JPH11148344A - Exhaust emission control device of internal combustion engine - Google Patents
Exhaust emission control device of internal combustion engineInfo
- Publication number
- JPH11148344A JPH11148344A JP31679097A JP31679097A JPH11148344A JP H11148344 A JPH11148344 A JP H11148344A JP 31679097 A JP31679097 A JP 31679097A JP 31679097 A JP31679097 A JP 31679097A JP H11148344 A JPH11148344 A JP H11148344A
- Authority
- JP
- Japan
- Prior art keywords
- adsorbent
- catalyst
- exhaust
- exhaust gas
- bypass passage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Exhaust Gas After Treatment (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、内燃機関の排気浄化装
置に係り、特に、内燃機関始動直後の排気ガス中に多く
含まれている炭化水素(HC)の大気中への放出を防止
するHC吸着剤を備えた排気浄化装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine, and more particularly, to preventing the emission of hydrocarbons (HC) contained in exhaust gas immediately after the start of the internal combustion engine into the atmosphere. The present invention relates to an exhaust gas purification device provided with an HC adsorbent.
【0002】[0002]
【従来の技術】自動車の排気ガス浄化には、貴金属(白
金、ロジウム等)またはその他の金属を担持した触媒が
従来から使われている。このような触媒は排気ガス中の
有害成分であるHC、CO、NOx等を酸化、あるいは
還元させることによって浄化している。2. Description of the Related Art Catalysts carrying noble metals (platinum, rhodium, etc.) or other metals have been used for exhaust gas purification of automobiles. Such a catalyst purifies the exhaust gas by oxidizing or reducing HC, CO, NOx and the like, which are harmful components.
【0003】このうち、特に、HCの触媒による浄化
は、排気ガス温度の影響が強く、一般に、350〜40
0°C以上の温度を必要とする。内燃機関(以下、エン
ジンとも言う)の始動直後では、排気ガス温度が低く、
触媒が活性温度(350〜400℃以上)に達していな
いため、HCの浄化が良好に行なえない。さらにエンジ
ンを始動した直後のような冷間時にはHC排出量が多く
なり、一般に、排気ガス温度が低いときには、HCの大
気中への放出量が増大してしまうと言った惧れがある。[0003] Of these, purification of HC with a catalyst is particularly affected by the temperature of exhaust gas.
Requires a temperature of 0 ° C. or higher. Immediately after the start of an internal combustion engine (hereinafter also referred to as an engine), the exhaust gas temperature is low,
Since the catalyst has not reached the activation temperature (350 to 400 ° C. or higher), the purification of HC cannot be performed satisfactorily. Further, there is a fear that the amount of HC emission during a cold state immediately after the start of the engine increases, and that the amount of HC released into the atmosphere generally increases when the exhaust gas temperature is low.
【0004】かかる惧れを解決するために、例えば、図
14(A)に示すように、エンジンの排気通路に設けら
れている触媒の下流側において、排気ガスのメイン通路
から分岐して再び合流するバイパス通路を設け、該バイ
パス通路にHC吸着剤と該HC吸着剤の下流側にヒータ
付き触媒を介装すると共に、該バイパス通路の排気上流
側分岐点に切替バルブを設け、前記HC吸着剤の上流側
に設けられた排気温センサと、前記排気温センサが検出
する排気ガスの温度に応じて前記切替バルブと前記ヒー
タ付き触媒のヒータを制御するようにしたものが提案さ
れている(特開平6−66136号公報等参照)。In order to solve such a concern, for example, as shown in FIG. 14A, the exhaust gas branches off from a main passage and merges again at a downstream side of a catalyst provided in an exhaust passage of the engine. An HC adsorbent and a heater-equipped catalyst downstream of the HC adsorbent are provided in the bypass passage, and a switching valve is provided at an exhaust gas upstream branch point of the bypass passage. An exhaust temperature sensor provided on the upstream side of the exhaust gas sensor and a device that controls the switching valve and the heater of the catalyst with a heater in accordance with the temperature of the exhaust gas detected by the exhaust temperature sensor have been proposed. See JP-A-6-66136).
【0005】上記のものでは、排気ガス温度が低く触媒
の活性していない期間は、触媒下流の切替バルブにより
排気ガスをHC吸着剤(以下、単に吸着剤とも言う)に
流し、HCを吸着させることにより大気への放出を防
ぐ。また、排気ガス温度が上昇し触媒が活性した後は、
切替バルブにより排気ガスをメイン通路に流し、一方
で、吸着剤からHCを脱離させ、下流のヒータ付き触媒
(EHC)で浄化する。In the above apparatus, during a period in which the temperature of the exhaust gas is low and the catalyst is not active, the exhaust gas is caused to flow to the HC adsorbent (hereinafter simply referred to as adsorbent) by the switching valve downstream of the catalyst to adsorb HC. This prevents release to the atmosphere. After the exhaust gas temperature rises and the catalyst is activated,
Exhaust gas is caused to flow into the main passage by the switching valve, while HC is desorbed from the adsorbent and purified by a downstream catalyst with heater (EHC).
【0006】[0006]
【発明が解決しようとする課題】しかしながら、一般
に、触媒にもHC吸着能力があるので、上記従来装置の
ように、前記吸着剤の下流側に設けたEHC(ヒータ付
き触媒)の加熱を行うと、該EHCに吸着されていたH
Cが脱離されることとなる。このため、上記従来装置に
あっては、EHCの加熱に伴い該EHCから脱離したH
Cは、浄化されずに吸着剤からHCを脱離させるために
導入した排気ガスとともに大気中に放出されてしまう惧
れがある{図14(B)参照}。However, in general, since the catalyst also has the ability to adsorb HC, it is difficult to heat the EHC (catalyst with heater) provided downstream of the adsorbent as in the above-mentioned conventional apparatus. , H adsorbed on the EHC
C will be desorbed. For this reason, in the above-described conventional apparatus, H desorbed from the EHC due to heating of the EHC.
C may be released into the atmosphere together with the exhaust gas introduced to desorb HC from the adsorbent without being purified (see FIG. 14B).
【0007】本発明は、このような従来の実情に鑑みな
されたもので、HC吸着剤のHC脱離処理の際に、HC
吸着剤下流触媒に吸着されているHCが脱離して大気中
に放出されてしまわないようにした内燃機関の排気浄化
装置を提供することを目的としている。[0007] The present invention has been made in view of such a conventional situation, and when the HC adsorbent is subjected to the HC desorption treatment, the HC is removed.
It is an object of the present invention to provide an exhaust gas purification device for an internal combustion engine that prevents HC adsorbed on a downstream catalyst of an adsorbent from being desorbed and released into the atmosphere.
【0008】[0008]
【課題を解決するための手段】上記課題を解決するため
請求項1に記載の発明では、図1に示すように、エンジ
ンの排気通路に介装されるメイン触媒の下流側におい
て、前記排気通路の排気上流側の分岐点で一旦分岐し、
前記排気通路の排気下流側の合流点で再び合流するバイ
パス通路と、前記排気上流側の分岐点に配設され、前記
バイパス通路への排気の流入を制御するバイパス通路排
気流入制御弁と、前記バイパス通路に介装されるHC吸
着剤と、前記HC吸着剤の排気下流側において、前記バ
イパス通路に介装されるHC吸着剤下流触媒と、を含ん
で構成された内燃機関の排気浄化装置であって、前記H
C吸着剤に吸着されているHCを脱離させるべく、前記
バイパス通路排気流入制御弁を介して前記バイパス通路
に排気の少なくとも一部を流入させる前に、加熱手段を
介して前記HC吸着剤下流触媒を加熱して、当該HC吸
着剤下流触媒が吸着しているHCを脱離させつつ、該脱
離されたHCを当該HC吸着剤下流触媒で浄化させる触
媒吸着HC処理手段を含んで構成するようにした。According to the first aspect of the present invention, as shown in FIG. 1, the exhaust passage is provided downstream of a main catalyst disposed in an exhaust passage of an engine. Branch at the branch point on the exhaust upstream side of
A bypass passage that merges again at a junction of the exhaust passage downstream of the exhaust gas, a bypass passage exhaust inflow control valve that is disposed at a branch point of the exhaust gas upstream and controls the flow of exhaust gas into the bypass passage, An exhaust gas purification apparatus for an internal combustion engine, comprising: an HC adsorbent interposed in a bypass passage; and an HC adsorbent downstream catalyst interposed in the bypass passage on the exhaust downstream side of the HC adsorbent. And the H
Before desorbing the HC adsorbed by the C adsorbent, before flowing at least a part of the exhaust gas into the bypass passage via the bypass passage exhaust inflow control valve, the HC adsorbent downstream through the heating means is heated. It comprises a catalyst adsorbing HC treatment means for heating the catalyst to desorb the HC adsorbed by the HC adsorbent downstream catalyst and purifying the desorbed HC by the HC adsorbent downstream catalyst. I did it.
【0009】かかる構成とすれば、排気のメイン通路に
介装された触媒が活性し、前記バイパス通路に排気の少
なくとも一部を流入させてHC吸着剤のHC脱離処理を
行う際には、該HC吸着剤のHC脱離処理を開始する
(前記バイパス通路に排気の少なくとも一部を流入させ
る)前に、HC吸着剤下流触媒を加熱して、当該HC吸
着剤下流触媒が吸着しているHCを脱離させつつ、該脱
離されたHCを当該HC吸着剤下流触媒で浄化させるよ
うにする。With this configuration, when the catalyst disposed in the exhaust main passage is activated and at least a part of the exhaust gas flows into the bypass passage to perform the HC desorption process of the HC adsorbent, Before the HC desorbing process of the HC adsorbent is started (at least a part of the exhaust gas flows into the bypass passage), the HC adsorbent downstream catalyst is heated to adsorb the HC adsorbent downstream catalyst. While the HC is being desorbed, the desorbed HC is purified by the HC adsorbent downstream catalyst.
【0010】従って、HC吸着剤のHC脱離処理の開始
に伴い、HC吸着剤下流触媒が昇温されてHCが脱離さ
れ、該HC吸着剤下流触媒から脱離したHCが、前記バ
イパス通路に流入された排気と共に大気中へ放出されて
しまうと言った惧れを回避することが可能となる。即
ち、本発明によれば、HC吸着剤のHC脱離処理を開始
するときには、HC吸着剤下流触媒にはHCが吸着され
ていないことになるので、前記HC吸着剤に吸着されて
いるHCを脱離させるべく、前記バイパス通路に排気の
少なくとも一部を流入させても、前記HC吸着剤下流触
媒からHCが脱離することはないので、始動からHC吸
着剤のHC脱離処理が完了するまでの間において、HC
の大気中への放出を最小に抑制することが可能となる。Therefore, with the start of the HC desorption process of the HC adsorbent, the temperature of the downstream catalyst of the HC adsorbent is raised and the HC is desorbed, and the HC desorbed from the downstream catalyst of the HC adsorber is transferred to the bypass passage. It is possible to avoid the fear that the exhaust gas is released into the atmosphere together with the exhaust gas that has flowed into the air. That is, according to the present invention, when the HC desorbing process of the HC adsorbent is started, HC is not adsorbed on the HC adsorbent downstream catalyst, so that the HC adsorbed by the HC adsorbent is not adsorbed. Even if at least a part of the exhaust gas flows into the bypass passage for desorption, HC is not desorbed from the HC adsorbent downstream catalyst, so that the HC desorption process of the HC adsorbent is completed from the start. In the meantime, HC
Release into the atmosphere can be minimized.
