JPH11145233A - Evaluation of semiconductor element - Google Patents
Evaluation of semiconductor elementInfo
- Publication number
- JPH11145233A JPH11145233A JP31174697A JP31174697A JPH11145233A JP H11145233 A JPH11145233 A JP H11145233A JP 31174697 A JP31174697 A JP 31174697A JP 31174697 A JP31174697 A JP 31174697A JP H11145233 A JPH11145233 A JP H11145233A
- Authority
- JP
- Japan
- Prior art keywords
- light
- absorption coefficient
- silicon substrate
- thickness
- spectrum sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 21
- 238000011156 evaluation Methods 0.000 title description 6
- 238000000034 method Methods 0.000 claims abstract description 29
- 239000000758 substrate Substances 0.000 claims abstract description 27
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 19
- 238000010521 absorption reaction Methods 0.000 claims abstract description 18
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 18
- 239000010703 silicon Substances 0.000 claims abstract description 18
- 238000001228 spectrum Methods 0.000 claims abstract description 12
- 229910052724 xenon Inorganic materials 0.000 claims abstract description 8
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims abstract description 8
- 238000001312 dry etching Methods 0.000 claims description 13
- 230000001678 irradiating effect Effects 0.000 claims description 4
- 238000004380 ashing Methods 0.000 claims description 2
- 238000004140 cleaning Methods 0.000 claims description 2
- 238000005468 ion implantation Methods 0.000 claims description 2
- 238000000926 separation method Methods 0.000 abstract 1
- 230000003595 spectral effect Effects 0.000 abstract 1
- 238000011158 quantitative evaluation Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- CVOFKRWYWCSDMA-UHFFFAOYSA-N 2-chloro-n-(2,6-diethylphenyl)-n-(methoxymethyl)acetamide;2,6-dinitro-n,n-dipropyl-4-(trifluoromethyl)aniline Chemical compound CCC1=CC=CC(CC)=C1N(COC)C(=O)CCl.CCCN(CCC)C1=C([N+]([O-])=O)C=C(C(F)(F)F)C=C1[N+]([O-])=O CVOFKRWYWCSDMA-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は半導体素子の表面の
評価方法に関するものである。The present invention relates to a method for evaluating the surface of a semiconductor device.
【0002】[0002]
【従来の技術】近年、半導体素子の微細化に伴い、素子
の表面状態の把握が重要となってきており、その評価方
法として、光学顕微鏡や走査型電子顕微鏡による表面の
観察、あるいは素子を劈開し、断面を走査型電子顕微鏡
により観察する方法が用いられている。2. Description of the Related Art In recent years, with the miniaturization of semiconductor devices, it has become important to grasp the surface condition of the device. As a method for evaluating the surface condition, observation of the surface using an optical microscope or a scanning electron microscope, or cleavage of the device is performed. Then, a method of observing a cross section with a scanning electron microscope is used.
【0003】以下、従来の半導体素子の表面の評価方法
について説明する。図4は走査型電子顕微鏡による断面
の評価方法を示すフローチャートである。図4のように
構成された方法について、以下その動作を説明する。A conventional method for evaluating the surface of a semiconductor device will be described below. FIG. 4 is a flowchart showing a cross-sectional evaluation method using a scanning electron microscope. The operation of the method configured as shown in FIG. 4 will be described below.
【0004】まず、半導体素子を劈開し観察したい断面
を出す。このとき、電子顕微鏡の試料室に入るほどのサ
イズ、すなわち1〜2cm角程度の微小な大きさに素子を
劈開する。次に電子顕微鏡の試料室に入れ、観察したい
断面を探し画面に映るようにする。すると、画面に10
〜20万倍の倍率で素子の表面が現れる。そして、その
画面を見ながら、また少しずつ動かしながら表面の状態
を観察していく。[0004] First, a semiconductor element is cleaved to obtain a section to be observed. At this time, the element is cleaved to a size enough to enter the sample chamber of the electron microscope, that is, a small size of about 1 to 2 cm square. Next, the sample is put into a sample chamber of an electron microscope, and a section to be observed is searched for and displayed on a screen. Then, 10 is displayed on the screen.
