[go: up one dir, main page]

JPH11156145A - Gas decomposition disposal method and apparatus for the same - Google Patents

Gas decomposition disposal method and apparatus for the same

Info

Publication number
JPH11156145A
JPH11156145A JP9323235A JP32323597A JPH11156145A JP H11156145 A JPH11156145 A JP H11156145A JP 9323235 A JP9323235 A JP 9323235A JP 32323597 A JP32323597 A JP 32323597A JP H11156145 A JPH11156145 A JP H11156145A
Authority
JP
Japan
Prior art keywords
electrode
internal electrode
honeycomb structure
solid dielectric
external electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9323235A
Other languages
Japanese (ja)
Inventor
Takuya Yara
卓也 屋良
Hiromi Komatsu
裕美 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP9323235A priority Critical patent/JPH11156145A/en
Publication of JPH11156145A publication Critical patent/JPH11156145A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas decomposition disposal method and apparatus wherein decomposition efficiency is improved by maintaining stable discharge with a low power. SOLUTION: In a method of effecting gas decomposition disposal by applying electric field between an external electrode 1 having a honeycomb structure and an internal electrode 2 located at a center of a cell of the honeycomb structure in order that a gas flowing through the cell of the honeycomb structure undergo plasma excitation, a solid dielectric 3 is disposed on an electrode- opposite face of the outer electrode 1 and/or the internal electrode 2. The solid dielectric 3 is a metal oxide film made of a mixture of 5-50 wt.% of titanium oxide and 50-95 wt.% of aluminum oxide or a metal oxide film containing zirconium oxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、窒素酸化物、硫黄
酸化物、揮発性有機化合物等の有害ガスをプラズマ励起
させて分解処理する、ガス分解処理方法及びその装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for decomposing a harmful gas such as nitrogen oxides, sulfur oxides, volatile organic compounds and the like by plasma excitation.

【0002】[0002]

【従来の技術】近年環境配慮の声が高まり、窒素酸化
物、硫黄酸化物、揮発性有機化合物等の有害ガスを分解
処理する方法が多数提案されている。特にコロナ放電、
プラズマ放電等を利用して有害ガスを分解する技術は、
クリ−ンで低濃度の有害ガスにも対応できるものとして
注目されている。一方、上記放電を利用した処理方法
は、高いエネルギ−を投入する必要があり、処理効率の
向上と投入電力のバランスが実用化の鍵となっていた。
2. Description of the Related Art In recent years, environmental concerns have been raised, and many methods for decomposing harmful gases such as nitrogen oxides, sulfur oxides, and volatile organic compounds have been proposed. Especially corona discharge,
The technology to decompose harmful gas using plasma discharge etc.
It is attracting attention as being clean and capable of coping with low-concentration harmful gases. On the other hand, the above-described processing method using discharge requires input of high energy, and the improvement of processing efficiency and the balance of input power have been the keys to practical application.

【0003】例えば、特開平7−26562号にハニカ
ム状電極とワイヤ型電極を組み合わせて用いる方法が、
特開平2−115024号に固体誘電体を用いる技術が
開示されている。しかし、まだ低電力化と処理効率に改
善の必要があった。
[0003] For example, Japanese Patent Application Laid-Open No. 7-26562 discloses a method using a combination of a honeycomb electrode and a wire electrode.
Japanese Patent Application Laid-Open No. HEI 2-15024 discloses a technique using a solid dielectric. However, there was still a need to reduce power consumption and improve processing efficiency.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記問題を
鑑み、低電力で安定した放電を維持することにより分解
効率が改善されたガス分解処理方法及びその装置を提供
する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and provides a gas decomposition treatment method and apparatus for improving the decomposition efficiency by maintaining stable discharge at low power.