【0011】請求項2に記載の発明では、前記HC吸着
剤下流触媒に酸素を供給する酸素供給手段を備えると共
に、前記触媒吸着HC処理手段により、前記加熱手段を
介して前記HC吸着剤下流触媒を加熱して、当該HC吸
着剤下流触媒が吸着しているHCを脱離させつつ、該脱
離されたHCを当該HC吸着剤下流触媒で浄化させる前
に、或いはその間に、前記酸素供給手段を介して、前記
HC吸着剤下流触媒の雰囲気を所定酸素濃度に制御する
HC吸着剤下流触媒雰囲気制御手段を含んで構成するよ
うにした。[0011] In the invention according to claim 2, an oxygen supply means for supplying oxygen to the HC adsorbent downstream catalyst is provided, and the HC adsorbent downstream catalyst is supplied by the catalyst adsorbing HC treatment means via the heating means. Is heated to desorb the HC adsorbed by the HC adsorbent downstream catalyst, and before or during purification of the desorbed HC by the HC adsorbent downstream catalyst, , An HC adsorbent downstream catalyst atmosphere control means for controlling the atmosphere of the HC adsorbent downstream catalyst to a predetermined oxygen concentration is provided.
【0012】かかる構成とすれば、HC吸着剤のHC脱
離処理を開始する(前記バイパス通路に排気の少なくと
も一部を流入させる)前に、HC吸着剤下流触媒を加熱
して、当該HC吸着剤下流触媒が吸着しているHCを脱
離させつつ、該脱離されたHCを当該HC吸着剤下流触
媒で浄化させる場合に、当該HC吸着剤下流触媒でのH
Cの浄化作用を一層良好なものとすることができるの
で、始動からHC吸着剤のHC脱離処理が完了するまで
の間において、HCの大気中への放出を一層抑制するこ
とが可能となる。With this configuration, before the HC desorbing process of the HC adsorbent is started (at least a part of the exhaust gas is caused to flow into the bypass passage), the HC adsorbent downstream catalyst is heated and the HC adsorbent is heated. When the desorbed HC is purified by the HC adsorbent downstream catalyst while the HC adsorbed by the adsorbent downstream catalyst is desorbed, the H in the HC adsorbent downstream catalyst is reduced.
Since the purifying action of C can be further improved, it is possible to further suppress the release of HC into the air from the start to the completion of the HC desorption process of the HC adsorbent. .
【0013】請求項3に記載の発明では、前記HC吸着
剤下流触媒雰囲気制御手段は、前記HC吸着剤下流触媒
が吸着しているHC量を推定する触媒HC吸着量推定手
段の推定結果に基づいて、前記酸素供給手段の酸素供給
量を制御する手段を含んで構成されるようにした。かか
る構成とすれば、前記HC吸着剤下流触媒が吸着してい
るHC量を推定し、その推定結果に基づいて、前記酸素
供給手段の酸素供給量を制御するので、HC吸着剤のH
C脱離処理を開始する前に、HC吸着剤下流触媒を加熱
して、当該HC吸着剤下流触媒が吸着しているHCを脱
離させつつ、該脱離されたHCを当該HC吸着剤下流触
媒で浄化させる際の該脱離・浄化作用を、より一層良好
なものとすることができるので、始動からHC吸着剤の
HC脱離処理が完了するまでの間において、HCの大気
中への放出をより一層抑制することが可能となる。[0013] In the third aspect of the present invention, the HC adsorbent downstream catalyst atmosphere control means estimates the amount of HC adsorbed by the HC adsorbent downstream catalyst based on the estimation result of the catalyst HC adsorption amount estimation means. Thus, the oxygen supply means is configured to include a means for controlling an oxygen supply amount. With this configuration, the amount of HC adsorbed by the HC adsorbent downstream catalyst is estimated, and the oxygen supply amount of the oxygen supply means is controlled based on the estimation result.
Before the C desorption process is started, the HC adsorbent downstream catalyst is heated to desorb the HC adsorbed by the HC adsorbent downstream catalyst, and the desorbed HC is transferred to the HC adsorbent downstream. Since the desorption / purification action at the time of purifying with the catalyst can be further improved, HC is not released into the air from the start until the HC desorption process of the HC adsorbent is completed. Release can be further suppressed.
【0014】請求項4に記載の発明では、前記触媒吸着
HC処理手段は、前記HC吸着剤下流触媒が吸着してい
るHC量を推定する触媒HC吸着量推定手段の推定結果
に基づいて、前記加熱手段の加熱量を制御する手段を含
んで構成されるようにした。かかる構成とすれば、前記
HC吸着剤下流触媒が吸着しているHC量を推定し、そ
の推定結果に基づいて、加熱手段の加熱量を制御するの
で、HC吸着剤のHC脱離処理を開始する前に、HC吸
着剤下流触媒を加熱して、当該HC吸着剤下流触媒が吸
着しているHCを脱離させつつ、該脱離されたHCを当
該HC吸着剤下流触媒で浄化させる際の該脱離・浄化作
用を、より一層良好なものとすることができるので、始
動からHC吸着剤のHC脱離処理が完了するまでの間に
おいて、HCの大気中への放出をより一層抑制すること
が可能となる。[0014] In the invention described in claim 4, the catalyst adsorbing HC treating means is configured to determine the amount of HC adsorbed by the HC adsorbent downstream catalyst based on the estimation result of the catalyst HC adsorbing amount estimating means. The apparatus is configured to include means for controlling the heating amount of the heating means. With this configuration, the amount of HC adsorbed by the HC adsorbent downstream catalyst is estimated, and the heating amount of the heating means is controlled based on the estimation result. Before the HC adsorbent downstream catalyst is heated to remove the HC adsorbed by the HC adsorbent downstream catalyst while purifying the desorbed HC with the HC adsorbent downstream catalyst. Since the desorption / purification action can be further improved, the release of HC into the atmosphere is further suppressed between the start and the completion of the HC desorption process of the HC adsorbent. It becomes possible.
【0015】請求項5に記載の発明では、前記触媒HC
吸着量推定手段は、前記HC吸着剤に排気を流入させ排
気中のHCを吸着させた時間に基づいて、前記HC吸着
剤下流触媒が吸着しているHC量を推定する構成とし
た。かかる構成とすれば、比較的簡単な構成で、前記触
媒HC吸着量推定手段を実現することができる。[0015] In the invention described in claim 5, the catalyst HC
The adsorption amount estimating means is configured to estimate the amount of HC adsorbed by the HC adsorbent downstream catalyst based on the time when exhaust gas flows into the HC adsorbent and adsorbs HC in the exhaust gas. With such a configuration, the catalyst HC adsorption amount estimating means can be realized with a relatively simple configuration.
【0016】請求項6に記載の発明では、前記触媒HC
吸着量推定手段は、前記HC吸着剤に排気を流入させ排
気中のHCを吸着させた期間内に前記HC吸着剤に流入
した総排気流量に基づいて、前記HC吸着剤下流触媒が
吸着しているHC量を推定する構成とした。かかる構成
とすれば、HC吸着剤にHCを吸着させた期間内に前記
HC吸着剤に導入された総排気流量に基づいて、前記H
C吸着剤下流触媒のHC吸着量を推定するようにしたの
で、HC吸着剤にHCを吸着させた時間に基づいてHC
吸着剤下流触媒のHC吸着量を推定するようにした請求
項4に記載の発明に比べて、その推定精度を高めること
ができるので、HC吸着剤のHC脱離処理を開始する前
に行なうHC吸着剤下流触媒のHC脱離処理(或いは浄
化処理)を高精度なものとでき、延いては始動からHC
吸着剤のHC脱離完了までにおけるHCの大気中への放
出量をより一層低く抑えることが可能となる。In the invention according to claim 6, the catalyst HC
The adsorption amount estimating means is configured to adsorb the HC adsorbent downstream catalyst based on a total exhaust flow rate flowing into the HC adsorbent during a period in which exhaust gas flows into the HC adsorbent and adsorbs HC in the exhaust gas. The estimated HC amount is estimated. With this configuration, the H value is determined based on the total exhaust flow rate introduced into the HC adsorbent during the period in which HC is adsorbed by the HC adsorbent.
Since the amount of HC adsorbed by the C adsorbent downstream catalyst is estimated, the HC adsorbent is estimated based on the time when the HC adsorbent adsorbs HC.
Since the estimation accuracy can be improved as compared with the invention according to the fourth aspect in which the amount of HC adsorbed on the downstream catalyst of the adsorbent is estimated, the HC performed before starting the HC desorption process of the HC adsorbent is started. The HC desorption process (or purification process) of the catalyst downstream of the adsorbent can be performed with high accuracy.
It is possible to further reduce the amount of HC released into the atmosphere until the adsorbent completes the desorption of HC.
【0017】請求項7に記載の発明では、エンジンの排
気通路の排気上流側の分岐点で一旦分岐し、前記排気通
路の排気下流側の合流点で再び合流するバイパス通路
と、前記排気上流側の分岐点に配設され、前記バイパス
通路への排気の流入を制御するバイパス通路排気流入弁
手段と、前記バイパス通路に介装されるHC吸着剤と、
前記HC吸着剤の排気下流側において、前記バイパス通
路に介装されるHC吸着剤下流触媒と、を含んで構成さ
れた内燃機関の排気浄化装置であって、前記HC吸着剤
に吸着されているHCを脱離させるべく、前記バイパス
通路排気流入制御弁を介して前記バイパス通路に排気の
少なくとも一部を流入させてからの経過時間に応じて、
当該バイパス通路に流入された排気を、エンジンの排気
通路に介装されたメイン触媒の上流側へ流すようにし
た。According to a seventh aspect of the present invention, there is provided a bypass passage which branches once at a branch point on the exhaust upstream side of an exhaust passage of an engine and joins again at a junction of the exhaust passage on the downstream side of the exhaust gas; A bypass passage exhaust inflow valve means disposed at a branch point for controlling the flow of exhaust gas into the bypass passage; an HC adsorbent interposed in the bypass passage;
An exhaust gas purification device for an internal combustion engine, comprising: an exhaust gas downstream side of the HC adsorbent; and an HC adsorbent downstream catalyst interposed in the bypass passage, wherein the exhaust gas purification device is adsorbed by the HC adsorbent. In order to desorb HC, according to the elapsed time after flowing at least a part of the exhaust gas into the bypass passage via the bypass passage exhaust inflow control valve,
The exhaust gas flowing into the bypass passage is caused to flow to the upstream side of the main catalyst provided in the exhaust passage of the engine.
