JPH11151432A - Agitating device - Google Patents
Agitating deviceInfo
- Publication number
- JPH11151432A JPH11151432A JP31865797A JP31865797A JPH11151432A JP H11151432 A JPH11151432 A JP H11151432A JP 31865797 A JP31865797 A JP 31865797A JP 31865797 A JP31865797 A JP 31865797A JP H11151432 A JPH11151432 A JP H11151432A
- Authority
- JP
- Japan
- Prior art keywords
- helical ribbon
- stirring
- blade
- gas
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000003756 stirring Methods 0.000 claims description 86
- 239000012071 phase Substances 0.000 claims description 10
- 239000007791 liquid phase Substances 0.000 claims description 4
- 238000010521 absorption reaction Methods 0.000 abstract description 16
- 230000000694 effects Effects 0.000 abstract description 6
- 238000013019 agitation Methods 0.000 abstract description 3
- 238000006243 chemical reaction Methods 0.000 description 57
- 239000007788 liquid Substances 0.000 description 32
- 239000002002 slurry Substances 0.000 description 21
- 239000007789 gas Substances 0.000 description 19
- 239000007787 solid Substances 0.000 description 18
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 8
- 238000004804 winding Methods 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 239000000178 monomer Substances 0.000 description 5
- 229910000365 copper sulfate Inorganic materials 0.000 description 4
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 235000010265 sodium sulphite Nutrition 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000003505 polymerization initiator Substances 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 2
- XJSRKJAHJGCPGC-UHFFFAOYSA-N 1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluorohexane Chemical compound FC(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F XJSRKJAHJGCPGC-UHFFFAOYSA-N 0.000 description 1
- NSYCJGRIGHDEMT-UHFFFAOYSA-N 1,1,1,2,2,3,3,4,4-nonafluoro-4-(1,1,2,2,3,3,4,4,4-nonafluorobutylperoxy)butane Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)OOC(F)(F)C(F)(F)C(F)(F)C(F)(F)F NSYCJGRIGHDEMT-UHFFFAOYSA-N 0.000 description 1
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- GVEUEBXMTMZVSD-UHFFFAOYSA-N 3,3,4,4,5,5,6,6,6-nonafluorohex-1-ene Chemical group FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C=C GVEUEBXMTMZVSD-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical group FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical compound FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229960004624 perflexane Drugs 0.000 description 1
- ZJIJAJXFLBMLCK-UHFFFAOYSA-N perfluorohexane Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F ZJIJAJXFLBMLCK-UHFFFAOYSA-N 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/18—Stationary reactors having moving elements inside
- B01J19/20—Stationary reactors having moving elements inside in the form of helices, e.g. screw reactors
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Mixers Of The Rotary Stirring Type (AREA)
- Polymerisation Methods In General (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、撹拌槽内において
気液界面からガス吸収を伴い、変化する粘度範囲が大き
い液体を撹拌するために適した撹拌装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stirrer suitable for stirring a liquid having a large range of changing viscosity with gas absorption from a gas-liquid interface in a stirring tank.
【0002】[0002]
【従来の技術】撹拌槽内において気液界面からガス吸収
を伴う撹拌装置においては、一般に気液界面からのガス
吸収速度を向上させるために、バッフルを取り付けるこ
とが多い。低粘度流体ではバッフル設置で対応できる
が、例えば数千cP程度の中粘度およびそれ以上の高粘
度の液体に対して気液界面の更新が効率的に行われない
ために、ガス吸収速度が極端に遅くなっていた。そのう
え、バッフルによる滞留部が存在しやすい問題もあっ
た。このため、例えば重合反応を伴う撹拌においては、
分子量分布が広い重合体が生成する問題があった。2. Description of the Related Art A stirrer in which gas is absorbed from a gas-liquid interface in a stirring tank is generally provided with a baffle in order to improve the gas absorption speed from the gas-liquid interface. Baffles can be used for low-viscosity fluids, but the gas-liquid interface is not efficiently updated for liquids with medium viscosities of about several thousand cP and high viscosities higher than that, so the gas absorption rate is extremely high. Was late. In addition, there is also a problem that a staying portion due to the baffle is likely to exist. For this reason, for example, in stirring involving a polymerization reaction,
There was a problem that a polymer having a wide molecular weight distribution was formed.
【0003】[0003]
【発明が解決しようとする課題】本発明の目的は、上記
問題点を解消して気液界面からのガス吸収速度を向上さ
せ、かつ撹拌槽内での均一な撹拌、混合を行うための撹
拌装置の提供にある。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, improve the gas absorption rate from the gas-liquid interface, and stir for uniform stirring and mixing in a stirring tank. In providing the equipment.
【0004】[0004]
【課題を解決するための手段】本発明は、1条または複
数条のヘリカルリボン翼を固定した撹拌軸が垂直に撹拌
槽に設置された撹拌装置において、そのヘリカルリボン
翼の下部が液相部に、上部が気相部に存在して撹拌、混
合するようにされていることを特徴とする撹拌装置を提
供する。According to the present invention, there is provided a stirring apparatus having a stirring shaft having one or more helical ribbon blades fixed thereto and vertically installed in a stirring tank. In addition, there is provided a stirrer characterized in that an upper part is present in a gas phase part and is stirred and mixed.
【0005】また、ヘリカルリボン翼の気相部に存在す
る部分の高さのヘリカルリボン翼全高さに対する比率が
0.05〜0.5である上記撹拌装置を提供する。ま
た、ヘリカルリボン翼の垂直方向の断面において、撹拌
軸と垂直方向に対するヘリカルリボン翼の撹拌軸から撹
拌槽壁への傾斜角度が5〜45度である上記撹拌装置を
提供する。また、ヘリカルリボン翼がスクレイパーを有
し、そのスクレイパーがヘリカルリボン翼の外周に沿わ
せるように、または撹拌軸に平行になるように設けられ
ている上記撹拌装置を提供する。[0005] Further, the present invention provides the above stirring device, wherein a ratio of a height of a portion existing in a gas phase portion of the helical ribbon blade to a total height of the helical ribbon blade is 0.05 to 0.5. Further, the present invention provides the above stirrer, wherein in a vertical cross section of the helical ribbon blade, an inclination angle from the stirring axis of the helical ribbon blade to a stirring tank wall with respect to a direction perpendicular to the stirring axis is 5 to 45 degrees. Further, the present invention provides the above stirring device, wherein the helical ribbon blade has a scraper, and the scraper is provided along the outer periphery of the helical ribbon blade or parallel to the stirring axis.