【0005】[0005]

【課題を解決するための手段】本発明のガス分解処理方
法は、ハニカム構造を有する外部電極と、該ハニカム構
造のセル中央に位置する内部電極間に電界を印加するこ
とにより、該ハニカム構造のセル内を流通している気体
をプラズマ励起させてガス分解処理を行う方法であっ
て、外部電極及び/又は内部電極の電極対向面に固体誘
電体が配設されてなることを特徴とする。
According to the gas decomposition treatment method of the present invention, an electric field is applied between an external electrode having a honeycomb structure and an internal electrode located at the center of a cell of the honeycomb structure, whereby the honeycomb structure is formed. A method for performing gas decomposition treatment by exciting a gas flowing in a cell by plasma, characterized in that a solid dielectric is disposed on an electrode facing surface of an external electrode and / or an internal electrode.

【0006】上記外部電極と内部電極は通常の金属から
なるものを使用できる。外部電極は一般にハニカム構造
と呼ばれているものであり、代表的なものとしては断面
正六角形の角筒体が複数組み合わされてなるものが挙げ
られる。内部電極は外部電極がなすハニカム構造のセル
中央に位置すればよく、表面に凹凸のない方が好まし
い。外部電極に沿った形状の内部電極、すなわち正六角
形の角筒体セルの中央に六角形の角柱体の内部電極を位
置させてもよい。
The external electrodes and the internal electrodes can be made of ordinary metals. The external electrode is generally called a honeycomb structure, and a typical example is a combination of a plurality of rectangular cylinders having a regular hexagonal cross section. The internal electrode may be located at the center of the cell of the honeycomb structure formed by the external electrode, and preferably has no irregularities on the surface. An internal electrode shaped along the external electrode, that is, an internal electrode of a hexagonal prism may be located at the center of a regular hexagonal prismatic cell.

【0007】上記固体誘電体は、上記外部電極及び内部
電極の双方の電極対向面、あるいは外部電極又は内部電
極のいずれか一方の電極対向面に配設されてなる。双方
の対向面に配設した方が好ましい。また、双方の対向面
に配設された場合は固体誘電体同士の間隔が、一方の対
向面に配設された場合は電極と固体誘電体の間の間隔が
略平行になるようにすることがより好ましい。
[0007] The solid dielectric is disposed on the electrode-facing surface of both the external electrode and the internal electrode, or on either electrode surface of the external electrode or the internal electrode. It is preferable to dispose them on both opposing surfaces. In addition, when disposed on both opposing surfaces, the distance between the solid dielectrics should be substantially parallel, and when disposed on one opposing surface, the distance between the electrodes and the solid dielectric should be substantially parallel. Is more preferred.

【0008】上記固体誘電体としては、ポリテトラフル
オロエチレン、ポリエチレンテレフタレート等のプラス
チック、ガラス、二酸化珪素、酸化アルミニウム、二酸
化ジルコニウム、二酸化チタン等の金属酸化物、チタン
酸バリウム等の複酸化物等が挙げられる。
Examples of the solid dielectric include plastics such as polytetrafluoroethylene and polyethylene terephthalate, glass, metal oxides such as silicon dioxide, aluminum oxide, zirconium dioxide and titanium dioxide, and double oxides such as barium titanate. No.

【0009】また、上記固体誘電体は、比誘電率(25
°C環境下、以下同)が2以上であることが好ましく、
より好ましくは10以上である。特に好ましい例とし
て、酸化チタニウム5〜50重量%、酸化アルミニウム
50〜95重量%で混合された金属酸化物皮膜、又は、
酸化ジルコニウムを含有する金属酸化物皮膜が挙げられ
る。上記被膜の厚みは10〜1000μmであるものが
好ましい。
The solid dielectric has a relative dielectric constant (25).
° C environment, the same applies hereinafter) is preferably 2 or more,
More preferably, it is 10 or more. As a particularly preferred example, a metal oxide film mixed with 5 to 50% by weight of titanium oxide and 50 to 95% by weight of aluminum oxide, or
A metal oxide film containing zirconium oxide may be used. The thickness of the coating is preferably from 10 to 1000 μm.

