JPH11150033A - Preparation for rare-earth magnet and magnetic circuit unit for loudspeaker - Google Patents
Preparation for rare-earth magnet and magnetic circuit unit for loudspeakerInfo
- Publication number
- JPH11150033A JPH11150033A JP9317411A JP31741197A JPH11150033A JP H11150033 A JPH11150033 A JP H11150033A JP 9317411 A JP9317411 A JP 9317411A JP 31741197 A JP31741197 A JP 31741197A JP H11150033 A JPH11150033 A JP H11150033A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- magnet
- magnetic circuit
- circuit unit
- outer yoke
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0273—Imparting anisotropy
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は希土類磁石とその希
土類磁石を用いたスピ−カ用磁気回路ユニットの製造方
法に関する。さらに詳細には通電圧縮成形でNd−Fe
−B系磁石粉末をバルク磁石体にする製造方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth magnet and a method of manufacturing a magnetic circuit unit for a speaker using the rare earth magnet. More specifically, Nd-Fe
The present invention relates to a method for producing a B-based magnet powder into a bulk magnet body.
【0002】[0002]
【従来の技術】希土類磁石の製造方法には、主として焼
結法とボンド磁石化の方法がある。前者は、溶解鋳造か
ら均一化熱処理、粉砕、磁場中成形、焼結、切断研削と
いった工程で成り立っており、希土類磁石の中で高性能
なものはこの方法によって製造されている。この方法を
採用しているところは、組成や工法の開発を盛んに行な
い、特許網を張り巡らした強力な専門メ−カである。磁
石のユ−ザはこれらの専門メ−カから用途に合った磁石
を購入している。一方、後者は磁石ユ−ザ側が磁石粉末
を専門メ−カから購入してユ−ザ内部で自社の要求に合
ったバルク磁石を製造できる方法である。ただエポキシ
樹脂などのバインダ−を必要とするため磁石粉末の占め
る割合が減り磁石特性が焼結磁石の約半分程度と低いも
のとなる。しかし薄肉のリング磁石など焼結磁石では製
造が困難な形状の磁石が作れるという利点があり、最近
大幅に増加している。2. Description of the Related Art Rare earth magnets are mainly manufactured by a sintering method or a bond magnet method. The former consists of processes such as melting casting, heat treatment for homogenization, pulverization, molding in a magnetic field, sintering, and cutting and grinding. High-performance rare earth magnets are manufactured by this method. This method is a strong specialized manufacturer that has been actively developing compositions and construction methods and has established a patent network. Magnet users purchase magnets from these specialized manufacturers to suit their application. On the other hand, the latter is a method in which a magnet user can purchase a magnet powder from a specialized manufacturer and manufacture a bulk magnet according to the company's requirements inside the user. However, since a binder such as an epoxy resin is required, the proportion occupied by the magnet powder is reduced, and the magnet characteristics are as low as about half that of the sintered magnet. However, sintered magnets such as thin ring magnets have the advantage of being able to produce magnets of a shape that is difficult to manufacture, and have recently increased significantly.
【0003】また上述のボンド磁石と同様な位置にある
製造方法として、通電圧縮成形という工法(特開平1−
319909号公報及び特開平2−86103号公報参
照)がある。この方法は磁石粉末を専門メ−カから購入
し、ユ−ザ側でバルク磁石を作る方法である。この方法
ではバインダ−が不要で、フル密度のバルク磁石が製造
でき、磁気特性は焼結磁石には及ばないがそれに近く、
ボンド磁石より格段にに優れたものとすることができ
る。As a manufacturing method at a position similar to that of the above-described bonded magnet, a method called energization compression molding (Japanese Patent Laid-Open Publication No.
No. 3,319,909 and Japanese Patent Application Laid-Open No. 2-86103). In this method, a magnet powder is purchased from a specialized manufacturer, and a bulk magnet is prepared on the user side. This method does not require a binder and can produce a full-density bulk magnet.
It can be much better than a bonded magnet.
【0004】またスピ−カ用磁気回路ユニットは、音の
信号電流が流れて振動を起こすボイスコイルに静磁場を
提供する部品で、磁石と磁気ヨ−クから成り、着磁され
た磁石から出る磁束を磁気ヨ−クで集めてボイスコイル
の入るリング状の空間(ギャップ部)に静磁場を発生さ
せている。A magnetic circuit unit for a speaker is a component for providing a static magnetic field to a voice coil in which a sound signal current flows and generates vibration, and is composed of a magnet and a magnetic yoke, and is output from a magnetized magnet. The magnetic flux is collected by a magnetic yoke to generate a static magnetic field in a ring-shaped space (gap) in which the voice coil enters.
【0005】現在多く使われている磁気回路ユニット
は、磁石として安価なフェライト磁石を用いている。フ
ェライト磁石は磁化が低いために磁石の面積を大きくと
る必要があり、そのために磁気ヨ−クの外側に磁石を配
置した構造をとって外磁型構造と言われる。一方アルニ
コ磁石や希土類磁石すなわちSm−Co系磁石またネオ
ジ系磁石(すなわちNd−Fe−B系磁石)を用いた磁
気回路ユニットは図3に示すように磁石1を磁気ヨ−ク
であるトッププレ−ト2と同じく磁気ヨ−クである外ヨ
−ク3とで囲まれた、すなわち磁気ヨ−クの内側に磁石
を入れた構造をとり、内磁型構造と言われる。[0005] Magnetic circuit units that are widely used at present use inexpensive ferrite magnets as magnets. Ferrite magnets need to have a large magnet area because of their low magnetization. For this reason, a structure in which a magnet is arranged outside a magnetic yoke is called an external magnet type structure. On the other hand, a magnetic circuit unit using an alnico magnet, a rare earth magnet, ie, an Sm—Co magnet or a neodymium magnet (ie, Nd—Fe—B magnet), as shown in FIG. A structure surrounded by an outer yoke 3 which is also a magnetic yoke similar to that of the magnetic yoke 2, that is, a structure in which a magnet is inserted inside the magnetic yoke, is called an inner magnet type structure.
【0006】これらのスピ−カ用磁気回路ユニットに多
く用いられるフェライト磁石やネオジ系磁石は焼結磁石
であって、スピ−カメ−カは磁石を購入し、磁石と磁気
ヨ−クとを接着剤で固定する方法で磁気回路ユニットを
製造している。[0006] Ferrite magnets and neodymium magnets frequently used in these magnetic circuit units for speakers are sintered magnets, and the speaker manufacturers purchase the magnet and bond the magnet and the magnetic yoke. The magnetic circuit unit is manufactured by a method of fixing with an agent.
【0007】最近のスピ−カでは高性能な希土類磁石が
多く使われるようになってきている。それらは小型軽量
が必要な携帯電話のレシ−バやコンピュ−タ機器のマイ
クロスピ−カなどであり、今後も小型軽量化は益々進
み、希土類磁石を用いたスピ−カは増加すると予想され
る。Recently, high performance rare earth magnets have been widely used in speakers. These are receivers for mobile phones and micro-speakers for computer equipment that need to be small and lightweight. The miniaturization and weight reduction will continue to increase, and the number of speakers using rare earth magnets is expected to increase. .
【0008】[0008]
【発明が解決しようとする課題】上述のように、希土類
磁石とそれを用いたスピ−カ用磁気回路ユニットは、小
型軽量の特徴が買われ年々増加しているが、更に小型軽
量化とコストダウンが求められており、これらの要求に
応じるには、磁石特性の向上とプロセスコストの低減が
必要である。As described above, the rare-earth magnet and the magnetic circuit unit for a speaker using the same are increasing in size and weight each year. Downs are demanded, and to meet these demands, it is necessary to improve magnet properties and reduce process costs.