【0006】[0006]
【発明の実施の形態】本発明の撹拌装置の一例を図1に
示す。図1に示すように、ヘリカルリボン翼4の下部が
気液界面6より下部の液相部7に、上部が気液界面6よ
り上部の気相部8に存在するように設置している。FIG. 1 shows an example of a stirring device according to the present invention. As shown in FIG. 1, the helical ribbon blade 4 is installed so that the lower part is present in the liquid phase part 7 below the gas-liquid interface 6 and the upper part is in the gas phase part 8 above the gas-liquid interface 6.
【0007】このヘリカルリボン翼4は支持棒2を介し
て撹拌軸1に取り付けられている。図1の例では、2条
のヘリカルリボン翼4が設けられているが、1条のみま
たは3条以上からなるヘリカルリボン翼が設けられてい
てもよい。通常は、2条または1条のヘリカルリボン翼
が好ましい。[0007] The helical ribbon blade 4 is attached to the stirring shaft 1 via the support rod 2. In the example of FIG. 1, two helical ribbon blades 4 are provided, but a single helical ribbon blade or three or more helical ribbon blades may be provided. Usually, two or one helical ribbon blades are preferred.
【0008】図1において、Dは撹拌槽径、dはヘリカ
ルリボン翼の翼径、hはヘリカルリボン翼の翼高、h1
はヘリカルリボン翼の翼ピッチ、h2 は気相部に存在す
るヘリカルリボン翼部分の高さ、d1 はヘリカルリボン
翼の翼幅を示す。In FIG. 1, D is the diameter of the stirring tank, d is the blade diameter of the helical ribbon blade, h is the blade height of the helical ribbon blade, h 1
The blade pitch of the helical ribbon blade, h 2 is the helical ribbon blade part existing gas phase height, d 1 denotes the wingspan of the helical ribbon impeller.
【0009】ヘリカルリボン翼4は、その下端部を支持
棒2を介して撹拌軸1に固定されているが、一般的に撹
拌装置のスケールアップ等による撹拌翼のぶれ対策とし
て、例えばヘリカルリボン翼の上部にも支持棒を設ける
等により複数の位置で撹拌軸に固定できる。The lower end of the helical ribbon blade 4 is fixed to the stirring shaft 1 via the support rod 2. In general, for example, the helical ribbon blade 4 is used as a measure against the movement of the stirring blade due to scale-up of the stirring device. It can be fixed to the stirring shaft at a plurality of positions, for example, by providing a support bar also on the upper part.
【0010】本発明において、ヘリカルリボン翼の上部
が気相部に存在するように設置する。ヘリカルリボン翼
の気相部に存在する部分の高さh2 のヘリカルリボン翼
全高さhに対する比率h2 /hは、気液の接触面積を大
きくするために、0.05〜0.5が好ましく、0.0
8〜0.4が特に好ましい。h2 /hとして、撹拌、混
合のない静止状態における値を用いることが好ましい。
この状態における値は、撹拌、混合中においても、変化
する粘度範囲の大きい液体に対して好ましく、良好な撹
拌効果を有する。[0010] In the present invention, the helical ribbon blade is installed so that the upper portion is present in the gas phase. The ratio h 2 / h of the height h 2 of the portion present in the gas phase portion of the helical ribbon blade to the total height h of the helical ribbon blade is 0.05 to 0.5 in order to increase the gas-liquid contact area. Preferably, 0.0
8-0.4 is particularly preferred. As h 2 / h, agitation, it is preferable to use the value in the mixture without rest.
The value in this state is preferable for a liquid having a large viscosity range that changes even during stirring and mixing, and has a good stirring effect.
【0011】本発明において、ヘリカルリボン翼の回転
方向は、ヘリカルリボン翼により上方に液体を搬送する
方向が好ましい。ヘリカルリボン翼に撹拌軸から撹拌槽
壁へ傾斜角度をつけることにより、さらにガス吸収の効
果が促進される。In the present invention, the rotation direction of the helical ribbon blade is preferably such that the liquid is transported upward by the helical ribbon blade. By giving the helical ribbon blade an inclination angle from the stirring shaft to the stirring tank wall, the effect of gas absorption is further promoted.
【0012】図2に、傾斜角度を有するヘリカルリボン
翼を示す。傾斜角度(θ)はヘリカルリボン翼の垂直方
向の断面において、撹拌軸と垂直方向に対するヘリカル
リボン翼の撹拌軸から撹拌槽壁への傾斜角度である。ヘ
リカルリボン翼の傾斜角度θが5〜45度の場合ガス吸
収の効果が高いが、中粘度以上の液体において気液の接
触時間を確保するために、特に10〜30度が好まし
い。FIG. 2 shows a helical ribbon blade having an inclined angle. The inclination angle (θ) is the inclination angle from the stirring axis of the helical ribbon blade to the stirring tank wall with respect to the direction perpendicular to the stirring axis in the vertical cross section of the helical ribbon blade. When the inclination angle θ of the helical ribbon blade is 5 to 45 degrees, the effect of gas absorption is high.
【0013】傾斜角度を有するヘリカルリボン翼を液体
をかき上げる方向に回転することにより、気液界面部に
おける上方への液体の搬送と、かき上げられた液体の落
下すなわち液だれは、気液の接触を良好にする効果を有
する。By rotating the helical ribbon blade having an inclined angle in a direction to lift up the liquid, the upward transfer of the liquid at the gas-liquid interface and the drop of the lifted liquid, that is, the dripping of the liquid, is caused. It has the effect of improving the contact.