【0010】[0010]

【実施の態様】図1は本発明の装置例の斜視図である。
被処理ガスは図に示した方向に流れ、ハニカムセル内を
通る間にプラズマ励起され、無害な形態あるいは捕集さ
れやすい形態に変換される。本発明の装置中に、アンモ
ニア、石灰等の脱硝脱硫剤、固定化剤を吹き込んだり、
本発明の装置の流路の先にバグフィルタ−を設ける等の
公知の手段により有害ガスを固定化することが出来る。
FIG. 1 is a perspective view of an apparatus according to the present invention.
The gas to be processed flows in the direction shown in the figure, is plasma-excited while passing through the inside of the honeycomb cell, and is converted into a harmless form or a form easily collected. In the apparatus of the present invention, ammonia, a denitrifying desulfurizing agent such as lime, or blowing a fixing agent,
The harmful gas can be fixed by known means such as providing a bag filter at the end of the flow path of the apparatus of the present invention.

【0011】図2は固体誘電体の設置例の図である。図
2(a)は内部電極2にのみ固体誘電体3を設置した
例、図2(b)は外部電極1と内部電極2の双方を固体
誘電体3によって被覆した例である。図中lで示した電
極と固体誘電体又は固体誘電体同士がなす対向面の間隔
は5〜30mmが好ましい。5mm未満では被処理ガス
の流路として効率的が悪く、30mmを超えると長時間
安定化した放電状態を維持しにくく、省電力化の観点か
らも好ましくない。
FIG. 2 is a diagram showing an example of installation of a solid dielectric. 2A shows an example in which the solid dielectric 3 is provided only on the internal electrode 2, and FIG. 2B shows an example in which both the external electrode 1 and the internal electrode 2 are covered with the solid dielectric 3. The distance between the electrode indicated by l in the figure and the opposing surface formed by the solid dielectric or the solid dielectric is preferably 5 to 30 mm. If it is less than 5 mm, the efficiency of the flow path of the gas to be treated is poor.

【0012】本発明では、上記外部電極と内部電極間に
電界を印加することにより、該ハニカム構造の外部電極
セル内を流通している気体をプラズマ励起させてガス分
解処理を行うのであるが、放電状態を安定させ、長時間
連続した処理を行うという観点から、電圧立ち上がり時
間が100μs以下、電界強度が1〜100kV/c
m、周波数が1〜100kHzであるパルス電界を印加
することが好ましい。パルス電圧波形はインパルス型、
方形パルス型、変調型、正又は負のいずれかの極性側に
電圧を印加する片波状パルス型等が挙げられ、特に限定
されない。
In the present invention, a gas flowing through the external electrode cell having the honeycomb structure is plasma-excited by applying an electric field between the external electrode and the internal electrode to perform a gas decomposition process. From the viewpoint of stabilizing the discharge state and performing continuous processing for a long time, the voltage rise time is 100 μs or less, and the electric field intensity is 1 to 100 kV / c.
It is preferable to apply a pulsed electric field having a frequency of 1 to 100 kHz. The pulse voltage waveform is impulse type,
Examples thereof include a square pulse type, a modulation type, and a single wave pulse type in which a voltage is applied to either the positive or negative polarity side, and are not particularly limited.

【0013】上記パルス立ち上がり時間、電界強度、周
波数を満たすような高速パルス電界を用いることは放電
状態の安定化とガス分解効率の向上に極めて効果的であ
る。なお、ここでいう立ち上がり時間とは、電圧変化が
連続して正である時間を指すものとする。
The use of a high-speed pulse electric field that satisfies the pulse rise time, electric field strength, and frequency is extremely effective in stabilizing the discharge state and improving the gas decomposition efficiency. Here, the rise time refers to a time during which the voltage change is continuously positive.