【0009】これらの大きな課題達成には上述の通電圧
縮成形による希土類磁石の製造とスピ−カ用磁気回路ユ
ニットへの適用が好適であり、そのなかで、特に通電圧
縮成形磁石の磁石特性の向上と、スピ−カ用磁気回路ユ
ニットでの通電圧縮成形磁石とヨ−ク材の一体成形の達
成が望まれる。In order to achieve these major problems, it is preferable to manufacture a rare earth magnet by the above-described energization compression molding and to apply the magnet to a magnetic circuit unit for a speaker. It is desired that the magnetic circuit unit for the speaker be integrally formed with the energized compression molded magnet and the yoke material.
【0010】本発明は、上記の課題を解決することを目
的としてなされたもので、希土類磁石及びスピ−カ用磁
気回路ユニットの新しい製造方法を提供するものであ
る。SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and provides a new method of manufacturing a rare earth magnet and a magnetic circuit unit for a speaker.
【0011】[0011]
【課題を解決するための手段】上記の課題を解決するた
めの本発明の希土類磁石の製造方法は、Nd−Fe−B
系磁石粉末を通電圧縮成形によってバルク磁石体にする
方法において、外側成形型の内径側の側壁部分に絶縁体
粉末を充填し、その内側にNd−Fe−B系異方性磁石
粉末を充填した後、軸方向に磁場をかけ、次いで直接通
電しこれらを圧縮成形することを特徴とする。更に絶縁
体粉末がアルミナであることが好ましい。また、100
kgf/cm2以下の圧力下で軸方向に磁場をかけるこ
とが好ましい。また、200kgf/cm2以上の圧力
下で直接通電し圧縮成形することが好ましい。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, a method of manufacturing a rare-earth magnet according to the present invention comprises Nd-Fe-B.
In the method in which the system magnet powder is formed into a bulk magnet body by current compression molding, the outer mold is filled with an insulator powder on an inner diameter side wall, and an Nd-Fe-B-based anisotropic magnet powder is filled inside the insulator powder. Thereafter, a magnetic field is applied in the axial direction, and then a current is directly applied to perform compression molding. Further, the insulator powder is preferably alumina. Also, 100
It is preferable to apply a magnetic field in the axial direction under a pressure of not more than kgf / cm 2 . Further, it is preferable to directly apply a current under a pressure of 200 kgf / cm 2 or more to perform compression molding.
【0012】また、本発明のスピ−カ用磁気回路ユニッ
トの製造方法は、磁気回路の外ヨ−クの上部に前記外ヨ
−クの内径と略同一の内径の成形用支持型を置き、前記
外ヨ−ク及び前記成形用支持型の内径側の側壁部分に絶
縁体粉末を充填し、その内側にNd−Fe−B系磁石粉
末を充填しさらにその上にトッププレ−トを置き、加圧
して直接通電し圧縮一体成形し、その後絶縁体粉末を除
去することを特徴とする。更に、絶縁体粉末がアルミナ
であることが好ましい。また、Nd−Fe−B系磁石粉
末が、トッププレ−トと接する部分及び外ヨ−クの底部
と接する部分では等方性の薄片粉末であり、内部では異
方性粉末であり、直接通電する前及び/又は直接通電初
期に軸方向に磁場をかけて異方性粉末を整列させること
が好ましい。Further, according to the method of manufacturing a magnetic circuit unit for a speaker of the present invention, a molding support die having an inner diameter substantially equal to the inner diameter of the outer yoke is placed on the outer yoke of the magnetic circuit. Insulating powder is filled into the outer yoke and the inner diameter side wall portion of the molding support die, Nd-Fe-B-based magnet powder is filled inside thereof, and a top plate is placed thereon. It is characterized by applying pressure, directly energizing, compressing and integrally molding, and then removing the insulating powder. Further, the insulator powder is preferably alumina. Further, the Nd-Fe-B-based magnet powder is an isotropic flake powder in a portion in contact with the top plate and a portion in contact with the bottom of the outer yoke, and is anisotropic powder in the interior, and is directly energized. It is preferable to apply a magnetic field in the axial direction before and / or at the beginning of direct energization to align the anisotropic powder.
【0013】[0013]
【発明の実施の形態】以下、本発明を詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
【0014】本発明に関わるNd−Fe−B系磁石粉末
の等方性薄片粉末は、USP4851058に詳細に記
載されているように10〜40at%のNd,Prまた
はそれらの混ざった物と50〜90at%のFeと0.
5〜10at%のBの組成からなり、溶解によって溶湯
となった前記合金を高速で回転するロ−ルの表面に吹き
つけて急速に冷却して固化したもので、厚さが10〜3
0μmでその幅はおおよそ50〜300μmで平均的に
は200μmの大きさを有する薄片状の粉末である。こ
の薄片粉末はNd2Fe14B相と非晶質相とからなると
言われ、この薄片粉末の磁気特性はNd2Fe14B相の
微結晶粒がアトランダムに向いているため磁気的には等
方性である。しかし(BH)maxは13〜15MGO
eあり、優れた磁石材料であり、現在小型モ−タ用のボ
ンド磁石に大量に使われている。As described in detail in US Pat. No. 4,851,058, the isotropic flake powder of the Nd-Fe-B-based magnet powder according to the present invention is preferably composed of 10 to 40 at% of Nd, Pr or a mixture thereof with 50 to 50 at%. 90 at% Fe and 0.1.
The alloy, which has a composition of B of 5 to 10 at% and is melted by melting, is sprayed on the surface of a roll rotating at a high speed, rapidly cooled and solidified, and has a thickness of 10 to 3 atm.
It is a flaky powder having a size of 0 μm, a width of approximately 50 to 300 μm and an average size of 200 μm. It is said that this flake powder is composed of an Nd 2 Fe 14 B phase and an amorphous phase, and the magnetic properties of this flake powder are magnetic because the fine crystal grains of the Nd 2 Fe 14 B phase are oriented at random. Isotropic. However, (BH) max is 13-15 MGO
e, it is an excellent magnet material and is currently used in large quantities in bonded magnets for small motors.
【0015】またNd−Fe−B系磁石粉末の異方性粉
末は、日本金属学会会報“まてりあ”第34巻第2号
(1995)の152〜157頁に詳細に記載されてい
るように、ほぼ上述の組成をベ−スにCoを約12at
%程度およびZr、Nb,Hf,Ta,Gaなどを1a
t%以下の少量を含んだ組成からなる。この異方性磁石
粉末はHDDR法という最近開発された優れた方法で作
られる。それは、上述の組成合金を溶解鋳造して鋳塊を
つくりそれを均一化処理をしてNd2Fe14B相とし、
その後水素雰囲気中で熱処理して水素を吸蔵させ水素化
(Hydrogenation)によってNdH2,F
e,Fe2Bに相分解(Decomposition)
しそのあと強制的に脱水素(Desorption)を
行うことによりNd2Fe14B相に再結合(Recom
bination)させる。この処理により始め100
μm程度の大きな結晶粒であったNd2Fe14B相が
0.3μm程度の微細な結晶粒になりそのうえこの微細
結晶粒が元の結晶方位を保存していて元の結晶粒に相当
する100〜400μmの塊の内部に存する微細結晶粒
が全てほぼ同一方向を向いており、これによってその1
00〜400μmの大きさまたは割れることによりそれ
以下の大きさの微細結晶粒塊が異方性磁石粉末となる。
この方法はその生成過程の頭文字をとってHDDR法と
言われる。この異方性粉末の磁気特性は、現在のところ
入手可能な粉末では(BH)maxで28〜35MGO
eである。The anisotropic powder of the Nd—Fe—B magnet powder is described in detail in the Journal of the Japan Institute of Metals, “Materia”, Vol. 34, No. 2, (1995), pp. 152-157. In addition, approximately 12 at.
