[go: up one dir, main page]

JPH11144700A - Porous membrane, battery separator comprising porous membrane, and manufacture thereof - Google Patents

Porous membrane, battery separator comprising porous membrane, and manufacture thereof

Info

Publication number
JPH11144700A
JPH11144700A JP9320493A JP32049397A JPH11144700A JP H11144700 A JPH11144700 A JP H11144700A JP 9320493 A JP9320493 A JP 9320493A JP 32049397 A JP32049397 A JP 32049397A JP H11144700 A JPH11144700 A JP H11144700A
Authority
JP
Japan
Prior art keywords
porous membrane
silane
polyethylene
temperature
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9320493A
Other languages
Japanese (ja)
Inventor
Yasuhiro Tada
靖浩 多田
Kazuhiro Meguro
和広 目黒
Masamichi Akatsu
正道 赤津
Takeya Mizuno
斌也 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP9320493A priority Critical patent/JPH11144700A/en
Publication of JPH11144700A publication Critical patent/JPH11144700A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a porous membrane comprising silane crosslinked polyethylene, high in obstacle to conductive particulates such as active materials, having low prermeation resistance of an electrolyte ion and characteristics tolerant to a tension upon manufacturing a battery, and further an excellent heat resistance in such a manner that even if an electrode surface is uneven, a projection does not pass through a separator and a short-circuit is not made; a separator for the battery comprising the porous membrane, and to provide a manufacturing method of them. SOLUTION: This comprises silane crosslinked polyethylene. A porosity ratio is 20 to 60%. The maximum pore size is equal to or less than 1 μm<2> . An air permeability (Gurley value) is equal to or less than 1000 sec. The number of projections having a height which is equal to or larger than twice the average thickness is equal to or less than 10 per area of 1 m<2> of the porous membrane surface. A raw material is a mixture resin comprising the silane denaturation polyethylene and organic low molecule indicative of a compatibility therewith. An extruding step, a crosslinking step, and an extracting step are included.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特定の空孔率、最
大孔径および透気度を有するシラン架橋ポリエチレンか
らなる多孔膜、該多孔膜からなる電池用セパレータおよ
びその製造方法に関する。より詳しくは、導電性微粒子
に対する障壁性、電解質イオンの透過性、機械的強度な
どのバランスがとれ、さらに安全性に優れた多孔膜、そ
の多孔膜からなる電池セパレータおよびその製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous film made of silane-crosslinked polyethylene having a specific porosity, a maximum pore size and air permeability, a battery separator made of the porous film, and a method for producing the same. More specifically, the present invention relates to a porous membrane having a good balance of barrier properties against conductive fine particles, permeability of electrolyte ions, mechanical strength, etc., and further excellent safety, a battery separator comprising the porous membrane, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、様々なポリエチレン多孔膜が開発
されており、これらの用途の一つとして電池用セパレー
タ、特にリチウムイオン二次電池などの非水溶液系高エ
ネルギー密度二次電池用のセパレータがある。非水溶液
系高エネルギー密度二次電池用のセパレータには、一定
の温度に達すると自動的に孔が閉塞して実質的に非多孔
膜になる性質(以下「シャットダウン特性」と称する)
と、さらに、それより高い温度ではその膜形状を保持す
る性質(以下「耐熱性と称する」)が要求される。セパ
レータのシャットダウン特性は外部短絡による過大電流
が生じた際に、ジュール熱によって膜材が溶融あるいは
軟化し、孔が閉塞して電流を遮断することにより、それ
以上の危険な発熱を防止する働きをする。セパレータの
耐熱性は、孔が閉塞した後、直ちには温度上昇が収まら
なかった場合、あるいは、何らかの原因で外部から加熱
された場合に正極と負極の絶縁を維持し、危険な発熱を
招く内部短絡を防止する働きをする。本発明者らは先
に、結晶性樹脂からなり特定の結晶化度と、特定のゲル
分率を有する多孔膜がシャットダウン特性と耐熱性を有
することを見い出し、かかる結晶化度とゲル分率を有す
る多孔膜の一例としてシラン架橋された多孔膜を特願平
8−150198号において提案した。
2. Description of the Related Art Various types of polyethylene porous membranes have been developed. One of these uses is a battery separator, especially a separator for a non-aqueous solution high energy density secondary battery such as a lithium ion secondary battery. is there. Non-aqueous solution type separators for high energy density secondary batteries have the property that pores are automatically closed when a certain temperature is reached to form a substantially non-porous membrane (hereinafter referred to as "shutdown characteristics").
Further, a property of maintaining the film shape at a higher temperature (hereinafter, referred to as “heat resistance”) is required. The shutdown characteristics of the separator are such that when an excessive current is generated due to an external short circuit, the film material is melted or softened by Joule heat, the holes are closed and the current is cut off, thereby preventing further dangerous heat generation. I do. The heat resistance of the separator is such that if the temperature rise does not stop immediately after the holes are closed, or if it is heated from the outside for some reason, the insulation between the positive electrode and the negative electrode is maintained, causing an internal short circuit that causes dangerous heat generation. It works to prevent The present inventors have previously found that a porous film made of a crystalline resin and having a specific crystallinity and a specific gel fraction has shutdown characteristics and heat resistance. As an example of a porous film having the same, a silane cross-linked porous film has been proposed in Japanese Patent Application No. 8-150198.

【0003】電池用セパレータの基本特性としては、活
物質等の導電性微粒子の移動による短絡を防止するた
め、三次元的に曲がりくねった微細な孔形状であり、か
つ、電解質イオンの透過抵抗(以下「電気抵抗」と称す
る)が低く、さらに電池製造の際のテンションに耐え、
電極表面に凹凸があった場合でも凸部がセパレータを突
き抜けて短絡することのないように機械的強度が高いこ
となどである。ポリエチレンを多孔化するための方法と
して、特開昭51-74057号公報にはポリエチレン
と無機微粉体および有機液状体の混合物を押出し、有機
液状体および無機微粉体の少なくとも一方を抽出する方
法が開示されている。しかし、無機微粉体を抽出する
と、孔径が大きなピンホールが形成されて導電性微粒子
の移動経路になる恐れがあり、無機微粉体を抽出しない
と、イオン化して電池性能の低下を招く恐れがあるな
ど、電池セパレータの製造には適さない。
The basic characteristics of a battery separator include a three-dimensionally meandering fine pore shape and a resistance to electrolyte ion permeation (hereinafter referred to as “electrolysis ion”) in order to prevent a short circuit caused by the movement of conductive fine particles such as an active material. (Referred to as "electrical resistance") and withstands tension during battery manufacturing.
Even if the electrode surface has irregularities, the mechanical strength is high so that the projecting portion does not penetrate the separator and cause a short circuit. As a method for making polyethylene porous, JP-A-51-74057 discloses a method in which a mixture of polyethylene, an inorganic fine powder and an organic liquid is extruded to extract at least one of the organic liquid and the inorganic fine powder. Have been. However, when inorganic fine powder is extracted, a pinhole having a large hole diameter may be formed and may become a moving path of the conductive fine particles. If the inorganic fine powder is not extracted, ionization may occur and battery performance may be reduced. It is not suitable for manufacturing battery separators.

【0004】特開平2−67339号公報には、添加剤
としてポリエチレンワックスおよび/またはパラフィン
ワックスを添加してなるポリオレフィンをシラン化合物
によってシラングラフトさせた後、フィルム状に成形し
てシラン架橋を行い、次いでかかる成形物を溶剤中に浸
漬せしめて前記添加物を抽出することを特徴とする多孔
質ポリオレフィンフィルムの製造方法が記載されてお
り、オムツカバー等に好適であることが述べられてい
る。しかし、パラフィンワックスの添加量が10重量%
と少ないことから電池セパレータ用の多孔膜としては適
さないものであった。特開昭55−60537号公報に
はポリエチレンとパラフィンの混合物を押出し、シート
またはフィルムを得、パラフィンを抽出して多孔化する
方法が示されている。該公報には、さらに、押出された
溶融状態にある成形物を冷却固化する際に、徐冷である
と樹脂とパラフィンの相分離が進んでしまい機械的強度
の小さい膜になること、回転ドラム上で冷却固化すると
回転ドラムに接触した手の面がスキン化して透気性がき
わめて悪い膜となること、水中へ導き急冷固化すると透
気性が適度にあり、かつ強度もある多孔質膜が得られる
ことが記載されている。これらの従来技術が示すように
用途に適した物性を満足する多孔膜の開発が望まれてい
る。
Japanese Patent Application Laid-Open No. 2-67339 discloses that a polyolefin obtained by adding a polyethylene wax and / or a paraffin wax as an additive is silane-grafted with a silane compound, and then formed into a film to perform silane crosslinking. Next, a method for producing a porous polyolefin film, characterized by immersing such a molded product in a solvent to extract the additive, is described, which is suitable for a diaper cover or the like. However, the amount of paraffin wax added is 10% by weight.
Therefore, it was not suitable as a porous membrane for a battery separator. JP-A-55-60537 discloses a method in which a mixture of polyethylene and paraffin is extruded to obtain a sheet or film, and paraffin is extracted to make it porous. The publication further states that, when cooling and solidifying an extruded molten product, if the cooling is performed slowly, the phase separation between the resin and paraffin proceeds, resulting in a film having low mechanical strength. When cooled and solidified, the surface of the hand in contact with the rotating drum becomes a skin, resulting in a film with extremely poor air permeability.When it is introduced into water and quenched and solidified, a porous film with moderate air permeability and strength is obtained. It is described. As shown in these prior arts, there is a demand for the development of a porous membrane that satisfies the physical properties suitable for the application.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、シラ
ン架橋ポリエチレンからなり、活物質などの導電性微粒
子に対する障壁性が高く、電解質イオンの透過抵抗が低
く、電池製造の際のテンションに耐えうる特性を有し、
さらに電極表面に凹凸があった場合でも凸部がセパレー
タを突き抜けて短絡することがなく、優れた耐熱性を有
する多孔膜およびその多孔膜からなる電池用セパレータ
ならびにそれらの製造方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to comprise a silane-crosslinked polyethylene, which has a high barrier property against conductive fine particles such as an active material, has a low resistance to permeation of electrolyte ions, and withstands tension during battery production. Has the characteristics
Furthermore, even when the electrode surface has irregularities, the convex portion does not penetrate the separator and does not short-circuit, and a porous film having excellent heat resistance, a battery separator including the porous film, and a method for producing the same are provided. is there.