【0018】かかる構成とすれば、前記HC吸着剤に吸
着されているHCを脱離させるべく、バイパス通路に流
入させた排気の熱等により、HC吸着剤下流触媒からの
HCの脱離が開始されても、所定期間は、これを既に活
性化しているメイン触媒の上流側に流入させるようにし
たので、前記HC吸着剤下流触媒から脱離するHC(及
びHC吸着剤する脱離したHC)をメイン触媒で浄化さ
せることができる。With this configuration, the desorption of HC from the downstream catalyst of the HC adsorbent is started by the heat of the exhaust gas flowing into the bypass passage, etc., in order to desorb HC adsorbed on the HC adsorbent. Even if it is performed, for a predetermined period of time, it is made to flow into the upstream side of the activated main catalyst, so that the HC desorbed from the HC adsorbent downstream catalyst (and the desorbed HC adsorbed by the HC adsorbent) Can be purified by the main catalyst.
【0019】即ち、本発明によっても、HC吸着剤のH
C脱離処理の開始に伴い、HC吸着剤下流触媒が昇温さ
れてHCが脱離され、該HC吸着剤下流触媒から脱離し
たHCが、前記バイパス通路に流入された排気と共に大
気中へ放出されてしまうと言った惧れを回避することが
可能となる。請求項8に記載の発明では、図2に示すよ
うに、エンジンの排気通路に介装されるメイン触媒の下
流側において、前記排気通路の排気上流側の分岐点で一
旦分岐し、前記排気通路の排気下流側の合流点で再び合
流するバイパス通路と、前記排気上流側の分岐点に配設
され、前記バイパス通路への排気の流入を制御するバイ
パス通路排気流入制御弁と、前記バイパス通路に介装さ
れるHC吸着剤と、前記HC吸着剤の排気下流側におい
て、前記バイパス通路に介装されるHC吸着剤下流触媒
と、を含んで構成された内燃機関の排気浄化装置であっ
て、前記HC吸着剤下流触媒の下流側において前記バイ
パス通路から分岐し、前記メイン触媒の上流側で合流す
る連通路と、当該バイパス通路の分岐点に配設され、前
記連通路への排気の流入を制御する連通路排気流入制御
弁と、前記HC吸着剤に吸着されているHCを脱離させ
るべく、前記バイパス通路排気流入制御弁を介して前記
バイパス通路に排気の少なくとも一部を流入させてから
の経過時間に応じて、前記連通路排気流入制御弁を介し
て、当該バイパス通路に流入された排気を、前記連通路
により前記メイン触媒の上流側へ流すように制御する連
通路排気流入制御手段と、を含んで構成した。That is, according to the present invention, the HC adsorbent H
With the start of the C desorption process, the temperature of the HC adsorbent downstream catalyst is raised and HC is desorbed, and the HC desorbed from the HC adsorbent downstream catalyst enters the atmosphere together with the exhaust gas flowing into the bypass passage. It is possible to avoid fear of being released. In the invention according to claim 8, as shown in FIG. 2, on the downstream side of the main catalyst interposed in the exhaust passage of the engine, the exhaust passage temporarily branches at a branch point on the exhaust upstream side of the exhaust passage. A bypass passage that rejoins at a junction downstream of the exhaust gas, a bypass passage exhaust inflow control valve that is disposed at a branch point upstream of the exhaust gas, and controls an inflow of exhaust gas into the bypass passage, An exhaust purification device for an internal combustion engine, comprising: an interposed HC adsorbent; and an HC adsorbent downstream catalyst interposed in the bypass passage on the exhaust downstream side of the HC adsorbent, A communication passage that branches from the bypass passage downstream of the HC adsorbent downstream catalyst and joins upstream of the main catalyst, and is disposed at a branch point of the bypass passage, and controls the flow of exhaust gas into the communication passage. control And at least a portion of the exhaust gas flows into the bypass passage via the bypass passage exhaust inflow control valve in order to desorb HC adsorbed on the HC adsorbent. Communication passage exhaust inflow control means for controlling the exhaust gas flowing into the bypass passage to flow to the upstream side of the main catalyst by the communication passage through the communication passage exhaust inflow control valve in accordance with the elapsed time; , Including.
【0020】かかる構成とすれば、HC吸着剤のHC脱
離処理を開始してから所定期間は、前記連通路排気流入
制御手段延いては前記連通路排気流入制御弁を介して、
バイパス通路内に流入した排気(HC吸着剤やHC吸着
剤下流触媒から脱離したHCを含む)を、大気中へその
まま放出せず、前記連通路によりメイン触媒の上流側に
還流させるようにしたので、HC吸着剤のHC脱離処理
時におけるHC吸着剤下流触媒の昇温に伴ってHC吸着
剤下流触媒からHCが脱離しても、これを、活性化状態
にあるメイン触媒で酸化除去(浄化)させることができ
る。With this configuration, for a predetermined period after the start of the HC desorbing process of the HC adsorbent, the communication path exhaust / inflow control means and the communication path exhaust / inflow control valve are used.
Exhaust gas (including HC adsorbent and HC desorbed from the HC adsorbent downstream catalyst) flowing into the bypass passage is not directly discharged to the atmosphere but is returned to the upstream side of the main catalyst by the communication passage. Therefore, even if HC is desorbed from the HC adsorbent downstream catalyst as the temperature of the HC adsorbent downstream catalyst rises during the HC desorption process of the HC adsorbent, it is oxidized and removed by the activated main catalyst ( Purification).
【0021】従って、従来装置のように、HC吸着剤の
HC脱離処理時におけるHC吸着剤下流触媒の昇温に伴
ってHC吸着剤下流触媒から脱離してくるHCが、浄化
されずにHC吸着剤のHC脱離処理のためにバイパス通
路に流入させた排気と伴に大気中に放出されてしまうと
言った惧れを回避することができる。即ち、本発明によ
っても、HC吸着剤のHC脱離処理の開始に伴い、HC
吸着剤下流触媒が昇温されてHCが脱離され、該HC吸
着剤下流触媒から脱離したHCが、前記バイパス通路に
流入された排気と共に大気中へ放出されてしまうと言っ
た惧れを回避することが可能となる。Therefore, unlike the conventional apparatus, the HC desorbed from the HC adsorbent downstream catalyst as the temperature of the HC adsorbent downstream catalyst rises during the HC desorbing treatment of the HC adsorbent is not purified, It is possible to avoid the fear that the adsorbent is discharged into the atmosphere together with the exhaust gas that has flowed into the bypass passage for the HC desorption treatment. That is, according to the present invention, with the start of the HC desorption process of the HC adsorbent,
It has been feared that the temperature of the adsorbent downstream catalyst is raised and HC is desorbed, and the HC desorbed from the HC adsorbent downstream catalyst is released into the atmosphere together with the exhaust gas flowing into the bypass passage. It is possible to avoid.
【0022】[0022]
【発明の効果】本発明によれば、HC吸着剤下流触媒に
HCが吸着している場合において、HC吸着剤のHC脱
離処理の前に、HC吸着剤下流触媒を加熱して、当該H
C吸着剤下流触媒が吸着しているHCを脱離させつつ、
該脱離されたHCを当該HC吸着剤下流触媒で処理(浄
化)させるようにしたので、あるいは、HC吸着剤のH
C脱離処理開始から所定時間、HC吸着剤やHC吸着剤
下流触媒から脱離したHCをメイン触媒上流に流し、か
かる脱離したHCをメイン触媒で処理(浄化)させるよ
うにしたので、始動からHC吸着剤のHC脱離完了まで
の大気中へのHCの排出を最小に抑制できるという効果
が得られる。According to the present invention, when HC is adsorbed on the HC adsorbent downstream catalyst, the HC adsorbent downstream catalyst is heated before the HC adsorbent is desorbed from the HC adsorbent.
While desorbing HC adsorbed by the C adsorbent downstream catalyst,
The desorbed HC is treated (purified) with the HC adsorbent downstream catalyst, or the H
The HC desorbed from the HC adsorbent or the HC downstream catalyst is flowed upstream of the main catalyst for a predetermined time from the start of the C desorption process, and the desorbed HC is processed (purified) by the main catalyst. Thus, the effect of minimizing the discharge of HC into the atmosphere until the completion of HC desorption of the HC adsorbent can be obtained.
【0023】[0023]
【発明の実施の形態】以下、本発明にかかる一実施形態
を、添付の図面に基づいて説明する。まず、図3に基づ
いて、本発明にかかる第1の実施形態におけるシステム
構成を説明する。エンジン1の排気ガスのメイン通路
(排気通路)2には、メイン触媒としての上流側触媒3
および下流側触媒4が取り付けられている。下流側触媒
4の下流側には、排気ガスのメイン通路2から分岐して
再び合流するバイパス通路5が設けられている。DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment according to the present invention will be described below with reference to the accompanying drawings. First, a system configuration according to the first embodiment of the present invention will be described with reference to FIG. An upstream catalyst 3 as a main catalyst is provided in a main passage (exhaust passage) 2 of exhaust gas of the engine 1.
And a downstream catalyst 4. On the downstream side of the downstream side catalyst 4, there is provided a bypass passage 5 which branches off from the main passage 2 of the exhaust gas and joins again.
【0024】バイパス通路5は電気加熱式の触媒(以
下、EHCと言う)7が介装されると共に、その排気上
流側にはHC吸着剤(吸着剤)6が介装されている。但
し、EHC7における加熱手段は、電熱式ヒータ等の電
気加熱式でなくてもよく、排気熱、バーナー等を利用し
て加熱するものでも良い。また、EHC7に用いる触媒
は、三元触媒でも酸化触媒でも良い。該EHC7が備え
る触媒が、本発明にかかるHC吸着剤下流触媒に相当す
る。The bypass passage 5 is provided with an electrically heated catalyst (hereinafter referred to as EHC) 7 and an HC adsorbent (adsorbent) 6 upstream of the exhaust gas. However, the heating means in the EHC 7 does not have to be an electric heating type such as an electric heating type heater, and may be a heating means using exhaust heat, a burner or the like. Further, the catalyst used for the EHC 7 may be a three-way catalyst or an oxidation catalyst. The catalyst included in the EHC 7 corresponds to the HC adsorbent downstream catalyst according to the present invention.
【0025】なお、バイパス通路5の前記吸着剤6の排
気上流側には、EHC7に空気(酸素)を供給するため
のエアポンプ9が接続されている。該エアポンプ9が、
本発明にかかる酸素供給手段に相当する。また、前記バ
イパス通路5と並行するメイン通路2’と、バイパス通
路5の分岐点にはバイパスバルブ8が配設されている。
バイパスバルブ8は図3に示す状態を閉とする。該バイ
パスバルブ8が、本発明にかかるバイパス通路排気流入
制御弁に相当する。An air pump 9 for supplying air (oxygen) to the EHC 7 is connected to the bypass passage 5 on the upstream side of the exhaust of the adsorbent 6. The air pump 9
It corresponds to the oxygen supply means according to the present invention. Further, a bypass valve 8 is provided at a branch point of the main passage 2 ′ parallel to the bypass passage 5 and at a branch point of the bypass passage 5.