% And Zr, Nb, Hf, Ta, Ga, etc.
It is composed of a composition containing a small amount of t% or less. This anisotropic magnet powder is made by a recently developed excellent method called HDDR method. That is, the above-mentioned composition alloy is melt-cast to form an ingot, which is subjected to a homogenization treatment to obtain an Nd 2 Fe 14 B phase,
Thereafter, heat treatment is performed in a hydrogen atmosphere to absorb hydrogen, and NdH 2 , F is formed by hydrogenation.
e, phase decomposition into Fe 2 B (Decomposition)
Then, by forcibly performing dehydrogenation (Desorption), the Nd 2 Fe 14 B phase is recombined (Recom).
bination). By this processing, 100
The Nd 2 Fe 14 B phase, which was a large crystal grain of about μm, becomes fine crystal grains of about 0.3 μm, and the fine crystal grains retain the original crystal orientation and correspond to the original crystal grains. All of the fine crystal grains present inside the ~ 400 µm lump are oriented in substantially the same direction,
Fine crystal agglomerates having a size of 00 to 400 μm or smaller by cracking become anisotropic magnet powder.
This method is called the HDDR method, taking the initials of the generation process. The magnetic properties of this anisotropic powder are 28-35 MGO at (BH) max for currently available powders.
e.
【0016】通電圧縮成形工法は、導電性の被成形粉末
に対して一軸性の圧力と電流を付与(直接通電)するこ
とで粉末と粉末の接触する界面でジュ−ル発熱させて高
温にしかつ接触界面の原子は活性化してお互いに拡散が
促進しかつ圧力によって圧縮されてバルクの成形体に成
形される方法である。従来の熱間圧縮成形(HIP)に
比べると低い温度でほぼフル密度まで成形することがで
きる。また昇温降温が急速にできるので成形が極めて短
時間にできるという特徴がある。In the current compression molding method, a uniaxial pressure and current are applied to a conductive powder to be formed (direct current supply) to generate Joule heat at an interface where the powder and the powder come into contact with each other, thereby raising the temperature to a high level. In this method, atoms at the contact interface are activated to promote diffusion to each other, and are compressed by pressure to form a bulk compact. It can be molded to almost full density at a lower temperature than conventional hot compression molding (HIP). In addition, since the temperature can be raised and lowered rapidly, the molding can be performed in a very short time.
【0017】この通電圧縮成形の方法を用いて、スピ−
カ用磁気回路ユニットのうちの磁石とトッププレ−トの
部分を一体成形する方法を提案してきた(特開平8−5
1693号公報参照)。しかしこの方法では一体成形し
た磁石とトッププレ−トを外ヨ−クに接着剤で固定して
きた。本発明は外ヨ−クも一緒に一体成形する方法を提
案するものである。Using this method of current compression molding,
A method of integrally forming a magnet and a top plate in a magnetic circuit unit for power has been proposed (JP-A-8-5).
No. 1693). However, in this method, the magnet and the top plate integrally formed are fixed to the outer yoke with an adhesive. The present invention proposes a method of integrally molding the outer yoke together.
【0018】まず通電圧縮成形での課題は磁気特性の向
上にある。従来の方法では、異方性粉末は磁場中で加圧
されて軸方向(加圧方向)に磁化容易軸(c軸)が向い
て整列している。この外部磁場による力が働いて整列し
ている時はまだ温度は低く室温かまたはキュリ−点以下
の温度であり圧力も低いので密度は低く、おおよそフル
密度の50〜60%である。すなわち残部の40〜50
%は空隙である。この状態で直接通電され、粉末の接点
部分でジュ−ル発熱が起こり昇温しおおよそ600℃を
越えた部分では加圧力によって部分変形が生じ、接触部
分が拡大し、直接通電による効果によって接触部分で原
子拡散が起こり粉末同士が一体化していく。この過程で
圧力は軸方向にかかっておりこの圧力で加圧方向すなわ
ち軸方向に寸法は縮まり、最終的にはフル密度に達す
る。すなわち軸方向の空隙は埋められるが径方向の空隙
は埋め難い。このため粉末が部分変形する過程で粉末自
体が空隙のほうに回転を起こして動いて空隙を埋めてい
くと推定される。この回転で軸方向に整列配向していた
粉末は結晶方向を変えてしまい、このため軸方向の磁気
特性が低下することになる。First, a problem in the current compression molding is to improve the magnetic characteristics. In the conventional method, the anisotropic powder is pressurized in a magnetic field and aligned with the axis of easy magnetization (c-axis) oriented in the axial direction (pressing direction). When the alignment is performed by the force of the external magnetic field, the temperature is still low at room temperature or below the Curie point and the pressure is low, so that the density is low, approximately 50 to 60% of the full density. That is, the remaining 40 to 50
% Is the void. In this state, direct current is applied, and Joule heat is generated at the contact point of the powder, and the temperature rises. At a temperature exceeding about 600 ° C., partial deformation occurs due to the pressing force, the contact portion is enlarged, and the contact portion is expanded by the effect of the direct current. Atomic diffusion occurs and the powders are integrated. In this process, the pressure is applied in the axial direction, and the size is reduced in the pressing direction, that is, the axial direction, and finally reaches the full density. That is, the gap in the axial direction is filled, but the gap in the radial direction is difficult to fill. For this reason, it is presumed that the powder itself rotates and moves to fill the void in the process of partially deforming the powder. This rotation changes the crystal direction of the powder that has been aligned and oriented in the axial direction, and therefore, the magnetic properties in the axial direction are reduced.
【0019】以上のような推測から、粉末の配向を保つ
には、すなわち粉末の回転を抑制するには、径方向から
も圧力を働かせることが有効であると考え、現在の方法
に改良を加え径方向の圧力を発生させる方法を種々検討
し、そのなかにおいて本発明はなされたものである。Based on the above assumptions, it is considered that it is effective to maintain the powder orientation, that is, to suppress the rotation of the powder, by applying pressure also from the radial direction. Various methods for generating radial pressure have been studied, and the present invention has been made among them.
【0020】すなわち圧力媒体として絶縁体の粉末を採
用し、磁石粉末の外側にその絶縁体粉末を配置し、磁石
粉末と絶縁体粉末を同時に加圧し直接通電する。磁石粉
末は発熱して昇温し変形温度域に達し圧縮成形される。
絶縁体粉末は電気をほとんど通さないので発熱すること
は無く、磁石粉末からの伝熱で昇温するが温度は磁石粉
末と比べて低い。このため絶縁体粉末の密度はほとんど
上がらない。すなわち絶縁体粉末の体積はほとんど変わ
らないので、磁石粉末の変形に応じて絶縁体粉末は径方
向に動き磁石粉末を径方向から内側に向かって静水圧的
に押す作用をして磁石粉末を径方向に圧縮する。すなわ
ち磁石粉末を径方向にも加圧できこのために磁石粉末の
径方向への回転変形が無くなって磁石粉末の配向方向が
乱れるのを抑制する。That is, an insulator powder is adopted as a pressure medium, the insulator powder is arranged outside the magnet powder, and the magnet powder and the insulator powder are simultaneously pressed and directly energized. The magnet powder generates heat, rises in temperature, reaches a deformation temperature range, and is compacted.
The insulating powder does not generate heat because it hardly conducts electricity, and the temperature rises due to heat transfer from the magnet powder, but the temperature is lower than that of the magnet powder. Therefore, the density of the insulator powder hardly increases. In other words, since the volume of the insulator powder is hardly changed, the insulator powder moves in the radial direction in accordance with the deformation of the magnet powder, and acts to hydrostatically press the magnet powder from the radial direction to the inside to reduce the diameter of the magnet powder. Compress in the direction. That is, the magnet powder can be pressed in the radial direction, so that the rotational deformation of the magnet powder in the radial direction is eliminated and the orientation direction of the magnet powder is suppressed from being disturbed.
【0021】さらに具体的に図1を用いて説明する。図
1は通電圧縮成形の成形型を中心に模式的に表したもの
で、本発明の一例を示すもので、本発明はこれに限定さ
れない。This will be described more specifically with reference to FIG. FIG. 1 is a diagram schematically showing a mold for current compression molding, and shows an example of the present invention. The present invention is not limited to this.
【0022】通電圧縮成形用のサイアロン(絶縁性)製
の外側成形型11の中にカ−ボン製の電極ポンチ12と
その上にW−Co−C製のスペ−サ13を下方から入れ
る。スペ−サ13の上端面には離型剤が塗布されてい
る。次に外側成形型11の中のスペ−サ13の上に薄肉
円筒を入れてその外側部分すなわち外側成形型11の内
壁に接する部分に絶縁体粉末14であるアルミナを入
れ、次に内側に異方性磁石粉末15であるNd−Fe−
B系異方性磁石粉末を入れ同じ高さとする。その後薄肉
円筒を抜き取りその上に下端面に離型剤が塗布されたス
ペ−サ13を入れその上に電極ポンチ12を入れて粉末
の充填を終える。次にこの成形型全体を通電圧縮成形装
置の中に入れ大電流を通す下ラムの上に設置する。同様
に大電流を通す上ラムを下ろして上の電極ポンチ12の
上端面を加圧し、この場合は低い圧力すなわち100k
gf/cm2以下の圧力で加圧して停止し熱電対を外側
成形型11に装着する。この状態で装置を密閉しロ−タ
リポンプで排気しながら外側成形型11の外側に設置さ
れている磁場コイルに通電して軸方向に3〜30kOe
の磁場を印加してNd−Fe−B系の異方性磁石粉末1
5を軸方向に整列させる。磁場をかけて整列している間
に上ラムの圧力を上げて200kgf/cm2以上の圧
力で加圧して配向を固定させる。次に加圧した状態で通
電電源から上ラム下ラムを通過させてパルス電流を20
〜60秒流し次いで直流電流を180〜400A/cm
2流して昇温させ圧縮しバルク磁石体とする。その後電
流を停止し、冷却し、磁石体を外側成形型11から取り
出し、付着している絶縁体粉末14を除去する。An electrode punch 12 made of carbon and a spacer 13 made of W-Co-C are placed from below into an outer mold 11 made of sialon (insulating) for current compression molding. A release agent is applied to the upper end surface of the spacer 13. Next, a thin-walled cylinder is put on the spacer 13 in the outer molding die 11, and alumina, which is the insulating powder 14, is put into the outer part thereof, that is, the part which is in contact with the inner wall of the outer molding die 11, and then the inner part is made different. Nd-Fe- which is anisotropic magnet powder 15
B-type anisotropic magnet powder is added and the height is the same. Thereafter, the thin cylinder is extracted, a spacer 13 having a release agent applied to the lower end surface thereof is placed thereon, and the electrode punch 12 is placed thereon, thereby completing the filling of the powder. Next, the entire mold is placed in a current compression molding apparatus and placed on a lower ram through which a large current flows. Similarly, the upper ram for passing a large current is lowered to press the upper end surface of the upper electrode punch 12, and in this case, a low pressure, that is, 100 k
The thermocouple is stopped by applying a pressure of not more than gf / cm 2 and the thermocouple is mounted on the outer mold 11. In this state, the apparatus is closed and the magnetic field coil installed outside the outer molding die 11 is energized while evacuating with a rotary pump, and 3 to 30 kOe in the axial direction.
Nd-Fe-B based anisotropic magnet powder 1
5 is aligned in the axial direction. During alignment by applying a magnetic field, the pressure of the upper ram is increased, and the pressure is increased by 200 kgf / cm 2 or more to fix the orientation. Next, in a pressurized state, the pulse current is passed through the upper ram and the lower ram from
6060 seconds and then direct current 180-400 A / cm
The mixture is heated by two streams to be heated and compressed to form a bulk magnet. Thereafter, the current is stopped, the magnet body is cooled, the magnet body is taken out of the outer mold 11, and the attached insulator powder 14 is removed.
【0023】ここで絶縁体粉末14は、通電圧縮成形時
にバルク成形されず初期の体積量をほぼ保っておりこの
ために一体成形される磁石粉末に径方向から圧力を加え
ることができる粉末である。この特性を満足させるには
直接通電時に電流を通さずにその結果発熱しないで一体
成形されない必要があり、このためには絶縁体であるこ
とが必要であり、このことから絶縁体粉末と称してい
る。例としてはアルミナ粉末がまず挙げられる。またジ
ルコニア粉末やシリカ粉末なども適している。またNi
Znフェライトや表面酸化させたセンダスト粉末なども
使える。Here, the insulator powder 14 is a powder that is not bulk-molded at the time of energization compression molding and substantially retains the initial volume, so that pressure can be applied to the magnet powder that is integrally molded from the radial direction. . In order to satisfy this characteristic, it is necessary that the current is not passed during direct energization, and as a result, it is not molded integrally without generating heat.Therefore, it must be an insulator, and hence it is called an insulator powder. I have. An example is alumina powder first. Zirconia powder and silica powder are also suitable. Also Ni
Zn ferrite or sendust powder whose surface has been oxidized can also be used.
【0024】またこの絶縁体粉末14は、圧力を径方向
に伝達するのが大きな役目であるが、そのために軸方向
圧力で径方向に動くことが容易でなければならず、粉末
の粒子径の小さいものは圧縮時に径方向へは動きにくい
ので向いていない。粒子径は大きいものが望ましく、5
0〜100μmの大きさのものが望ましい。また滑剤を
少量添加したり、絶縁体粉末表面に薄くコ−ティングす
るのが好ましい。The role of the insulator powder 14 in transmitting the pressure in the radial direction is to play a large role. For this reason, the insulator powder 14 must be easily movable in the radial direction by the axial pressure. Small ones are not suitable because they do not move easily in the radial direction during compression. It is desirable that the particle size is large.
Those having a size of 0 to 100 μm are desirable. It is also preferable to add a small amount of a lubricant or to coat thinly on the surface of the insulating powder.
【0025】次に図2を用いてスピ−カ用磁気回路ユニ
ットの製造方法を説明する。図2は成形前の磁石粉末を
中心にした模式図であって説明のため部分的には誇張し
てある。また図2は本発明の一例を示すもので、本発明
は図2に限定されるものではない。Next, a method of manufacturing a magnetic circuit unit for a speaker will be described with reference to FIG. FIG. 2 is a schematic diagram centering on the magnet powder before molding, and is partially exaggerated for explanation. FIG. 2 shows an example of the present invention, and the present invention is not limited to FIG.
【0026】まず外ヨ−ク3に成形用支持型(サイアロ
ン製)6をかぶせる。外ヨ−ク3の内側の内径と成形用
支持型6の内径は同一にしてある。この外ヨ−ク3と成
形用支持型6の内に薄肉円筒を入れる。薄肉円筒の内径
はこの例の場合はトッププレ−ト2の外径の大きさに合
わせてある。薄肉円筒の外側に絶縁体粉末14を充填し
その後内側に異方性の磁石粉末5を充填する。成形後に
はフル密度になるバルク磁石の外径はトッププレ−ト2
の外径より小さなものとなるがその程度によって外ヨ−
ク3の上部の面に対してトッププレ−ト2の上面が上下
することになる。そこでトッププレ−ト2の上面が外ヨ
−ク3の上部と同一面になるように、磁石粉末5の充填
量の最適量を数回実験を行なって決める。次に磁石粉末
5の上にトッププレ−ト2を置く。薄肉円筒を抜いてト
ッププレ−ト2の上面と絶縁体粉末の上面を同じ高さに
する。次にスペ−サ13の下端面に離型剤を塗布してト
ッププレ−ト2の上に置く。次いで電極ポンチ12を置
き、また外ヨ−ク3の下に電極ポンチ12を配置する。
この状態で通電圧縮成形装置の中に入れ、上述のバルク
磁石単体の成形の場合と同じく、下ラムと上ラムの間に
置く。まず軽く加圧した状態で、すなわち100kgf
/cm2以下の圧力で加圧して、密閉して真空排気しな
がら磁場を軸方向にかけて異方性の磁石粉末5を軸方向
に整列配向させて圧力を200kgf/cm2以上にし
て磁石粉末5を固定する。次にパルス電流を短時間通電
して磁石粉末5の表面クリ−ニングを行ない次に直流電
流を流して昇温し磁石粉末5を圧縮成形する。磁石粉末
5がバルク磁石化していくと密度は上がりその分磁石体
積は減少しスペ−サ13はトッププレ−ト2と磁石粉末
5を押すと同時に絶縁体粉末14も同時に加圧し、絶縁
体粉末14の密度はほどんど変わらないので絶縁体粉末
14は径方向に動いて磁石粉末5を側面から押すことに
なる。磁石粉末5がフル密度になったところで圧縮成形
は終了する。通電圧縮の間にトッププレ−ト2の下面と
外ヨ−ク3の底部内面は磁石粉末5と接して部分的に融
着し一体成形される。磁石粉末5とトッププレ−ト2及
び外ヨ−ク3とは材質が異なるため熱膨脹に差があり、
冷却時には室温近くの40℃まで加圧したままにするの
が望ましい。40℃以上で加圧を止めるとバルク磁石体
にクラックが入ることがある。冷却後電極ポンチ12と
スペ−サ13および成形用支持型6を外し、さらに絶縁
体粉末14を除去すると、スピ−カ用磁気回路ユニット
となる。First, the outer yoke 3 is covered with a molding support die (made by Sialon) 6. The inside diameter of the outer yoke 3 and the inside diameter of the molding support die 6 are the same. A thin-walled cylinder is placed in the outer yoke 3 and the supporting mold 6. The inner diameter of the thin cylinder is adjusted to the outer diameter of the top plate 2 in this example. The outside of the thin-walled cylinder is filled with the insulating powder 14 and then the inside is filled with the anisotropic magnet powder 5. The outer diameter of the bulk magnet that becomes full density after molding is the top plate 2
Is smaller than the outer diameter of
The upper surface of the top plate 2 moves up and down with respect to the upper surface of the work 3. Therefore, the optimum amount of the magnetic powder 5 is determined by conducting experiments several times so that the upper surface of the top plate 2 is flush with the upper portion of the outer yoke 3. Next, the top plate 2 is placed on the magnet powder 5. After removing the thin cylinder, the upper surface of the top plate 2 and the upper surface of the insulating powder are made at the same height. Next, a release agent is applied to the lower end surface of the spacer 13 and placed on the top plate 2. Next, the electrode punch 12 is placed, and the electrode punch 12 is placed under the outer yoke 3.
In this state, it is placed in an energization compression molding apparatus, and is placed between the lower ram and the upper ram, as in the case of molding the bulk magnet alone. First, under light pressure, that is, 100 kgf
/ Cm 2, while applying a magnetic field in the axial direction while closing and evacuating to a vacuum to orient the anisotropic magnet powder 5 in the axial direction and increasing the pressure to 200 kgf / cm 2 or more. Is fixed. Next, a pulse current is applied for a short time to clean the surface of the magnet powder 5, and then a direct current is supplied to raise the temperature to compress the magnet powder 5. As the magnet powder 5 becomes a bulk magnet, the density increases and the magnet volume decreases accordingly, and the spacer 13 presses the top plate 2 and the magnet powder 5 and simultaneously presses the insulator powder 14 simultaneously. Since the density of the insulating powder 14 hardly changes, the insulator powder 14 moves in the radial direction and pushes the magnet powder 5 from the side. The compression molding ends when the magnet powder 5 has reached the full density. During energization and compression, the lower surface of the top plate 2 and the inner surface of the bottom of the outer yoke 3 come into contact with the magnet powder 5 and are partially fused and integrally formed. Since the magnet powder 5 and the top plate 2 and the outer yoke 3 are made of different materials, there is a difference in thermal expansion.
During cooling, it is desirable to keep the pressure up to 40 ° C. near room temperature. When pressurization is stopped at 40 ° C. or more, cracks may occur in the bulk magnet body. After cooling, the electrode punch 12, the spacer 13, and the molding die 6 are removed, and the insulating powder 14 is removed to obtain a magnetic circuit unit for a speaker.
【0027】バルク磁石体にクラックが入るかどうか
は、磁気回路ユニットの大きさやトッププレ−トの厚さ
などによって決まる。特にトッププレ−トが厚いとクラ
ックは入りやすい。このような場合はトッププレ−ト2
の下面と外ヨ−ク3の底部内面に接する磁石粉末として
Nd−Fe−B系の等方性薄片粉末を薄く入れると丁度
ヨ−ク材とNd−Fe−B系異方性粉末との中間の熱膨
脹となるのでクラックの発生を抑制することができる。Whether or not cracks occur in the bulk magnet depends on the size of the magnetic circuit unit and the thickness of the top plate. In particular, when the top plate is thick, cracks are easily formed. In such a case, top plate 2
When Nd-Fe-B based isotropic flake powder is thinly introduced as magnet powder in contact with the bottom surface of the outer yoke 3 and the inner surface of the bottom of the outer yoke 3, just the yoke material and the Nd-Fe-B based anisotropic powder Since the thermal expansion is intermediate, the generation of cracks can be suppressed.
【0028】またこのスピ−カ用磁気回路ユニットの磁
石とトッププレ−ト2と外ヨ−ク3とを同時に一体成形
してしまうこの方法は、従来には無いやりかたであり、
接着工程を省くことができる方法で、なおかつ磁石とヨ
−クとの間に接着剤を挟まないので磁気回路的に接着剤
の磁気抵抗が無くなり有利である。このため磁石粉末と
しては異方性粉末を用いずにNd−Fe−B系の等方性
薄片粉末を用いても、磁石体積を増しさえすれば使える
ものとなる。それゆえに磁石粉末としては異方性粉末に
限定する必要無く、等方性粉末であっても良くまたこの
場合には磁場配向は必要無い。This method of simultaneously molding the magnet of the speaker magnetic circuit unit, the top plate 2 and the outer yoke 3 at the same time is an unprecedented method.
This method is advantageous in that the bonding step can be omitted and the adhesive is not sandwiched between the magnet and the yoke, so that the magnetic resistance of the adhesive is eliminated in a magnetic circuit. Therefore, even if an Nd-Fe-B based isotropic flake powder is used as the magnet powder without using the anisotropic powder, it can be used as long as the magnet volume is increased. Therefore, the magnetic powder need not be limited to anisotropic powder, but may be isotropic powder. In this case, no magnetic field orientation is required.
【0029】なお本発明はスピ−カ用磁気回路ユニット
について述べているが、同様に静磁場が必要される部品
や製品例えばボイスコイルモ−タ(VCM)などの磁気
回路ユニットにも有効であることは言うまでもない。Although the present invention has been described with reference to a magnetic circuit unit for a speaker, it is also effective for a magnetic circuit unit such as a voice coil motor (VCM) such as a component or product requiring a static magnetic field. Needless to say.
【0030】[0030]
【実施例】次に、本発明を実施例にて具体的に説明す
る。Next, the present invention will be described in detail with reference to examples.
【0031】(実施例1)内径が20mmの外側成形型
に、電極ポンチと上端面にボロンナイトライド(BN)
を塗布したスペ−サを下方からさしこみ、その上に内径
が16mmの薄肉円筒を入れその外側と外側成形型の内
壁の間に80〜100μmの粗大アルミナ粉末を充填
し、薄肉円筒の内側にNd−Fe−B系の異方性磁石粉
末を8.6g充填し、磁石粉末の高さとアルミナ粉末の
高さを同じにした。次に薄肉円筒を抜き出してその上に
下面にBNを塗布したスペ−サを置きその上に電極ポン
チを差し込み、通電圧縮成形装置の中に入れて下ラムの
上に据えた。次に上ラムを下ろして電極ポンチに50k
gf/cm2の圧力をかけ装置を密閉しロ−タリポンプ
で排気しながら30kOeのパルス磁場を軸方向にかけ
その後静磁場3kOeをかけながら250kgf/cm
2に圧力を上げて粉末を加圧した。この状態でパルス電
流を電源から上下ラムと電極ポンチ及びスペ−サを介し
て磁石粉末に30秒間直接通電し、その後630Aの定
常電流を直接通電して昇温しながら圧縮成形した。外側
成形型に取りつけた熱電対の指示温度で620℃を越え
たあたりから変形が始まり約730℃で変形が飽和に達
したので通電を止め冷却に入った。定常電流を流してい
た時間は90秒であった。300℃以下になったところ
で真空を破り大気圧に戻して装置を開放してエヤ−で強
制的に冷却した。触れる温度になったところで加圧を止
め、装置から成形型を取り出しバルク磁石を取り出し
た。バルク磁石の高さは8.1mmで外径は約13.4
mmであった。密度は7.53g/ccでフル密度の
7.6に近い値であった。径方向は初期16mmであっ
たものが13.4mmと減少しており、アルミナによる
径方向側からの圧力が効いたものと思われる。このバル
ク磁石の磁気特性は,Br=11.3kG,iHc=1
0.5kOe,(BH)max=28.7MGOeであ
った。使用した異方性磁石粉末の磁気特性がBr=1
2.0kG,iHc=12.3kOe,(BH)max
=32.4MGOeであることから良い値といえる。(Example 1) In an outer mold having an inner diameter of 20 mm, an electrode punch and boron nitride (BN)
Is inserted from below, a thin cylinder having an inner diameter of 16 mm is put on the spacer, and a coarse alumina powder of 80 to 100 μm is filled between the outside and the inner wall of the outer mold, and Nd is put inside the thin cylinder. 8.6 g of an Fe-B-based anisotropic magnet powder was filled, and the height of the magnet powder was made equal to the height of the alumina powder. Next, the thin cylinder was extracted, a spacer coated with BN was placed on the lower surface, an electrode punch was inserted thereon, and the thin cylinder was placed in a current compression molding apparatus and set on the lower ram. Next, lower the upper ram and put 50k on the electrode punch.
While applying a pressure of gf / cm 2, the device is closed and a rotary pump is used to evacuate the apparatus, a pulse magnetic field of 30 kOe is applied in the axial direction, and then a static magnetic field of 3 kOe is applied while 250 kgf / cm.
The pressure was increased to 2 to pressurize the powder. In this state, a pulse current was directly applied to the magnet powder from the power supply via the upper and lower rams, the electrode punch and the spacer for 30 seconds, and then a steady current of 630 A was directly applied to perform compression molding while raising the temperature. Deformation started at about 620 ° C at the indicated temperature of the thermocouple attached to the outer mold, and the deformation reached saturation at about 730 ° C. The time during which the steady current was flowing was 90 seconds. When the temperature reached 300 ° C. or lower, the vacuum was released to atmospheric pressure, the apparatus was opened, and the apparatus was forcibly cooled with air. When the temperature reached the contact temperature, the pressurization was stopped, the mold was taken out of the apparatus, and the bulk magnet was taken out. The height of the bulk magnet is 8.1 mm and the outer diameter is about 13.4
mm. The density was 7.53 g / cc, a value close to the full density of 7.6. In the radial direction, the initial value was 16 mm, which was reduced to 13.4 mm. It is considered that the pressure from the radial direction by the alumina worked. The magnetic properties of this bulk magnet are Br = 11.3 kG, iHc = 1
0.5 kOe, (BH) max = 28.7 MGOe. The magnetic properties of the anisotropic magnet powder used are Br = 1
2.0 kG, iHc = 12.3 kOe, (BH) max
= 32.4MGOe, which is a good value.
【0032】(比較例1)実施例1において、アルミナ
粉末を入れずに全てNd−Fe−B系の異方性磁石粉末
とし、また定常電流値を790Aにして、それ以外はす
べて同様に通電圧縮成形を行なった。得られてバルク磁
石は外径が20mmで高さは3.6mmでありその密度
は7.6g/ccとフル密度であった。磁気特性は、B
r=10.1kG,iHc=10.2kOe,(BH)
max=21.6MGOeであり、出発の磁石粉末特性
からは大幅に低く、また実施例1で得られたバルク磁石
よりもずっと低いものであった。(Comparative Example 1) In Example 1, an Nd-Fe-B-based anisotropic magnet powder was used without adding alumina powder, and a steady-state current value was set to 790 A. Compression molding was performed. The obtained bulk magnet had an outer diameter of 20 mm, a height of 3.6 mm, and a full density of 7.6 g / cc. The magnetic properties are B
r = 10.1 kG, iHc = 10.2 kOe, (BH)
max = 21.6 MGOe, significantly lower than the starting magnet powder properties, and much lower than the bulk magnet obtained in Example 1.
【0033】(実施例2)内側の内径が20mmの外ヨ
−クに同じく内径20mmの成形用支持型をかぶせ、そ
の内側に内径18.5mmで厚さ0.1mmの薄肉円筒
を差し込み、その円筒の外側に粗大アルミナを入れ、内
側にNd−Fe−B系の異方性磁石粉末を8.8gを入
れた。磁石粉末の上に外径18.4mmで厚さ1.4m
mのトッププレ−トを置いた。次に薄肉円筒をそっと抜
き出しトッププレ−トの上面と同じ高さに粗大アルミナ
の粉末面を調整した。その上にBNを塗布したスペ−サ
を置き、さらにその上に電極ポンチを置き、また外ヨ−
クの下にも電極ポンチを置いて、通電圧縮成形装置の中
に据えた。上下ラムで軽く加圧した状態で、すなわち3
0kgf/cm2の圧力をかけて装置を密閉した。次に
ロ−タリポンプで装置内を排気しながら成形用支持型の
周囲に置いてある磁場用コイルから30kOeのパルス
磁場をかけて異方性磁石粉末を着磁するとともに軸方向
に配向化し次いで静磁場3kOeで粉末の異方性方向を
軸方向に保持しながら圧力を250kgf/cm2にあ
げて圧縮して粉末方向を圧力で固定した。次いでパルス
電流を上下ラム、電極ポンチ、スペ−サを介して磁石粉
末に直接通電して粉末表面をクリ−ニングし、次いで6
10Aの定常電流を直接通電して昇温し通電圧縮成形し
た。圧縮変形の進行を変位計で観測し変位が飽和したと
ころで通電を中止し、冷却した。350℃程度まで下が
ったところで真空ポンプを停止し、空気を入れて大気圧
に戻し装置容器を開放して強制的に風冷し40℃まで冷
却した。その後圧力を下げて上ラムを上げ電極ポンチで
挟まれた外ヨ−クと成形用支持型の組合せを取り出し、
分解して絶縁体粉末を除去し磁気回路ユニットにした。
外ヨ−クの上面とトッププレ−トの上面はほぼ同一であ
り、外ヨ−クの内側の深さは6.4mmであったので磁
石の厚さは計画通り5.0mmになっている。また落下
テストでは外ヨ−クとトッププレ−トと磁石は外れるこ
となく強固に一体化していた。軸方向に着磁しギャップ
部の磁場強度をホ−ル素子で測定したところ、10.8
kGあり、スペックの10kGを満足するものであっ
た。その後解体して磁石部分を取り出し直径を測ったと
ころ17.2mmで、投入時の18.5mmからわずか
に径方向に圧縮されており、アルミナの効果は出ている
ことが確認された。またその密度は7.59g/ccで
ほぼフル密度であった。バルク磁石の磁気特性はBr=
10.8kG,iHc=10.8kOe,(BH)ma
x=25.2MGOeであり、比較例1の場合より良い
値で磁石粉末の配向性の劣化が抑制されていると言え
る。(Example 2) The outer yoke having an inner diameter of 20 mm was covered with a molding die having the same inner diameter of 20 mm, and a thin-walled cylinder having an inner diameter of 18.5 mm and a thickness of 0.1 mm was inserted into the outer yoke. Coarse alumina was placed outside the cylinder, and 8.8 g of Nd-Fe-B-based anisotropic magnet powder was placed inside. The outer diameter is 18.4mm and the thickness is 1.4m on the magnet powder
m top plate was placed. Next, the thin cylinder was gently pulled out, and the coarse alumina powder surface was adjusted to the same height as the upper surface of the top plate. A spacer coated with BN is placed thereon, and an electrode punch is further placed thereon.
An electrode punch was also placed under the coil and placed in an electric compression molding apparatus. With the upper and lower rams lightly pressurized, ie 3
The device was sealed by applying a pressure of 0 kgf / cm 2 . Next, a pulse magnetic field of 30 kOe is applied to the anisotropic magnet powder from a magnetic field coil placed around the molding support while the inside of the apparatus is evacuated by a rotary pump to magnetize the anisotropic magnet powder, and to orient the powder in the axial direction. While maintaining the anisotropic direction of the powder in the axial direction with a magnetic field of 3 kOe, the pressure was increased to 250 kgf / cm 2 and the powder was compressed to fix the direction of the powder. Next, a pulse current is applied directly to the magnet powder through the upper and lower rams, the electrode punch, and the spacer to clean the powder surface.
A steady current of 10 A was directly applied to raise the temperature to perform compression molding. The progress of the compression deformation was observed with a displacement meter, and when the displacement was saturated, the energization was stopped and cooling was performed. When the temperature dropped to about 350 ° C., the vacuum pump was stopped, air was introduced, the pressure was returned to atmospheric pressure, the apparatus container was opened, and the apparatus was forcibly air-cooled and cooled to 40 ° C. Thereafter, the pressure was lowered, the upper ram was raised, and the combination of the outer yoke sandwiched between the electrode punches and the support mold was taken out.
It was disassembled to remove the insulating powder, thereby forming a magnetic circuit unit.
The upper surface of the outer yoke and the upper surface of the top plate were almost the same, and the inner depth of the outer yoke was 6.4 mm, so the thickness of the magnet was 5.0 mm as planned. . In the drop test, the outer yoke, the top plate and the magnet were firmly integrated without coming off. The magnet was magnetized in the axial direction, and the magnetic field strength in the gap was measured with a Hall element.
There was kG, which satisfied the specification of 10 kG. After disassembly, the magnet portion was taken out and the diameter was measured. The diameter was 17.2 mm, which was slightly compressed in the radial direction from 18.5 mm at the time of injection, confirming that the effect of alumina was exhibited. Its density was 7.59 g / cc, which was almost full density. The magnetic properties of the bulk magnet are Br =
10.8 kG, iHc = 10.8 kOe, (BH) ma
x = 25.2 MGOe, and it can be said that deterioration of the orientation of the magnet powder is suppressed at a better value than in the case of Comparative Example 1.
【0034】[0034]
【発明の効果】以上のように、本発明によれば、側面部
分に設けられた絶縁体粉末部分は通電圧縮成形時に圧縮
成形されず圧力によって径方向に動き磁石粉末を径方向
に圧縮する働きをする。磁石粉末が通電圧縮成形される
ときに径方向に粉末が方向転換するのを抑制し磁石粉末
がその異方性方向を軸方向に保つ割合が多くなり通電圧
縮されたバルク磁石体の磁気特性が向上する。As described above, according to the present invention, the portion of the insulator powder provided on the side portion is not compression-molded at the time of energization compression molding, but moves radially by pressure to compress the magnet powder radially. do. When the magnet powder is subjected to energization compression molding, it suppresses the powder from changing its direction in the radial direction, increasing the proportion of the magnet powder that maintains its anisotropic direction in the axial direction, increasing the magnetic properties of the energized and compressed bulk magnet body. improves.
【0035】また本発明によれば、磁気回路ユニットを
構成する外ヨ−クとトッププ−トとを磁石粉末とともに
通電圧縮成形することで3つが一体成形することがで
き、従来の接着剤を介することが無くなって磁気回路上
で磁気抵抗が少なくなり、ギャップ部の磁場強度を向上
させることができる。また製造上で接着工程を無くすこ
とができプロセスコストを低減することができる。Further, according to the present invention, the outer yoke and the top port constituting the magnetic circuit unit can be integrally formed by energizing and compression molding together with the magnet powder, so that the outer yoke and the top port can be integrally formed. As a result, the magnetic resistance is reduced on the magnetic circuit, and the magnetic field strength in the gap can be improved. Further, the bonding step can be eliminated in manufacturing, and the process cost can be reduced.
【図1】 本発明のバルク磁石単体を作る方法の一例を
説明するための模式的断面図である。FIG. 1 is a schematic cross-sectional view for explaining an example of a method for producing a bulk magnet alone according to the present invention.
【図2】 本発明の磁気回路ユニットを一体成形する方
法の1例を説明するための模式的断面図である。FIG. 2 is a schematic cross-sectional view for explaining one example of a method of integrally forming the magnetic circuit unit of the present invention.
【図3】 内磁型構造のスピ−カ用磁気回路ユニットの
概略断面図である。FIG. 3 is a schematic sectional view of a magnetic circuit unit for a speaker having an inner magnet type structure.
1 磁石 2 トッププレ−ト 3 外ヨ−ク 4 ギャップ部 5 磁石粉末 6 成形用支持型 11 外側成形型 12 電極ポンチ 13 スペ−サ 14 絶縁体粉末 15 異方性磁石粉末 DESCRIPTION OF SYMBOLS 1 Magnet 2 Top plate 3 Outer yoke 4 Gap part 5 Magnet powder 6 Molding support 11 Outer mold 12 Electrode punch 13 Spacer 14 Insulator powder 15 Anisotropic magnet powder
Claims (7)
形によってバルク磁石体にする方法において、外側成形
型の内径側の側壁部分に絶縁体粉末を充填し、その内側
にNd−Fe−B系異方性磁石粉末を充填した後、軸方
向に磁場をかけ、次いで直接通電しこれらを圧縮成形す
ることを特徴とする希土類磁石の製造方法。In a method of forming a Nd-Fe-B-based magnet powder into a bulk magnet body by current compression molding, an insulator powder is filled in an inner mold side wall portion of an outer mold, and Nd-Fe-B is filled inside the inner mold. A method for producing a rare-earth magnet, comprising: applying a magnetic field in the axial direction after filling a B-based anisotropic magnet powder;
とする請求項1に記載の希土類磁石の製造方法。2. The method for manufacturing a rare earth magnet according to claim 1, wherein the insulator powder is alumina.
方向に磁場をかけることを特徴とする請求項1に記載の
希土類磁石の製造方法。3. The method for producing a rare earth magnet according to claim 1, wherein a magnetic field is applied in an axial direction under a pressure of 100 kgf / cm 2 or less.
接通電し圧縮成形することを特徴とする請求項1に記載
の希土類磁石の製造方法。4. The method for producing a rare earth magnet according to claim 1, wherein a current is directly applied under a pressure of 200 kgf / cm 2 or more to perform compression molding.
クの内径と略同一の内径の成形用支持型を置き、前記外
ヨ−ク及び前記成形用支持型の内径側の側壁部分に絶縁
体粉末を充填し、その内側にNd−Fe−B系磁石粉末
を充填しさらにその上にトッププレ−トを置き、加圧し
て直接通電し圧縮一体成形し、その後絶縁体粉末を除去
することを特徴とするスピ−カ用磁気回路ユニットの製
造方法。5. The outer yoke is provided above the outer yoke of a magnetic circuit.
A molding support die having an inner diameter substantially the same as the inner diameter of the mold is placed, and the outer yoke and the side wall portion on the inner diameter side of the molding support die are filled with an insulating powder. A method for manufacturing a magnetic circuit unit for a speaker, characterized by filling a magnet powder, further placing a top plate thereon, pressurizing and directly energizing to compress and integrally mold, and then removing the insulating powder.
とする請求項5に記載のスピ−カ用磁気回路ユニットの
製造方法。6. The method for manufacturing a magnetic circuit unit for a speaker according to claim 5, wherein the insulator powder is alumina.
レ−トと接する部分及び外ヨ−クの底部と接する部分で
は等方性の薄片粉末であり、内部では異方性粉末であ
り、直接通電する前及び/又は直接通電初期に軸方向に
磁場をかけて異方性粉末を整列させることを特徴とする
請求項5に記載のスピ−カ用磁気回路ユニットの製造方
法。7. The Nd—Fe—B-based magnet powder is an isotropic flake powder at a portion in contact with the top plate and a portion in contact with the bottom of the outer yoke, and is an anisotropic powder inside. 6. The method of manufacturing a magnetic circuit unit for a speaker according to claim 5, wherein a magnetic field is applied in the axial direction before direct energization and / or at the initial stage of direct energization to align the anisotropic powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9317411A JPH11150033A (en) | 1997-11-18 | 1997-11-18 | Preparation for rare-earth magnet and magnetic circuit unit for loudspeaker |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9317411A JPH11150033A (en) | 1997-11-18 | 1997-11-18 | Preparation for rare-earth magnet and magnetic circuit unit for loudspeaker |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11150033A true JPH11150033A (en) | 1999-06-02 |
Family
ID=18087941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9317411A Pending JPH11150033A (en) | 1997-11-18 | 1997-11-18 | Preparation for rare-earth magnet and magnetic circuit unit for loudspeaker |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11150033A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100589738B1 (en) | 2004-10-28 | 2006-06-19 | 주식회사 테슬라 | Manufacturing method of NDFFA permanent magnet |
KR100631183B1 (en) * | 2004-10-28 | 2006-10-02 | 주식회사 테슬라 | Manufacturing method of NFFA-based anisotropic permanent magnet |
CN110165847A (en) * | 2019-06-11 | 2019-08-23 | 深圳市瑞达美磁业有限公司 | The production method of the solid magnet of radial anisotropic multipole of different in width waveform |
-
1997
- 1997-11-18 JP JP9317411A patent/JPH11150033A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100589738B1 (en) | 2004-10-28 | 2006-06-19 | 주식회사 테슬라 | Manufacturing method of NDFFA permanent magnet |
KR100631183B1 (en) * | 2004-10-28 | 2006-10-02 | 주식회사 테슬라 | Manufacturing method of NFFA-based anisotropic permanent magnet |
CN110165847A (en) * | 2019-06-11 | 2019-08-23 | 深圳市瑞达美磁业有限公司 | The production method of the solid magnet of radial anisotropic multipole of different in width waveform |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4873008B2 (en) | R-Fe-B porous magnet and method for producing the same | |
EP3288043B1 (en) | Pressureless sintering method for anisotropic complex sintered magnet containing manganese bismuth | |
JP4872887B2 (en) | Porous material for R-Fe-B permanent magnet and method for producing the same | |
EP3041005A1 (en) | Anisotropic complex sintered magnet comprising mnbi which has improved magnetic properties and method of preparing the same | |
JP2007053351A (en) | Rare earth permanent magnet, manufacturing method thereof, and permanent magnet rotating machine | |
JP2016082175A (en) | Samarium-iron-nitrogen based magnet mold and method for manufacturing the same | |
JP2007180368A (en) | Method for manufacturing magnetic circuit component | |
JP2001210508A (en) | Method of manufacturing arc segment magnet, ring magnet, and rare earth sintered magnet | |
JP6691666B2 (en) | Method for manufacturing RTB magnet | |
JP2002540595A (en) | Composite part and method of manufacturing the same | |
JPS6181606A (en) | Preparation of rare earth magnet | |
JP2013115156A (en) | Method of manufacturing r-t-b-based permanent magnet | |
JPH11150033A (en) | Preparation for rare-earth magnet and magnetic circuit unit for loudspeaker | |
JP4311063B2 (en) | Anisotropic rare earth bonded magnet and motor | |
JP2911017B2 (en) | Manufacturing method of radial anisotropic rare earth sintered magnet | |
JPH07120576B2 (en) | Cast rare earth-method for manufacturing iron-based permanent magnets | |
JPH0411703A (en) | Manufacture of rare earth magnet | |
JP2003031432A (en) | Rare-earth sintered magnet and method of manufacturing the same | |
JP3883138B2 (en) | Manufacturing method of resin bonded magnet | |
JPS6181607A (en) | Preparation of rare earth magnet | |
JPH01171215A (en) | Method for manufacturing rare earth-Fe-B magnet laminate | |
WO1999007006A1 (en) | Method of producing r-t-b-base radial anisotropic annular sintered magnet | |
JP2000012359A (en) | Magnet and its manufacture | |
JPH0718366A (en) | Production of r-fe-b permanent magnet material | |
JP3151604B2 (en) | Method for producing radial anisotropic bonded magnet and bonded magnet |