【0006】[0006]

【課題を解決するための手段】本発明者らは、ポリエチ
レンとパラフィンワックスのごとき有機低分子物を溶融
混合して製膜し、有機低分子物を抽出して多孔膜を得る
方法について、検討した過程で、以下の点が明らかとな
った。その第一点は、MFRの大きなポリエチレン、す
なわち分子量の小さなポリエチレンを用いると、ポリエ
チレン球晶の間に有機低分子物の相が形成され、相分離
が粗大になるためか、電気抵抗は低いが、機械的強度が
低い多孔膜になること、一方、MFRの小さいポリエチ
レン、すなわち分子量の大きなポリエチレンを用いると
ポリエチレンラメラの間に有機低分子物の相が形成さ
れ、相分離が微細になるためか、機械的強度が高いが、
電気抵抗が高い多孔膜になることである。第二点は、密
度の低いポリエチレン、すなわち結晶性の低いポリエチ
レンを用いると、概ね微細な相分離が観察されるが、最
大孔径は大きく、電気抵抗が高く、機械的強度が低い多
孔膜となることである。第三点は、冷却温度、ポリエチ
レンのMFRおよび密度が最適化された条件において、
電池セパレータとしての基本特性がバランスした多孔膜
が得られることである。
Means for Solving the Problems The present inventors have studied a method of forming a film by melting and mixing an organic low-molecular substance such as polyethylene and paraffin wax, and extracting a porous organic film by extracting the organic low-molecular substance. In the process, the following points became clear. The first point is that when polyethylene having a large MFR, that is, polyethylene having a small molecular weight, is used, a phase of an organic low-molecular substance is formed between polyethylene spherulites, and the phase separation becomes coarse. However, if a porous membrane having low mechanical strength is used, on the other hand, if a polyethylene having a small MFR, that is, a polyethylene having a large molecular weight is used, a phase of an organic low-molecular substance is formed between polyethylene lamellas, and phase separation becomes fine. , High mechanical strength,
That is, it becomes a porous film having high electric resistance. Second, when polyethylene with low density, that is, polyethylene with low crystallinity, is used, fine phase separation is generally observed, but the maximum pore size is large, the electrical resistance is high, and the porous membrane has low mechanical strength. That is. The third point is that in conditions where the cooling temperature, the MFR and the density of polyethylene are optimized,
The purpose is to obtain a porous membrane in which basic characteristics as a battery separator are balanced.

【0007】本発明者らがシラン変性ポリエチレンを用
い、更に検討した結果、分子鎖に反応性の官能基を有す
ることにともなう障害が生じることが判明した。即ち、
原料に含まれる数十ppmレベルのわずかな水分により
溶融成形中に架橋反応が生じるため、成形中にあたかも
分子量が変動したかのように、予定の孔形状が得難くな
ることである。さらに、溶融成形温度が一定温度を超え
ると架橋分子の集合体のごとき物が生成し、最終製品の
多孔膜の表面に突起物を生じる。この突起物は多孔膜を
用いて二次電池を製造する際、多孔膜の孔の潰れとか、
場合によっては膜の破れ等の原因となり、多孔膜の性能
を損なうことが判明した。
As a result of further studies by the present inventors using silane-modified polyethylene, it has been found that an obstacle is caused by having a reactive functional group in the molecular chain. That is,
Since the crosslinking reaction occurs during the melt molding due to the slight moisture of several tens ppm level contained in the raw material, it is difficult to obtain a predetermined pore shape as if the molecular weight fluctuated during the molding. Further, when the melt molding temperature exceeds a certain temperature, a product such as an aggregate of crosslinked molecules is generated, and a projection is generated on the surface of the porous film of the final product. When manufacturing a secondary battery using a porous membrane, such protrusions may cause collapse of pores in the porous membrane,
In some cases, it has been found that this may cause breakage of the membrane and impair the performance of the porous membrane.

【0008】本発明者らは、特定の製造方法により得ら
れる多孔膜が特定範囲の空孔率、最大孔径および透気度
を有し、かつ単位面積当たりの突起物数が少なく、かか
る課題を解決し得ることを見い出し、本発明を完成する
に至った。
The present inventors have found that a porous membrane obtained by a specific production method has a specific range of porosity, maximum pore size and air permeability, and has a small number of projections per unit area. They have found that they can be solved and have completed the present invention.

【0009】すなわち本発明の第一によれば、シラン架
橋ポリエチレンからなり、空孔率が20〜60%、最大
孔径が1μm以下、透気度(ガーレー値)が1000秒
以下であり、かつ平均厚みの2倍以上の高さを有する突
起物が多孔膜表面の面積1平方メートルあたり10個以
下であることを特徴とする多孔膜およびそれからなる電
池用セパレータが提供される。本発明の第二によれば、
シラン変性ポリエチレンおよびそれと相溶性を示す有機
低分子物とからなる混合樹脂を原料として、押出工程、
架橋工程及び抽出工程を含んでなるシラン架橋多孔膜の
製造方法において、MFR(メルトフローレート)が
0.08〜2g/10min.の範囲にあるシラン変性
ポリエチレンを用い、押出時の混合樹脂温度が有機低分
子物と相溶性を示す温度から180℃の範囲にあり、押
出された溶融物を相分離温度以下の温度で冷却固化して
中間成形体を得ることを特徴とする本発明第一の性状を
有する多孔膜およびそれからなる電池用セパレータの製
造方法を提供する。
That is, according to the first aspect of the present invention, the porosity is 20 to 60%, the maximum pore diameter is 1 μm or less, the air permeability (Gurley value) is 1000 seconds or less, and the average A porous membrane and a battery separator comprising the same are characterized in that the number of protrusions having a height of twice or more the thickness is 10 or less per square meter of the surface of the porous membrane. According to a second aspect of the present invention,
An extrusion process using a mixed resin of silane-modified polyethylene and an organic low-molecular substance showing compatibility with the raw material,
In the method for producing a silane cross-linked porous membrane including a cross-linking step and an extraction step, the MFR (melt flow rate) is 0.08 to 2 g / 10 min. The temperature of the mixed resin at the time of extrusion is in the range of from 180 ° C to 180 ° C, which is compatible with organic low-molecular substances, and the extruded melt is cooled and solidified at a temperature below the phase separation temperature. The present invention provides a porous membrane having the first property of the present invention, characterized by obtaining an intermediate molded body, and a method for producing a battery separator comprising the porous membrane.

【0010】[0010]

【発明の実施の形態】以下、本発明を詳しく説明する。
シラン架橋ポリエチレンからなり、空孔率が20〜60
%、最大孔径が1μm以下、透気度(ガーレー値)が1
000秒以下であることは、多孔膜が均一な微細孔構造
を有し、最大孔径が導電性微粒子の移動を防ぐのに十分
小さく、さらに透気度(ガーレー値)を低めるように孔
の連通がなされていることにより電解質イオンの透過性
が優れた多孔膜を与えることを意味している。また、リ
チウムイオン二次電池などの主として巻回構造の電池に
おいて、セパレータに突起物があると、そこに接するシ
ート状電極が変形し、さらにその裏面に位置する別のセ
パレータを強く圧迫する。圧迫されたセパレータは孔が
つぶれて電気抵抗が増大するので電池性能の低下を招
き、さらに電極の凹凸の具合によってはセパレータが破
れ短絡を生じる恐れがある。すなわち、多孔膜の平均厚
みの2倍以上の高さを有する突起物を少なくすることに
より、かかる電池性能の低下、特に短絡の防止に寄与す
ることができる。多孔膜の平均厚みの2倍以上の高さを
有する突起物は多孔膜表面の面積1平方メートルあたり
10個以下であることが必要である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
Made of silane cross-linked polyethylene, having a porosity of 20 to 60
%, Maximum pore size is 1 μm or less, air permeability (Gurley value) is 1
Less than 000 seconds means that the porous membrane has a uniform fine pore structure, the maximum pore size is sufficiently small to prevent the movement of the conductive fine particles, and the pores communicate so that the air permeability (Gurley value) is reduced. This means that a porous membrane having excellent electrolyte ion permeability can be obtained. Further, in a battery having a mainly wound structure such as a lithium ion secondary battery, if there is a protrusion on the separator, the sheet-like electrode in contact therewith is deformed and further presses another separator located on the back surface thereof. Since the pressed separator breaks the hole and increases the electric resistance, the battery performance is reduced. Further, depending on the degree of unevenness of the electrode, the separator may be broken and a short circuit may occur. That is, by reducing the number of protrusions having a height of twice or more the average thickness of the porous film, it is possible to contribute to the reduction of the battery performance, particularly to the prevention of short circuit. It is necessary that the number of protrusions having a height of at least twice the average thickness of the porous film is 10 or less per square meter of the surface of the porous film.

【0011】また本発明の多孔膜の製造方法は、シラン
変性ポリエチレンおよびそれと相溶性を示す有機低分子
物からなる混合樹脂を溶融押出成形し、冷却固化して中
間成形体を得る工程において、分子量の尺度であるMF
R(メルトフローレート)が特定の範囲にあるシラン変
性ポリエチレンを原料とし、特定の混合樹脂温度範囲に
おいて押出を行うことを特徴とするものである。かかる
特定条件にて得られた中間成形体は、後の抽出工程を経
て電池セパレータとして好適な多孔膜に加工され得るよ
うな、シラン変性ポリエチレンと有機低分子物の相分離
を生じる。さらに、かかる特定条件においては、押出さ
れた溶融状態の成形体を、例えば冷却ドラムで冷却固化
を行ってもスキン化、即ち、多孔膜表面がごく薄い樹脂
被膜によって覆われ、多孔膜の表面から裏への孔の貫通
がなされていない状態、が起こり難く、偏肉の少ない多
孔膜を容易に得ることもできる。
The method for producing a porous membrane according to the present invention is characterized in that, in the step of melt-extruding a mixed resin comprising silane-modified polyethylene and an organic low-molecular substance having compatibility with the same and cooling and solidifying to obtain an intermediate molded article, MF is a measure of
It is characterized in that silane-modified polyethylene having a specific range of R (melt flow rate) is used as a raw material and extruded in a specific mixed resin temperature range. The intermediate molded body obtained under such specific conditions undergoes phase separation between silane-modified polyethylene and an organic low-molecular substance that can be processed into a porous membrane suitable as a battery separator through a subsequent extraction step. Furthermore, under such specific conditions, the extruded molded body in a molten state is skinned even when cooled and solidified by, for example, a cooling drum, that is, the surface of the porous film is covered with a very thin resin film, and the surface of the porous film is removed from the surface. A state in which the holes are not penetrated to the back is unlikely to occur, and a porous film with less uneven thickness can be easily obtained.

【0012】本発明のシラン架橋ポリエチレンからなる
多孔膜の空孔率は、20〜60%の範囲であり、好まし
くは30〜50%の範囲である。空孔率が20%未満で
あると透気度(ガーレー値)を低めることが困難になる
ため電気抵抗が増大し、60%を超えると機械的強度が
劣るようになる。本発明の多孔膜の最大孔径は1μm以
下、好ましくは0.05〜0.90μm、さらに好まし
くは0.05〜0.50μmである。最大孔径が1μm
を超えると導電性の微粒子が多孔膜を通過して導通が起
こる機会が増えるなど、導電性微粒子に対する障壁性が
劣るようになる。本発明の多孔膜の透気度は、ガーレー
値として1000秒以下であり、好ましくは800秒以
下である。ガーレー値が1000秒を超える多孔膜では
電気抵抗の増大が認められることがあるので好ましくな
い。本発明のシラン架橋ポリエチレン多孔膜は、多孔膜
の平均厚みの2倍以上の高さを有する突起物が多孔膜表
面の面積1平方メートルあたり10個以下、好ましくは
5個以下である。ここで、多孔膜の突起物の高さとは、
多孔膜の突起が出ている面の反対側の面から突起物の頂
点までの高さを云う。換言すれば多孔膜の厚さを含めた
突起物の頂点までの高さである。突起物が多いと電池の
使用中に突起物による多孔膜の損傷のため短絡が発生す
る恐れが増える。突起物による多孔膜の損傷の受け易さ
は電池回巻試験で短絡の発生の有無により知ることがで
きる。
The porosity of the porous membrane comprising the silane-crosslinked polyethylene of the present invention is in the range of 20 to 60%, preferably 30 to 50%. If the porosity is less than 20%, it becomes difficult to lower the air permeability (Gurley value), so that the electric resistance increases. If the porosity exceeds 60%, the mechanical strength becomes poor. The maximum pore diameter of the porous membrane of the present invention is 1 μm or less, preferably 0.05 to 0.90 μm, and more preferably 0.05 to 0.50 μm. Maximum pore size is 1μm
When the ratio exceeds the above, the barrier property against the conductive fine particles becomes inferior, for example, the chance that the conductive fine particles pass through the porous membrane to cause conduction increases. The air permeability of the porous membrane of the present invention is not more than 1000 seconds as a Gurley value, preferably not more than 800 seconds. A porous film having a Gurley value exceeding 1000 seconds is not preferable because an increase in electric resistance may be observed. In the silane-crosslinked polyethylene porous membrane of the present invention, the number of protrusions having a height of at least twice the average thickness of the porous membrane is 10 or less, preferably 5 or less per square meter of the surface of the porous membrane. Here, the height of the projection of the porous membrane is
It refers to the height from the surface of the porous membrane opposite to the surface from which the protrusions are projected to the top of the protrusion. In other words, it is the height up to the top of the protrusion including the thickness of the porous film. If there are many protrusions, the risk of a short circuit occurring due to damage of the porous membrane due to the protrusions during use of the battery increases. The susceptibility of the porous membrane to damage by the protrusions can be determined by the presence or absence of a short circuit in a battery winding test.

【0013】本発明で用いるシラン変性ポリエチレンと
は、高密度ポリエチレン、低密度ポリエチレン、直鎖状
低密度ポリエチレンなどのポリエチレンに、ビニルトリ
メトキシシラン、ビニルトリエトキシシラン、およびビ
ニルトリアセトキシシランなどの不飽和シラン化合物を
グラフト化して得られるグラフト共重合体、またはエチ
レン−エチレン性不飽和シラン化合物共重合体をいう。
融点は95〜140℃の範囲にあることが押出し加工性
の点から好ましい。シラン変性ポリエチレンの不飽和シ
ラン化合物単位の含量は好ましくは0.001〜5重量
%である。
The silane-modified polyethylene used in the present invention includes polyethylene such as high-density polyethylene, low-density polyethylene, and linear low-density polyethylene, as well as polyethylene such as vinyltrimethoxysilane, vinyltriethoxysilane, and vinyltriacetoxysilane. It refers to a graft copolymer obtained by grafting a saturated silane compound, or an ethylene-ethylenically unsaturated silane compound copolymer.
The melting point is preferably in the range of 95 to 140 ° C. from the viewpoint of extrudability. The content of the unsaturated silane compound unit in the silane-modified polyethylene is preferably 0.001 to 5% by weight.

【0014】本発明で用いるシラン変性ポリエチレンの
分子量の目安としてのMFRは0.08〜2g/10m
in、好ましくは0.1〜1.5g/10min、さら
に好ましくは0.4〜1.0g/10minの範囲のも
のを用いる。MFRが2g/10minを超えると、シ
ラン変性ポリエチレンと有機低分子物の相分離が粗大と
なり、即ち、有機低分子物を抽出除去後孔が大きく不均
一になり、多孔膜の機械的強度が低下し易くなる。MF
Rが0.08g/10min未満であると、相分離が微
細化しすぎて電気抵抗が増大し易い。MFRが2g/1
0minを超える樹脂を用いて、混合樹脂温度が180
℃を超えるように溶融成形すると、成形中に架橋が進行
して分子量が増大したかのように作用し、相分離が微細
になるが、架橋分子の集合体のごとき物が生成し、最終
製品の多孔膜に突起物を生じる。また、MFRが0.0
8〜2g/10minの範囲にある樹脂を用いても、混
合樹脂温度が180℃を超えるように溶融成形すると、
成形中に架橋が進行して分子量が増大したかのように作
用し、相分離が微細化しすぎて電気抵抗が増大し易く、
さらに架橋分子の集合体のごとき物が生成し、最終製品
の多孔膜に突起物を生じる。シラン変性ポリエチレンの
密度は好ましくは0.945g/cm3以上、さらに好ま
しくは0.955g/cm3以上であればよい。密度の上
限については、重合可能な限り高密度のものまで使用可
能である。通常は0.97g/cm3のものまでが重合し
易く、本発明において好適に用いられる。密度が低いと
最大孔径の増大、電気抵抗の増大、機械的強度の低下を
招く。好ましい例として、密度0.958g/cm3、融
点130℃、MFR0.8g/10minのシラン変性
ポリエチレン(三菱化学株式会社製;リンクロンHF−
700N)、密度0.945g/cm3、融点130℃、
MFR0.4g/10minのシラン変性ポリエチレン
(三菱化学株式会社製;リンクロンHE−707)、密
度0.946g/cm3、融点130℃、MFR0.45
g/10minのシラン変性ポリエチレン(住友ベーク
ライト株式会社製;モルデックスS241H)を挙げる
ことができる。
The MFR as a standard of the molecular weight of the silane-modified polyethylene used in the present invention is 0.08 to 2 g / 10 m
in, preferably in the range of 0.1 to 1.5 g / 10 min, more preferably in the range of 0.4 to 1.0 g / 10 min. If the MFR exceeds 2 g / 10 min, the phase separation between the silane-modified polyethylene and the low-molecular organic material becomes coarse, that is, the pores become large and non-uniform after extracting and removing the low-molecular organic material, and the mechanical strength of the porous membrane decreases. Easier to do. MF
When R is less than 0.08 g / 10 min, phase separation becomes too fine and electric resistance tends to increase. MFR 2g / 1
When the mixed resin temperature is 180
When melt-molded to exceed ℃, cross-linking proceeds during molding and acts as if the molecular weight increased, and phase separation becomes fine, but a product such as an aggregate of cross-linked molecules is formed, and the final product Protrusions are formed on the porous membrane. Also, if the MFR is 0.0
Even if a resin in the range of 8 to 2 g / 10 min is used, if the mixed resin temperature is melt-molded so as to exceed 180 ° C.,
It acts as if the molecular weight increased due to the progress of crosslinking during molding, and the phase separation became too fine and the electrical resistance easily increased.
Further, a product such as an aggregate of cross-linked molecules is formed, and a protrusion is generated on the porous film of the final product. Density of the silane modified polyethylene is preferably 0.945 g / cm 3 or more, and more preferably as long as 0.955 g / cm 3 or more. As for the upper limit of the density, it is possible to use a material having a high density as far as it can be polymerized. Normally, up to 0.97 g / cm 3 is easy to polymerize and is preferably used in the present invention. If the density is low, the maximum pore diameter increases, the electrical resistance increases, and the mechanical strength decreases. As a preferred example, a silane-modified polyethylene having a density of 0.958 g / cm 3 , a melting point of 130 ° C., and an MFR of 0.8 g / 10 min (manufactured by Mitsubishi Chemical Corporation; Rinklon HF-
700N), density 0.945 g / cm 3 , melting point 130 ° C.
Silane-modified polyethylene having an MFR of 0.4 g / 10 min (manufactured by Mitsubishi Chemical Corporation; Wrinklon HE-707), density of 0.946 g / cm 3 , melting point of 130 ° C., MFR of 0.45
g / 10 min. silane-modified polyethylene (manufactured by Sumitomo Bakelite Co., Ltd .; Moldex S241H).

【0015】本発明で用いる有機低分子物とは、シラン
変性ポリエチレンと混合した場合、好ましくは80〜1
80℃、さらに好ましくは110〜180℃の温度にお
いて相溶性を示す有機低分子化合物である。相溶する温
度が低すぎると中間成形体として相分離が得難いので好
ましくない。また、相溶する温度は本発明で規定する樹
脂温度以下であればよい。本発明において相溶性を示す
か否かは溶融混合物が目視でおおむね透明であれば相溶
していると判断する。かかる相溶性を示す有機低分子物
としては、パラフィンワックス、マイクロクリスタリン
ワックス、合成ワックス、流動パラフィンの群から選ば
れた少なくとも1種類を主成分とする有機低分子物が好
ましく、抽出性の観点からパラフィンワックス、流動パ
ラフィンがさらに好ましい。
The organic low molecular weight compound used in the present invention is preferably 80 to 1 when mixed with a silane-modified polyethylene.
It is an organic low-molecular compound showing compatibility at a temperature of 80 ° C, more preferably 110 to 180 ° C. If the temperature at which the components are compatible with each other is too low, phase separation is difficult to obtain as an intermediate molded product, which is not preferable. Further, the temperature at which the components are compatible with each other only needs to be equal to or lower than the resin temperature specified in the present invention. In the present invention, it is determined that compatibility is exhibited if the molten mixture is substantially transparent when visually observed. As the organic low-molecular substance exhibiting such compatibility, an organic low-molecular substance having at least one selected from the group consisting of paraffin wax, microcrystalline wax, synthetic wax, and liquid paraffin is preferable, and from the viewpoint of extractability. Paraffin wax and liquid paraffin are more preferred.

【0016】以下、多孔膜の製造方法について説明す
る。シラン変性ポリエチレンと有機低分子物の混合割合
は、両者の合計量を100重量モル%としてシラン変性
ポリエチレンが40〜60重量%、有機低分子物が60
〜40重量%の割合が好ましい。シラン変性ポリエチレ
ンが40重量%未満であると得られる多孔膜の空孔率が
60%を上回り、60重量%を超えると空孔率が20%
を下回る。原料の混合方法は、有機低分子物が均一に混
合されるものであれば特に制限はない。例えば、リボン
ブレンダー、ヘンシェルミキサー、固定式V型ブレンダ
ー、タンブラー等による混合後押出機で溶融混練する方
法、押出機に両者を同時に投入し直接溶融混練する方法
などがある。
Hereinafter, a method for producing a porous membrane will be described. The mixing ratio of the silane-modified polyethylene and the organic low-molecular weight material is 40 to 60% by weight, and the organic low-molecular weight material is 60
A ratio of の 40% by weight is preferred. When the silane-modified polyethylene is less than 40% by weight, the porosity of the obtained porous membrane exceeds 60%, and when it exceeds 60% by weight, the porosity is 20%.
Below. The method of mixing the raw materials is not particularly limited, as long as the organic low-molecular substances are uniformly mixed. For example, there are a method of mixing and kneading with an extruder after mixing with a ribbon blender, a Henschel mixer, a fixed V-type blender, a tumbler, and the like, and a method of simultaneously charging and directly kneading both into an extruder.

【0017】シラン変性ポリエチレンと有機低分子物を
溶融混合してフィルムあるいはシート状に賦形する方法
としては、両者を押出機に供給してスリット状のダイか
ら押出す方法が生産性の観点から好ましい。本発明にお
いては、特定MFRを有するシラン変性ポリエチレンと
有機低分子物は、溶融混合する際の混合樹脂温度が相溶
性を示す温度〜180℃、好ましくは溶融混合する際の
混合樹脂温度が相溶性を示す温度〜170℃の範囲で成
形される。混合樹脂温度が相溶性を示す温度未満の温度
では混合樹脂の流動性が低いため成形が困難になる。混
合樹脂温度が180℃を超えると、架橋分子の集合体の
ごとき物が生成し、最終製品の多孔膜の表面に突起を生
じることがある。押出された溶融状態の中間成形体はシ
ラン変性ポリオレフィンと有機低分子物との相分離温度
以下の温度で冷却固化される。ここで、溶融樹脂の相分
離温度とは、シラン変性ポリオレフィンと有機低分子物
との混合溶融樹脂をDSC(示差走査型熱量計)を用い
て冷却速度毎分10℃で冷却したときのDSC曲線にお
けるシラン変性ポリエチレンの結晶化を示すピークの温
度を云う。相分離温度は、それぞれ選択された原料の組
み合わせ、配合割合量などにより異なってくるが、おお
よその目安になる温度としては20〜130℃、好まし
くは50〜120℃、さらに好ましくは50〜115℃
の範囲である。
As a method of melt-mixing a silane-modified polyethylene and an organic low-molecular substance to form a film or a sheet, a method in which both are supplied to an extruder and extruded from a slit die is used from the viewpoint of productivity. preferable. In the present invention, the silane-modified polyethylene having a specific MFR and the organic low-molecular weight compound are mixed at a temperature at which the mixed resin temperature at the time of melt-mixing shows compatibility to 180 ° C, preferably at a temperature at which the mixed resin temperature at the time of melt-mixing is compatible. Is formed in a temperature range of from 170 ° C to 170 ° C. If the temperature of the mixed resin is lower than the temperature at which the mixed resin is compatible, molding becomes difficult because the fluidity of the mixed resin is low. When the temperature of the mixed resin exceeds 180 ° C., a product such as an aggregate of crosslinked molecules is formed, and a projection may be formed on the surface of the porous film of the final product. The extruded intermediate molded product in a molten state is cooled and solidified at a temperature equal to or lower than the phase separation temperature of the silane-modified polyolefin and the organic low-molecular substance. Here, the phase separation temperature of the molten resin refers to a DSC curve when a mixed molten resin of a silane-modified polyolefin and an organic low molecular weight material is cooled at a cooling rate of 10 ° C. per minute using a DSC (differential scanning calorimeter). Of silane-modified polyethylene in Example 1. The phase separation temperature varies depending on the combination of the selected raw materials, the mixing ratio, and the like, but the approximate temperature is 20 to 130 ° C, preferably 50 to 120 ° C, and more preferably 50 to 115 ° C.
Range.

【0018】冷却は冷却ドラム、或いは水などの冷媒中
に導入することにより好ましく行うことができる。偏肉
を少なくする観点から冷却ドラムを用いる方法がさらに
好ましい。冷却温度としては、例えば有機低分子物とし
てパラフィンワックスを用いた場合、好ましくは110
℃以下、さらに好ましくは0〜100℃、最も好ましく
は20〜90℃の範囲である。
The cooling can be preferably carried out by introducing into a cooling drum or a coolant such as water. A method using a cooling drum is more preferable from the viewpoint of reducing uneven thickness. As the cooling temperature, for example, when paraffin wax is used as an organic low-molecular substance, it is preferably 110
° C or lower, more preferably 0 to 100 ° C, most preferably 20 to 90 ° C.

【0019】冷却固化した中間成形体を抽出溶媒に浸漬
あるいは暴露する方法等を使用して、有機低分子物を抽
出し多孔化を行う。抽出溶媒はシラン変性ポリエチレン
に対して貧溶媒あるいは非溶媒であり、かつ有機低分子
物に対して良溶媒であればよく、たとえば有機低分子物
がパラフィンワックスであれば、ペンタン、ヘキサン、
ヘプタン、オクタン、イソデカン、シクロヘキサン等の
炭化水素類、メチルシクロヘキサノン等のケトン類、エ
チルエーテル等のエーテル類、ベンゼン、トルエン、キ
シレン等の芳香族類、四塩化炭素、パークロロエチレ
ン、クロロホルム等のハロゲン化炭化水素類等が好適に
用いられる。抽出温度や抽出時間などは抽出溶媒の沸点
や蒸気圧、有機低分子物の溶解性、中間成形体の厚みな
どを考慮して適宜決定すればよい。有機低分子物を抽出
し多孔化が完了したら、得られた多孔膜を乾燥して抽出
溶媒を除去する。乾燥は温度50℃〜ポリエチレンの融
点で、1秒間〜1時間で行えばよい。
The low-molecular organic matter is extracted and made porous by a method such as immersing or exposing the cooled and solidified intermediate molded product in an extraction solvent. The extraction solvent may be a poor solvent or a non-solvent for the silane-modified polyethylene, and may be a good solvent for the organic low-molecular weight material. For example, if the organic low-molecular weight material is paraffin wax, pentane, hexane,
Hydrocarbons such as heptane, octane, isodecane, cyclohexane, ketones such as methylcyclohexanone, ethers such as ethyl ether, aromatics such as benzene, toluene and xylene, halogens such as carbon tetrachloride, perchloroethylene and chloroform Hydrocarbons and the like are preferably used. The extraction temperature and the extraction time may be appropriately determined in consideration of the boiling point and vapor pressure of the extraction solvent, the solubility of the low-molecular organic compound, the thickness of the intermediate molded product, and the like. After the extraction of the organic low-molecular substances and the completion of porosity, the obtained porous membrane is dried to remove the extraction solvent. Drying may be performed at a temperature of 50 ° C. to the melting point of polyethylene for 1 second to 1 hour.

【0020】シラン架橋は抽出工程前の中間成形体の段
階で行ってもよいし、抽出工程後の多孔化した段階で行
ってもよいし、あるいは抽出の途中の段階で行ってもよ
い。シラン架橋は中間成形体あるいは多孔膜を水に暴露
させることにより生起させることができる。この際、シ
ラノール縮合触媒を使用すれば架橋反応が促進され短時
間で架橋を完了できる。水に対する暴露は中間成形体あ
るいは多孔膜を常温〜130℃の水、水蒸気または空気
中の水分と0.1秒〜1週間、通常は1秒〜1時間程度
接触させればよい。本発明で使用するシラン架橋ポリエ
チレンは、ポリエチレン分子鎖に予め導入されたシラン
基のシラノール縮合反応により架橋されたポリエチレン
を指す。シラン架橋ポリエチレンの結晶化度は50〜8
0%であることがシャットダウン特性の観点から好まし
く、ゲル分率は50〜80%であることが耐熱性の観点
から好ましい。シラノール縮合触媒は一般に錫、亜鉛、
鉄、鉛、コバルトなどの金属のカルボン酸塩、有機塩
基、無機酸及び有機酸である。シラノール縮合触媒の具
体例としてとして、ジブチル錫ジラウレート、ジブチル
錫ジアセテート、ジブチル錫ジオクトエート、酢酸第一
錫、カプリル酸第一錫、ナフテン酸鉛、カプリル酸亜
鉛、ナフテン酸コバルト、エチルアミン、ジブチルアミ
ン、ヘキシルアミン、ピリジン、硫酸、塩酸などの無機
酸、トルエンスルホン酸、酢酸、ステアリン酸、マレイ
ン酸などの有機酸がある。
The silane cross-linking may be performed at the stage of the intermediate molded body before the extraction step, at the stage of making porous after the extraction step, or at the stage of the extraction. Silane crosslinking can occur by exposing the intermediate compact or porous membrane to water. At this time, if a silanol condensation catalyst is used, the crosslinking reaction is promoted and the crosslinking can be completed in a short time. Exposure to water may be carried out by bringing the intermediate molded body or the porous membrane into contact with water at room temperature to 130 ° C., water vapor or moisture in the air for 0.1 second to 1 week, usually about 1 second to 1 hour. The silane cross-linked polyethylene used in the present invention refers to a polyethylene cross-linked by a silanol condensation reaction of a silane group previously introduced into a polyethylene molecular chain. Crystallinity of silane crosslinked polyethylene is 50-8
It is preferably 0% from the viewpoint of shutdown characteristics, and the gel fraction is preferably from 50 to 80% from the viewpoint of heat resistance. Silanol condensation catalysts are generally tin, zinc,
Carboxylates, organic bases, inorganic acids and organic acids of metals such as iron, lead and cobalt. As specific examples of the silanol condensation catalyst, dibutyltin dilaurate, dibutyltin diacetate, dibutyltin dioctoate, stannous acetate, stannous caprylate, lead naphthenate, zinc caprylate, cobalt naphthenate, ethylamine, dibutylamine, There are inorganic acids such as hexylamine, pyridine, sulfuric acid and hydrochloric acid, and organic acids such as toluenesulfonic acid, acetic acid, stearic acid and maleic acid.

【0021】シラノール縮合触媒の使用方法としては、
シラノール縮合触媒を原料樹脂組成物に配合して製膜す
る方法、シラノール縮合触媒の溶液または分散液を中間
成形体あるいは多孔膜に塗布する方法などがある。触媒
を原料樹脂組成物に配合する場合の触媒配合量は、シラ
ン変性ポリエチレンの変性の程度、有機低分子物の割合
などにより適当に決定すればよいが、一般的には原料樹
脂組成物に対して0.0001〜5重量%の範囲であ
る。触媒を塗布する場合の触媒濃度は、溶媒または分散
媒の種類、塗布方法などによっても影響されるが、溶液
または分散液に対して0.001〜30重量%の範囲で
適当に決定すればよい。上記工程を通して最終的に得ら
れる多孔膜は、好ましくは厚み10〜100μm、さら
に好ましくは15〜50μmの多孔膜として得られる。
The method of using the silanol condensation catalyst is as follows.
There are a method of forming a film by mixing a silanol condensation catalyst with the raw resin composition, and a method of applying a solution or dispersion of the silanol condensation catalyst to an intermediate molded article or a porous film. When the catalyst is blended in the raw resin composition, the amount of the catalyst may be appropriately determined depending on the degree of modification of the silane-modified polyethylene, the ratio of the organic low molecular weight substance, and the like. In the range of 0.0001 to 5% by weight. The concentration of the catalyst when the catalyst is applied is affected by the type of the solvent or the dispersion medium, the application method, and the like, but may be appropriately determined in the range of 0.001 to 30% by weight based on the solution or the dispersion. . The porous membrane finally obtained through the above steps is preferably obtained as a porous membrane having a thickness of 10 to 100 μm, more preferably 15 to 50 μm.

【0022】上記の製造方法により、本発明の第1に述
べた性状を有する多孔膜、即ちシラン架橋ポリエチレン
からなり、空孔率が20〜60%、最大孔径が1μm以
下、透気度(ガーレー値)が1000秒以下であり、か
つ多孔膜の厚さを含めた突起物の頂点までの高さが多孔
膜の平均厚みの2倍以上の高さを有する突起物が多孔膜
表面の面積1平方メートルあたり10個以下である多孔
膜が得られる。この多孔膜は導電性の微粒子に対する障
壁性が高く、電解質イオンの透過抵抗が低く、多孔膜表
面の突起物が少なく、優れた耐熱性を有する電池用セパ
レータとして好適に用いられる。
According to the above-mentioned production method, the porous membrane having the properties described in the first aspect of the present invention, ie, a silane-crosslinked polyethylene, has a porosity of 20 to 60%, a maximum pore diameter of 1 μm or less, and an air permeability (Gurley) Value) is 1000 seconds or less, and the height of the protrusion including the thickness of the porous film to the apex is twice or more the average thickness of the porous film. Porous membranes of 10 or less per square meter are obtained. This porous membrane has a high barrier property against conductive fine particles, has a low resistance to electrolyte ions, has few protrusions on the surface of the porous membrane, and is suitably used as a battery separator having excellent heat resistance.

【0023】[0023]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれらに限定されるものではない。な
お、以下の実施例に記載の原料および多孔膜の物性につ
いては、以下の測定方法により求めたものであり、本明
細書に記載の原料および多孔膜の物性も、その測定結果
に準拠している。 (MFR)JIS K6760に準拠して、試験温度1
90℃、試験荷重2.16kgfにて測定した。 (密度)JIS K6760に準拠して、試験温度23
℃にて測定した。 (空孔率)一辺が40mmの正方形に切り出した試料多
孔膜を秤量し(この重量をW1とする)、ついでミネラ
ルオイル(Aldrich Chemical社製 Mineral oil,white,
light)に室温中で6時間浸漬した後、試料多孔膜を取
り出して表面のミネラルオイルを拭き取り、再び秤量し
(この重量をW2とする)、下式から空孔率(%)を算
出した。ここでρ1は、シラン変性ポリエチレンの比重
(密度)を表し、ρ2はミネラルオイルの比重(密度)
を表す。 空孔率(%)=[ρ1(W2-W1)/(ρ2W1+ρ1(W2-W
1))]×100 (最大孔径)ASTM E−128−61に準拠し、エ
タノール中でのバブルポイントより算出した。 (透気度)JIS P8117に準拠して、B型ガーレ
ー式デンソメータを用いて測定した。
EXAMPLES The present invention will now be described specifically with reference to examples, but the present invention is not limited to these examples. The physical properties of the raw materials and the porous films described in the following examples were determined by the following measurement methods, and the physical properties of the raw materials and the porous films described in this specification were also based on the measurement results. I have. (MFR) Test temperature 1 according to JIS K6760
It measured at 90 degreeC and the test load of 2.16 kgf. (Density) Test temperature 23 according to JIS K6760
Measured at ° C. (Porosity) A sample porous membrane cut out into a square having a side of 40 mm was weighed (this weight is referred to as W1), and then mineral oil (Mineral oil, white, manufactured by Aldrich Chemical Company) was used.
light for 6 hours at room temperature, the sample porous membrane was taken out, the mineral oil on the surface was wiped off, weighed again (this weight is W2), and the porosity (%) was calculated from the following equation. Here, ρ1 represents the specific gravity (density) of the silane-modified polyethylene, and ρ2 is the specific gravity (density) of the mineral oil.
Represents Porosity (%) = [ρ1 (W2-W1) / (ρ2W1 + ρ1 (W2-W
1))] × 100 (Maximum pore diameter) Calculated from the bubble point in ethanol according to ASTM E-128-61. (Air permeability) It measured using the B type Gurley type densometer according to JISP8117.

【0024】(電気抵抗)測定セルの構造を図1に示
す。CR2332型コイン電池のステンレス製缶体(1
a,1b)に直径15mmのステンレス製円板(2a,2
b)を電極として取り付け、両電極の間に電解液を含浸
させた試料多孔膜(3)をはさみ、空間部にも電解液を
満たして、テフロン製のパッキン(4)を介して缶体を
かしめて測定セルを組み立てた。さらにパッキン部分は
封止剤(商品名「アラルダイト」)(5)で封止してセ
ルの密閉性を高めた。なお、一方の電極(2a)はステ
ンレス製のバネ(6)を介して缶体(1a)に取り付け
てあるので電極と試料多孔膜は隙間なく接触する。電解
液は富山薬品社製のLIPASTE-EP3BLF7を用いた。この電
解液は、エチレンカーボネート20.9重量%、プロピ
レンカーボネート18.9重量%、γ-ブチロラクトン
52.8重量%の混合溶媒に電解質としてLiBF4
7.4重量%溶解したものである(重量%はいずれも電
解液を100重量%としたとき)。横河ヒューレットパ
ッカード社製4274A MULTI-FREQUENCY LCR METERを
用いて、周波数100kHz、印加電圧0.1Vの交流
電圧を印加して、交流インピーダンス(抵抗R)を測定
した。
(Electrical Resistance) The structure of the measuring cell is shown in FIG. Stainless steel can body of CR2332 type coin battery (1
a, 1b) to a stainless steel disk (2a, 2) having a diameter of 15 mm.
b) is attached as an electrode, a sample porous membrane (3) impregnated with an electrolyte is sandwiched between the two electrodes, the space is filled with the electrolyte, and the can body is placed through a Teflon packing (4). The measuring cell was assembled by swaging. Further, the packing portion was sealed with a sealant (trade name "Araldite") (5) to enhance the cell sealing property. Since the one electrode (2a) is attached to the can (1a) via the stainless steel spring (6), the electrode and the sample porous membrane come into contact without any gap. As the electrolyte, LIPASTE-EP3BLF7 manufactured by Toyama Pharmaceutical Co., Ltd. was used. This electrolytic solution is obtained by dissolving 7.4% by weight of LiBF 4 as an electrolyte in a mixed solvent of 20.9% by weight of ethylene carbonate, 18.9% by weight of propylene carbonate, and 52.8% by weight of γ-butyrolactone (weight). % Are based on 100% by weight of the electrolyte). Using a 4274A MULTI-FREQUENCY LCR METER manufactured by Yokogawa Hewlett-Packard Company, an AC voltage having a frequency of 100 kHz and an applied voltage of 0.1 V was applied, and the AC impedance (resistance R) was measured.

【0025】(突刺強度)東洋ボールドウィン社製テン
シロンRTM-100を用いて、川口株式会社毛糸止針(針先
端のRは60μm)をピンとし、クロスヘッド速度20
0mm/minで試料多孔膜を突刺し、最大荷重を試料
多孔膜の厚みで除した値を突刺強度とした。 (突起物の数)長さ500mm、幅50mmの短冊状の
試料多孔膜を準備し、厚み計(デジタルマイクロメータ
M−30、ソニー社製)を用いて、長さ方向に50mm
毎、幅方向に10mm毎に、目視により突起物がない部
分であることを確認し、合計50点の厚みを測定し、そ
の平均値を多孔膜の平均厚みとした。次に多孔膜表面の
突起物を目視により確認し、その高さ、即ち、多孔膜の
厚みを含めた突起物の頂点までの高さを前記厚み計によ
り測定し、前記平均厚みの2倍以上の高さを持つ突起物
の数を計数した。この測定を40枚の試料多孔膜につい
て行い、計数された突起物数の総和を面積1平方メート
ルあたりの突起物数とした。
(Puncture Strength) Using a Tensilon RTM-100 manufactured by Toyo Baldwin Co., Ltd., a yarn stop needle (R at the tip of the needle is 60 μm) as a pin and a crosshead speed of 20
The sample porous membrane was pierced at 0 mm / min, and the value obtained by dividing the maximum load by the thickness of the sample porous membrane was defined as the piercing strength. (Number of protrusions) A rectangular sample porous membrane having a length of 500 mm and a width of 50 mm was prepared, and a thickness gauge (Digital Micrometer M-30, manufactured by Sony Corporation) was used to measure 50 mm in the length direction.
Each time, every 10 mm in the width direction, it was visually confirmed that there were no protrusions, the thickness of a total of 50 points was measured, and the average value was taken as the average thickness of the porous membrane. Next, the protrusions on the surface of the porous film are visually confirmed, and the height thereof, that is, the height up to the top of the protrusions including the thickness of the porous film is measured by the thickness meter, and is at least twice the average thickness. The number of protrusions having a height of was counted. This measurement was performed on 40 sample porous membranes, and the total number of the counted protrusions was defined as the number of protrusions per square meter of area.

【0026】(結晶化度)メトラー社製TA-3000型熱分
析システムを用い、試料多孔膜約10mgを測定セルに
セットして、窒素ガス雰囲気中で温度30℃から毎分1
0℃で温度200℃まで昇温して、DSC曲線を測定し
た。このDSC曲線における結晶の融解による吸熱ピー
クの面積から融解エンタルピー△H(J/g)を求めた。
結晶化度A(%)は次式:結晶化度A(%)=(△H/
△H0)×100により算出した。ここで△H0はポリエ
チレン完全結晶の融解エンタルピーであり、本実施例に
おいては288.8J/gとする。 (ゲル分率)試験管に秤量した試料多孔膜約70mg
(この重量をW0mgとする)と1,2,4−トリクロ
ロベンゼン約10mlを入れ、温度130℃で2時間加
熱した。この溶液と未溶解成分を100メッシュの金網
で濾過し、分離した未溶解成分を50℃の熱風オーブン
内で12時間乾燥させた。乾燥した未溶解成分を秤量し
(この重量をWmgとする)、次式:ゲル分率(%)=
(W/W0)×100からゲル分率(%)を算出した。
(Crystallinity) Using a TA-3000 thermal analysis system manufactured by Mettler, about 10 mg of a sample porous membrane was set in a measuring cell, and a temperature of 30 ° C. and a rate of 1 minute per minute were set in a nitrogen gas atmosphere.
The temperature was raised to 200 ° C. at 0 ° C., and the DSC curve was measured. From this DSC curve, the enthalpy of fusion ΔH (J / g) was determined from the area of the endothermic peak due to the melting of the crystal.
The crystallinity A (%) is expressed by the following equation: Crystallinity A (%) = (△ H /
ΔH 0 ) × 100. Here, ΔH 0 is the enthalpy of fusion of polyethylene perfect crystals, and is 288.8 J / g in this embodiment. (Gel fraction) Approximately 70 mg of sample porous membrane weighed in a test tube
(The weight and W 0 mg) and placed in 1,2,4-trichlorobenzene about 10 ml, was heated 2 hours at a temperature 130 ° C.. This solution and undissolved components were filtered through a 100-mesh wire net, and the separated undissolved components were dried in a hot air oven at 50 ° C. for 12 hours. The dried undissolved components are weighed (this weight is defined as Wmg), and the following formula: gel fraction (%) =
The gel fraction (%) was calculated from (W / W 0 ) × 100.

【0027】(シャットダウン特性および耐熱性)前記
の電気抵抗を測定した図に示したセルを使用して、前記
LCRメーターを用いて、周波数100kHz、印加電
圧0.1Vの交流電圧を印加しつつ、測定セルを室温か
ら毎分15℃で昇温して交流インピーダンス(抵抗Rお
よびリアクタンスX)を測定した。シャットダウン(S
D)温度は抵抗Rが急激に増大して数百Ωに達し、リア
クタンスXはオーバーフロー(OF;レンジオーバー、
測定限界20MΩ)する温度である。抵抗Rが数百Ωを
示し、このときリアクタンスXがオーバーフローすると
きは、測定セルが微少容量のコンデンサーと同じ状態と
なったことを示すものであり、試料多孔膜が非多孔質の
絶縁膜に変化したことを示す。なお、このLCRメータ
ーは、リアクタンスXがオーバーフローしていると抵抗
Rの測定確度が保証されないため、インピーダンスの増
大幅については定量性に欠けている。耐熱性を消失する
温度、すなわち破膜温度は抵抗Rが再び減少して数十Ω
以下になる温度である。なお、この測定セルは240〜
300℃まで昇温したとき破裂し、それ以上の温度では
インピーダンスが測定できない。
(Shutdown Characteristics and Heat Resistance) Using the cell shown in the figure where the electric resistance was measured, using the LCR meter, while applying an AC voltage having a frequency of 100 kHz and an applied voltage of 0.1 V, The temperature of the measurement cell was raised from room temperature at 15 ° C./minute, and the AC impedance (resistance R and reactance X) was measured. Shutdown (S
D) The temperature rises to a few hundred ohms with the resistance R rapidly increasing, and the reactance X overflows (OF; range over,
This is the temperature at which the measurement limit is 20 MΩ). When the resistance R indicates several hundred ohms and the reactance X overflows at this time, it indicates that the measuring cell is in the same state as a small-capacity capacitor, and the sample porous film is replaced with a non-porous insulating film. Indicates that it has changed. Note that the LCR meter does not guarantee the accuracy of the measurement of the resistance R when the reactance X overflows, and thus lacks quantitativeness with respect to the increase width of the impedance. The temperature at which the heat resistance disappears, that is, the rupture temperature, is several tens of ohms when the resistance R decreases again.
It is the temperature below. In addition, this measuring cell is 240 to
It bursts when heated to 300 ° C, and impedance cannot be measured at higher temperatures.

【0028】(電池巻回試験)長さ500mm、幅43
mmの試料多孔膜を2枚と、長さ380mm、幅38m
m、厚み0.14mmの正極シート、および長さ400
mm、幅38mm、厚み0.16mmの負極シートを準
備した。正極活物質はリチウムと遷移金属の複合酸化物
であるLiCoO2(日本化学工業(株)製セルシードC−0
5)、負極活物質はリチウムのドープ・脱ドープが可能
な呉羽化学工業(株)製カーボトロンPを使用した。こ
れらの試料多孔膜、正極シート、試料多孔膜、負極シー
トの順に重ねて、これを電池電極巻回装置を用いて巻回
速度2秒/1回転、テンション荷重250gで巻回し、
最後に外周を粘着テープで固定して直径15mmの電池
素子を作成した。テスター(HEWLETTPACKARD社製E2373
A)を用いて、この電池素子の正極と負極の間の導通を
調べ、抵抗値がオーバーレンジ(30MΩ以上)であっ
た場合を○、抵抗値が測定された場合を×とした。抵抗
値が測定されるとは本来絶縁体である多孔膜を電極活物
質が突き抜けるなどして導通点が生じたことを示す。
(Battery winding test) Length 500 mm, width 43
2 mm sample porous membrane, length 380 mm, width 38 m
m, a positive electrode sheet having a thickness of 0.14 mm, and a length of 400
mm, a width of 38 mm, and a thickness of 0.16 mm were prepared. The positive electrode active material is LiCoO 2 which is a composite oxide of lithium and a transition metal (Cellseed C-0 manufactured by Nippon Chemical Industry Co., Ltd.)
5) As the negative electrode active material, Carbotron P manufactured by Kureha Chemical Industry Co., Ltd. capable of doping and undoping lithium was used. The sample porous membrane, the positive electrode sheet, the sample porous membrane, and the negative electrode sheet were stacked in this order, and this was wound using a battery electrode winding device at a winding speed of 2 seconds / 1 rotation and a tension load of 250 g,
Finally, the outer periphery was fixed with an adhesive tape to prepare a battery element having a diameter of 15 mm. Tester (E2373 manufactured by HEWLETTPACKARD)
Using A), the conduction between the positive electrode and the negative electrode of this battery element was examined. The case where the resistance value was in the overrange (30 MΩ or more) was evaluated as ○, and the case where the resistance value was measured was evaluated as ×. When the resistance value is measured, it indicates that a conduction point has occurred due to, for example, the electrode active material penetrating the porous film which is originally an insulator.

【0029】(実施例1)シラン変性ポリエチレン(三
菱化学株式会社製;リンクロンHF−700N、MFR
0.8g/10min、密度0.958g/cm3)45
重量%と、パラフィンワックス(日本精蝋株式会社製;
パラフィンワックス135)55重量%を、30mmφ
二軸押出機に供給して、樹脂温度160℃(混合樹脂は
相溶していた)で溶融混合し、幅350mmのTダイよ
り押出し、溶融状態のまま表面温度80℃に維持された
冷却ドラム上に導き、そこで冷却固化して中間成形体を
得た。次に、中間成形体の両面にジブチル錫ジラウレー
トの30重量%水分散液を塗布し、次いで温度85℃に
維持された温水に1時間浸してシラン架橋を完了した。
次に、この中間成形体をシクロヘキサンに室温で30分
間浸漬して、パラフィンワックスを抽出し、次いで温度
80℃のオーブン内で30分間乾燥して抽出溶媒を除去
し、シラン架橋多孔膜を得た。製造条件を表1に、得ら
れた多孔膜の物性を表2にそれぞれ示す。
(Example 1) Silane-modified polyethylene (manufactured by Mitsubishi Chemical Corporation; Linklon HF-700N, MFR)
0.8 g / 10 min, density 0.958 g / cm 3 ) 45
% By weight and paraffin wax (manufactured by Nippon Seiwa Co., Ltd .;
Paraffin wax 135) 55% by weight, 30mmφ
A cooling drum supplied to a twin-screw extruder, melt-mixed at a resin temperature of 160 ° C. (the mixed resin was compatible), extruded from a T-die having a width of 350 mm, and maintained at a surface temperature of 80 ° C. in a molten state. The resulting mixture was cooled and solidified to obtain an intermediate molded body. Next, a 30% by weight aqueous dispersion of dibutyltin dilaurate was applied to both surfaces of the intermediate molded body, and then immersed in warm water maintained at a temperature of 85 ° C. for 1 hour to complete silane crosslinking.
Next, this intermediate molded body was immersed in cyclohexane at room temperature for 30 minutes to extract paraffin wax, and then dried in an oven at a temperature of 80 ° C. for 30 minutes to remove the extraction solvent, thereby obtaining a silane crosslinked porous membrane. . The production conditions are shown in Table 1, and the physical properties of the obtained porous membrane are shown in Table 2.

【0030】(実施例2)シラン変性ポリエチレンとし
てMFRが0.4g/10min、密度0.945g/c
3のものを使用した以外は実施例1と同様にしてシラ
ン架橋多孔膜を得た。製造条件を表1に、得られた多孔
膜の物性を表2にそれぞれ示す。押出時の樹脂温度で混
合樹脂は相溶していた。
Example 2 A silane-modified polyethylene having an MFR of 0.4 g / 10 min and a density of 0.945 g / c
except for using those of m 3 was obtained a silane crosslinked porous membrane in the same manner as in Example 1. The production conditions are shown in Table 1, and the physical properties of the obtained porous membrane are shown in Table 2. The mixed resin was compatible at the resin temperature at the time of extrusion.

【0031】(実施例3)有機低分子物として流動パラ
フィンを使用し、冷却ドラムの表面温度が40℃であっ
た以外は実施例1と同様にしてシラン架橋多孔膜を得
た。製造条件を表1に、得られた多孔膜の物性を表2に
それぞれ示す。押出時の樹脂温度で混合樹脂は相溶して
いた。
Example 3 A silane-crosslinked porous film was obtained in the same manner as in Example 1 except that liquid paraffin was used as the organic low-molecular substance and the surface temperature of the cooling drum was 40 ° C. The production conditions are shown in Table 1, and the physical properties of the obtained porous membrane are shown in Table 2. The mixed resin was compatible at the resin temperature at the time of extrusion.

【0032】(比較例1)シラン変性ポリエチレンとし
てMFRが3g/10min、密度0.957g/cm3
のもの50重量%、実施例1と同じパラフィンワックス
50重量%を使用した以外は実施例1と同様にしてシラ
ン架橋多孔膜を得た。製造条件を表1に、得られた多孔
膜の物性を表2にそれぞれ示す。
Comparative Example 1 A silane-modified polyethylene having an MFR of 3 g / 10 min and a density of 0.957 g / cm 3
A silane-crosslinked porous membrane was obtained in the same manner as in Example 1, except that 50% by weight of paraffin wax and 50% by weight of the same paraffin wax as in Example 1 were used. The production conditions are shown in Table 1, and the physical properties of the obtained porous membrane are shown in Table 2.

【0033】(比較例2)シラン変性ポリエチレンとし
てMFRが0.07g/10min、密度0.945g/
cm3のものを使用した以外は実施例1と同様にしてシ
ラン架橋多孔膜を得た。製造条件を表1に、得られた多
孔膜の物性を表2にそれぞれ示す。
Comparative Example 2 A silane-modified polyethylene having an MFR of 0.07 g / 10 min and a density of 0.945 g / min
A silane-crosslinked porous membrane was obtained in the same manner as in Example 1 except that the one having a diameter of cm 3 was used. The production conditions are shown in Table 1, and the physical properties of the obtained porous membrane are shown in Table 2.

【0034】(比較例3)樹脂温度200℃で溶融混合
した以外は実施例1と同様にしてシラン架橋多孔膜を得
た。製造条件を表1に、得られた多孔膜の物性を表2に
それぞれ示す。
Comparative Example 3 A silane-crosslinked porous film was obtained in the same manner as in Example 1, except that the resin was melted and mixed at a resin temperature of 200 ° C. The production conditions are shown in Table 1, and the physical properties of the obtained porous membrane are shown in Table 2.

【0035】(比較例4)シラン変性したポリエチレン
として比較例1において使用したもの(MFRが3g/
10min、密度0.957g/cm3)を使用し、樹脂
温度220℃で溶融混合した以外は実施例1と同様にし
てシラン架橋多孔膜を得た。製造条件を表1に、得られ
た多孔膜の物性を表2にそれぞれ示す。
Comparative Example 4 The silane-modified polyethylene used in Comparative Example 1 (MFR: 3 g /
A silane crosslinked porous membrane was obtained in the same manner as in Example 1 except that the mixture was melted and mixed at a resin temperature of 220 ° C. for 10 minutes at a density of 0.957 g / cm 3 ). The production conditions are shown in Table 1, and the physical properties of the obtained porous membrane are shown in Table 2.

【0036】(比較例5)シラン変性されていないポリ
エチレン(MFRが0.3g/10min、密度0.9
58g/cm3)を使用し、樹脂温度200℃とした以外
は実施例1と同様にして多孔膜を得た。製造条件を表1
に、得られた多孔膜の物性を表2にそれぞれ示す。
Comparative Example 5 Polyethylene not modified with silane (MFR 0.3 g / 10 min, density 0.9
58 g / cm 3 ), and a porous membrane was obtained in the same manner as in Example 1 except that the resin temperature was 200 ° C. Table 1 shows manufacturing conditions
Table 2 shows the physical properties of the obtained porous membrane.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【発明の効果】本発明によれば、実施例で示したように
シラン架橋ポリエチレン多孔膜からなり、導電性の微粒
子に対する障壁性が高く、電解質イオンの透過抵抗が低
く、多孔膜表面の突起物が少なく、優れた耐熱性を有す
る多孔膜および多孔膜からなる電池用セパレータが提供
される。また、特定の範囲内のMFRを有するシラン変
性ポリエチレンを用いることにより、表面の突起物が少
ない、高温での膜形状保持性のよい、さらにインピーダ
ンスと強度とのバランスがとれた優れた性状を有する多
孔膜の製造方法を提供できる。
According to the present invention, as shown in the examples, the porous film is made of a silane-crosslinked polyethylene porous film, has a high barrier property against conductive fine particles, a low permeation resistance of electrolyte ions, and a projection on the surface of the porous film. The present invention provides a porous membrane having a low heat resistance and excellent heat resistance, and a battery separator comprising the porous membrane. In addition, by using a silane-modified polyethylene having an MFR within a specific range, it has excellent properties with few surface protrusions, good film shape retention at high temperatures, and a balance between impedance and strength. A method for producing a porous membrane can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 耐熱特性を測定するための測定セルを示す断
面図である。
FIG. 1 is a cross-sectional view showing a measurement cell for measuring heat resistance.

【符号の説明】[Explanation of symbols]

1a:缶体(ふた) 1b:缶体(底) 2a:正電極(SUS) 2b:負電極(SUS) 3:多孔膜(セパレータ) 4:パッキン(テフロン) 5:封止剤 6:バネ(SUS) 1a: Can body (lid) 1b: Can body (bottom) 2a: Positive electrode (SUS) 2b: Negative electrode (SUS) 3: Porous membrane (separator) 4: Packing (Teflon) 5: Sealant 6: Spring ( SUS)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】シラン架橋ポリエチレンからなり、空孔率
が20〜60%、最大孔径が1μm以下、透気度(ガー
レー値)が1000秒以下であり、かつ平均厚みの2倍
以上の高さを有する突起物が多孔膜表面の面積1平方メ
ートルあたり10個以下であることを特徴とする多孔
膜。
1. A silane crosslinked polyethylene having a porosity of 20 to 60%, a maximum pore diameter of 1 μm or less, an air permeability (Gurley value) of 1000 seconds or less, and a height of at least twice the average thickness. The porous membrane, wherein the number of protrusions having the following is 10 or less per square meter of the surface of the porous membrane.
【請求項2】多孔膜が電池用セパレータである請求項1
記載の多孔膜。
2. The battery according to claim 1, wherein the porous membrane is a battery separator.
The porous membrane as described in the above.
【請求項3】シラン変性ポリエチレンおよびそれと相溶
性を示す有機低分子物とからなる混合樹脂を原料とし
て、押出工程、架橋工程及び抽出工程を含んでなるシラ
ン架橋多孔膜の製造方法において、MFR(メルトフロ
ーレート)が0.08〜2g/10min.の範囲にあ
るシラン変性ポリエチレンを用い、押出時の混合樹脂温
度が有機低分子物と相溶性を示す温度から180℃の範
囲にあり、押出された溶融物を相分離温度以下の温度で
冷却固化して中間成形体を得ることを特徴とする請求項
1記載の多孔膜の製造方法。
3. A method for producing a silane-crosslinked porous membrane comprising an extrusion step, a crosslinking step, and an extraction step using a mixed resin of silane-modified polyethylene and an organic low-molecular substance having compatibility with the same as a raw material. Melt flow rate) is 0.08 to 2 g / 10 min. The temperature of the mixed resin at the time of extrusion is in the range of from 180 ° C to 180 ° C, which is compatible with organic low-molecular substances, and the extruded melt is cooled and solidified at a temperature below the phase separation temperature. The method for producing a porous membrane according to claim 1, wherein an intermediate molded body is obtained by performing the method.
【請求項4】シラン変性ポリエチレンの密度が0.94
5g/cm3以上であることを特徴とする請求項3記載の
多孔膜の製造方法。
4. The silane-modified polyethylene has a density of 0.94.
4. The method for producing a porous membrane according to claim 3, wherein the amount is 5 g / cm 3 or more.
【請求項5】多孔膜が電池用セパレータである請求項3
または4記載の多孔膜の製造方法。
5. The battery according to claim 3, wherein the porous membrane is a battery separator.
Or the method for producing a porous membrane according to 4.
JP9320493A 1997-11-06 1997-11-06 Porous membrane, battery separator comprising porous membrane, and manufacture thereof Pending JPH11144700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9320493A JPH11144700A (en) 1997-11-06 1997-11-06 Porous membrane, battery separator comprising porous membrane, and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9320493A JPH11144700A (en) 1997-11-06 1997-11-06 Porous membrane, battery separator comprising porous membrane, and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH11144700A true JPH11144700A (en) 1999-05-28

Family

ID=18122073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9320493A Pending JPH11144700A (en) 1997-11-06 1997-11-06 Porous membrane, battery separator comprising porous membrane, and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH11144700A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003321569A (en) * 2002-04-26 2003-11-14 Asahi Kasei Corp Modified polyethylene microporous membrane
KR100658703B1 (en) 2005-12-19 2006-12-15 더블유에이블(주) Manufacturing method of microporous polyolefin-based separator
WO2012086514A1 (en) * 2010-12-24 2012-06-28 日立ビークルエナジー株式会社 Lithium-ion secondary battery
US9887405B2 (en) 2014-10-31 2018-02-06 Lg Chem, Ltd. Crosslinked polyolefin separator and method of preparing the same
KR101955911B1 (en) 2018-08-23 2019-03-12 더블유스코프코리아 주식회사 A separator and a method for manufacturing the same
WO2020050589A1 (en) * 2018-09-03 2020-03-12 주식회사 엘지화학 Crosslinked polyolefin separator and method of preparing same
JP2020061312A (en) * 2018-10-11 2020-04-16 旭化成株式会社 Trace metal cross-linked separator
WO2020075865A1 (en) 2018-10-11 2020-04-16 旭化成株式会社 Lithium ion battery separator
WO2020075866A1 (en) 2018-10-11 2020-04-16 旭化成株式会社 Lithium ion battery using crosslinked separator
KR20200039060A (en) 2018-10-04 2020-04-16 더블유스코프코리아 주식회사 A separator and a method for manufacturing the same
KR20200100538A (en) 2019-02-18 2020-08-26 아사히 가세이 가부시키가이샤 Microporous membrane for electricity storage device
CN111615422A (en) * 2018-09-11 2020-09-01 株式会社Lg化学 Cross-linked polyolefin separator and method for producing the same
KR20200121237A (en) 2019-04-15 2020-10-23 아사히 가세이 가부시키가이샤 Polyolefin laminated microporous membrane
EP3731305A1 (en) 2019-04-26 2020-10-28 W-Scope Korea Co., Ltd. Crosslinked polyolefin separator and method of manufacturing the same
KR20210024954A (en) 2019-08-26 2021-03-08 아사히 가세이 가부시키가이샤 Separator using a blend resin of silane cross linking polyolefins
KR20210024953A (en) 2019-08-26 2021-03-08 아사히 가세이 가부시키가이샤 Separator dispersed crosslinkable resin
CN112582750A (en) * 2020-12-07 2021-03-30 界首市天鸿新材料股份有限公司 Process for preparing high-performance lithium battery diaphragm by using polyethylene graft copolymer
EP3832770A1 (en) 2019-12-06 2021-06-09 W-Scope Korea Co., Ltd. Crosslinked separator and method of manufacturing the same
KR20220033495A (en) 2020-04-13 2022-03-16 아사히 가세이 가부시키가이샤 Composite laminated chemical crosslinked separator
KR20220033494A (en) 2020-04-13 2022-03-16 아사히 가세이 가부시키가이샤 Composite single layer chemical crosslinking separator
WO2023090580A1 (en) 2021-11-17 2023-05-25 더블유스코프코리아 주식회사 Method for manufacturing separator

Cited By (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003321569A (en) * 2002-04-26 2003-11-14 Asahi Kasei Corp Modified polyethylene microporous membrane
KR100658703B1 (en) 2005-12-19 2006-12-15 더블유에이블(주) Manufacturing method of microporous polyolefin-based separator
WO2012086514A1 (en) * 2010-12-24 2012-06-28 日立ビークルエナジー株式会社 Lithium-ion secondary battery
JP2012138193A (en) * 2010-12-24 2012-07-19 Hitachi Vehicle Energy Ltd Lithium ion secondary battery
US9887405B2 (en) 2014-10-31 2018-02-06 Lg Chem, Ltd. Crosslinked polyolefin separator and method of preparing the same
CN110857362A (en) * 2018-08-23 2020-03-03 韩国沃思可福有限公司 Separator and method of making the same
CN110857362B (en) * 2018-08-23 2022-03-22 韩国沃思可福有限公司 Separator and method of making the same
WO2020040389A1 (en) * 2018-08-23 2020-02-27 더블유스코프코리아 주식회사 Separator and method for producing same
KR101955911B1 (en) 2018-08-23 2019-03-12 더블유스코프코리아 주식회사 A separator and a method for manufacturing the same
EP3614460A1 (en) 2018-08-23 2020-02-26 W-Scope Korea Co., Ltd. Separator and method of manufacturing the same
US11367925B2 (en) 2018-08-23 2022-06-21 W-Scope Korea Co., Ltd. Separator and method of manufacturing the same
US11673985B2 (en) 2018-09-03 2023-06-13 Lg Chem, Ltd. Crosslinked polyolefin separator and method for manufacturing the same
WO2020050589A1 (en) * 2018-09-03 2020-03-12 주식회사 엘지화학 Crosslinked polyolefin separator and method of preparing same
JP2022093424A (en) * 2018-09-11 2022-06-23 エルジー・ケム・リミテッド Crosslinked polyolefin separator and method for manufacturing the same
CN111615422B (en) * 2018-09-11 2022-05-03 株式会社Lg化学 Cross-linked polyolefin separator and method for producing the same
US11894575B2 (en) 2018-09-11 2024-02-06 Lg Chem, Ltd. Cross-linked polyolefin separator and method for producing same
JP2021511636A (en) * 2018-09-11 2021-05-06 エルジー・ケム・リミテッド Crosslinked polyolefin separation membrane and its manufacturing method
CN111615422A (en) * 2018-09-11 2020-09-01 株式会社Lg化学 Cross-linked polyolefin separator and method for producing the same
KR20200039060A (en) 2018-10-04 2020-04-16 더블유스코프코리아 주식회사 A separator and a method for manufacturing the same
KR20210131464A (en) 2018-10-11 2021-11-02 아사히 가세이 가부시키가이샤 Lithium ion battery using crosslinked separator
WO2020075865A1 (en) 2018-10-11 2020-04-16 旭化成株式会社 Lithium ion battery separator
JPWO2020075865A1 (en) * 2018-10-11 2021-02-15 旭化成株式会社 Separator for lithium-ion batteries
US20210057701A1 (en) * 2018-10-11 2021-02-25 Asahi Kasei Kabushiki Kaisha Separator for Lithium Ion Battery
US12230832B2 (en) 2018-10-11 2025-02-18 Asahi Kasei Battery Separator Corporation Separator having silane-modified polyolefin and polyethylene, and method for producing the same
EP4425682A1 (en) 2018-10-11 2024-09-04 Asahi Kasei Kabushiki Kaisha Lithium ion battery using crosslinked separator
KR20240049846A (en) 2018-10-11 2024-04-17 아사히 가세이 가부시키가이샤 Lithium ion battery using crosslinked separator
CN111602265A (en) * 2018-10-11 2020-08-28 旭化成株式会社 Separator for lithium ion battery
EP4350875A2 (en) 2018-10-11 2024-04-10 Asahi Kasei Kabushiki Kaisha Lithium ion battery separator
JP2021122024A (en) * 2018-10-11 2021-08-26 旭化成株式会社 Separator for lithium-ion batteries
JP2021122022A (en) * 2018-10-11 2021-08-26 旭化成株式会社 Separator for lithium-ion batteries
JP2021122023A (en) * 2018-10-11 2021-08-26 旭化成株式会社 Separator for lithium-ion batteries
KR20210131463A (en) 2018-10-11 2021-11-02 아사히 가세이 가부시키가이샤 Lithium ion battery using crosslinked separator
KR20210131466A (en) 2018-10-11 2021-11-02 아사히 가세이 가부시키가이샤 Lithium ion battery using crosslinked separator
KR20210131465A (en) 2018-10-11 2021-11-02 아사히 가세이 가부시키가이샤 Lithium ion battery using crosslinked separator
EP4235940A2 (en) 2018-10-11 2023-08-30 Asahi Kasei Kabushiki Kaisha Lithium ion battery using crosslinkable separator
KR20210134062A (en) 2018-10-11 2021-11-08 아사히 가세이 가부시키가이샤 Lithium ion battery separator
EP3866220A4 (en) * 2018-10-11 2021-12-15 Asahi Kasei Kabushiki Kaisha SEPARATOR FOR LITHIUM-ION BATTERY
EP4235933A2 (en) 2018-10-11 2023-08-30 Asahi Kasei Kabushiki Kaisha Lithium ion battery using crosslinkable separator
US11837750B2 (en) 2018-10-11 2023-12-05 Asahi Kasei Kabushiki Kaisha Lithium ion battery using crosslinkable separator
KR20200062292A (en) 2018-10-11 2020-06-03 아사히 가세이 가부시키가이샤 Lithium ion battery using a crosslinked separator
KR20200060489A (en) 2018-10-11 2020-05-29 아사히 가세이 가부시키가이샤 Separator for lithium ion battery
KR20220056882A (en) 2018-10-11 2022-05-06 아사히 가세이 가부시키가이샤 Lithium ion battery separator
KR20220066414A (en) 2018-10-11 2022-05-24 아사히 가세이 가부시키가이샤 Lithium ion battery using crosslinked separator
WO2020075866A1 (en) 2018-10-11 2020-04-16 旭化成株式会社 Lithium ion battery using crosslinked separator
US12230833B2 (en) 2018-10-11 2025-02-18 Asahi Kasei Battery Separator Corporation Separator having silane-modified polyolefin and polyethylene, and method for producing the same
KR20220119165A (en) 2018-10-11 2022-08-26 아사히 가세이 가부시키가이샤 Lithium ion battery separator
EP4053987A2 (en) 2018-10-11 2022-09-07 Asahi Kasei Kabushiki Kaisha Lithium ion battery separator
EP4053986A2 (en) 2018-10-11 2022-09-07 Asahi Kasei Kabushiki Kaisha Lithium ion battery using crosslinkable separator
EP4068488A1 (en) 2018-10-11 2022-10-05 Asahi Kasei Kabushiki Kaisha Lithium ion battery using crosslinkable separator
CN111602265B (en) * 2018-10-11 2022-11-01 旭化成株式会社 Separator for Lithium Ion Batteries
CN115295956A (en) * 2018-10-11 2022-11-04 旭化成株式会社 Separator for electricity storage device and method for manufacturing same
KR20220156668A (en) 2018-10-11 2022-11-25 아사히 가세이 가부시키가이샤 Lithium ion battery using crosslinked separator
US20230006305A1 (en) * 2018-10-11 2023-01-05 Asahi Kasei Kabushiki Kaisha Separator for Lithium Ion Battery
US20230006306A1 (en) * 2018-10-11 2023-01-05 Asahi Kasei Kabushiki Kaisha Separator for Lithium Ion Battery
EP4235939A2 (en) 2018-10-11 2023-08-30 Asahi Kasei Kabushiki Kaisha Lithium ion battery using crosslinkable separator
JP2023011734A (en) * 2018-10-11 2023-01-24 旭化成株式会社 Lithium-ion battery separator
KR20230023830A (en) 2018-10-11 2023-02-17 아사히 가세이 가부시키가이샤 Lithium ion battery using crosslinked separator
KR20230023829A (en) 2018-10-11 2023-02-17 아사히 가세이 가부시키가이샤 Lithium ion battery using crosslinked separator
US11588208B2 (en) 2018-10-11 2023-02-21 Asahi Kasei Kabushiki Kaisha Lithium ion battery using crosslinkable separator
EP4235934A2 (en) 2018-10-11 2023-08-30 Asahi Kasei Kabushiki Kaisha Lithium ion battery using crosslinkable separator
US11670822B2 (en) 2018-10-11 2023-06-06 Asahi Kasei Kabushiki Kaisha Separator having silane-modified polyolefin and polyethylene, and method for producing the same
JP2020061312A (en) * 2018-10-11 2020-04-16 旭化成株式会社 Trace metal cross-linked separator
KR20230097225A (en) 2018-10-11 2023-06-30 아사히 가세이 가부시키가이샤 Lithium ion battery using crosslinked separator
KR20230098365A (en) 2018-10-11 2023-07-03 아사히 가세이 가부시키가이샤 Lithium ion battery using crosslinked separator
EP4220844A2 (en) 2018-10-11 2023-08-02 Asahi Kasei Kabushiki Kaisha Lithium ion battery using crosslinked separator
EP4220845A2 (en) 2018-10-11 2023-08-02 Asahi Kasei Kabushiki Kaisha Separator for lithium ion battery
EP4224613A2 (en) 2018-10-11 2023-08-09 Asahi Kasei Kabushiki Kaisha Lithium ion battery using crosslinked separator
EP4220845A3 (en) * 2018-10-11 2023-08-30 Asahi Kasei Kabushiki Kaisha Separator for lithium ion battery
KR20200100538A (en) 2019-02-18 2020-08-26 아사히 가세이 가부시키가이샤 Microporous membrane for electricity storage device
KR20200121237A (en) 2019-04-15 2020-10-23 아사히 가세이 가부시키가이샤 Polyolefin laminated microporous membrane
US11557814B2 (en) 2019-04-26 2023-01-17 W-Scope Korea Co., Ltd. Crosslinked polyolefin separator and method of manufacturing the same
EP3731305A1 (en) 2019-04-26 2020-10-28 W-Scope Korea Co., Ltd. Crosslinked polyolefin separator and method of manufacturing the same
KR20210024953A (en) 2019-08-26 2021-03-08 아사히 가세이 가부시키가이샤 Separator dispersed crosslinkable resin
KR20210024954A (en) 2019-08-26 2021-03-08 아사히 가세이 가부시키가이샤 Separator using a blend resin of silane cross linking polyolefins
EP3832770A1 (en) 2019-12-06 2021-06-09 W-Scope Korea Co., Ltd. Crosslinked separator and method of manufacturing the same
KR20220033494A (en) 2020-04-13 2022-03-16 아사히 가세이 가부시키가이샤 Composite single layer chemical crosslinking separator
KR20220033495A (en) 2020-04-13 2022-03-16 아사히 가세이 가부시키가이샤 Composite laminated chemical crosslinked separator
CN112582750A (en) * 2020-12-07 2021-03-30 界首市天鸿新材料股份有限公司 Process for preparing high-performance lithium battery diaphragm by using polyethylene graft copolymer
WO2023090580A1 (en) 2021-11-17 2023-05-25 더블유스코프코리아 주식회사 Method for manufacturing separator

Similar Documents

Publication Publication Date Title
JPH11144700A (en) Porous membrane, battery separator comprising porous membrane, and manufacture thereof
JPH11172036A (en) Porous film, battery separator comprising porous film, and its production
JP5213443B2 (en) Polyolefin microporous membrane
JP3610555B2 (en) Battery separator
Wang et al. Novel microporous poly (vinylidene fluoride) blend electrolytes for lithium‐ion batteries
JP4931163B2 (en) Polyolefin microporous membrane
WO2004089627A1 (en) Polyolefin microporous membrane
EP1698656A1 (en) Microporous membrane made from polyolefin
KR102622533B1 (en) Polyolefin microporous membrane, battery separator and secondary battery
EP0814117A1 (en) Microporous polyethylene film and process for producing the film
CN101510596A (en) Separator, method for manufacturing separator, and nonaqueous electrolyte battery
CN101568575A (en) Polyolefin microporous membrane
CN103222087A (en) Separator for nonaqueous electrolyte batteries, and nonaqueous electrolyte secondary battery
KR20200106880A (en) Polyolefin microporous membrane
KR20200123407A (en) Porous polyolefin film
EP1113510B1 (en) Microporous film
WO1997044839A1 (en) Porous film and separator for batteries comprising porous film
JP4964565B2 (en) Polyethylene microporous membrane
JP5235484B2 (en) Polyolefin microporous membrane
JP2008106237A (en) Polyolefin microporous membrane
JP5511329B2 (en) Polyolefin microporous membrane
JP4220329B2 (en) Polyolefin microporous membrane and method for producing the same
JP5235324B2 (en) Polyolefin microporous membrane
JPH0277108A (en) Electrolyte separator
JP2000204188A (en) Finely porous membrane of polyethylene