The state of the bypass valve 8 shown in FIG. 3 is closed. The bypass valve 8 corresponds to a bypass passage exhaust inflow control valve according to the present invention.
【0026】コントロールユニット10は、上流側触媒
3および下流側触媒4(メイン触媒)の活性状態等に応
じて、前記バイパスバルブ8、エアポンプ9、EHC7
の加熱手段(電熱式ヒータ等)などを駆動制御すること
ができるようになっている。ところで、前記吸着剤6に
吸着されたHCの脱離処理は、前記バイパスバルブ8を
所定角度開き、排気ガスの一部をバイパス通路5に流す
ことにより吸着剤6を温めることで達成される。The control unit 10 controls the bypass valve 8, the air pump 9, the EHC 7 according to the activation state of the upstream catalyst 3 and the downstream catalyst 4 (main catalyst).
Of the heating means (electric heater etc.) can be controlled. By the way, the process of desorbing the HC adsorbed by the adsorbent 6 is achieved by opening the bypass valve 8 at a predetermined angle and flowing a part of the exhaust gas to the bypass passage 5 to warm the adsorbent 6.
【0027】ここで、本実施形態におけるコントロール
ユニット10が行なう制御について、図4に示すフロー
チャートに従って説明する。以下のルーチンで使用され
るフラグFLGAP、FLGPHは、IGN.ON(イ
グニッションON)時に0にクリアされるものとする。
なお、以下に説明するように、本発明にかかる触媒吸着
HC処理手段、HC吸着剤下流触媒雰囲気制御手段、触
媒HC吸着量推定手段としての機能は、該コントロール
ユニット10がソフトウェア的に備えるものである。Here, the control performed by the control unit 10 in the present embodiment will be described with reference to the flowchart shown in FIG. The flags FLGAP and FLGPH used in the following routine are set to IGN. It shall be cleared to 0 when it is ON (ignition ON).
As described below, the functions of the catalyst adsorbing HC treating means, the HC adsorbent downstream catalyst atmosphere controlling means, and the catalytic HC adsorbing amount estimating means according to the present invention are provided by the control unit 10 as software. is there.
【0028】まず、S1にて、吸着剤の脱離処理条件か
否かを判断する。ここでは、本運転時に吸着剤6を使用
したか、また使用した場合には既にHC脱離処理(以
下、単に脱離処理とも言う)を終了したか等を判断し、
脱離処理が必要な場合には、例えばエンジンの冷却水温
などにより、メイン通路2に介装されている上流側触媒
3および下流側触媒4(メイン触媒)が活性したか否か
を判断し、活性していれば脱離処理条件成立とする。First, in S1, it is determined whether or not the condition for the desorbing treatment of the adsorbent is satisfied. Here, it is determined whether the adsorbent 6 has been used during the actual operation, and if used, whether the HC desorption process (hereinafter, also simply referred to as desorption process) has been completed, and the like.
When desorption processing is required, it is determined whether or not the upstream catalyst 3 and the downstream catalyst 4 (main catalyst) interposed in the main passage 2 are activated based on, for example, the cooling water temperature of the engine. If active, the desorption processing conditions are satisfied.
【0029】脱離処理条件でない場合には、そのままル
ーチンを終了する。脱離処理条件である場合には、S2
へ進み、該S2にて、エアポンプ9が駆動されているこ
とを示すフラグFLGAPが1であるか否か、つまり現
在エアポンプ9が駆動されているか否かを判断する。F
LGAP=1である場合には後述するS6へ進み、該S
6でエアポンプ9の駆動時間が所定値に達したか否かを
判断する。If the conditions are not the desorption processing conditions, the routine is terminated. In the case of the desorption processing conditions, S2
In S2, it is determined whether or not a flag FLGAP indicating that the air pump 9 is being driven is 1, that is, whether or not the air pump 9 is currently being driven. F
If LGAP = 1, the process proceeds to S6 described below,
At 6, it is determined whether the driving time of the air pump 9 has reached a predetermined value.
【0030】一方、FLGAP=0の場合にはS3へ進
み、該S3にて、EHC7の加熱(プリヒート)が行わ
れていることを示すフラグFLGPHが1であるか否
か、つまり現在EHC7のプリヒートが行われているか
否かを判断する。FLGPH=1である場合には後述す
るS12へ進み、該S12でEHC7のプリヒート時間
が所定値に達したか否かを判断する。On the other hand, if FLGAP = 0, the process proceeds to S3, in which whether the flag FLGPH indicating that the EHC 7 is being heated (preheated) is 1 or not, that is, whether the EHC 7 is currently being preheated. Is determined. When FLGPH = 1, the process proceeds to S12 described later, and in S12, it is determined whether the preheating time of the EHC 7 has reached a predetermined value.
【0031】S3でFLGPH=0の場合には、現在吸
着剤6の脱離処理条件であるが、まだ、吸着剤6の脱離
処理が開始されていない状態であるので、S4以降へ進
み、吸着剤6の脱離処理を行なう前に、EHC(触媒)
7に吸着されているHCの脱離処理を行う。S4では、
EHC7へのHC吸着量が多いほど、この吸着されたH
Cの処理に必要な空気(酸素)量も多くなるため、EH
C7のHC吸着量推定値からエアポンプ駆動信号、つま
りポンプ吐出流量を決定し、そのポンプ吐出流量を達成
できるようにエアポンプ9の駆動を開始する。このと
き、吸着剤6の脱離処理が開始されていない状態である
から、バイパスバルブ8は閉じられている。If FLGPH = 0 in S3, the conditions for the desorption process of the adsorbent 6 are present, but the desorption process of the adsorbent 6 has not been started yet. Before desorbing the adsorbent 6, EHC (catalyst)
The desorption process of the HC adsorbed on 7 is performed. In S4,
The larger the amount of HC adsorbed on EHC7, the more this adsorbed H
Since the amount of air (oxygen) required for the treatment of C also increases, EH
An air pump driving signal, that is, a pump discharge flow rate is determined from the HC adsorption amount estimated value of C7, and driving of the air pump 9 is started so as to achieve the pump discharge flow rate. At this time, since the desorption process of the adsorbent 6 has not been started, the bypass valve 8 is closed.
【0032】なお、EHC7のHC吸着量は、図5に示
すルーチンにより求められる吸着剤6へ排気ガスを導入
(HCを吸着)させた時間CNTRTRAPに基づき、
図6に示す特性図を参照することで推定することができ
る。また、エアポンプ駆動信号(ポンプ吐出流量)は、
図7に示す特性図等に基づいて決定することができる。
なお、本実施形態では、エアポンプ9の駆動時間を一定
として、吐出量を変化させ、総空気供給量を制御してい
るが、吐出量を一定として駆軌時間を変化させる構成と
することもできる。The HC adsorption amount of the EHC 7 is determined based on the time CNTRTRAP during which exhaust gas is introduced (HC is adsorbed) into the adsorbent 6 determined by the routine shown in FIG.
It can be estimated by referring to the characteristic diagram shown in FIG. The air pump drive signal (pump discharge flow rate)
It can be determined based on the characteristic diagram shown in FIG.
In the present embodiment, the total air supply amount is controlled by changing the discharge amount while keeping the drive time of the air pump 9 constant. However, it is also possible to adopt a configuration in which the discharge time is changed and the track time is changed. .
【0033】なお、図5に示した吸着剤6へ排気ガスを
流した時間CNTRTRAPを求めるルーチンは、一般
的なカウンタであるため詳細な説明は省略するが、バイ
パスバルブ8を開とし、吸着剤6に排気ガスを流しHC
を吸着させている期間(吸着中;S21で判断)、吸着
時間カウンタCNTRTRAPをカウントアップ(S2
2で実行)して行くものである。The routine for calculating the time CNTRTRAP during which the exhaust gas is flown into the adsorbent 6 shown in FIG. 5 is a general counter, and therefore detailed description is omitted. Exhaust gas to 6 and HC
During the period in which the is adsorbed (during adsorption; determined in S21), the adsorption time counter CNTRTRAP is counted up (S2).
2).
【0034】次のS5では、フラグFLGAP=1と
し、S6へ進む。S6では、エアポンプ駆動時間は所定
値に達したか、つまり、EHC7のHC脱離処理(或い
はHC浄化処理)のための必要空気量を供給し終ったか
否かを判断する。所定時間に達していない場合には、そ
のままルーチンを終了し、エアポンプ9の駆動を継続す
る。所定時間に達した場合には、S7へ進み、該S7に
てエアポンプ9の駆動を停止し、S8で、エアポンプ9
を駆動していないことを示すためフラグFLGAP=0
とする。In the next S5, the flag FLGAP = 1 is set, and the routine proceeds to S6. In S6, it is determined whether or not the air pump driving time has reached a predetermined value, that is, whether or not the supply of the necessary air amount for the HC desorption process (or the HC purification process) of the EHC 7 has been completed. If the predetermined time has not been reached, the routine is terminated as it is, and the driving of the air pump 9 is continued. When the predetermined time has been reached, the process proceeds to S7, in which the driving of the air pump 9 is stopped, and in S8, the air pump 9 is stopped.
FLGAP = 0 to indicate that is not being driven
And
【0035】次のS9では、図5に示すルーチンおよ
び、図6から求められたEHC7のHC吸着量をもと
に、図8に示す特性図からEHC7の加熱(プリヒー
ト)時間を検索する。これは、プリヒート期間中にEH
C7に吸着したHCを脱離させるとともに、既に供給し
た空気中の酸素によりEHC7から脱離したHCを酸化
処理するためであり、EHC7へのHC吸着量が多けれ
ば、それだけ加熱(プリヒート)時間も長くなる。In the next step S9, based on the routine shown in FIG. 5 and the HC adsorption amount of the EHC 7 obtained from FIG. 6, the heating (preheating) time of the EHC 7 is searched from the characteristic diagram shown in FIG. This is because EH during the preheat period
This is because the HC adsorbed on the C7 is desorbed, and the HC desorbed from the EHC 7 is oxidized by the oxygen in the air that has already been supplied. If the amount of HC adsorbed on the EHC 7 is large, the heating (preheating) time is correspondingly longer. become longer.
【0036】次に、S10では、EHC7への通電を行
いEHC7を加熱し、S11でEHC7を加熱している
ことを示すためフラグFLGPH=1とする。プリヒー
ト時のEHC7への供給電力は一定でも良いが、プリヒ
ート時間に比例してEHC温度も上昇して行くため、触
媒の劣化温度やEHC(ヒータ部等)の耐久温度に達す
る前にプリヒート時の供給電力を下げ、EHC温度をあ
る一定値に保つよう制御することもできる。Next, at S10, the EHC 7 is energized to heat the EHC 7, and at S11 the flag FLGPH is set to 1 to indicate that the EHC 7 is being heated. Although the power supplied to the EHC 7 during preheating may be constant, the EHC temperature also increases in proportion to the preheating time, so the preheating time before reaching the catalyst deterioration temperature or the endurance temperature of the EHC (heater section, etc.). It is also possible to reduce the supply power and control the EHC temperature to be kept at a certain value.