【0014】図1では、スクレイパー3を翼の外周に沿
わせて設置した場合を示したが、スクレイパーを設置せ
ずに使用することもできる。図3に示したように、スク
レイパーを撹拌軸に平行に、かつ撹拌槽壁に接触して設
置することもできる。FIG. 1 shows a case where the scraper 3 is installed along the outer periphery of the wing, but the scraper 3 can be used without installing the scraper. As shown in FIG. 3, a scraper can be installed in parallel with the stirring axis and in contact with the stirring tank wall.
【0015】スクレイパーは押し曲げられて用いられる
ため、スクレイパーの材質としては、撹拌槽壁との摩耗
による撹拌槽本体の損傷がないこと、軽量で取り付け取
り外しが容易であることから樹脂製であることが好まし
い。特に、耐熱性、耐薬品性、付着スケールが除去しや
すいなどからフッ素樹脂製、例えばポリテトラフルオロ
エチレン製が好ましい。Since the scraper is pressed and bent, the scraper must be made of resin because it is free from damage to the stirring tank body due to abrasion on the stirring tank wall, and because it is lightweight and easy to attach and detach. Is preferred. Particularly, it is preferably made of a fluororesin, for example, made of polytetrafluoroethylene, because of its heat resistance, chemical resistance, and easy removal of the attached scale.
【0016】ヘリカルリボン翼の翼ピッチh1 のヘリカ
ルリボン翼の翼径dに対する比率h1 /dは、0.5〜
2.0が好ましい。小さすぎると撹拌動力が上り、大き
すぎると中粘度以上の液体においてヘリカルリボン翼の
上方への搬送力が低下する。ヘリカルリボン翼の翼幅d
1 の翼径dに対する比率d1 /dは、撹拌動力と中粘度
以上の液体においてヘリカルリボン翼の上方への搬送力
との兼合いから0.09〜0.20の範囲が好ましい。
ヘリカルリボン翼と撹拌槽壁間の滞留時間を小さくする
ために、ヘリカルリボン翼の翼径dの撹拌槽径Dに対す
比率d/Dは、0.9〜0.98の範囲が好ましい。The ratio h 1 / d of the blade pitch h 1 of the helical ribbon blade to the blade diameter d of the helical ribbon blade is 0.5 to 0.5.
2.0 is preferred. If it is too small, the agitation power increases, and if it is too large, the transporting force of the liquid having a medium viscosity or more above the helical ribbon blade decreases. Wing width d of helical ribbon wing
The ratio d 1 / d to the blade diameter d of 1 is preferably in the range of 0.09 to 0.20 in view of the balance between the stirring power and the conveying force of the liquid having a medium viscosity or higher in the upward direction of the helical ribbon blade.
In order to shorten the residence time between the helical ribbon blade and the stirring tank wall, the ratio d / D of the blade diameter d of the helical ribbon blade to the stirring tank diameter D is preferably in the range of 0.9 to 0.98.
【0017】本発明では、比率h2 /h、ヘリカルリボ
ン翼の傾斜角度θ、スクレイパーの設置方法、比率h1
/d、比率d/Dを種々に組み合わせることができ、最
適条件の組み合わせにより様々な粘度の液体、各種反応
槽容積に対応できる。また、ヘリカルリボンの巻き数、
ヘリカルリボン翼の翼幅を最適化することにより、さら
なるガス吸収速度の向上を図れる。In the present invention, the ratio h 2 / h, the inclination angle θ of the helical ribbon blade, the installation method of the scraper, the ratio h 1
/ D and the ratio d / D can be variously combined, and liquids having various viscosities and various reaction tank volumes can be handled by combination of optimal conditions. Also, the number of helical ribbon turns,
By optimizing the width of the helical ribbon blade, the gas absorption speed can be further improved.
【0018】本発明の撹拌装置は、単量体を重合して重
合体を製造するための重合反応装置として特に適する。
実施例に示す含フッ素単量体の重合体ばかりでなく、オ
レフィン、塩化ビニル、メタクリレート等の種々の単量
体の重合体の製造に適用できる。とりわけ、テトラフル
オロエチレン、クロロトリフルオロエチレン、フッ化ビ
ニリデン、へキサフルオロプロペン等の含フッ素単量体
の単独重合体や共重合体の製造に最適の撹拌装置であ
る。The stirring apparatus of the present invention is particularly suitable as a polymerization reactor for polymerizing monomers to produce a polymer.
The present invention can be applied to the production of polymers of various monomers such as olefins, vinyl chloride and methacrylate, as well as the polymers of the fluorine-containing monomers shown in Examples. In particular, it is an optimal stirring device for producing homopolymers and copolymers of fluorine-containing monomers such as tetrafluoroethylene, chlorotrifluoroethylene, vinylidene fluoride, and hexafluoropropene.
【0019】[0019]
【実施例】以下、本発明を例1〜14により詳細に説明
するが、本発明はこれらによって限定されない。The present invention will be described below in more detail with reference to Examples 1 to 14, but the present invention is not limited thereto.
【0020】[例1(実施例)]2条で、翼径dが19
5mm、翼高hが187mm、翼幅d1 が20mm、比
率h1 /dが0.64、ヘリカルリボン翼の傾斜角度θ
が5度、巻き数が1.5のヘリカルリボン翼を設置した
撹拌槽径Dが203mmの内容積10リットルのステン
レス製反応容器に、触媒として硫酸銅(10-4mol/
l)を0.5ml加えた亜硫酸ナトリウム水溶液(0.