The surface of the element appears at a magnification of up to 200,000 times. Then, while observing the screen, move it little by little and observe the state of the surface.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上記従
来の構成では試料を破壊しなければ観察できなかったの
で、さらに追加処理を加えて試料表面の変化を見ること
はできないという問題があった。また、試料を劈開する
際に観察したい所望の断面を出すのに非常に苦労し、時
間を要する。そして、電子顕微鏡の試料室に入れて観察
するまでに非常に時間がかかり、しかも試料のごく一部
しか観察できない。さらには、観察による評価のみなの
で、定量的な評価方法ではないという問題があった。However, in the above-described conventional configuration, since observation was not possible unless the sample was destroyed, there was a problem that a change in the surface of the sample could not be observed by performing additional processing. In addition, it is extremely difficult and time-consuming to obtain a desired cross section to be observed when cleaving the sample. It takes a very long time to observe the sample in the sample chamber of the electron microscope, and only a small part of the sample can be observed. Furthermore, there is a problem that the method is not a quantitative evaluation method because it is only an evaluation based on observation.
【0006】本発明は上記従来の問題点を解決するもの
で、試料を非破壊で、しかも短時間で広範囲にわたって
定量的に評価することのできる半導体素子の評価方法を
提供することを目的とする。An object of the present invention is to solve the above-mentioned conventional problems, and an object of the present invention is to provide a method for evaluating a semiconductor device which can non-destructively and quantitatively evaluate a sample in a short time. .
【0007】[0007]
【課題を解決するための手段】この目的を達成するため
に本発明の半導体素子の評価方法は、半導体シリコン基
板表面にキセノンランプの光をポラライザーを通し照射
し、基板表面からの反射光をアナライザーを通し、引き
続きプリズムを通して分光し、分光した光をスペクトル
センサーで受け、スペクトルセンサーで受けた光量デー
タをコンピュータに送り、このデータを用いて、シリコ
ン基板上に生成された酸化膜の膜厚および吸収係数を計
算し、引き続き、半導体シリコン基板表面に所望の処理
を施し、基板表面にキセノンランプの光をポラライザー
を通し照射し、基板表面からの反射光をアナライザーを
通し、引き続きプリズムを通して分光し、分光した光を
スペクトルセンサーで受け、スペクトルセンサーで受け
た光量データをコンピュータに送り、このデータを用い
て、シリコン基板上に生成された膜としての膜厚および
吸収係数を計算し、前の酸化膜の膜厚や吸収係数と比較
することを特徴としている。In order to achieve this object, a method for evaluating a semiconductor device according to the present invention comprises irradiating a surface of a semiconductor silicon substrate with light from a xenon lamp through a polarizer and analyzing light reflected from the substrate surface with an analyzer. Through the prism and then through the prism, receive the separated light with the spectrum sensor, send the light quantity data received by the spectrum sensor to the computer, and use this data to determine the thickness and absorption of the oxide film formed on the silicon substrate. Calculate the coefficient, apply the desired treatment to the surface of the semiconductor silicon substrate, irradiate the surface of the substrate with the light of a xenon lamp through a polarizer, pass the reflected light from the substrate surface through an analyzer, and then spectrally separate it through a prism. The received light is received by the spectrum sensor, and the light amount data received by the spectrum sensor is collected. Feeding the computer, using the data, the film thickness and the absorption coefficient of the film produced on a silicon substrate was calculated, is characterized in that compared with the thickness and the absorption coefficient of the previous oxide film.
【0008】この構成によって、試料に所望の処理を施
し、ランプの光を当て、あとはその光量データをコンピ
ュータで計算することのみにより表面状態を知ることが
できるため、試料を非破壊で、しかも短時間で広範囲に
わたって定量的に評価することができる。With this configuration, the surface state can be known only by subjecting the sample to a desired process, irradiating the lamp with light, and then calculating the light amount data by a computer. Quantitative evaluation can be performed over a wide range in a short time.
【0009】[0009]
【発明の実施の形態】図1は本発明の実施の形態におけ
る半導体素子の表面状態の評価方法を示すフローチャー
トである。FIG. 1 is a flowchart showing a method for evaluating the surface state of a semiconductor device according to an embodiment of the present invention.