【0037】S12では、EHC7の加熱時間がS9に
て求めた所定時間に達したかを判断し、達していない場
合には、そのままルーチンを終了し、EHC7のプリヒ
ート状態を保ち、EHC7に吸着されているHCの脱離
処理を継続する。一方、加熱時間が所定時間に達した場
合には、S13に進み、吸着剤6に吸着されたHCの脱
離処理を通常通りに行う。即ち、例えば、バイパスバル
ブ8を半開として排気ガスの一部をバイパス通路5へ流
入させると共に、吸着剤6から脱離してくるHCを、E
HC7で酸化除去するために必要な空気量(酸素量)を
エアポンプ9で供給するような操作を行なうことにな
る。なお、この吸着剤6のHC脱離処理ルーチンについ
ては、従来同様で良く、詳細な説明については省略す
る。In S12, it is determined whether or not the heating time of the EHC 7 has reached the predetermined time obtained in S9. If not, the routine is terminated as it is, and the EHC 7 is preheated, and is adsorbed by the EHC 7. The desorption process of the existing HC is continued. On the other hand, when the heating time has reached the predetermined time, the process proceeds to S13, and the desorption process of the HC adsorbed by the adsorbent 6 is performed as usual. That is, for example, when the bypass valve 8 is half-opened, a part of the exhaust gas flows into the bypass passage 5, and the HC desorbed from the adsorbent 6 is removed by E.
An operation of supplying an air amount (oxygen amount) necessary for oxidizing and removing with the HC 7 by the air pump 9 is performed. The HC desorption processing routine for the adsorbent 6 may be the same as the conventional one, and a detailed description thereof will be omitted.
【0038】このように、本実施形態によれば、吸着剤
6のHC脱離処理を開始する前に、吸着剤6の下流側に
配設されたEHC(触媒)7に吸着されているHCを脱
離するようにしたので、従来装置のように、吸着剤のH
C脱離処理時におけるEHC(ヒータ付き触媒)の加熱
に伴ってEHCから脱離してくるHCが、浄化されずに
吸着剤のHC脱離処理のために導入した排気ガスと伴に
大気中に放出されてしまうと言った惧れを回避すること
ができる。As described above, according to the present embodiment, before the HC desorption process of the adsorbent 6 is started, the HC adsorbed on the EHC (catalyst) 7 disposed downstream of the adsorbent 6 is used. Is desorbed, so that the H of the adsorbent differs from that of the conventional apparatus.
HC desorbed from the EHC due to heating of the EHC (catalyst with a heater) at the time of the C desorption process is not purified but is released into the atmosphere together with the exhaust gas introduced for the HC desorption process of the adsorbent. The fear of being released can be avoided.
【0039】つまり、本実施形態では、吸着剤6のHC
脱離処理を開始する前に、吸着剤6にHCを吸着させた
時間をもとにEHC7のHC吸着量を推定し、その推定
値に応じた空気(酸素)量を吸着剤6の下流触媒(EH
C7)にエアポンプ9により供給しEHC7のプリヒー
トを行なうことにより、EHC7のプリヒートにともな
いEHC7から脱離してくるHCを雰囲気中の酸素(エ
アポンプ9により供給した酸素)によリEHC7で処理
(酸化除去)させるようにしたので、従来装置のよう
に、吸着剤のHC脱離処理時におけるEHCの加熱に伴
ってEHCから脱離してくるHCが、浄化されずに大気
中に放出されてしまうと言った惧れを回避することがで
きる。That is, in the present embodiment, the HC of the adsorbent 6
Before starting the desorption process, the amount of HC adsorbed on the EHC 7 is estimated based on the time during which HC is adsorbed on the adsorbent 6, and the amount of air (oxygen) corresponding to the estimated value is determined by the downstream catalyst (EH
C7) is supplied by the air pump 9 to perform preheating of the EHC 7, so that HC desorbed from the EHC 7 due to the preheating of the EHC 7 is treated (oxidized and removed) by oxygen in the atmosphere (oxygen supplied by the air pump 9). ), The HC desorbed from the EHC due to the heating of the EHC during the HC desorption process of the adsorbent is released to the atmosphere without purification as in the conventional device. Fear can be avoided.
【0040】即ち、本実施形態によれば、内燃機関始動
直後には排気ガス中に多く含まれているHCをHC吸着
剤に吸着させることで、始動直後における大気中へのH
Cの放出を抑制でき、その後において、排気温度が上昇
すると共にメイン触媒が活性化して排気ガス中のHCを
当該メイン触媒が良好に酸化除去(浄化)できるように
なったら、HC吸着剤の下流側の触媒を加熱手段を介し
て昇温させ活性化させつつ吸着剤からHCを脱離させ、
当該吸着剤から脱離したHCを、HC吸着剤の下流側の
触媒で酸化除去することで大気中へのHCの放出を抑制
でき、更に、前記HC吸着剤の下流側の触媒(EHC)
を加熱手段を介して昇温させ活性化させるときに当該H
C吸着剤の下流側の触媒(EHC)から脱離してくるH
Cについても、良好に酸化除去(浄化)することができ
るので、始動からHC吸着剤6のHC脱離完了までにお
けるHCの大気中への放出量を極めて低く抑えることが
可能となる。That is, according to the present embodiment, the HC contained in the exhaust gas is adsorbed by the HC adsorbent immediately after the start of the internal combustion engine, so that the H to the atmosphere immediately after the start of the engine is obtained.
When the emission of C can be suppressed, and after that, the exhaust gas temperature rises and the main catalyst is activated, the main catalyst can oxidize and remove (purify) HC in the exhaust gas satisfactorily. HC is desorbed from the adsorbent while heating and activating the catalyst on the side through heating means,
The HC desorbed from the adsorbent is oxidized and removed by a catalyst on the downstream side of the HC adsorbent, whereby the emission of HC into the atmosphere can be suppressed. Further, the catalyst on the downstream side of the HC adsorbent (EHC)
Is heated through a heating means to activate it.
H desorbed from the catalyst (EHC) downstream of the C adsorbent
C can also be oxidized and removed (purified) satisfactorily, so that the amount of HC released into the air from the start to the completion of HC desorption of the HC adsorbent 6 can be extremely low.
【0041】なお、当該第1の実施形態では、EHC7
を加熱する前に、エアポンプ9により酸素を供給する構
成として説明したが、例えばEHC7を加熱すると同時
に、或いはEHC7を加熱している間、エアポンプ9に
より酸素を供給する構成とすることもできるものであ
る。即ち、脱離要求や浄化要求(EHC7の雰囲気)に
応じて、酸素をEHC7に供給する構成とすることがで
きるものである。In the first embodiment, the EHC7
Although the configuration has been described in which oxygen is supplied by the air pump 9 before heating is performed, the configuration may be such that oxygen is supplied by the air pump 9 at the same time as heating the EHC 7 or while heating the EHC 7. is there. That is, it is possible to provide a configuration in which oxygen is supplied to the EHC 7 according to a desorption request or a purification request (atmosphere of the EHC 7).
【0042】次に、本発明の第2の実施形態について説
明する。第2の実施形態におけるシステム構成は、図3
で示した第1の実施形態のものと同様であるので、説明
は省略する。当該第2の実施形態は、第1の実施形態と
は、EHCのHC吸着量を求める方法のみが異なり、第
2の実施形態では、第1の実施形態における図6を用い
てEHCのHC吸着量を求める方法を採用せず、吸着剤
に排気ガス(HC)を吸着させている期間の総排気ガス
量からEHCのHC吸着量を求めるようにしている。Next, a second embodiment of the present invention will be described. The system configuration in the second embodiment is shown in FIG.
Are the same as those of the first embodiment shown in FIG. The second embodiment is different from the first embodiment only in the method of obtaining the HC adsorption amount of EHC. In the second embodiment, the HC adsorption of EHC is performed using FIG. 6 in the first embodiment. Instead of adopting a method for obtaining the amount, the HC adsorption amount of EHC is obtained from the total exhaust gas amount during the period when the exhaust gas (HC) is adsorbed by the adsorbent.
【0043】ここで、第2の実施形態における、吸着剤
に排気ガス(HC)を吸着させている期間の総排気ガス
量を求めるルーチンについて、図9のフローチャートを
参照しつつ説明する。エンジン回転数(Ne)と吸入負
圧(Boost)の積{Ne*(Pa−Boost)}
は吸入空気量に比例するため(Paは大気圧)、S31
で吸着剤6に排気ガス(HC)を吸着中か否かを判断
し、吸着中であれば、S32で、HC吸着中のエンジン
回転数と吸入負圧の積を積算し、HC吸着中の総排気ガ
ス量CNTRGASを求める。Here, the routine for obtaining the total exhaust gas amount during the period when the exhaust gas (HC) is adsorbed by the adsorbent in the second embodiment will be described with reference to the flowchart of FIG. Product of engine speed (Ne) and suction negative pressure (Boost) {Ne * (Pa-Boost)}
Is proportional to the amount of intake air (Pa is atmospheric pressure).
It is determined whether or not the exhaust gas (HC) is being adsorbed on the adsorbent 6 at step S32. If the adsorbent 6 is being adsorbed, the product of the engine speed during suction of HC and the suction negative pressure is integrated at step S32. The total exhaust gas amount CNTRGAS is obtained.
【0044】そして、このルーチンにより求められた吸
着剤6に排気ガス(HC)を吸着させている期間におけ
る総排気ガス量CNTRGASをもとに、図10に示す
特性図からEHCのHC吸着量を求める。このように、
第2の実施形態によれば、第1の実施形態と同様の作用
効果を奏することができると共に、吸着剤6に排気ガス
(HC)を吸着させた期間における総排気ガス量CNT
RGASに基づいてEHCのHC吸着量を求めるように
したので、吸着剤6に排気ガス(HC)を吸着させた時
間に基づいてEHC7のHC吸着量を求めるようにした
第1の実施形態に比べて、EHC7のHC吸着量の推定
精度を高めることができるので、吸着剤6のHC脱離処
理を開始する前に行なうEHC7のHCの脱離処理(或
いは浄化処理)を高精度なものとでき、延いては始動か
らHC吸着剤6の脱離完了までにおけるHCの大気中へ
の放出量をより一層低く抑えることが可能となる。Based on the total exhaust gas amount CNTRGAS during the period when the exhaust gas (HC) is adsorbed on the adsorbent 6 determined by this routine, the HC adsorption amount of EHC is determined from the characteristic diagram shown in FIG. Ask. in this way,
According to the second embodiment, the same operation and effect as those of the first embodiment can be obtained, and the total exhaust gas amount CNT during the period when the exhaust gas (HC) is adsorbed on the adsorbent 6 is obtained.