12mol/l)4リットルを仕込み、反応容器内を減
圧脱気後、酸素で50mmHgに加圧した。撹拌、混合
しない、静止状態でのh2 /hは0.50であった。所
定の撹拌数で、液温30℃における反応容器内の酸素分
圧降下を測定し、反応液単位容積当たりの酸素吸収速度
(単位:10-6mol/リットル・秒)を求めた。結果
を表1に示す。[Example 1 (embodiment)] In two rows, the blade diameter d is 19
5 mm, wing height h is 187 mm, wing width d 1 is 20 mm, ratio h 1 / d is 0.64, helical ribbon blade inclination angle θ
In a stainless steel reaction vessel having a stirring vessel diameter D of 203 mm and a capacity of 10 liters, in which a helical ribbon blade having a winding number of 1.5 and a winding number of 1.5 was installed, copper sulfate (10 -4 mol /
l) to which 0.5 ml of an aqueous sodium sulfite solution (0.1 mL) was added.
(12 mol / l), 4 liters were charged, the inside of the reaction vessel was degassed under reduced pressure, and then pressurized to 50 mmHg with oxygen. The h 2 / h in the stationary state without stirring and mixing was 0.50. At a predetermined stirring number, the oxygen partial pressure drop in the reaction vessel at a liquid temperature of 30 ° C. was measured, and the oxygen absorption rate per unit volume of the reaction solution (unit: 10 −6 mol / liter · second) was determined. Table 1 shows the results.
【0021】[例2(比較例)]例1と同様の反応容
器、撹拌翼を用い、硫酸銅(10-4mol/l)を0.
9ml加えた亜硫酸ナトリウム水溶液(0.12mol
/l)7リットルを仕込み、例1と同様にして酸素吸収
速度を求めた。結果を表1に示す。撹拌、混合しない、
静止状態でのh2 /hは0であった。Example 2 (Comparative Example) Copper sulfate (10 −4 mol / l) was added to 0.1 ml of the same reaction vessel and stirring blade as in Example 1.
9 ml of aqueous sodium sulfite solution (0.12 mol
/ L) 7 liters were charged, and the oxygen absorption rate was determined in the same manner as in Example 1. Table 1 shows the results. Stirring, do not mix,
H 2 / h in the stationary state was 0.
【0022】[例3(実施例)]例1と同様の反応容
器、撹拌翼を用いて酸素吸収速度を測定した。硫酸銅
(10-4mol/l)を0.5ml加えた粘度2000
cPの亜硫酸ナトリウム水飴水溶液(0.12mol/
l)4リットルを仕込み、例1と同様にして吸収速度を
求めた。結果を表1に示す。h2 /hは0.50であっ
た。Example 3 (Example) The oxygen absorption rate was measured using the same reaction vessel and stirring blade as in Example 1. Viscosity 2000 with 0.5 ml of copper sulfate (10 -4 mol / l) added
cP sodium sulfite syrup aqueous solution (0.12 mol /
l) 4 liters were charged, and the absorption rate was determined in the same manner as in Example 1. Table 1 shows the results. h 2 / h was 0.50.
【0023】[例4(比較例)]例1と同様の反応容
器、撹拌翼を用いて酸素吸収速度を測定した。硫酸銅
(10-4mol/l)を0.9ml加えた粘度2000
cP亜硫酸ナトリウム水飴水溶液(0.12mol/
l)7リットルを仕込み、例1と同様にして吸収速度を
求めた。結果を表1に示す。h2 /hは0であった。Example 4 (Comparative Example) The oxygen absorption rate was measured using the same reaction vessel and stirring blade as in Example 1. Viscosity 2000 with 0.9 ml of copper sulfate (10 -4 mol / l) added
cP sodium sulfite aqueous solution of starch syrup (0.12 mol /
l) 7 liters were charged, and the absorption rate was determined in the same manner as in Example 1. Table 1 shows the results. h 2 / h was 0.
【0024】[0024]
【表1】 [Table 1]
【0025】[例5(実施例)]内容積10リットルの
ステンレス製反応容器を脱気し、1,1,2,2,3,
3,4,4,5,5,6,6,6−トリデカフルオロヘ
キサン10.7kg、(ペルフルオロブチル)エチレン
15.3g、テトラフルオロエチレン(以下、TFEと
いう)724g、エチレン51.0g、連鎖移動剤とし
てシクロヘキサンを10.7g、重合開始剤としてペル
フルオロブチルペルオキシドの1重量%ペルフルオロヘ
キサン溶液を仕込み、65℃にて反応を開始させた。使
用した撹拌装置は、例1と同様のものを用いた。反応開
始時における撹拌、混合しない、静止状態でのh2 /h
は0.09であった。Example 5 (Example) A 10 liter stainless steel reaction vessel was degassed, and 1,1,2,2,3,
3,4,4,5,5,6,6,6-tridecafluorohexane 10.7 kg, (perfluorobutyl) ethylene 15.3 g, tetrafluoroethylene (hereinafter referred to as TFE) 724 g, ethylene 51.0 g, chain 10.7 g of cyclohexane as a transfer agent and a 1% by weight perfluorohexane solution of perfluorobutyl peroxide as a polymerization initiator were charged, and the reaction was started at 65 ° C. The same stirring device as that used in Example 1 was used. H 2 / h in the stationary state without stirring and mixing at the beginning of the reaction
Was 0.09.
【0026】反応中、反応容器内にTFE/エチレンが
53/47(モル比)の混合ガスを導入し、反応圧力を
8.1kg/cm2 に保持した。重合開始剤は重合速度
がほぼ一定となるように断続的に仕込み、合計で100
ml仕込んだ。6時間後に固形分にて1.1kg、濃度
130g/リットル(溶媒)のスラリーが得られた。反
応初期は約1cPで、反応終了後のこのスラリーは、撹
拌動力からの推算によると反応温度において約5500
cPであった。During the reaction, a mixed gas of TFE / ethylene 53/47 (molar ratio) was introduced into the reaction vessel, and the reaction pressure was maintained at 8.1 kg / cm 2 . The polymerization initiator was charged intermittently so that the polymerization rate was almost constant, and a total of 100
ml. After 6 hours, a slurry having a solid content of 1.1 kg and a concentration of 130 g / liter (solvent) was obtained. At the beginning of the reaction, the slurry is about 1 cP. After the completion of the reaction, the slurry is estimated to be about 5500
cP.