【0010】まず、半導体シリコン基板表面にキセノン
ランプの光をポラライザーを通し照射し、その反射光を
アナライザーを通し、引き続きプリズムを通して分光
し、その光をスペクトルセンサーで受け、その光量デー
タをコンピュータを用いてシリコン基板上に生成された
酸化膜の膜厚および吸収係数を計算する。First, the surface of a semiconductor silicon substrate is irradiated with light from a xenon lamp through a polarizer, the reflected light is passed through an analyzer, and then is separated through a prism, and the light is received by a spectrum sensor. To calculate the thickness and absorption coefficient of the oxide film formed on the silicon substrate.
【0011】引き続き、図2に示すように、半導体シリ
コン基板3の表面にドライエッチングの処理1を施す。
このことによって、シリコン基板表面にはダメージ層2
が与えられる。これはシリコン原子の配列の乱れ、変質
であり、図3に示すシリコン基板上に生成された5nm
程度のアモルファス層4と見なすことができる。Subsequently, as shown in FIG. 2, the surface of the semiconductor silicon substrate 3 is subjected to a dry etching process 1.
As a result, the damage layer 2 is formed on the silicon substrate surface.
Is given. This is a disorder and alteration of the arrangement of silicon atoms, and the 5 nm generated on the silicon substrate shown in FIG.
A degree of amorphous layer 4 can be considered.
【0012】次に、キセノンランプの光をポラライザー
を通し照射し、基板表面からの反射光をアナライザーを
通し、引き続きプリズムを通して分光してスペクトルセ
ンサーで受け、その光量データをコンピュータを用い
て、シリコン基板上に生成された膜としての膜厚および
吸収係数を計算する。Next, the light of the xenon lamp is irradiated through a polarizer, the reflected light from the substrate surface is passed through an analyzer, and then the light is separated through a prism and received by a spectrum sensor. Calculate the film thickness and absorption coefficient of the film generated above.
【0013】このようにして求めた膜の膜厚および吸収
係数は、ドライエッチングのダメージを反映しており、
それを、すでに求めた酸化膜の膜厚と吸収係数と比較す
ることにより、ダメージ層の定量的な特性を知ることが
できる。例えば、ドライエッチングの条件を変えていっ
た場合、この方法により表面状態の変化を容易に知るこ
とができ、ドライエッチング条件の定量的な比較が容易
になる。The thickness and absorption coefficient of the film thus determined reflect the damage of dry etching.
By comparing this with the already determined thickness of the oxide film and the absorption coefficient, the quantitative characteristics of the damaged layer can be known. For example, when the conditions of dry etching are changed, a change in surface state can be easily known by this method, and quantitative comparison of dry etching conditions becomes easy.
【0014】以上のように本実施の形態によれば、酸化
膜の膜厚、吸収係数と、ドライエッチングのダメージに
より生成された膜の膜厚、吸収係数とを比較することに
より、表面状態の評価をすることができ、ドライエッチ
ングのダメージの評価もできる。As described above, according to the present embodiment, the film thickness and absorption coefficient of the oxide film are compared with the film thickness and absorption coefficient of the film formed by the damage of the dry etching, so that the surface state of the oxide film is improved. Evaluation can be performed, and damage of dry etching can also be evaluated.
【0015】なお、上記実施の形態では、表面にダメー
ジを与える処理としてドライエッチングを行ったが、こ
の処理の代わりに、イオン注入、洗浄、アッシングを行
っても上記と同様の効果が得られることはいうまでもな
い。In the above-described embodiment, dry etching is performed as a process for damaging the surface. However, instead of this process, ion implantation, cleaning, and ashing can provide the same effects as described above. Needless to say.