【0014】また、上記パルス電界におけるパルス継続
時間は、500μs以下であることが好ましい。500
μsを超えると放電状態が安定しにくくなる。より好ま
しくは、3μs〜200μsである。上記パルス継続時
間とは、ON、OFFの繰り返しからなるパルス電界に
おける、連続するON時間を言う。
Preferably, the pulse duration in the pulse electric field is 500 μs or less. 500
If the time exceeds μs, it becomes difficult to stabilize the discharge state. More preferably, it is 3 μs to 200 μs. The pulse duration refers to a continuous ON time in a pulse electric field formed by repetition of ON and OFF.

【0015】図3に、このようなパルス電界を印加する
際の電源の等価回路図を示す。図3にSWと記されてい
るのはスイッチとして機能する半導体素子である。上記
スイッチとして500ns以下のターンオン時間及びタ
ーンオフ時間を有する半導体素子を用いることにより、
上記のような電界強度が1〜100kV/cmであり、
かつ、パルス立ち上がり時間が100μs以下であるよ
うな高電圧かつ高速のパルス電界を実現することが出来
る。
FIG. 3 shows an equivalent circuit diagram of a power supply when such a pulsed electric field is applied. SW in FIG. 3 is a semiconductor element functioning as a switch. By using a semiconductor device having a turn-on time and a turn-off time of 500 ns or less as the switch,
The electric field strength as described above is 1 to 100 kV / cm,
In addition, a high-voltage and high-speed pulse electric field having a pulse rise time of 100 μs or less can be realized.

【0016】[0016]

【発明の効果】本発明ではハニカム構造の電極を採用
し、かつ、上記固体誘電体を電極間に設けることによっ
て、大量の被処理ガスに対して、省電力で安定した処理
を長時間連続して行うことが出来る。さらに、特定の周
波数で立ち上がりの早い高速パルス電界を用いることに
より、より一層放電状態が安定し、高い分解効率で安定
した処理を行うことが出来る。
According to the present invention, a honeycomb-structured electrode is employed, and the solid dielectric is provided between the electrodes, so that a large amount of gas to be processed can be continuously processed for a long time with low power consumption. Can be done. Furthermore, by using a high-speed pulse electric field with a fast rise at a specific frequency, the discharge state can be further stabilized, and stable processing can be performed with high decomposition efficiency.

【0017】[0017]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 ガス分解処理装置例の斜視図FIG. 1 is a perspective view of an example of a gas decomposition processing apparatus.

【図2】 ガス分解処理装置における固体誘電体設置例
の説明図
FIG. 2 is an explanatory diagram of an example of setting a solid dielectric in a gas decomposition processing apparatus.

【図3】 パルス電界を発生させる電源の等価回路図FIG. 3 is an equivalent circuit diagram of a power supply that generates a pulse electric field.

【符号の説明】[Explanation of symbols]

1 外部電極 2 内部電極 3 固体誘電体 4 電源 1 external electrode 2 internal electrode 3 solid dielectric 4 power supply