【0027】[例6(比較例)]例5と同様の方法で、
同様の撹拌装置で、反応開始時における撹拌、混合しな
い、静止状態でのh2 /hが0で反応を行った。12時
間後に固形分1.0kg、濃度108g/リットル(溶
媒)のスラリーが得られた。反応初期は約1cPで、反
応終了後のこのスラリーは、撹拌動力からの推算による
と反応温度において約5000cPであった。Example 6 (Comparative Example) In the same manner as in Example 5,
In a similar stirring device, stirring at the start of the reaction, not mixed, h 2 / h in the still state the reaction was carried out at 0. After 12 hours, a slurry having a solid content of 1.0 kg and a concentration of 108 g / liter (solvent) was obtained. The initial stage of the reaction was about 1 cP, and the slurry after the completion of the reaction was about 5000 cP at the reaction temperature according to the estimation from the stirring power.
【0028】[例7(実施例)]内容積20リットルの
ステンレス製反応器を脱気し、CF2 =CFOCF2 C
FOCF3 (CF2 )2 SO3 Fを10.07kg、C
ClF2 CF2 CHClFを5.73kg、重合開始剤
として2,2’−アゾビスイソブチロニトリル(AIB
N)を400ppm仕込んだ。反応容器内にTFEを導
入し、仕込んだモノマーおよび溶媒へ飽和溶解度に達す
るまで溶解させた後、反応を開始させた。反応温度は7
0℃、反応圧力は11.1kg/cm2 に保持した。撹
拌回転数は142rpmで行った。[Example 7 (Example)] A stainless steel reactor having an internal volume of 20 liters was degassed, and CF 2 = CFOCF 2 C
10.07 kg of FOCF 3 (CF 2 ) 2 SO 3 F, C
5.73 kg of ClF 2 CF 2 CHClF and 2,2′-azobisisobutyronitrile (AIB) as a polymerization initiator
N) was charged at 400 ppm. After introducing TFE into the reaction vessel and dissolving it in the charged monomer and solvent until the saturation solubility was reached, the reaction was started. Reaction temperature is 7
At 0 ° C., the reaction pressure was maintained at 11.1 kg / cm 2 . The stirring rotation speed was 142 rpm.
【0029】使用した撹拌装置は、撹拌槽径Dが250
mmであり、2条のヘリカルリボン翼にスクレイパーを
リボンに沿って設置された撹拌翼を有し、翼径dが23
0mm、翼高hが207mm、翼幅d1 が21.8m
m、比率h1 /dが0.90、ヘリカルリボン翼の傾斜
角度θが5度、ヘリカルリボン翼の巻き数が1.0であ
る。反応開始時における撹拌、混合しない、静止状態で
のh2 /hは0.26であった。The stirring device used had a stirring tank diameter D of 250.
mm, having a stirring blade provided with a scraper along the ribbon on two helical ribbon blades, and a blade diameter d of 23 mm.
0 mm, wing height h is 207 mm, wing width d 1 is 21.8 m
m, the ratio h 1 / d is 0.90, the inclination angle θ of the helical ribbon blade is 5 degrees, and the number of turns of the helical ribbon blade is 1.0. The h 2 / h in the stationary state without stirring and mixing at the start of the reaction was 0.26.
【0030】8時間後に固形分2.85kg、固形分濃
度16.4重量%のスラリーが得られた。反応初期は約
1cPで、反応終了後のこのスラリーは、動力からの推
算によると反応温度で16000cPであった。After 8 hours, a slurry having a solid content of 2.85 kg and a solid concentration of 16.4% by weight was obtained. At the beginning of the reaction, it was about 1 cP, and after the completion of the reaction, the slurry was found to have a reaction temperature of 16,000 cP according to estimation from power.
【0031】[例8(比較例)]例7と同じ反応器を用
い、2条のヘリカルリボン翼にスクレイパーをリボンに
沿って設置し、翼径dが230mm、翼高hが154m
m、翼幅d1 が21.8mm、比率h1 /dが0.6
7、ヘリカルリボン翼の傾斜角度θが5度、ヘリカルリ
ボン翼の巻き数が1.0の撹拌翼を用い、h2 /hが0
で、例7と同様にして反応を行った。24時間後に固形
分2.55kg、固形分濃度14.8重量%のスラリー
が得られた。反応初期は約1cPで、反応終了後のこの
スラリーは、撹拌動力からの推算によると反応温度にお
いて約14000cPであった。Example 8 (Comparative Example) Using the same reactor as in Example 7, a scraper was installed along the ribbon on two helical ribbon blades, the blade diameter d was 230 mm, and the blade height h was 154 m.
m, blade width d 1 is 21.8 mm, ratio h 1 / d is 0.6
7. A stirring blade having a helical ribbon blade inclination angle θ of 5 degrees and a helical ribbon blade winding number of 1.0 is used, and h 2 / h is 0.
The reaction was carried out in the same manner as in Example 7. After 24 hours, a slurry having a solid content of 2.55 kg and a solid concentration of 14.8% by weight was obtained. The initial stage of the reaction was about 1 cP, and the slurry after the completion of the reaction was about 14000 cP at the reaction temperature according to the estimation from the stirring power.
【0032】[例9(実施例)]例7と同じ反応器を用
い、2条のヘリカルリボン翼にスクレイパーを撹拌軸に
平行に設置し、翼径dが230mm、翼高hが179m
m、翼幅d1 が21.8mm、比率h1 /dが0.5
2、ヘリカルリボン翼の傾斜角度θが5度、ヘリカルリ
ボン翼の巻き数が1.5の撹拌翼を用い、h2 /hが
0.14で、例7と同様の方法で反応を行った。10.
5時間後に固形分2.68kg、固形分濃度15.5重
量%のスラリーが得られた。反応初期は1cPで、反応
終了後のこのスラリーは、撹拌動力からの推算によると
反応温度において約15000cPであった。Example 9 (Example) Using the same reactor as in Example 7, a scraper was installed on two helical ribbon blades in parallel with the stirring axis, the blade diameter d was 230 mm, and the blade height h was 179 m.
m, blade width d 1 is 21.8 mm, ratio h 1 / d is 0.5
2. Using a stirring blade having a helical ribbon blade inclination angle θ of 5 degrees and a helical ribbon blade winding number of 1.5, with h 2 / h of 0.14, a reaction was carried out in the same manner as in Example 7. . 10.
After 5 hours, a slurry having a solid content of 2.68 kg and a solid concentration of 15.5% by weight was obtained. The initial stage of the reaction was 1 cP, and the slurry after the completion of the reaction was approximately 15000 cP at the reaction temperature according to the estimation from the stirring power.
【0033】[例10(実施例)]例7と同じ反応器を
用い、2条のヘリカルリボン翼にスクレイパーをヘリカ
ルリボン翼に沿って設置し、翼径dが230mm、翼高
hが207mm、翼幅d1が21.8mm、比率h1 /
dが0.90、ヘリカルリボン翼の巻き数が1.0、ヘ
リカルリボン翼の傾斜角度θが20度の撹拌翼を用い、
h2 /hが0.26で、例7と同様の方法で反応を行っ
た。7時間後に固形分2.85kg、固形分濃度16.
4重量%のスラリーが得られた。反応初期は約1cP
で、反応終了後のこのスラリーは、撹拌動力からの推算
によると反応温度において約16000cPであった。Example 10 (Example) Using the same reactor as in Example 7, a scraper was installed along two helical ribbon blades along the helical ribbon blade, the blade diameter d was 230 mm, the blade height h was 207 mm, Wing width d 1 is 21.8 mm, ratio h 1 /
d is 0.90, the number of turns of the helical ribbon blade is 1.0, and the inclination angle θ of the helical ribbon blade is 20 degrees.
The reaction was carried out in the same manner as in Example 7, except that h 2 / h was 0.26. After 7 hours, the solid content is 2.85 kg and the solid content concentration is 16.
A 4% by weight slurry was obtained. Initial reaction is about 1 cP
After the completion of the reaction, the slurry had a reaction temperature of about 16000 cP, as estimated from the stirring power.
【0034】[例11(比較例)]例7と同じ反応器を
用い、2条のヘリカルリボン翼にスクレイパーをリボン
に沿って設置し、翼径dが230mm、翼高hが154
mm、翼幅d1 が21.8mm、比率h1 /dが0.6
7、ヘリカルリボン翼の巻き数が1.0、ヘリカルリボ
ン翼の傾斜角度θが20度の撹拌翼を用い、h2 /hが
0で、例7と同様の方法で反応を行った。23.5時間
後に固形分2.52kg、固形分濃度14.7重量%の
スラリーが得られた。反応初期は約1cPで、反応終了
後のこのスラリーは、撹拌動力からの推算によると反応
温度において約14000cPであった。Example 11 (Comparative Example) Using the same reactor as in Example 7, a scraper was installed along two ribbons on a helical ribbon blade, the blade diameter d was 230 mm, and the blade height h was 154.
mm, wing width d 1 is 21.8 mm, ratio h 1 / d is 0.6
7. Using a stirring blade having a helical ribbon blade winding number of 1.0 and a helical ribbon blade inclination angle θ of 20 degrees, a reaction was carried out in the same manner as in Example 7, except that h 2 / h was 0. After 23.5 hours, a slurry having a solid content of 2.52 kg and a solid content concentration of 14.7% by weight was obtained. The initial stage of the reaction was about 1 cP, and the slurry after the completion of the reaction was about 14000 cP at the reaction temperature according to the estimation from the stirring power.
【0035】[例12(実施例)]例7と同じ反応器を
用い、2条のヘリカルリボン翼にスクレイパーを撹拌軸
に平行に設置し、翼径dが230mm、翼高hが179
mm、翼幅d1 が21.8mm、比率h1 /dが0.5
2、ヘリカルリボン翼の巻き数が1.5、ヘリカルリボ
ン翼の傾斜角度θが20度の撹拌翼を用い、h2 /hは
0.14で、例7と同様の方法で反応を行った。9.5
時間後に固形分2.71kg、固形分濃度として15.
7重量%のスラリーが得られた。反応初期は1cPで、
反応終了後のこのスラリーは、撹拌動力からの推算によ
ると反応温度において約15000cPであった。Example 12 (Example) Using the same reactor as in Example 7, a scraper was installed in parallel with the stirring shaft on two helical ribbon blades, the blade diameter d was 230 mm, and the blade height h was 179.
mm, wing width d 1 is 21.8 mm, ratio h 1 / d is 0.5
2. Using a stirring blade having a helical ribbon blade winding number of 1.5 and a helical ribbon blade inclination angle θ of 20 °, h 2 / h was 0.14, and the reaction was carried out in the same manner as in Example 7. . 9.5
After an hour, the solid content was 2.71 kg, and the solid content was 15.
A 7% by weight slurry was obtained. Initial reaction is 1cP,
After the completion of the reaction, the slurry had a reaction temperature of about 15000 cP as estimated from the stirring power.
【0036】[例13(実施例)]例7と同じ反応器を
用い、2条のヘリカルリボン翼にスクレイパーをリボン
に沿って設置し、翼径dが230mm、翼高hが207
mm、翼幅d1 が21.8mm、比率h1 /dが0.9
0、ヘリカルリボン翼の巻き数が1.0、ヘリカルリボ
ン翼の傾斜角度θが30度の撹拌翼を用い、h2 /hが
0.26で、例7と同様の方法で反応を行った。7時間
後に固形分2.95kg、固形分濃度16.9重量%の
スラリーが得られた。反応初期は約1cPで、反応終了
後のこのスラリーは、撹拌動力からの推算によると反応
温度において約17000cPであった。Example 13 (Example) Using the same reactor as in Example 7, a scraper was installed along the ribbon on two helical ribbon blades, the blade diameter d was 230 mm, and the blade height h was 207.
mm, the blade width d 1 is 21.8 mm, and the ratio h 1 / d is 0.9.