【0016】[0016]
【発明の効果】本発明は、ドライエッチング処理前の酸
化膜の膜厚、吸収係数と、ドライエッチング後に生成さ
れた膜の膜厚、吸収係数とを比較することにより、表面
状態の評価をすることができる優れた半導体素子の表面
状態の評価方法を実現できるものである。これまでの評
価方法である走査型電子顕微鏡による断面観察と比べる
と、きわめて短時間でかつ定量的な評価を行うことがで
きる。According to the present invention, the surface state is evaluated by comparing the thickness and absorption coefficient of the oxide film before dry etching with the thickness and absorption coefficient of the film formed after dry etching. Thus, it is possible to realize an excellent method for evaluating the surface state of a semiconductor device. Compared with the cross-sectional observation using a scanning electron microscope, which is a conventional evaluation method, it is possible to perform quantitative evaluation in a very short time.
【0017】また、同時にドライエッチングのダメージ
の評価もできる優れた半導体素子の表面状態の評価方法
を実現できるものである。Also, it is possible to realize an excellent method for evaluating the surface condition of a semiconductor device, which can simultaneously evaluate the damage of dry etching.
【図1】本発明の実施の形態における半導体素子の評価
方法を示すフローチャートFIG. 1 is a flowchart showing a method for evaluating a semiconductor device according to an embodiment of the present invention.
【図2】本発明の実施の形態におけるシリコン基板にダ
メージを与える処理を示す図FIG. 2 is a diagram illustrating a process of damaging a silicon substrate according to the embodiment of the present invention.
【図3】本発明の実施の形態におけるシリコン基板にダ
メージを与えた後のアモルファス層が生成される試料を
示す図FIG. 3 is a diagram showing a sample in which an amorphous layer is generated after damaging a silicon substrate according to an embodiment of the present invention.
【図4】従来の半導体素子の評価方法を示すフローチャ
ートFIG. 4 is a flowchart showing a conventional semiconductor device evaluation method.
1 ドライエッチング処理 2 ドライエッチング処理により与えられたダメージ層 3 シリコン基板 4 アモルファス層 DESCRIPTION OF SYMBOLS 1 Dry etching process 2 Damage layer given by dry etching process 3 Silicon substrate 4 Amorphous layer
Claims (5)
プの光をポラライザーを通して照射し、前記基板表面か
らの前記照射光の反射光をアナライザーを通し、引き続
きプリズムを通して分光し、前記分光した光をスペクト
ルセンサーで受け、前記スペクトルセンサーで受けた光
量をコンピュータに送りデータ化し、前記データを用い
て、前記シリコン基板上に生成された酸化膜の膜厚およ
び吸収係数を計算し、引き続き、前記基板表面に所望の
処理を施し、前記基板表面にキセノンランプの光をポラ
ライザーを通して照射し、前記基板表面からの前記照射
光の反射光をアナライザーを通し、引き続きプリズムを
通して分光し、前記分光した光をスペクトルセンサーで
受け、前記スペクトルセンサーで受けた光量をコンピュ
ータに送りデータ化し、前記データを用いて、前記シリ
コン基板上に生成された膜の膜厚および吸収係数を計算
し、前記膜厚および前記吸収係数を前記酸化膜の膜厚お
よび吸収係数と比較することを特徴とする半導体素子の
表面状態の評価方法。1. A surface of a semiconductor silicon substrate is irradiated with light of a xenon lamp through a polarizer, reflected light of the irradiated light from the substrate surface is passed through an analyzer, and subsequently separated through a prism, and the separated light is analyzed by a spectrum sensor. Receiving the amount of light received by the spectrum sensor to a computer and convert it into data, using the data to calculate the thickness and absorption coefficient of an oxide film formed on the silicon substrate, Performing the treatment, irradiating the surface of the substrate with light of a xenon lamp through a polarizer, passing the reflected light of the irradiating light from the substrate surface through an analyzer, and subsequently separating the light through a prism, receiving the separated light with a spectrum sensor, Send the amount of light received by the spectrum sensor to a computer and convert it to data Calculating a film thickness and an absorption coefficient of a film formed on the silicon substrate using the data, and comparing the film thickness and the absorption coefficient with a film thickness and an absorption coefficient of the oxide film; A method for evaluating the surface state of a semiconductor element.
うことを特徴とする請求項1に記載の半導体素子の評価
方法。2. The method according to claim 1, wherein dry etching is performed as a desired process.
を特徴とする請求項1に記載の半導体素子の評価方法。3. The method according to claim 1, wherein ion implantation is performed as a desired process.