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ハニカム構造を有する外部電極と、該ハ
ニカム構造のセル中央に位置する内部電極間に電界を印
加することにより、該ハニカム構造のセル内を流通して
いる気体をプラズマ励起させてガス分解処理を行う方法
であって、外部電極及び/又は内部電極の電極対向面に
固体誘電体が配設されてなることを特徴とするガス分解
処理方法。
An electric field is applied between an external electrode having a honeycomb structure and an internal electrode located at the center of a cell of the honeycomb structure to excite a gas flowing in the cell of the honeycomb structure into plasma. A method for performing a gas decomposition treatment, wherein a solid dielectric is provided on an electrode facing surface of an external electrode and / or an internal electrode.
【請求項2】 固体誘電体と外部電極又は内部電極、あ
るいは、固体誘電体同士が略平行の間隔を保って対向し
ていることを特徴とする請求項1に記載のガス分解処理
方法。
2. The gas decomposition treatment method according to claim 1, wherein the solid dielectric and the external electrode or the internal electrode, or the solid dielectrics face each other with a substantially parallel interval therebetween.
【請求項3】 固体誘電体が、酸化チタニウム5〜50
重量%、酸化アルミニウム50〜95重量%で混合され
た金属酸化物皮膜、又は、酸化ジルコニウムを含有する
金属酸化物皮膜であることを特徴とする請求項1又は2
に記載のガス分解処理方法。
3. The method according to claim 1, wherein the solid dielectric is titanium oxide 5 to 50.
3. A metal oxide film mixed with 50% by weight of aluminum oxide and 50 to 95% by weight of aluminum oxide, or a metal oxide film containing zirconium oxide.
The gas decomposition treatment method according to 1.
【請求項4】 外部電極と内部電極間に、電圧立ち上が
り時間が100μs以下、電界強度が1〜100kV/
cm、周波数が1〜100kHzであるパルス電界を印
加することを特徴とする請求項1から3のいずれかに記
載のガス分解処理方法。
4. A voltage rising time between an external electrode and an internal electrode is 100 μs or less, and an electric field intensity is 1 to 100 kV /
The gas decomposition treatment method according to any one of claims 1 to 3, wherein a pulse electric field having a frequency of 1 cm to 100 kHz is applied.
【請求項5】 ハニカム構造を有する外部電極と、該ハ
ニカム構造のセル中央に位置する内部電極と、外部電極
と内部電極間に電界を印加する電源を備え、外部電極及
び/又は内部電極の電極対向面に固体誘電体が配設され
て固体誘電体同士、あるいは固体誘電体と外部電極又は
内部電極が略平行の間隔を保って対向してなることを特
徴とするガス分解処理装置。
5. An external electrode having a honeycomb structure, an internal electrode located at the center of a cell of the honeycomb structure, and a power supply for applying an electric field between the external electrode and the internal electrode, wherein the external electrode and / or the electrode of the internal electrode are provided. A gas decomposition treatment apparatus, wherein a solid dielectric is provided on an opposite surface, and the solid dielectrics face each other, or the solid dielectric and an external electrode or an internal electrode face each other with a substantially parallel interval therebetween.
JP9323235A 1997-11-25 1997-11-25 Gas decomposition disposal method and apparatus for the same Withdrawn JPH11156145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9323235A JPH11156145A (en) 1997-11-25 1997-11-25 Gas decomposition disposal method and apparatus for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9323235A JPH11156145A (en) 1997-11-25 1997-11-25 Gas decomposition disposal method and apparatus for the same

Publications (1)

Publication Number Publication Date
JPH11156145A true JPH11156145A (en) 1999-06-15

Family

ID=18152520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9323235A Withdrawn JPH11156145A (en) 1997-11-25 1997-11-25 Gas decomposition disposal method and apparatus for the same

Country Status (1)

Country Link
JP (1) JPH11156145A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020023728A (en) * 2001-12-12 2002-03-29 김기호 the manufacturing method of the plasma occurrence unit.
KR20020023727A (en) * 2001-12-12 2002-03-29 김기호 the manufacturing method of the plasma occurrence unit.
KR20030065067A (en) * 2002-01-29 2003-08-06 사단법인 고등기술연구원 연구조합 A Plasma Reactor for Purifying Poisonous Gas with Dielectric Barrier Structure
KR100517875B1 (en) * 2002-01-30 2005-09-30 주식회사 에이치앤드티 네트웍스 Method for generating arced plasma and apparatus for eliminating noxious material using the same
JP2006068743A (en) * 1999-05-06 2006-03-16 Japan Science & Technology Agency Oxidative decomposition equipment for trace hazardous substances
CN100344860C (en) * 2003-09-24 2007-10-24 丰田自动车株式会社 Exhaust gas purification system
JP2009501580A (en) * 2005-07-20 2009-01-22 アルファテック インターナショナル リミテッド Air purifier / sterilizer
WO2013099992A1 (en) * 2011-12-27 2013-07-04 日本碍子株式会社 Discharge device
CN111217337A (en) * 2020-03-11 2020-06-02 长沙恒辉环保科技发展有限公司 Single-electrode double-dielectric barrier discharge low-temperature plasma ozone generating device
CN111298974A (en) * 2020-03-23 2020-06-19 长沙恒辉环保科技发展有限公司 Dielectric barrier discharge's concatenation formula honeycomb electric field structure

