1997-11-25 JP JP9323235A patent/JPH11156145A/en not_active Withdrawn
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006068743A (en) * | 1999-05-06 | 2006-03-16 | Japan Science & Technology Agency | Oxidative decomposition equipment for trace hazardous substances |
KR20020023728A (en) * | 2001-12-12 | 2002-03-29 | 김기호 | the manufacturing method of the plasma occurrence unit. |
KR20020023727A (en) * | 2001-12-12 | 2002-03-29 | 김기호 | the manufacturing method of the plasma occurrence unit. |
KR20030065067A (en) * | 2002-01-29 | 2003-08-06 | 사단법인 고등기술연구원 연구조합 | A Plasma Reactor for Purifying Poisonous Gas with Dielectric Barrier Structure |
KR100517875B1 (en) * | 2002-01-30 | 2005-09-30 | 주식회사 에이치앤드티 네트웍스 | Method for generating arced plasma and apparatus for eliminating noxious material using the same |
CN100344860C (en) * | 2003-09-24 | 2007-10-24 | 丰田自动车株式会社 | Exhaust gas purification system |
JP2009501580A (en) * | 2005-07-20 | 2009-01-22 | アルファテック インターナショナル リミテッド | Air purifier / sterilizer |
KR101433955B1 (en) * | 2005-07-20 | 2014-08-25 | 알파테크 인터내셔널 리미티드 | Devices for air purification and sterilizing |
WO2013099992A1 (en) * | 2011-12-27 | 2013-07-04 | 日本碍子株式会社 | Discharge device |
JP2013138008A (en) * | 2011-12-27 | 2013-07-11 | Ngk Insulators Ltd | Discharge device |
CN111217337A (en) * | 2020-03-11 | 2020-06-02 | 长沙恒辉环保科技发展有限公司 | Single-electrode double-dielectric barrier discharge low-temperature plasma ozone generating device |
CN111217337B (en) * | 2020-03-11 | 2023-01-17 | 长沙恒辉环保科技发展有限公司 | Single-electrode double-dielectric barrier discharge low-temperature plasma ozone generating device |
CN111298974A (en) * | 2020-03-23 | 2020-06-19 | 长沙恒辉环保科技发展有限公司 | Dielectric barrier discharge's concatenation formula honeycomb electric field structure |
CN111298974B (en) * | 2020-03-23 | 2022-06-24 | 长沙恒辉环保科技发展有限公司 | Dielectric barrier discharge's concatenation formula honeycomb electric field structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1441577A1 (en) | Plasma processing device and plasma processing method | |
JPH11156145A (en) | Gas decomposition disposal method and apparatus for the same | |
RU2139753C1 (en) | Method for radiation by electron beams | |
JP2001087620A (en) | Method and apparatus for treating substance | |
JP2002151295A (en) | Discharge generating device | |
KR950026545A (en) | Exhaust gas treatment method and apparatus | |
JPH11169645A (en) | Gas decomposing method | |
JP2001276561A (en) | Discharge apparatus equipped with honeycomb structure | |
JP2001314748A (en) | Plasma reactor | |
US6156162A (en) | Power supply for dielectric barrier discharge plasma | |
JPH1193644A (en) | Corona generating device | |
JP2001038138A (en) | Method and device for treating material | |
JP4026538B2 (en) | Plasma processing method and plasma processing apparatus | |
JPH1160759A (en) | Corona discharge treatment | |
JP3333110B2 (en) | Surface treatment method using discharge plasma | |
CA2058402A1 (en) | Discharge excitation gas laser device | |
US20050274599A1 (en) | Gas treating method and apparatus | |
JP3773510B2 (en) | Discharge plasma processing method and discharge plasma processing apparatus | |
JPH10340797A (en) | Discharge plasma treatment method | |
JP2003275541A (en) | Plasma device and control method therefor | |
JPH09192451A (en) | Nitrogen and sulfur oxides treating device | |
Czech et al. | Pulsed and DC Streamer Corona Induced Plasmas for NOx Removal From Exhaust Gases | |
JP2002173779A (en) | Atmospheric pressure plasma gas nozzle body | |
JP2002320844A (en) | Method for decomposing waste gas | |
Pokryvailo et al. | Investigation of electrical parameters and chemical activity of high-power short pulsed corona discharge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051130 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20051227 |