Since the HC adsorption amount of EHC is calculated based on RGAS, the HC adsorption amount of EHC 7 is calculated based on the time during which the exhaust gas (HC) is adsorbed on the adsorbent 6 as compared with the first embodiment. As a result, the estimation accuracy of the HC adsorption amount of the EHC 7 can be improved, so that the HC desorption process (or purification process) of the EHC 7 performed before the HC desorption process of the adsorbent 6 is started can be made highly accurate. Further, it is possible to further reduce the amount of HC released into the atmosphere from the start to the completion of the desorption of the HC adsorbent 6.
【0045】次に、本発明の第3の実施形態について説
明する。第3の実施形態にかかるシステム構成は、図1
1に示すものであり、図3において示した第1、2の実
施形態のものとは、一部異なる部分があるので、これに
ついて説明する。即ち、第3の実施形態では、図11に
示すように、バイパス通路5上のEHC7の下流側にお
いて、バイパス通路5から分岐してメイン通路2の上流
側触媒3の下流側かつ下流側触媒4の上流側に連通する
連通路11が設けられており、バイパス通路5と連通路
11の分岐点にはコントロールユニット10により駆動
される連通路切替バルブ12が配設されている。連通路
切替バルブ12は、図に示す状態を閉とする。なお、連
通路11が本発明にかかる連通路に相当し、連通路切替
バルブ12が本発明にかかる連通路排気流入制御弁に相
当する。Next, a third embodiment of the present invention will be described. The system configuration according to the third embodiment is shown in FIG.
1, which is partially different from those of the first and second embodiments shown in FIG. 3, will be described. That is, in the third embodiment, as shown in FIG. 11, on the downstream side of the EHC 7 on the bypass passage 5, the fuel cell branches off from the bypass passage 5 and is downstream of the upstream catalyst 3 and downstream catalyst 4 of the main passage 2. A communication passage 11 communicating with the upstream side of the communication passage 11 is provided. A communication passage switching valve 12 driven by the control unit 10 is provided at a branch point between the bypass passage 5 and the communication passage 11. The communication path switching valve 12 closes the state shown in the figure. The communication path 11 corresponds to the communication path according to the present invention, and the communication path switching valve 12 corresponds to the communication path exhaust inflow control valve according to the present invention.
【0046】ここで、本発明にかかる連通路排気流入制
御手段として機能することとなる本実施形態におけるコ
ントロールユニット10が行なう制御について、図12
に示すフローチャートに従って説明する。連通路切替バ
ルブ12は、IGN.ON(イグニッションON)時は
閉状態に初期化される。まず、S41にて、吸着剤6の
脱離処理条件か否かを判断する。これは、第1の実施形
態における図3のフローチャートにおけるS1と同様で
ある。脱離処理条件でない場合には、そのままルーチン
を終了する。脱離処理条件である場合には、S42に
て、EHC7を活性温度に昇温させるためのプリヒート
を開始する。Here, the control performed by the control unit 10 in this embodiment, which functions as the communication passage exhaust gas inflow control means according to the present invention, will be described with reference to FIG.
This will be described according to the flowchart shown in FIG. The communication path switching valve 12 is an IGN. When it is ON (ignition ON), it is initialized to the closed state. First, in S41, it is determined whether or not the conditions for the desorption treatment of the adsorbent 6 are satisfied. This is the same as S1 in the flowchart of FIG. 3 in the first embodiment. If the conditions are not the desorption processing conditions, the routine ends. If the conditions for the desorption treatment are satisfied, in S42, preheating for raising the temperature of the EHC 7 to the activation temperature is started.
【0047】次に、S43にてプリヒートを開始してか
らの経過時間が所定値に達したかを判断し、所定時間に
達していない場合にはそのままルーチンを終了し、プリ
ヒートを維続する。所定時間に達している場合には、S
44へ進む。なお、プリヒート時のEHC供給電力およ
びプリヒート時間は一定値でも良いが、第1の実施形態
で説明したと同様に変化させてもよい。Next, in S43, it is determined whether or not the elapsed time from the start of the preheating has reached a predetermined value. If the predetermined time has not been reached, the routine is terminated and the preheating is continued. If the predetermined time has been reached, S
Go to 44. Note that the EHC supply power and the preheating time during preheating may be constant values, but may be changed in the same manner as described in the first embodiment.
【0048】次のS44では、吸着剤6に吸着されてい
るHCの脱離処理を行うため、バイパスバルブ8を所定
角度開きバイパス通路5(吸着剤6)側に排気ガスの一
部を流し吸着剤6を加熱するとともに、エアポンプ9を
駆動しEHC7に処理用の空気(酸素)を供給する。S
45では、EHC7のプリヒート時の加熱に伴いEHC
7から脱離したHCの全量を、連通路11を介してメイ
ン通路2に介装されている下流側触媒4の上流側に流す
ために、連通路切替バルブ12を開とする。In the next step S44, in order to perform the desorption process of the HC adsorbed on the adsorbent 6, the bypass valve 8 is opened at a predetermined angle to allow a part of the exhaust gas to flow toward the bypass passage 5 (adsorbent 6) to be adsorbed. While heating the agent 6, the air pump 9 is driven to supply processing air (oxygen) to the EHC 7. S
45, the EHC 7 was heated during preheating of the EHC 7
The communication path switching valve 12 is opened to allow the entire amount of HC desorbed from 7 to flow through the communication path 11 to the upstream side of the downstream catalyst 4 provided in the main path 2.
【0049】次のS46では、連通路切替バルブを開状
態としてから、実験等により決定される所定時間経過し
たか否かを判断し、所定時間経過していない場合には連
通路切替バルブ12を開状態のままルーチンを終了す
る。所定時間経過した場合には、EHC7から脱離した
HCは全てメイン通路上の下流側触媒4の上流に流れた
として、S47へ進む。In the next step S46, it is determined whether or not a predetermined time determined by experiments or the like has elapsed since the communication path switching valve was opened, and if the predetermined time has not elapsed, the communication path switching valve 12 is turned off. The routine ends with the open state. If the predetermined time has elapsed, it is determined that all the HC desorbed from the EHC 7 has flowed upstream of the downstream catalyst 4 on the main passage, and the process proceeds to S47.
【0050】S47では、連通路切替バルブ12を閉と
する。そして、S48では、通常の吸着剤6の脱離処理
と同様、吸着剤6の脱離処理の終了判断がなされるま
で、吸着剤6の脱離処理を行なう。このように、第3の
実施形態によれば、吸着剤6のHC脱離処理とEHC7
による酸化処理(S44)を開始してから所定期間は、
連通路切替バルブ12を開として(S45)、バイパス
通路5内に流入した排気ガス(EHC7から脱離したH
Cを含む)を、大気中へそのまま放出せず、再びメイン
通路2上の下流側触媒4の上流側に還流させるようにし
たので、吸着剤6のHC脱離処理時におけるEHC7の
加熱に伴ってEHC7から脱離してくるHCを、活性化
状態にある下流側触媒4で酸化除去(浄化)させること
ができる。In S47, the communication path switching valve 12 is closed. Then, in S48, the desorbing process of the adsorbent 6 is performed until the termination of the desorbing process of the adsorbent 6 is determined, similarly to the normal desorption process of the adsorbent 6. As described above, according to the third embodiment, the HC desorption process of the adsorbent 6 and the EHC 7
For a predetermined period after the oxidation process (S44) is started,
The communication path switching valve 12 is opened (S45), and the exhaust gas (H desorbed from the EHC 7) flowing into the bypass path 5 is opened.
C) is returned to the upstream side of the downstream catalyst 4 on the main passage 2 without being released to the atmosphere as it is, so that the EHC 7 is heated during the HC desorption process of the adsorbent 6. Thus, the HC desorbed from the EHC 7 can be oxidized and removed (purified) by the activated downstream catalyst 4.
【0051】従って、従来装置のように、吸着剤のHC
脱離処理時におけるEHC(ヒータ付き触媒)の加熱に
伴ってEHCから脱離してくるHCが、浄化されずに吸
着剤のHC脱離処理のために導入した排気ガスと伴に大
気中に放出されてしまうと言った惧れを回避することが
できる。即ち、第3の実施形態によれば、内燃機関始動
直後には排気ガス中に多く含まれているHCをHC吸着
剤に吸着させることで、始動直後における大気中へのH
Cの放出を抑制でき、その後において、排気温度が上昇
すると共にメイン触媒が活性化して排気ガス中のHCを
当該メイン触媒が良好に酸化除去(浄化)できるように
なったら、HC吸着剤からHCを脱離させると共に、該
HC吸着剤のHC脱離処理開始から所定期間、バイパス
通路を流れる排気を、メイン触媒の上流部へ流すように
したので、HC吸着剤やEHCから脱離してくるHC
を、前記メイン触媒によって良好に酸化除去(浄化)す
ることができるので、始動からHC吸着剤のHC脱離完
了までにおけるHCの大気中への放出量を極めて低く抑
えることが可能となる。Therefore, as in the conventional apparatus, the HC of the adsorbent is
HC desorbed from the EHC due to the heating of the EHC (catalyst with heater) during the desorption process is released into the atmosphere together with the exhaust gas introduced for the desorption process of the adsorbent without being purified. It is possible to avoid fears of being done. That is, according to the third embodiment, the HC contained in the exhaust gas is adsorbed by the HC adsorbent immediately after the internal combustion engine is started, so that the H to the atmosphere immediately after the start is obtained.
When the emission of C can be suppressed, and after that, the exhaust gas temperature rises and the main catalyst is activated, the HC in the exhaust gas can be oxidized and removed (purified) by the main catalyst. And the exhaust gas flowing through the bypass passage is caused to flow to the upstream portion of the main catalyst for a predetermined period from the start of the HC desorption process of the HC adsorbent, so that the HC desorbed from the HC adsorbent and the EHC.
Can be satisfactorily oxidized and removed (purified) by the main catalyst, so that the amount of HC released into the air from the start to the completion of HC desorption of the HC adsorbent can be extremely reduced.
【0052】なお、第3の実施形態では、下流側触媒4
の上流側で、上流側触媒3の下流側に、バイパス通路5
に流入した排気を還流させる構成としたが、条件(排気
圧力)等によっては、上流側触媒3の上流側に還流させ
る構成とすることも可能である。また、上記第3の実施
形態においては、HC吸着剤下流触媒としてEHC7を
備え、電気加熱手段(ヒータ等)により、プリヒートす
る構成として説明したが、排気温度が高温で排気により
HC吸着剤下流触媒を昇温できる場合や、排気輻射熱等
によりHC吸着剤下流触媒を昇温できる場合には、電気
加熱手段(ヒータ等)によりプリヒートする構成(電気
加熱手段や図12のフローチャートのS42、S43)
を省略することができる。In the third embodiment, the downstream catalyst 4
Upstream of the upstream catalyst 3 and a bypass passage 5
Although the exhaust gas flowing into the catalyst is configured to be recirculated, it may be configured to recirculate the exhaust gas upstream of the upstream catalyst 3 depending on conditions (exhaust pressure) and the like. Further, in the third embodiment, EHC 7 is provided as the HC adsorbent downstream catalyst, and the configuration in which the preheating is performed by the electric heating means (heater or the like) has been described. When the temperature of the catalyst can be increased, or when the temperature of the HC adsorbent downstream catalyst can be increased by the exhaust radiation heat or the like, the preheating is performed by the electric heating means (heater or the like) (the electric heating means or S42 and S43 in the flowchart of FIG. 12).