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068743A (en) * 1999-05-06 2006-03-16 Japan Science & Technology Agency Oxidative decomposition equipment for trace hazardous substances
KR20020023728A (en) * 2001-12-12 2002-03-29 김기호 the manufacturing method of the plasma occurrence unit.
KR20020023727A (en) * 2001-12-12 2002-03-29 김기호 the manufacturing method of the plasma occurrence unit.
KR20030065067A (en) * 2002-01-29 2003-08-06 사단법인 고등기술연구원 연구조합 A Plasma Reactor for Purifying Poisonous Gas with Dielectric Barrier Structure
KR100517875B1 (en) * 2002-01-30 2005-09-30 주식회사 에이치앤드티 네트웍스 Method for generating arced plasma and apparatus for eliminating noxious material using the same
CN100344860C (en) * 2003-09-24 2007-10-24 丰田自动车株式会社 Exhaust gas purification system
JP2009501580A (en) * 2005-07-20 2009-01-22 アルファテック インターナショナル リミテッド Air purifier / sterilizer
KR101433955B1 (en) * 2005-07-20 2014-08-25 알파테크 인터내셔널 리미티드 Devices for air purification and sterilizing
WO2013099992A1 (en) * 2011-12-27 2013-07-04 日本碍子株式会社 Discharge device
JP2013138008A (en) * 2011-12-27 2013-07-11 Ngk Insulators Ltd Discharge device
CN111217337A (en) * 2020-03-11 2020-06-02 长沙恒辉环保科技发展有限公司 Single-electrode double-dielectric barrier discharge low-temperature plasma ozone generating device
CN111217337B (en) * 2020-03-11 2023-01-17 长沙恒辉环保科技发展有限公司 Single-electrode double-dielectric barrier discharge low-temperature plasma ozone generating device
CN111298974A (en) * 2020-03-23 2020-06-19 长沙恒辉环保科技发展有限公司 Dielectric barrier discharge's concatenation formula honeycomb electric field structure
CN111298974B (en) * 2020-03-23 2022-06-24 长沙恒辉环保科技发展有限公司 Dielectric barrier discharge's concatenation formula honeycomb electric field structure

Similar Documents

Publication Publication Date Title
EP1441577A1 (en) Plasma processing device and plasma processing method
JPH11156145A (en) Gas decomposition disposal method and apparatus for the same
RU2139753C1 (en) Method for radiation by electron beams
JP2001087620A (en) Method and apparatus for treating substance
JP2002151295A (en) Discharge generating device
KR950026545A (en) Exhaust gas treatment method and apparatus
JPH11169645A (en) Gas decomposing method
JP2001276561A (en) Discharge apparatus equipped with honeycomb structure
JP2001314748A (en) Plasma reactor
US6156162A (en) Power supply for dielectric barrier discharge plasma
JPH1193644A (en) Corona generating device
JP2001038138A (en) Method and device for treating material
JP4026538B2 (en) Plasma processing method and plasma processing apparatus
JPH1160759A (en) Corona discharge treatment
JP3333110B2 (en) Surface treatment method using discharge plasma
CA2058402A1 (en) Discharge excitation gas laser device
US20050274599A1 (en) Gas treating method and apparatus
JP3773510B2 (en) Discharge plasma processing method and discharge plasma processing apparatus
JPH10340797A (en) Discharge plasma treatment method
JP2003275541A (en) Plasma device and control method therefor
JPH09192451A (en) Nitrogen and sulfur oxides treating device
Czech et al. Pulsed and DC Streamer Corona Induced Plasmas for NOx Removal From Exhaust Gases
JP2002173779A (en) Atmospheric pressure plasma gas nozzle body
JP2002320844A (en) Method for decomposing waste gas
Pokryvailo et al. Investigation of electrical parameters and chemical activity of high-power short pulsed corona discharge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051130

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20051227