とする請求項1に記載の半導体素子の評価方法。4. The method according to claim 1, wherein cleaning is performed as a desired process.
を特徴とする請求項1に記載の半導体素子の評価方法。5. The method for evaluating a semiconductor device according to claim 1, wherein ashing is performed as a desired process.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31174697A JPH11145233A (en) | 1997-11-13 | 1997-11-13 | Evaluation of semiconductor element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31174697A JPH11145233A (en) | 1997-11-13 | 1997-11-13 | Evaluation of semiconductor element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11145233A true JPH11145233A (en) | 1999-05-28 |
Family
ID=18020990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31174697A Pending JPH11145233A (en) | 1997-11-13 | 1997-11-13 | Evaluation of semiconductor element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11145233A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100641709B1 (en) | 2005-11-18 | 2006-11-10 | (주)티에스이 | Quality measuring equipment with light diffusing device |
CN1320623C (en) * | 2002-07-16 | 2007-06-06 | 松下电器产业株式会社 | Method and apparatus for quantitatively quality checking of chip-like substrates |
US7271840B2 (en) | 2001-10-31 | 2007-09-18 | Intel Corporation | Method for determining entropy of a pixel of a real time streaming digital video image signal, and applications thereof |
CN103646890A (en) * | 2013-11-29 | 2014-03-19 | 上海华力微电子有限公司 | A method for determining the stability and the compatibility of dry process technology |
-
1997
- 1997-11-13 JP JP31174697A patent/JPH11145233A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7271840B2 (en) | 2001-10-31 | 2007-09-18 | Intel Corporation | Method for determining entropy of a pixel of a real time streaming digital video image signal, and applications thereof |
CN1320623C (en) * | 2002-07-16 | 2007-06-06 | 松下电器产业株式会社 | Method and apparatus for quantitatively quality checking of chip-like substrates |
KR100641709B1 (en) | 2005-11-18 | 2006-11-10 | (주)티에스이 | Quality measuring equipment with light diffusing device |
CN103646890A (en) * | 2013-11-29 | 2014-03-19 | 上海华力微电子有限公司 | A method for determining the stability and the compatibility of dry process technology |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5294289A (en) | Detection of interfaces with atomic resolution during material processing by optical second harmonic generation | |
KR102353259B1 (en) | Activation of Wafer Particle Defects for Spectral Composition Analysis | |
JP3429137B2 (en) | Method for real-time in-situ monitoring of trench formation process | |
US7728969B2 (en) | Methods and systems for identifying defect types on a wafer | |
US20040085532A1 (en) | System and methods for classifying anomalies of sample surfaces | |
JP2000321225A (en) | System and method for automatically analyzing defective materials on semiconductors | |
TWI299536B (en) | In-situ critical dimension measurnment | |
JP2004022318A (en) | Transmission electron microscope and sample analysis method | |
JP2751953B2 (en) | Analysis method for contamination inside the hall | |
JPH11145233A (en) | Evaluation of semiconductor element | |
JP2002350731A (en) | Defect observation method and defect observation apparatus | |
JPH09243569A (en) | Apparatus and method for evaluating semiconductor substrate | |
JP3031053B2 (en) | Cleaning ability evaluation method | |
JPH03203343A (en) | Inspecting method | |
JP2850856B2 (en) | Interface analysis method | |
JPH05142156A (en) | Foreign matter inspecting device | |
US20240221149A1 (en) | Interface-based defect inspection using second harmonic generation | |
US20240353352A1 (en) | Methods And Systems For Nanoscale Imaging Based On Second Harmonic Signal Generation And Through-Focus Scanning Optical Microscopy | |
JPS5941533B2 (en) | Oxide film evaluation method | |
JPS6032133B2 (en) | Sample evaluation device | |
JPH11274256A (en) | Sample checking device | |
JP2002118159A (en) | Method for measuring impurity concentration profile and method for measuring thickness of thin film material | |
JPH116795A (en) | Method and device for analyzing contamination degree of metal surface | |
JPH06347415A (en) | Particle inspecting device and inspecting method therefor | |
JP2004177320A (en) | Foreign substance inspection analysis method and apparatus |