Can be omitted.
【0053】即ち、第3の実施形態に係る発明は、例え
ば、バイパス通路5に流入した排気ガスの熱でHC吸着
剤下流触媒からHCが脱離しても、これを既に活性化し
ている下流側触媒(メイン触媒)4の上流側に流入さ
せ、このHC吸着剤下流触媒から脱離したHC(及びH
C吸着剤6から脱離したHC)を下流側触媒4で浄化さ
せることを、その本質とするものである。That is, according to the invention of the third embodiment, for example, even if HC is desorbed from the HC adsorbent downstream catalyst by the heat of the exhaust gas flowing into the bypass passage 5, the downstream side already activated The HC (and H) desorbed from the downstream catalyst of the HC adsorbent by flowing into the upstream side of the catalyst (main catalyst) 4
The essence is to purify the HC desorbed from the C adsorbent 6 by the downstream catalyst 4.
【0054】従って、第3の実施形態に係る発明は、図
13のように構成することもできる。即ち、HC吸着剤
6の脱離時には、バイパスバルブ8を半開として、排気
ガスの一部をバイパス通路5に流入させ、これに伴いE
HC7から脱離するHC(及びHC吸着剤6から脱離す
るHC)を、バルブ13を介して、メイン触媒4に流入
させ、該メイン触媒4にて浄化する構成とすることもで
きる。Therefore, the invention according to the third embodiment can be configured as shown in FIG. That is, when the HC adsorbent 6 is desorbed, the bypass valve 8 is half-opened to allow a part of the exhaust gas to flow into the bypass passage 5, and accordingly, E
The HC desorbed from the HC 7 (and the HC desorbed from the HC adsorbent 6) may flow into the main catalyst 4 via the valve 13 and be purified by the main catalyst 4.
【0055】なお、上記各実施形態では、上流側触媒3
と下流側触媒4を備える構成とした、排気流量が少ない
場合等においては、上流側触媒3或いは下流側触媒4の
何れか一方を備える構成とすることもできる。そして、
上記各実施形態では、エアポンプ9を設ける構成として
説明したが、例えば、酸素が十分に存在する雰囲気下に
あって、HC吸着剤の脱離やEHC7においてHCを脱
離・酸化できる場合等には、エアポンプ9は省略するこ
とができるものである。In each of the above embodiments, the upstream catalyst 3
In the case where the exhaust gas flow rate is small or the like, the configuration may include either the upstream catalyst 3 or the downstream catalyst 4. And
In each of the embodiments described above, the configuration in which the air pump 9 is provided has been described. However, for example, in the case where there is a sufficient amount of oxygen and the HC adsorbent can be desorbed or the HC can be desorbed and oxidized in the EHC 7, etc. And the air pump 9 can be omitted.
【図1】 本発明の請求項1に記載の発明の構成を示す
クレーム対応図。FIG. 1 is a claim correspondence diagram showing a configuration of the invention described in claim 1 of the present invention.
【図2】 本発明の請求項8に記載の発明の構成を示す
クレーム対応図。FIG. 2 is a claim correspondence diagram showing a configuration of the invention described in claim 8 of the present invention.
【図3】 本発明の第1の実施形態にかかるシステム構
成図。FIG. 3 is a system configuration diagram according to the first embodiment of the present invention.
【図4】 同上実施形態において行なわれる制御フロー
チャート。FIG. 4 is a control flowchart performed in the embodiment.
【図5】 同上実施形態において行なわれるHC吸着剤
の吸着時間を求めるフローチャート。FIG. 5 is a flowchart for calculating an adsorption time of an HC adsorbent performed in the embodiment.
【図6】 同上実施形態において行なわれる吸着剤の吸
着時間とEHC(HC吸着剤下流触媒)のHC吸着量と
の関係を示す図。FIG. 6 is a view showing the relationship between the adsorbent adsorption time and the HC adsorption amount of EHC (HC adsorbent downstream catalyst) performed in the embodiment.
【図7】 EHC(HC吸着剤下流触媒)のHC吸着量
とエアポンプ吐出量との関係を示す図。FIG. 7 is a diagram showing a relationship between an HC adsorption amount of an EHC (HC adsorbent downstream catalyst) and an air pump discharge amount.
【図8】 EHC(HC吸着剤下流触媒)のHC吸着量
とEHCの加熱(プリヒート)時間との関係を示す図。FIG. 8 is a diagram showing the relationship between the HC adsorption amount of EHC (HC downstream catalyst) and the heating (preheating) time of EHC.
【図9】 本発明の第2の実施形態において行なわれる
HC吸着期間中の総排気ガス量(総排気流量)を求める
フローチャート。FIG. 9 is a flowchart for calculating a total exhaust gas amount (total exhaust flow rate) during an HC adsorption period performed in the second embodiment of the present invention.
【図10】 HC吸着期間中の総排気ガス量とEHC(H
C吸着剤下流触媒)のHC吸着量との関係を示す図FIG. 10 shows the total exhaust gas amount and EHC (H
Diagram showing the relationship between the amount of HC adsorbed by the C adsorbent downstream catalyst)
【図11】 本発明の第3実施形態におけるシステム構成
図。FIG. 11 is a system configuration diagram according to a third embodiment of the present invention.
【図12】 同上実施形態において行なわれる制御フロー
チャート。FIG. 12 is a control flowchart performed in the embodiment.
【図13】 同上実施形態における他のシステム構成例を
示す図。FIG. 13 is a diagram showing another example of the system configuration in the embodiment.
【図14】 (A)は、従来装置の構成を示す図。(B)
は、従来装置において発生する惧れがある悪影響を説明
する図。FIG. 14A is a diagram illustrating a configuration of a conventional device. (B)
FIG. 3 is a diagram illustrating an adverse effect that may occur in a conventional device.
1 エンジン(内燃機関) 2、2’ 排気通路(メイン通路) 3 上流側触媒(メイン触媒) 4 下流側触媒(メイン触媒) 5 バイパス通路 6 HC吸着剤 7 EHC(加熱手段を備えた触媒;HC吸着剤下流
触媒) 8 バイパスバルブ(バイパス通路排気流入制御弁) 9 エアポンプ(酸素供給手段) 10 コントロールユニット(マイクロコンピュータ) 11 連通路 12 連通路切替バルブ(連通路排気流入制御弁) 13 バルブReference Signs List 1 engine (internal combustion engine) 2, 2 'exhaust passage (main passage) 3 upstream catalyst (main catalyst) 4 downstream catalyst (main catalyst) 5 bypass passage 6 HC adsorbent 7 EHC (catalyst provided with heating means; HC Adsorbent downstream catalyst) 8 bypass valve (bypass passage exhaust inflow control valve) 9 air pump (oxygen supply means) 10 control unit (microcomputer) 11 communication passage 12 communication passage switching valve (communication passage exhaust inflow control valve) 13 valve
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F01N 3/20 F01N 3/20 G ZAB ZABK 3/32 ZAB 3/32 ZABB (72)発明者 田山 彰 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 6 Identification code FI F01N 3/20 F01N 3/20 G ZAB ZABK 3/32 ZAB 3/32 ZABB (72) Inventor Akira Tayama Kanagawa-ku, Kanagawa-ku, Kanagawa 2 Takaracho Nissan Motor Co., Ltd.
Claims (8)
媒の下流側において、前記排気通路の排気上流側の分岐
点で一旦分岐し、前記排気通路の排気下流側の合流点で
再び合流するバイパス通路と、 前記排気上流側の分岐点に配設され、前記バイパス通路
への排気の流入を制御するバイパス通路排気流入制御弁
と、 前記バイパス通路に介装されるHC吸着剤と、 前記HC吸着剤の排気下流側において、前記バイパス通
路に介装されるHC吸着剤下流触媒と、 を含んで構成された内燃機関の排気浄化装置であって、 前記HC吸着剤に吸着されているHCを脱離させるべ
く、前記バイパス通路排気流入制御弁を介して前記バイ
パス通路に排気の少なくとも一部を流入させる前に、加
熱手段を介して前記HC吸着剤下流触媒を加熱して、当
該HC吸着剤下流触媒が吸着しているHCを脱離させつ
つ、該脱離されたHCを当該HC吸着剤下流触媒で浄化
させる触媒吸着HC処理手段を含んで構成したことを特
徴とする内燃機関の排気浄化装置。At a downstream side of a main catalyst interposed in an exhaust passage of an internal combustion engine, a branch is once made at a branch point on an exhaust upstream side of the exhaust passage, and then rejoined at a junction of the exhaust passage on a downstream side of exhaust gas. A bypass passage that is disposed at a branch point on the exhaust upstream side and controls an inflow of exhaust gas into the bypass passage; an HC adsorbent interposed in the bypass passage; An exhaust gas purification device for an internal combustion engine, comprising: an HC adsorbent downstream catalyst interposed in the bypass passage on the exhaust gas downstream side of the HC adsorbent, wherein the HC adsorbed by the HC adsorbent is provided. Before the at least a part of the exhaust gas flows into the bypass passage via the bypass passage exhaust inflow control valve, the HC adsorbent downstream catalyst is heated via a heating means to remove the H An internal combustion engine, comprising: a catalyst adsorbing HC treatment means for purifying the desorbed HC by the HC adsorbent downstream catalyst while desorbing the HC adsorbed by the adsorbent downstream catalyst. Exhaust gas purification device.
酸素供給手段を備えると共に、 前記触媒吸着HC処理手段により、前記加熱手段を介し
て前記HC吸着剤下流触媒を加熱して、当該HC吸着剤
下流触媒が吸着しているHCを脱離させつつ、該脱離さ
れたHCを当該HC吸着剤下流触媒で浄化させる前に、
或いはその間に、前記酸素供給手段を介して、前記HC
吸着剤下流触媒の雰囲気を所定酸素濃度に制御するHC
吸着剤下流触媒雰囲気制御手段を含んで構成したことを
特徴とする請求項1に記載の内燃機関の排気浄化装置。2. An HC supply means for supplying oxygen to the HC adsorbent downstream catalyst, and the HC adsorbent downstream catalyst is heated by the catalyst adsorbent HC treatment means via the heating means to thereby provide the HC adsorbent. While desorbing HC adsorbed by the adsorbent downstream catalyst, before purifying the desorbed HC by the HC adsorbent downstream catalyst,
Alternatively, in the meantime, the HC is supplied through the oxygen supply means.
HC for controlling the atmosphere of the catalyst downstream of the adsorbent to a predetermined oxygen concentration
2. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, further comprising a catalyst atmosphere control means downstream of the adsorbent.