0, the number of turns of the helical ribbon blade is 1.0, using a stirring blade tilt angle θ is 30 degrees of the helical ribbon blade, h 2 / h is 0.26, the reaction was carried out in a similar manner to Example 7 . After 7 hours, a slurry having a solid content of 2.95 kg and a solid concentration of 16.9% by weight was obtained. The initial stage of the reaction was about 1 cP, and the slurry after completion of the reaction was about 17000 cP at the reaction temperature according to estimation from the stirring power.
【0037】[例14(比較例)]例7と同じ反応器を
用い、2条のヘリカルリボン翼にスクレイパーを撹拌軸
に平行に設置し、翼径dが230mm、翼高hが179
mm、翼幅d1 が21.8mm、比率h1 /dが0.5
2、ヘリカルリボン翼の巻き数が1.5、ヘリカルリボ
ン翼の傾斜が50度の撹拌翼を用い、h2 /hが0.1
4で、例7と同様の方法で反応を行った。7時間後に固
形分2.62kg、固形分濃度15.2重量%のスラリ
ーが得られた。反応初期は約1cPで、反応終了後のこ
のスラリーは、撹拌動力からの推算によると反応温度に
おいて約15000cPであった。Example 14 (Comparative Example) Using the same reactor as in Example 7, a scraper was installed in parallel with the stirring shaft on two helical ribbon blades, the blade diameter d was 230 mm, and the blade height h was 179.
mm, wing width d 1 is 21.8 mm, ratio h 1 / d is 0.5
2. Using a stirring blade having a helical ribbon blade winding number of 1.5 and a helical ribbon blade inclination of 50 degrees, and h 2 / h of 0.1
In 4, the reaction was carried out in the same manner as in Example 7. After 7 hours, a slurry having a solid content of 2.62 kg and a solid content concentration of 15.2% by weight was obtained. The initial stage of the reaction was about 1 cP, and the slurry after the completion of the reaction was about 15000 cP at the reaction temperature according to the estimation from the stirring power.
【0038】[0038]
【発明の効果】ヘリカルリボン翼の下部が液相部に、ヘ
リカルリボン翼の上部が気相部に存在するように、特に
はヘリカルリボン翼の気相部に存在する部分の高さのヘ
リカルリボン翼全高さに対する比率が0.05〜0.5
となるように、設置されて撹拌、混合することにより、
気液界面部における上方への液体の搬送と、かき上げら
れた液体の落下すなわち液だれは、気液の接触を良好に
する効果を有する。According to the present invention, the helical ribbon has a liquid phase portion, and the upper portion of the helical ribbon blade is in the gas phase. The ratio to the total wing height is 0.05 to 0.5
By being installed, stirring, and mixing,
The upward transfer of the liquid at the gas-liquid interface and the drop of the picked-up liquid, that is, the liquid dripping have an effect of improving the gas-liquid contact.
【0039】気液界面からのガス吸収を伴うような場
合、低粘度の液体では気液界面を乱し、中粘度以上の液
体では気液界面でヘリカルリボンにより搬送されてきた
流体を効率的に更新し、ガス吸収速度の促進が図れる。In the case where gas is absorbed from the gas-liquid interface, the liquid having a low viscosity disturbs the gas-liquid interface, and the liquid having a medium viscosity or more efficiently disperses the fluid carried by the helical ribbon at the gas-liquid interface. Renewal can promote gas absorption rate.
【図1】本発明の撹拌装置の一例の正面図FIG. 1 is a front view of an example of the stirring device of the present invention.
【図2】本発明におけるヘリカルリボン翼の一例の垂直
方向の断面図FIG. 2 is a vertical sectional view of an example of a helical ribbon blade according to the present invention.
【図3】本発明の撹拌装置の別の一例の正面図FIG. 3 is a front view of another example of the stirring device of the present invention.
1:撹拌軸 2:支持棒 3:スクレイパー 4:ヘリカルリボン翼 5:フレーム 6:気液界面部 7:撹拌液相部 8:撹拌気相部 1: stirring shaft 2: support rod 3: scraper 4: helical ribbon blade 5: frame 6: gas-liquid interface 7: stirring liquid phase 8: stirring gas phase
───────────────────────────────────────────────────── フロントページの続き (72)発明者 笠原 伸元 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社内 (72)発明者 渡壁 淳 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Nobumoto Kasahara 1150 Hazawa-cho, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture Inside (72) Inventor Jun Watanabe 1150 Hazawa-cho, Kanagawa-ku, Yokohama-shi, Kanagawa Asahi Glass Co., Ltd. Inside
Claims (4)
定した撹拌軸が垂直に撹拌槽に設置された撹拌装置にお
いて、そのヘリカルリボン翼の下部が液相部に、上部が
気相部に存在して撹拌、混合するようにされていること
を特徴とする撹拌装置。An agitator having one or more helical ribbon blades fixed to a stirring vessel and having a stirring shaft fixed vertically, wherein a lower portion of the helical ribbon blade is in a liquid phase portion and an upper portion is in a gas phase portion. A stirrer characterized by being present and adapted to be stirred and mixed.
の高さのヘリカルリボン翼全高さに対する比率が0.0
5〜0.5である請求項1記載の撹拌装置。2. The ratio of the height of the portion of the helical ribbon blade present in the gas phase to the total height of the helical ribbon blade is 0.0.
The stirrer according to claim 1, wherein the ratio is 5 to 0.5.
て、撹拌軸と垂直方向に対するヘリカルリボン翼の撹拌
軸から撹拌槽壁への傾斜角度が5〜45度である請求項
1または2記載の撹拌装置。3. The stirring according to claim 1 or 2, wherein in a vertical cross section of the helical ribbon blade, an inclination angle from the stirring axis of the helical ribbon blade to a wall of the stirring tank with respect to a direction perpendicular to the stirring axis is 5 to 45 degrees. apparatus.
そのスクレイパーがヘリカルリボン翼の外周に沿わせる
ように、または撹拌軸に平行になるように設けられてい
る請求項1、2または3記載の撹拌装置。4. The helical ribbon wing has a scraper,
4. The stirring device according to claim 1, wherein the scraper is provided along the outer periphery of the helical ribbon blade or parallel to the stirring axis.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31865797A JPH11151432A (en) | 1997-11-19 | 1997-11-19 | Agitating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31865797A JPH11151432A (en) | 1997-11-19 | 1997-11-19 | Agitating device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11151432A true JPH11151432A (en) | 1999-06-08 |
Family
ID=18101588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31865797A Withdrawn JPH11151432A (en) | 1997-11-19 | 1997-11-19 | Agitating device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11151432A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1498175A1 (en) * | 2003-07-15 | 2005-01-19 | Degussa AG | Apparatus and method for discontinuous polycondensation |
JP2006095384A (en) * | 2004-09-28 | 2006-04-13 | Asahi Glass Co Ltd | Gas-liquid mixing apparatus, gas-liquid mixing method, polymer and method for producing the same |
JP2008248009A (en) * | 2007-03-29 | 2008-10-16 | Mitsui Eng & Shipbuild Co Ltd | Separator which separates gas hydrate slurry containing large amount of water into gas hydrate and water |
JP2013533106A (en) * | 2010-06-04 | 2013-08-22 | オウトテック オサケイティオ ユルキネン | Method and apparatus for homogenizing and stabilizing iron-containing residues |
CN103599743A (en) * | 2013-10-18 | 2014-02-26 | 昆山珍实复合材料有限公司 | Reaction kettle with scraper cleaning mechanism |
CN104028136A (en) * | 2014-05-29 | 2014-09-10 | 苏州市金翔钛设备有限公司 | Stirring tank |
CN105944650A (en) * | 2016-06-18 | 2016-09-21 | 无锡市翱宇特新科技发展有限公司 | Anti-blocking chemical reaction kettle |
CN111111594A (en) * | 2020-01-09 | 2020-05-08 | 泉州市嘉鑫信息服务有限公司 | Propylene polymerization kettle |
-
1997
- 1997-11-19 JP JP31865797A patent/JPH11151432A/en not_active Withdrawn
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1498175A1 (en) * | 2003-07-15 | 2005-01-19 | Degussa AG | Apparatus and method for discontinuous polycondensation |
JP2006095384A (en) * | 2004-09-28 | 2006-04-13 | Asahi Glass Co Ltd | Gas-liquid mixing apparatus, gas-liquid mixing method, polymer and method for producing the same |
JP2008248009A (en) * | 2007-03-29 | 2008-10-16 | Mitsui Eng & Shipbuild Co Ltd | Separator which separates gas hydrate slurry containing large amount of water into gas hydrate and water |
JP2013533106A (en) * | 2010-06-04 | 2013-08-22 | オウトテック オサケイティオ ユルキネン | Method and apparatus for homogenizing and stabilizing iron-containing residues |
CN103599743A (en) * | 2013-10-18 | 2014-02-26 | 昆山珍实复合材料有限公司 | Reaction kettle with scraper cleaning mechanism |
CN103599743B (en) * | 2013-10-18 | 2015-05-20 | 昆山珍实复合材料有限公司 | Reaction kettle with scraper cleaning mechanism |
CN104028136A (en) * | 2014-05-29 | 2014-09-10 | 苏州市金翔钛设备有限公司 | Stirring tank |
CN105944650A (en) * | 2016-06-18 | 2016-09-21 | 无锡市翱宇特新科技发展有限公司 | Anti-blocking chemical reaction kettle |
CN111111594A (en) * | 2020-01-09 | 2020-05-08 | 泉州市嘉鑫信息服务有限公司 | Propylene polymerization kettle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11151432A (en) | Agitating device | |
WO2015106562A1 (en) | Long-paddle short-blade composite stirrer | |
JP3224498B2 (en) | Stirrer | |
JP3763154B2 (en) | Stirrer | |
CN1232471A (en) | Process for polymerization of fluorinated olefin monomers | |
US4984899A (en) | Agitator vessel with radially conveying agitator and with at least one baffle, as well as process for the thorough mixing of liquids with the aid of this agitator vessel | |
JP4734878B2 (en) | Gas absorption device, gas absorption method, and polymer production method | |
JPH11128711A (en) | Stirring apparatus | |
CN220238291U (en) | Stirring device for polymerization reaction | |
EP0613717B1 (en) | Rotating stirring device | |
JPH1033966A (en) | Stirring blade, stirring apparatus, and polymerizing reaction method | |
CN114390945A (en) | Batch type stirrer for suspension polymerization of vinyl chloride resin and batch type suspension polymerization reactor using the same | |
JP4220168B2 (en) | Stirring apparatus and stirring method for liquid containing solid particles | |
JP7341389B2 (en) | Reactor and chemical treatment method using the reactor | |
JP3388663B2 (en) | Method for producing vinyl chloride polymer | |
JP3197447B2 (en) | Polymerization apparatus and method for producing vinyl chloride polymer using the same | |
JP2810560B2 (en) | Aeration and stirring method for highly viscous fermentation broth | |
JP2010221219A (en) | Gas-liquid mixing apparatus and gas-liquid mixing method, method for manufacturing polymer | |
JP2022080043A (en) | Support system and support method | |
JP2685597B2 (en) | Vinyl chloride resin polymerization apparatus and manufacturing method | |
KR101650762B1 (en) | Polymerization apparatus having loop for circulating reaction gas | |
JP3197445B2 (en) | Polymerization apparatus and method for producing vinyl chloride polymer using the same | |
Aladro et al. | Mass Transfer in Emulsion Polymerization: high solids content latex and mixing effects | |
JP7299591B2 (en) | Method of operating the reactor | |
JP4866709B2 (en) | Method for producing carboxylic acid polymer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20040413 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061220 |
|
A131 | Notification of reasons for refusal |
Effective date: 20070109 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A761 | Written withdrawal of application |
Effective date: 20070206 Free format text: JAPANESE INTERMEDIATE CODE: A761 |