は、前記HC吸着剤下流触媒が吸着しているHC量を推
定する触媒HC吸着量推定手段の推定結果に基づいて、
前記酸素供給手段の酸素供給量を制御する手段を含んで
構成されることを特徴とする請求項2に記載の内燃機関
の排気浄化装置。3. The HC adsorbent downstream catalyst atmosphere control means, based on the estimation result of the catalyst HC adsorption amount estimating means for estimating the amount of HC adsorbed by the HC adsorbent downstream catalyst,
3. The exhaust gas purifying apparatus for an internal combustion engine according to claim 2, further comprising means for controlling an oxygen supply amount of said oxygen supply means.
着剤下流触媒が吸着しているHC量を推定する触媒HC
吸着量推定手段の推定結果に基づいて、前記加熱手段の
加熱量を制御する手段を含んで構成されることを特徴と
する請求項1〜請求項3の何れか1つに記載の内燃機関
の排気浄化装置。4. The catalyst adsorbing HC treatment means estimates a HC amount adsorbed by the HC adsorbent downstream catalyst.
4. The internal combustion engine according to claim 1, further comprising a unit that controls a heating amount of the heating unit based on an estimation result of the adsorption amount estimation unit. 5. Exhaust gas purification device.
吸着剤に排気を流入させ排気中のHCを吸着させた時間
に基づいて、前記HC吸着剤下流触媒が吸着しているH
C量を推定することを特徴とする請求項3又は請求項4
に記載の内燃機関の排気浄化装置。5. The catalyst HC adsorbing amount estimating means includes:
Based on the time when the exhaust gas flows into the adsorbent and the HC in the exhaust gas is adsorbed, the H adsorbed by the HC adsorbent downstream catalyst is adsorbed.
5. The C amount is estimated.
An exhaust gas purifying apparatus for an internal combustion engine according to claim 1.
吸着剤に排気を流入させ排気中のHCを吸着させた期間
内に前記HC吸着剤に流入した総排気流量に基づいて、
前記HC吸着剤下流触媒が吸着しているHC量を推定す
ることを特徴とする請求項3又は請求項4に記載の内燃
機関の排気浄化装置。6. The catalyst HC adsorption amount estimating means includes:
Based on the total exhaust flow rate that has flowed into the HC adsorbent during the period in which exhaust gas has flowed into the adsorbent and HC in the exhaust gas has been adsorbed,
The exhaust gas purifying apparatus for an internal combustion engine according to claim 3 or 4, wherein an amount of HC adsorbed by the HC adsorbent downstream catalyst is estimated.
で一旦分岐し、前記排気通路の排気下流側の合流点で再
び合流するバイパス通路と、 前記排気上流側の分岐点に配設され、前記バイパス通路
への排気の流入を制御するバイパス通路排気流入制御弁
と、 前記バイパス通路に介装されるHC吸着剤と、 前記HC吸着剤の排気下流側において、前記バイパス通
路に介装されるHC吸着剤下流触媒と、 を含んで構成された内燃機関の排気浄化装置であって、 前記HC吸着剤に吸着されているHCを脱離させるべ
く、前記バイパス通路排気流入制御弁を介して前記バイ
パス通路に排気の少なくとも一部を流入させてからの経
過時間に応じて、当該バイパス通路に流入された排気
を、内燃機関の排気通路に介装されたメイン触媒の上流
側へ流すようにしたことを特徴とする内燃機関の排気浄
化装置。7. A bypass passage, which once branches at a branch point on the exhaust upstream side of an exhaust passage of the internal combustion engine and joins again at a junction on the exhaust downstream side of the exhaust passage, and is disposed at the branch point on the exhaust upstream side. A bypass passage exhaust inflow control valve for controlling the flow of exhaust gas into the bypass passage; an HC adsorbent interposed in the bypass passage; and an interposition of the HC adsorbent downstream of the HC adsorbent in the bypass passage. An exhaust gas purification device for an internal combustion engine, comprising: an HC adsorbent downstream catalyst, wherein the HC adsorbent is desorbed from the HC adsorbent through the bypass passage exhaust inflow control valve. The exhaust gas flowing into the bypass passage flows to the upstream side of the main catalyst interposed in the exhaust passage of the internal combustion engine in accordance with an elapsed time after at least a part of the exhaust gas flows into the bypass passage. Exhaust purification system of an internal combustion engine, characterized in that there was Unishi.
媒の下流側において、前記排気通路の排気上流側の分岐
点で一旦分岐し、前記排気通路の排気下流側の合流点で
再び合流するバイパス通路と、 前記排気上流側の分岐点に配設され、前記バイパス通路
への排気の流入を制御するバイパス通路排気流入制御弁
と、 前記バイパス通路に介装されるHC吸着剤と、 前記HC吸着剤の排気下流側において、前記バイパス通
路に介装されるHC吸着剤下流触媒と、 を含んで構成された内燃機関の排気浄化装置であって、 前記HC吸着剤下流触媒の下流側において前記バイパス
通路から分岐し、前記メイン触媒の上流側で合流する連
通路と、 当該バイパス通路の分岐点に配設され、前記連通路への
排気の流入を制御する連通路排気流入制御弁と、 前記HC吸着剤に吸着されているHCを脱離させるべ
く、前記バイパス通路排気流入制御弁を介して前記バイ
パス通路に排気の少なくとも一部を流入させてからの経
過時間に応じて、前記連通路排気流入制御弁を介して、
当該バイパス通路に流入された排気を、前記連通路によ
り前記メイン触媒の上流側へ流すように制御する連通路
排気流入制御手段と、 を含んで構成したことを特徴とする内燃機関の排気浄化
装置。8. A downstream side of a main catalyst interposed in an exhaust passage of an internal combustion engine, the branch once branches at a branch point on the exhaust upstream side of the exhaust passage, and rejoins at a junction on the exhaust downstream side of the exhaust passage. A bypass passage that is disposed at a branch point on the exhaust upstream side and controls an inflow of exhaust gas into the bypass passage; an HC adsorbent interposed in the bypass passage; An HC adsorbent downstream catalyst interposed in the bypass passage, on the exhaust gas downstream side of the HC adsorbent; and an HC purifier downstream of the HC adsorbent downstream catalyst. A communication passage that branches from the bypass passage and joins on the upstream side of the main catalyst; and a communication passage exhaust inflow control valve that is disposed at a branch point of the bypass passage and controls an inflow of exhaust gas into the communication passage. In order to desorb the HC adsorbed by the HC adsorbent, the communication passage according to an elapsed time after at least a part of the exhaust gas has flowed into the bypass passage via the bypass passage exhaust flow control valve. Through the exhaust inflow control valve,
An exhaust gas inflow control device for an internal combustion engine, comprising: a communication path exhaust inflow control means for controlling the exhaust gas flowing into the bypass passage to flow to an upstream side of the main catalyst by the communication path. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31679097A JP3674271B2 (en) | 1997-11-18 | 1997-11-18 | Exhaust gas purification device for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31679097A JP3674271B2 (en) | 1997-11-18 | 1997-11-18 | Exhaust gas purification device for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11148344A true JPH11148344A (en) | 1999-06-02 |
JP3674271B2 JP3674271B2 (en) | 2005-07-20 |
Family
ID=18080960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31679097A Expired - Fee Related JP3674271B2 (en) | 1997-11-18 | 1997-11-18 | Exhaust gas purification device for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3674271B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008150980A (en) * | 2006-12-15 | 2008-07-03 | Mazda Motor Corp | Exhaust emission control device |
JP2008280983A (en) * | 2007-05-14 | 2008-11-20 | Toyota Motor Corp | Exhaust gas purification device for internal combustion engine |
JP2010084571A (en) * | 2008-09-30 | 2010-04-15 | Toyota Motor Corp | Exhaust gas control apparatus for internal combustion engine |
US12123333B2 (en) | 2022-11-21 | 2024-10-22 | Saudi Arabian Oil Company | Reduction of tailpipe emissions from gasoline internal combustion engines with a combination of sorbents |
US20250075650A1 (en) * | 2023-09-06 | 2025-03-06 | GM Global Technology Operations LLC | Exhaust gas treatment system for controlling hydrocarbon adsorption/desorption in hydrocarbon trap |
-
1997
- 1997-11-18 JP JP31679097A patent/JP3674271B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008150980A (en) * | 2006-12-15 | 2008-07-03 | Mazda Motor Corp | Exhaust emission control device |
JP2008280983A (en) * | 2007-05-14 | 2008-11-20 | Toyota Motor Corp | Exhaust gas purification device for internal combustion engine |
JP2010084571A (en) * | 2008-09-30 | 2010-04-15 | Toyota Motor Corp | Exhaust gas control apparatus for internal combustion engine |
JP4640480B2 (en) * | 2008-09-30 | 2011-03-02 | トヨタ自動車株式会社 | Exhaust gas purification device for internal combustion engine |
US12123333B2 (en) | 2022-11-21 | 2024-10-22 | Saudi Arabian Oil Company | Reduction of tailpipe emissions from gasoline internal combustion engines with a combination of sorbents |
US20250075650A1 (en) * | 2023-09-06 | 2025-03-06 | GM Global Technology Operations LLC | Exhaust gas treatment system for controlling hydrocarbon adsorption/desorption in hydrocarbon trap |
Also Published As
Publication number | Publication date |
---|---|
JP3674271B2 (en) | 2005-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4710865B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP4915277B2 (en) | Exhaust gas purification device for internal combustion engine | |
JPH05149131A (en) | Exhaust emission control system | |
JP2988200B2 (en) | Secondary air supply control device for electrically heated catalyst | |
JPH10513526A (en) | Performance improvement of manifold catalysts in automotive exhaust systems | |
JPH09158715A (en) | Energization control device of electric heating catalyst | |
JPH10252449A (en) | Exhaust cleaning device for internal combustion engine | |
JPH10121949A (en) | Engine exhaust emission control device | |
JP3674271B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2002332830A (en) | Exhaust emission control device of internal combustion engine | |
JP3128873B2 (en) | Exhaust gas purification device for internal combustion engine | |
JPH06336915A (en) | Exhaust emission control device of internal combustion engine | |
JPH10184345A (en) | Emission control device for engine | |
JPH09100716A (en) | Engine exhaust purification device | |
JPH116424A (en) | Exhaust emission control device for internal combustion engine | |
JP3412459B2 (en) | Engine exhaust purification device | |
JPH11159321A (en) | Exhaust emission control device for automobile | |
JPH0518236A (en) | Exhaust gas purification equipment for automobiles | |
JP3055270B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP3343948B2 (en) | Exhaust gas purification device | |
JP3116627B2 (en) | Exhaust gas purification device | |
JPH11132028A (en) | Exhaust emission control device for internal combustion engine | |
JP3774918B2 (en) | Exhaust gas purification equipment for automobiles | |
JPH0835419A (en) | Exhaust emission control device of alcohol diesel engine | |
JPH0693840A (en) | Exhaust emission control device for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050104 |
|
A521 | Written amendment |
Effective date: 20050301 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Effective date: 20050405 Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050418 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 4 Free format text: PAYMENT UNTIL: 20090513 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090513 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100513 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |