JPH1114357A - Automatic tracking device of surveying equipment - Google Patents
Automatic tracking device of surveying equipmentInfo
- Publication number
- JPH1114357A JPH1114357A JP9164468A JP16446897A JPH1114357A JP H1114357 A JPH1114357 A JP H1114357A JP 9164468 A JP9164468 A JP 9164468A JP 16446897 A JP16446897 A JP 16446897A JP H1114357 A JPH1114357 A JP H1114357A
- Authority
- JP
- Japan
- Prior art keywords
- light
- surveying
- surveying instrument
- image
- light receiving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 33
- 238000001514 detection method Methods 0.000 claims description 28
- 238000006243 chemical reaction Methods 0.000 claims description 25
- 239000013307 optical fiber Substances 0.000 claims description 12
- 239000004065 semiconductor Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Landscapes
- Measurement Of Optical Distance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、移動あるいは静止
している測量対象に望遠鏡の光軸を一致させるようにし
た測量機の自動追尾装置に関し、特に上記測量対象から
放射される位置検出用の特徴光を受光して、その受光位
置に基づいて上記測量対象の位置を正確に検出するよう
にした光学式位置検出の技術分野に属する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic tracking device of a surveying instrument in which the optical axis of a telescope coincides with a moving or stationary surveying object, and in particular, for detecting a position radiated from the surveying object. The present invention belongs to the technical field of optical position detection in which characteristic light is received and the position of the survey target is accurately detected based on the light receiving position.
【0002】[0002]
【従来の技術】従来より、この種の測量機の自動追尾装
置では、測量対象に対し位置検出用の特徴光を投射して
該測量対象に配設された反射プリズムにより反射させ、
この反射光を光電変換パネル等からなる受光手段により
受光して、受光像の中心点と望遠鏡の光軸とが一致する
ように該望遠鏡を含む測量機本体の姿勢を変化させるよ
うにしている。また、測量対象に投光手段を取付けて該
投光手段から投射される特徴光を受光するようにしたも
のもある。2. Description of the Related Art Conventionally, in an automatic tracking device of a surveying instrument of this kind, a characteristic light for position detection is projected on a surveying object and reflected by a reflecting prism disposed on the surveying object.
The reflected light is received by a light receiving means such as a photoelectric conversion panel, and the attitude of the surveying instrument body including the telescope is changed so that the center point of the received image coincides with the optical axis of the telescope. Further, there is also an apparatus in which a light projecting means is attached to a surveying object to receive characteristic light projected from the light projecting means.
【0003】そして、受光像の中心点を望遠鏡の光軸と
一致させるためには、例えば特開平6−347270号
公報に開示されるように、上下左右に4分割された受光
面を有する受光素子を用いたものや、特開平7−198
383号公報に開示されるようにCCDエリアセンサ等
を用いたものが知られている。すなわち、4分割受光素
子を用いたものでは、受光面を望遠鏡の光軸位置に対応
する中央位置の周りに上下左右に4分割しておいて、そ
れらの各分割面における受光量差に基づいて受光像の中
心点を検出し、該中心点が上記受光面の中央位置に位置
付けられるように測量機本体の姿勢を変化させる。ま
た、CCDエリアセンサを用いたものでは、測量対象の
像を画像データとして取込んで、該像の中心点のアドレ
スと望遠鏡の光軸位置に対応するCCDエリアセンサの
中心位置のアドレスとの偏差を演算し、そしてその偏差
に応じて測量機本体の姿勢を変化させるようにしてい
る。In order to make the center point of the received image coincide with the optical axis of the telescope, for example, as disclosed in Japanese Patent Application Laid-Open No. 6-347270, a light receiving element having a light receiving surface divided into four parts in the vertical and horizontal directions is disclosed. And JP-A-7-198.
As disclosed in Japanese Patent No. 383, a device using a CCD area sensor or the like is known. That is, in the case of using the four-division light receiving element, the light receiving surface is divided into four parts around the center position corresponding to the optical axis position of the telescope up, down, left and right, and based on the difference in the amount of received light in each divided plane The center point of the received light image is detected, and the attitude of the surveying instrument body is changed so that the center point is located at the center position of the light receiving surface. In the case of using a CCD area sensor, an image of the object to be measured is fetched as image data, and the deviation between the address of the center point of the image and the address of the center position of the CCD area sensor corresponding to the optical axis position of the telescope. Is calculated, and the attitude of the surveying instrument body is changed according to the deviation.
【0004】[0004]
【発明が解決しようとする課題】ところが、前者の従来
技術の如く4分割受光素子を用いた場合には、測量機と
測量対象との間の距離が変化して受光像の大きさが変化
したときに、上記4分割受光素子の中央位置と受光像の
中心点との偏差量が等しくても各分割面における受光量
差が変化してしまい、この結果、測量機と測量対象との
間の距離の変化に起因して測量対象の追尾精度に変動が
生じるという不具合がある。However, when the four-division light receiving element is used as in the former prior art, the distance between the surveying instrument and the surveying object changes, and the size of the light receiving image changes. Sometimes, even if the deviation amount between the center position of the four-divided light receiving element and the center point of the received light image is equal, the difference in the amount of received light on each divided surface changes. As a result, the distance between the surveying instrument and the surveying object There is a problem that the tracking accuracy of the survey target varies due to the change in the distance.
【0005】一方、後者のCCDエリアセンサを用いた
場合には、一般にCCDエリアセンサの画像取込み周期
が約1/60秒であることから、これよりも短い時間間
隔で位置検出を行い得ず、その上、CCDエリアセンサ
のエリア全体にわたる画像処理量が膨大なものであるの
で、画像処理演算に時間がかかってしまい、このため、
高速の自動追尾が困難になるという不具合がある。尚、
専用の高速画像処理装置を用いることも考えられるが、
この場合には装置の大型化やコスト増大化の弊害が著し
い。On the other hand, when the latter CCD area sensor is used, the position detection cannot be performed at a shorter time interval since the image capturing cycle of the CCD area sensor is generally about 1/60 second. In addition, since the amount of image processing over the entire area of the CCD area sensor is enormous, it takes time to perform image processing calculations.
There is a problem that high-speed automatic tracking becomes difficult. still,
It is conceivable to use a dedicated high-speed image processing device,
In this case, the adverse effects of an increase in the size of the apparatus and an increase in cost are remarkable.
【0006】加えて、上記従来の測量機の自動追尾装置
においては、測量対象が遠く離れるに従い投光手段から
投射される光が拡がって単位面積あたりの光量が小さく
なることから、位置検出に必要な十分な光量を確保する
ために、遠距離の測量対象を追尾する場合には投光手段
から投射する光の拡がり角を比較的狭くするようにして
いる。しかしこの場合には、測量対象からの反射光量は
十分に大きくできるものの光の投射範囲が比較的狭くな
るので、測量対象を見失い易くなるという不具合があ
る。In addition, in the above-mentioned conventional automatic tracking device of a surveying instrument, since the light projected from the light projecting means spreads and the amount of light per unit area decreases as the object to be measured is far away, it is necessary for position detection. In order to ensure a sufficient light quantity, when tracking a surveying object at a long distance, the spread angle of the light projected from the light projecting means is made relatively narrow. However, in this case, although the amount of reflected light from the survey target can be sufficiently increased, the projection range of the light is relatively narrow, so that there is a disadvantage that the survey target is easily lost.
【0007】本発明は斯かる諸点に鑑みてなされたもの
であり、その目的とするところは、受光手段の構成に工
夫を凝らすことで、測量対象までの距離が変化しても追
尾精度が変動しないようにするとともに、高速の追尾を
行い得るようにすることにある。The present invention has been made in view of the above-mentioned points, and an object of the present invention is to improve the accuracy of tracking even when the distance to the object to be surveyed changes by devising the structure of the light receiving means. And to enable high-speed tracking.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するため
に、本発明の解決手段では、受光手段において、長手方
向に並設された多数の受光部を有する2つの光電変換手
段を互いに交差する2方向に延びるように配設し、それ
ぞれの光電変換手段における受光位置に基づいて上記2
方向について受光像の中心点を検出するようにした。In order to achieve the above object, according to a solution of the present invention, in a light receiving means, two photoelectric conversion means having a large number of light receiving portions arranged in a longitudinal direction cross each other. Are disposed so as to extend in two directions.
The center point of the received light image is detected in the direction.
【0009】具体的には、請求項1記載の発明は、測量
対象から放射される位置検出用特徴光の像が対物レンズ
により結像される受光手段と、測量機本体の姿勢を変化
させる駆動手段とを備え、上記受光手段に結像される測
量対象の像の中心点が上記対物レンズの光軸上に位置す
るように、上記受光手段からの出力信号に基づいて駆動
手段を作動制御するようにした測量機の自動追尾装置を
対象とする。そして、上記受光手段は、上記対物レンズ
の光軸方向に直交する第1の設定方向に延びるように並
設された多数の受光部を有する第1の光電変換手段と、
上記対物レンズの光軸方向に直交しかつ上記第1の設定
方向と交差する第2の設定方向に延びるように並設され
た多数の受光部を有する第2の光電変換手段とを備える
構成とした。More specifically, the invention according to claim 1 is a light receiving means for forming an image of the characteristic light for position detection radiated from an object to be surveyed by an objective lens, and a drive for changing the attitude of the body of the surveying instrument. Means for controlling the operation of the driving means based on the output signal from the light receiving means so that the center point of the image of the survey object formed on the light receiving means is located on the optical axis of the objective lens. The automatic tracking device of the surveying instrument thus configured is targeted. A first photoelectric conversion unit having a plurality of light receiving units arranged in parallel so as to extend in a first setting direction orthogonal to the optical axis direction of the objective lens;
A second photoelectric conversion unit having a plurality of light receiving units arranged in parallel so as to extend in a second setting direction orthogonal to the optical axis direction of the objective lens and intersecting the first setting direction; did.
【0010】この構成によれば、測量対象からの特徴光
が第1及び第2の光電変換手段に受光され、その受光位
置に基づいて第1及び第2の設定方向に関する上記測量
対象の像の中心点位置が検出される。すなわち、上記第
1の光電変換手段において特徴光を受光している受光部
の範囲の中央位置が、上記測量対象の像の中心点の第1
の設定方向に関する位置として検出される。同様に上記
第2の光電変換手段において、上記測量対象の像の中心
点の第2の設定方向に関する位置が検出される。そし
て、互いに交差する第1及び第2の設定方向のそれぞれ
に関する像の中心点位置が検出されれば、該像の中心点
を特定して光軸位置との偏差を正確に求めることがで
き、この偏差に基づいて駆動手段により測量機本体の姿
勢を変化させることによって、上記測量対象を正確に追
尾することができる。According to this structure, the characteristic light from the object to be measured is received by the first and second photoelectric conversion means, and the image of the object to be measured in the first and second set directions is received based on the light receiving positions. The center point position is detected. That is, the center position of the range of the light receiving section that receives the characteristic light in the first photoelectric conversion unit is the first position of the center point of the image of the survey target.
Is detected as a position with respect to the set direction. Similarly, the second photoelectric conversion means detects the position of the center point of the image to be measured in the second set direction. Then, if the center point position of the image in each of the first and second set directions intersecting with each other is detected, the center point of the image can be specified and the deviation from the optical axis position can be obtained accurately, By changing the attitude of the surveying instrument main body by the driving means based on this deviation, the object to be surveyed can be accurately tracked.
【0011】その際、測量機と測量対象との間の距離が
変化して測量対象の像の大きさが変化したときでも、該
像の中心点を正確に検出することができるため追尾精度
の変動を防止することができる。また、第1及び第2の
光電変換手段における多数の受光部はそれぞれ第1及び
第2の設定方向にのみ並設されていればよいので、例え
ばCCDエリアセンサ等に比べて受光部の数は格段に少
なくて済む。このため、上記測量対象の像の中心点位置
を求めるときに、不要な情報を著しく減少させて位置検
出のための演算処理量を格段に少なくさせることができ
る。よって、比較的小規模の演算処理装置を用いても、
位置検出のための時間を短縮することができ、これに伴
い追尾動作の高速化を図ることができる。At this time, even when the distance between the surveying instrument and the surveying object changes and the size of the image of the surveying object changes, the center point of the image can be accurately detected. Fluctuations can be prevented. Also, since a large number of light receiving portions in the first and second photoelectric conversion means need only be arranged in the first and second setting directions, respectively, the number of light receiving portions is smaller than that of, for example, a CCD area sensor. Significantly less. For this reason, when obtaining the center point position of the image to be measured, unnecessary information can be significantly reduced, and the amount of calculation processing for position detection can be significantly reduced. Therefore, even if a relatively small processing unit is used,
The time for position detection can be shortened, and accordingly, the tracking operation can be speeded up.
【0012】請求項2記載の発明は、測量対象から放射
される位置検出用特徴光の像が対物レンズにより結像さ
れる受光手段と、測量機本体の姿勢を変化させる駆動手
段とを備え、上記受光手段に結像される測量対象の像の
中心点が上記対物レンズの光軸上に位置するように、上
記受光手段からの出力信号に基づいて駆動手段を作動制
御するようにした測量機の自動追尾装置を対象とする。
そして、上記受光手段は、上記対物レンズからの光の一
部を透過させる一方、残りを反射させるビームスプリッ
タと、該ビームスプリッタからの透過光を受光する位置
に設けられ、該透過光の光軸方向に直交する第1の設定
方向に延びるように並設された多数の受光部を有する第
1の光電変換手段と、上記ビームスプリッタからの反射
光を受光する位置に設けられ、該反射光の光軸方向に直
交しかつ上記第1の設定方向と交差する第2の設定方向
に延びるように並設された多数の受光部を有する第2の
光電変換手段とを備える構成とした。According to a second aspect of the present invention, there is provided a light receiving means for forming an image of the characteristic light for position detection emitted from the object to be measured by an objective lens, and a driving means for changing a posture of the surveying instrument main body, A surveying instrument that operates and controls a driving unit based on an output signal from the light receiving unit so that a center point of an image of a survey target formed on the light receiving unit is located on an optical axis of the objective lens. For automatic tracking devices.
The light receiving means is provided at a position for receiving a transmitted light from the beam splitter and a beam splitter for transmitting a part of the light from the objective lens and reflecting the remaining light, and an optical axis of the transmitted light. A first photoelectric conversion unit having a number of light receiving units arranged side by side so as to extend in a first setting direction orthogonal to the first direction, and provided at a position for receiving reflected light from the beam splitter; Second photoelectric conversion means having a large number of light receiving portions arranged side by side so as to extend in a second setting direction orthogonal to the optical axis direction and intersecting the first setting direction.
【0013】この構成によれば、請求項1記載の発明と
同様、測量対象の像の中心点位置を特定して光軸位置と
の偏差を正確に求めることができ、この偏差に基づいて
駆動手段を制御することで上記測量対象を正確に追尾す
ることができる。その際、測量機と測量対象との間の距
離が変化しても追尾精度の変動を防止することができ、
また、比較的小規模の演算処理装置を用いて高速の追尾
を行うことができる。According to this configuration, similarly to the first aspect of the present invention, it is possible to specify the center point position of the image of the object to be surveyed and accurately determine the deviation from the optical axis position, and drive based on this deviation. By controlling the means, it is possible to accurately track the survey target. At that time, even if the distance between the surveying instrument and the surveying object changes, it is possible to prevent a change in tracking accuracy,
Further, high-speed tracking can be performed using a relatively small-scale arithmetic processing device.
【0014】加えて、対物レンズからの光をビームスプ
リッタにより分割して、それぞれ異なる箇所に配置した
第1及び第2の光電変換手段に別々に入射させるように
しているため、該2つの光電変換手段の配置の自由度が
向上する。In addition, since the light from the objective lens is split by the beam splitter and separately incident on the first and second photoelectric conversion means arranged at different positions, the two photoelectric conversions are performed. The degree of freedom of arrangement of the means is improved.
【0015】請求項3記載の発明では、請求項1又は請
求項2記載の発明における第1及び第2の設定方向が互
いに直交している。In the third aspect of the present invention, the first and second setting directions in the first or second aspect of the invention are orthogonal to each other.
【0016】このことで、測量対象の像の中心点位置が
上記第1及び第2の設定方向に関して検出されれば、こ
の検出結果から直接的に上記測量対象の像の中心点位置
を求めることができる。よって、位置検出のための演算
処理の容易化が図られる。In this way, if the center point position of the image of the object to be surveyed is detected in the first and second set directions, the center point position of the image of the object to be measured is directly obtained from the detection result. Can be. Therefore, the arithmetic processing for position detection is facilitated.
【0017】請求項4記載の発明では、請求項3記載の
発明における第1及び第2の光電変換手段としてCCD
ラインセンサを用いることにより、比較的低コストで高
い検出精度が得られる。According to a fourth aspect of the present invention, the first and second photoelectric conversion means in the third aspect of the present invention comprise a CCD.
By using a line sensor, high detection accuracy can be obtained at relatively low cost.
【0018】請求項5記載の発明では、請求項3記載に
発明において、測量対象に対し光を投射する投光手段
と、上記測量対象に配設されて上記投光手段から投射さ
れる光を反射する光線反射器とを備え、受光手段は上記
光線反射器により反射された光を位置検出用特徴光とし
て受光する構成とした。According to a fifth aspect of the present invention, in the third aspect of the present invention, the light projecting means for projecting the light to the object to be surveyed, and the light arranged on the object to be surveyed and projected from the light projecting means is provided. A light reflector for reflecting light, and the light receiving means receives the light reflected by the light reflector as characteristic light for position detection.
【0019】この構成では、投光手段から投射された光
が光線反射器により反射されて、位置検出用特徴光とし
て測量対象から放射されるようになる。すなわち、測量
対象には光線反射器を設けるだけでよく、発光手段を設
ける必要がないので、システムの構成が簡易なものにな
る。なお、光線反射器としては例えば反射プリズムを用
いればよい。In this configuration, the light projected from the light projecting means is reflected by the light beam reflector and emitted from the object to be surveyed as characteristic light for position detection. That is, it is only necessary to provide a light reflector on the object to be surveyed, and there is no need to provide a light emitting means, so that the configuration of the system is simplified. Note that, for example, a reflection prism may be used as the light reflector.
【0020】請求項6記載の発明では、請求項5記載の
発明における投光手段は、互いに直交する第1及び第2
の設定方向にそれぞれ偏って拡がるように光を投射する
2つの投光器を備え、測量対象に対し対物レンズの光軸
に沿って光を投射する構成とした。According to a sixth aspect of the present invention, the light projecting means according to the fifth aspect of the present invention comprises a first and a second orthogonal light emitting means.
And two light projectors for projecting light so as to be biased and spread in the set directions, respectively, and project the light along the optical axis of the objective lens to the object to be measured.
【0021】すなわち、2つの投光器から投射される光
は対物レンズの光軸に沿って投射され、互いに直交する
第1又は第2の設定方向にそれぞれ偏って拡がって十文
字状に投射される。このため、全方向に均一に拡がるよ
うに投射される場合に比べて実際の投光範囲は狭くなる
ものの、その分、単位面積あたりの光量を高めることが
できる。しかも、上記第1及び第2の設定方向に関して
は、それぞれ狭いながらも十分な長さの投光範囲が確保
され、光の投射範囲は実質的に大きな外径を有するもの
になる。従って、本発明では、測量対象に投射する光の
投射範囲を実質的に狭くすることなく単位面積あたりの
光量を十分に高めることができ、これにより測量対象を
検出し易くかつ見失い難くすることができる。That is, the light projected from the two projectors is projected along the optical axis of the objective lens, spreads in a first or second set direction orthogonal to each other, and is projected in a cross shape. For this reason, although the actual light projection range is narrower than when the light is projected so as to spread uniformly in all directions, the light amount per unit area can be increased accordingly. In addition, in the first and second setting directions, a light projection range having a small length but a sufficient length is secured, and the light projection range has a substantially large outer diameter. Therefore, in the present invention, it is possible to sufficiently increase the amount of light per unit area without substantially narrowing the projection range of the light projected onto the surveying target, thereby making it easy to detect the surveying target and to make it difficult to lose sight. it can.
【0022】請求項7記載の発明では、請求項6記載の
発明における各投光器は、一端部が発光源に接続されか
つ他端部がそれぞれ第1及び第2の設定方向に並設され
た光ファイバの束を備えていて、上記発光源で発生した
光をそれぞれ上記光ファイバの他端部から投射する構成
とした。According to a seventh aspect of the present invention, in each of the light emitting devices according to the sixth aspect of the present invention, each of the light emitters has one end connected to the light emitting source and the other end arranged in the first and second set directions, respectively. A configuration is provided in which a bundle of fibers is provided, and light generated by the light emitting source is projected from the other end of the optical fiber.
【0023】この構成では、請求項6記載の発明におけ
る各投光器の構成が具体的に特定され、発光源で発生し
た光が光ファイバを介してそれぞれ第1及び第2の設定
方向に偏って拡がるように投射される。すなわち、光フ
ァイバを用いることで発光源からの光の投射方向を容易
に設定することができ、しかも発光源の配置の自由度が
向上してこれに伴い投光手段のコンパクト化が可能にな
る。In this configuration, the configuration of each projector according to the sixth aspect of the present invention is specifically specified, and the light generated by the light emitting source is biased and spread in the first and second setting directions via the optical fiber. Projected. That is, by using the optical fiber, the projection direction of the light from the light emitting source can be easily set, and the degree of freedom of the arrangement of the light emitting source is improved, so that the light emitting means can be made more compact. .
【0024】請求項8記載の発明では、請求項3〜請求
項7のいづれか1つに記載の発明における第1及び第2
の設定方向は、それぞれ鉛直方向及び水平方向に設定し
た。そして、駆動手段は、測量機本体を鉛直軸及び水平
軸の回りにそれぞれ回転作動させる構成とした。According to an eighth aspect of the present invention, the first and second aspects of the invention according to any one of the third to seventh aspects are provided.
Are set in the vertical direction and the horizontal direction, respectively. The driving means rotates the surveying instrument body about the vertical axis and the horizontal axis, respectively.
【0025】この構成では、請求項3〜請求項7記載の
発明における第1及び第2の設定方向が、それぞれ鉛直
方向及び水平方向に特定される。そして、この各方向に
ついて検出された測量対象の像の中心点位置に基づい
て、駆動手段により測量機本体が鉛直軸及び水平軸の回
りにそれぞれ回転作動されて測量対象を追尾するように
なる。すなわち、第1及び第2の光電変換手段により検
出される測量対象の像の中心点位置から、直接的に、駆
動手段による測量機本体の回転作動量が求められるよう
になる。よって、追尾作動における駆動手段の制御の容
易化が図られ、これに伴い追尾の高速化が可能になる。With this configuration, the first and second set directions in the inventions of claims 3 to 7 are specified in the vertical direction and the horizontal direction, respectively. Then, based on the position of the center point of the image of the surveying object detected in each of these directions, the surveying instrument body is rotated around the vertical axis and the horizontal axis by the driving means, respectively, to track the surveying object. That is, the amount of rotation of the surveying instrument main body by the driving means can be directly obtained from the center point position of the image of the surveying object detected by the first and second photoelectric conversion means. Therefore, the control of the driving means in the tracking operation is facilitated, and accordingly, the tracking can be speeded up.
【0026】また、投光手段から投射される十文字状の
光は鉛直方向及び水平方向にそれぞれ偏って拡がるよう
になるため、投光手段を測量機本体と一体に配設して鉛
直軸又は水平軸の回りに旋回させるようにすれば、投射
光の投光範囲を容易に極めて広いものとすることができ
る。Further, since the cross-shaped light projected from the light projecting means spreads out in the vertical and horizontal directions, respectively, the light projecting means is disposed integrally with the surveying instrument main body and the vertical axis or horizontal By turning around the axis, the projection range of the projection light can be easily made extremely wide.
【0027】[0027]
【発明の実施の形態】以下、本発明の実施形態を図面に
基いて説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0028】図1は本発明に係る自動追尾システムを備
えた測量機1を示す。この測量機1は、三脚11により
測量原点位置に水平に支持された下盤12を備える。こ
の下盤12の上方には水平盤13が鉛直軸y回りに旋回
可能に配設され、該水平盤13の上方には、測量機本体
部15が左右一対の支柱14,14により水平軸x回り
に回転可能に支持されている。そして、この測量機本体
部15は後述の如く測量対象2を自動的に追尾するとと
もに、該測量対象2の上記測量原点位置に対する相対位
置を計測するものである。なお16はオペレータによる
視準用の望遠鏡である。FIG. 1 shows a surveying instrument 1 provided with an automatic tracking system according to the present invention. The surveying instrument 1 includes a lower board 12 horizontally supported by a tripod 11 at a survey origin position. Above the lower plate 12, a horizontal plate 13 is disposed so as to be rotatable around a vertical axis y. Above the horizontal plate 13, a surveying instrument main body 15 is formed by a pair of right and left supports 14, 14, and a horizontal axis x. It is supported so that it can rotate around. The surveying instrument body section 15 automatically tracks the surveying target 2 as described later, and measures the relative position of the surveying target 2 with respect to the above-mentioned surveying origin position. Reference numeral 16 denotes a telescope for collimation by an operator.
【0029】また図2は上記測量機本体部15に設けら
れた位置検出用の光学系を示し、3は測量対象2に対し
位置検出用の特徴光を投射する投光手段、4は該測量対
象2に配設された光線反射器としての反射プリズム21
からの反射光を結像させる対物レンズ、5はこの対物レ
ンズ4からの光を受光して上記測量対象2の像2aの中
心点Cを検出するための受光手段である。そして、該受
光手段5からの入力信号を受けたコントローラ6により
駆動手段としての駆動用モータ61,62が作動され
て、上記測量機本体15が水平軸x及び鉛直軸yの回り
に回転されるるようになっている。FIG. 2 shows an optical system for position detection provided in the surveying instrument main body 15. Reference numeral 3 denotes light projecting means for projecting characteristic light for position detection onto the object 2 to be measured. Reflecting prism 21 as a light beam reflector disposed on object 2
An objective lens 5 for forming an image of reflected light from the objective lens 5 is a light receiving means for receiving the light from the objective lens 4 and detecting the center point C of the image 2a of the survey target 2. Then, driving motors 61 and 62 as driving means are operated by the controller 6 receiving the input signal from the light receiving means 5, and the surveying instrument main body 15 is rotated around the horizontal axis x and the vertical axis y. It has become.
【0030】上記投光手段3は、図示しない発光源とし
ての半導体レーザ装置により発生されたパルス光を、第
1の設定方向としての上下方向(y方向)、及び第2の
設定方向としての水平方向(x方向)にそれぞれ偏って
拡がるように投射するようになっている。すなわち、上
記投光手段3は、一端部が上記半導体レーザ装置に接続
される一方、他端部が図3に示すように上下方向及び水
平方向にそれぞれ並設された光ファイバ31,31,…
の束を備えている。そして、上記半導体レーザ装置で発
生したパルス光は、各光ファイバ31,31,…の他端
部から投射されて、上下左右に十文字状に拡がりつつハ
ーフミラー34により反射され、対物レンズ4により絞
られて所定の拡がり角とされて、該対物レンズ4の光軸
Lに沿って測量対象2に対し投射される。このように光
ファイバ31,31,…を用いた構成とすることで、光
の投射方向の設定が容易になり、また半導体レーザ装置
の配置の自由度が向上して、これに伴い投光手段3がコ
ンパクトな構成とされている。The light projecting means 3 converts the pulse light generated by the semiconductor laser device (not shown) into a vertical direction (y direction) as a first setting direction and a horizontal direction as a second setting direction. The projection is performed so as to be biased and spread in the direction (x direction). That is, the light projecting means 3 has one end connected to the semiconductor laser device, and the other end arranged in the vertical and horizontal directions as shown in FIG.
With a bunch of. The pulse light generated by the semiconductor laser device is projected from the other end of each of the optical fibers 31, 31,... Then, the divergence angle is set to a predetermined divergence angle, and is projected onto the survey target 2 along the optical axis L of the objective lens 4. With such a configuration using the optical fibers 31, 31,..., The setting of the light projection direction is facilitated, and the degree of freedom in the arrangement of the semiconductor laser device is improved. 3 has a compact configuration.
【0031】上記受光手段5は、対物レンズ4により集
光された光の像が凹レンズ41を介して結像されるもの
であり、上記対物レンズ4からの光の略50%を透過さ
せる一方、残りの略50%を反射させるビームスプリッ
タ51と、上記ビームスプリッタ51からの透過光を受
光する位置に上下方向に配置された第1の光電変換手段
としての第1CCDラインセンサ52と、上記ビームス
プリッタ51からの反射光を受光する位置に水平方向に
配置された第2の光電変換手段としての第2CCDライ
ンセンサ53とを備えている。このように対物レンズ4
からの光をビームスプリッタ51により分割して、別々
に配置された第1及び第2の2つのCCDラインセンサ
52,53に入射させる構成とすることで、該2つのC
CDラインセンサ52,53の配置の自由度が向上して
いる。なお、54,55は、それぞれ半導体レーザ装置
51で発生されるパルス光を含む特定波長領域の光のみ
を透過させる光学フィルタである。The light receiving means 5 forms an image of the light condensed by the objective lens 4 via the concave lens 41, and transmits approximately 50% of the light from the objective lens 4 while A beam splitter 51 for reflecting the remaining approximately 50%, a first CCD line sensor 52 as first photoelectric conversion means vertically arranged at a position for receiving the transmitted light from the beam splitter 51, and the beam splitter A second CCD line sensor 53 as second photoelectric conversion means is provided at a position where the reflected light from the light receiving section 51 is received. Thus, the objective lens 4
Is split by the beam splitter 51 and made incident on the first and second two CCD line sensors 52 and 53 which are separately arranged.
The degree of freedom in the arrangement of the CD line sensors 52 and 53 is improved. Reference numerals 54 and 55 denote optical filters that transmit only light in a specific wavelength region including pulsed light generated by the semiconductor laser device 51.
【0032】上記第1CCDラインセンサ52は、図4
に示すように、ビームスプリッタ51からの透過光の光
軸Lに対応する基準受光位置S1 を通って上下方向(y
方向)に延びるように配置されており、上下方向に例え
ば8ミクロン刻みで並設された多数の受光部としての受
光セルを有する受光面52aにより、測量対象2の像2
aの上下方向位置を高精度に検出する。すなわち、上記
第1CCDラインセンサ52の受光面52aは、投光手
段3における上下方向に配設された光ファイバ31,3
1,…から投射されたパルス光を受光する。そして測量
対象2の像2aに対応する受光範囲(同図に斜線で示す
範囲)の各受光セルのアドレスがコントローラ6に対し
て出力され、この信号入力を受けたコントローラ6によ
り、それらの受光セルのうちの中央の受光セルのアドレ
スが上記像2aの中心点Cの上下方向に関する位置とし
て高精度に検出される。The first CCD line sensor 52 is provided as shown in FIG.
As shown in the figure, the reference light receiving position S1 corresponding to the optical axis L of the transmitted light from the beam splitter 51 passes through the reference
Direction), and a light receiving surface 52a having a large number of light receiving cells as light receiving portions arranged in the vertical direction at intervals of, for example, 8 μm.
The vertical position of “a” is detected with high accuracy. That is, the light receiving surface 52 a of the first CCD line sensor 52 is connected to the optical fibers 31, 3 arranged vertically in the light projecting means 3.
The pulse light projected from 1,... Is received. Then, the address of each light receiving cell in the light receiving range (the area shown by hatching in the figure) corresponding to the image 2a of the survey target 2 is output to the controller 6, and the controller 6 receiving this signal inputs the light receiving cell. Of these, the address of the central light receiving cell is detected with high accuracy as the position in the vertical direction of the center point C of the image 2a.
【0033】同様に上記第2CCDラインセンサ53
は、図5に示すように、ビームスプリッタ51からの反
射光の光軸に対応する基準受光位置S2 を通って水平方
向(x方向)に延びるように配置され、受光面53aに
より測量対象2の像2aの水平方向位置を検出する。そ
して、該第2CCDラインセンサ52からの出力信号に
基づいて上記像2aの中心点Cの水平方向位置が高精度
に検出される。Similarly, the second CCD line sensor 53
Are arranged so as to extend in the horizontal direction (x direction) through a reference light receiving position S2 corresponding to the optical axis of the reflected light from the beam splitter 51, as shown in FIG. The horizontal position of the image 2a is detected. Then, the horizontal position of the center point C of the image 2a is detected with high accuracy based on the output signal from the second CCD line sensor 52.
【0034】また測量対象2が遠ざかったときには、測
量機1との距離に応じて測量対象2の像2aの外径は小
さくなるが、該像2aの中心点Cは、図6及び図7に示
すように測量機1と測量対象2との間の距離の変化に関
係なく高精度に検出される。When the surveying object 2 moves away, the outer diameter of the image 2a of the surveying object 2 decreases according to the distance from the surveying instrument 1. The center point C of the image 2a is shown in FIGS. As shown, the detection is performed with high accuracy irrespective of a change in the distance between the surveying instrument 1 and the survey target 2.
【0035】なお、上記第1及び第2CCDラインセン
サ52,53における電荷の充放電のタイミングは、パ
ルス光の発光のタイミングに同期するように制御されて
おり、このことで上記第1及び第2CCDラインセンサ
52,53に対するパルス光以外の外光の入射を低減さ
せて、パルス光のS/N比を向上させるようにしてい
る。The charge and discharge timings of the first and second CCD line sensors 52 and 53 are controlled so as to be synchronized with the emission timing of the pulsed light, whereby the first and second CCD line sensors 52 and 53 are controlled. The incidence of external light other than the pulse light on the line sensors 52 and 53 is reduced to improve the S / N ratio of the pulse light.
【0036】そして、コントローラ6は、上記第1及び
第2の2つのCCDラインセンサ52,53からの出力
信号を受けて、基準受光位置S1,S2 に対する測量対象
2の像2aの中心点Cの上下方向及び水平方向に関する
偏差量を演算し、該偏差量が零になるように駆動モータ
61,62の作動を制御する。これにより、測量機本体
部15が水平軸x及び鉛直軸yの回りに回転されて、上
記測量対象2の像2aの中心点Cが基準受光位置S1 ,
S2 に位置するようになる。つまり、測量対象2が対物
レンズ4の光軸Lの延長線上に位置づけられるように、
測量機本体部15の姿勢が変更される。The controller 6 receives the output signals from the first and second CCD line sensors 52 and 53 and determines the center point C of the image 2a of the survey target 2 with respect to the reference light receiving positions S1 and S2. The amount of deviation in the vertical and horizontal directions is calculated, and the operation of the drive motors 61 and 62 is controlled so that the amount of deviation becomes zero. As a result, the surveying instrument body 15 is rotated around the horizontal axis x and the vertical axis y, and the center point C of the image 2a of the survey target 2 is set at the reference light receiving position S1,.
It will be located at S2. That is, the survey target 2 is positioned on an extension of the optical axis L of the objective lens 4,
The attitude of the surveying instrument body 15 is changed.
【0037】次に、上記実施形態に係る測量機1を用い
た測量作業の手順に沿って、自動追尾装置の作動及びそ
の作用効果を説明する。Next, the operation of the automatic tracking device and the operation and effect thereof will be described along the procedure of the surveying operation using the surveying instrument 1 according to the above embodiment.
【0038】上記測量機1を用いて測量対象2の位置計
測を行うときには、まず、反射プリズム21を配設した
測量対象2を視認し得る場所に測量原点位置を定め、こ
の測量原点位置に測量機1を設置する。そして、視準用
望遠鏡16の視野内に上記測量対象2の反射プリズム2
aが認められるように測量機本体15の方向を概略設定
し、その後自動追尾装置を作動させて投光手段3からパ
ルス光を投射する。When measuring the position of the surveying object 2 using the surveying instrument 1, first, a surveying origin position is determined at a place where the surveying object 2 provided with the reflecting prism 21 can be visually recognized, and the surveying origin position is determined at the surveying origin position. Machine 1 is installed. Then, the reflection prism 2 of the survey target 2 is set in the visual field of the collimating telescope 16.
The direction of the surveying instrument main body 15 is roughly set so that a is recognized, and then the automatic tracking device is operated to project pulse light from the light projecting means 3.
【0039】すなわち、半導体レーザ装置31で発生し
たパルス光が対物レンズ4を介して測量対象2に対し投
射される。その際、上記パルス光が上下左右にそれぞれ
偏って十文字状に拡がるため、全方向に均一に拡がる場
合に比べて実際の投光範囲は狭くなるものの、その分、
単位面積あたりの光量を高めることができる。しかも、
上下方向又は水平方向に関してそれぞれ狭いながらも十
分に長い投光範囲が確保される。つまり、測量対象2に
投射する光の投射範囲を実質的に狭くすることなく単位
面積あたりの光量を十分に高めることができる。よっ
て、測量対象2を検出し易くかつ見失い難いものにする
ことができる。That is, the pulse light generated by the semiconductor laser device 31 is projected onto the survey target 2 via the objective lens 4. At this time, since the pulse light is spread in a cross shape deviating up, down, left, and right, respectively, the actual light projection range is narrower than in the case where the pulse light is spread uniformly in all directions.
The amount of light per unit area can be increased. Moreover,
A sufficiently long light projection range is secured in each of the vertical and horizontal directions. That is, the light amount per unit area can be sufficiently increased without substantially narrowing the projection range of the light projected onto the survey target 2. Thus, the survey target 2 can be easily detected and hardly lost.
【0040】そして、反射プリズム21で反射されて返
ってきたパルス光は、対物レンズ4で集光されて受光手
段5により受光される。すなわち、上記対物レンズ4に
より集光された光はビームスプリッタ51により透過光
と反射光とに分割され、それぞれ第1又は第2CCDラ
インセンサ52,53の受光面52a,53aに入射す
る(図4〜図7参照)。そして、第1及び第2CCDラ
インセンサ52,53からの出力信号に基づいて測量対
象2の像2aの中心点Cの上下方向及び水平方向に関す
る位置がそれぞれ検出され、上記像2aの中心点Cと基
準受光位置S1,S2 との、上下方向及び水平方向の偏
差が正確にかつ直接的に演算される。The pulse light reflected and reflected by the reflecting prism 21 is condensed by the objective lens 4 and received by the light receiving means 5. That is, the light condensed by the objective lens 4 is split into transmitted light and reflected light by the beam splitter 51, and enters the light receiving surfaces 52a and 53a of the first or second CCD line sensors 52 and 53, respectively (FIG. 4). To FIG. 7). Then, based on the output signals from the first and second CCD line sensors 52 and 53, the position in the vertical and horizontal directions of the center point C of the image 2a of the survey target 2 is detected, respectively. The vertical and horizontal deviations from the reference light receiving positions S1 and S2 are accurately and directly calculated.
【0041】その際、測量対象2が測量機1の比較的近
くにあって(図4及び図5参照)像2aの外径が比較的
大きい場合にも、また反対に測量対象2が測量機1から
比較的遠くにあって(図6及び図7参照)像2aの外径
が比較的小さい場合にも、該像2aの中心点Cと基準受
光位置S1 ,S2 との偏差量は変化しない。このため、
測量機1と測量対象2との間の距離が変化しても該測量
対象2の追尾精度の変動を防止することができる。また
第1及び第2CCDラインセンサ52,53の受光面5
2a,53aにおいては、受光セルが長手方向にのみ並
設されていればよいので、従来までの自動追尾装置にお
けるCCDエリアセンサ等に比べて受光セルの数は格段
に少なくなっている。このため、測量対象2の像2aの
中心点Cを検出するときの演算処理量が著しく少なくて
済むようになる。よって、コントローラ6を比較的小規
模の演算処理装置としても、位置検出のための演算時間
を短縮することができ、これに伴い追尾動作の高速化を
図ることができる。At this time, even when the object 2 is relatively close to the surveying instrument 1 (see FIGS. 4 and 5) and the outer diameter of the image 2a is relatively large, the object 2 is Even if the outside diameter of the image 2a is relatively small (see FIGS. 6 and 7), the deviation between the center point C of the image 2a and the reference light receiving positions S1, S2 does not change. . For this reason,
Even if the distance between the surveying instrument 1 and the surveying target 2 changes, it is possible to prevent the tracking accuracy of the surveying target 2 from fluctuating. The light receiving surfaces 5 of the first and second CCD line sensors 52, 53
In 2a and 53a, since the light receiving cells only need to be arranged in the longitudinal direction, the number of light receiving cells is much smaller than that of a conventional CCD area sensor in an automatic tracking device. For this reason, the amount of arithmetic processing when detecting the center point C of the image 2a of the survey target 2 can be significantly reduced. Therefore, even if the controller 6 is a relatively small-scale arithmetic processing device, the calculation time for position detection can be shortened, and accordingly, the tracking operation can be speeded up.
【0042】そして、第1及び第2CCDラインセンサ
52,53により検出された上下方向及び水平方向の偏
差に応じて、コントローラ6により駆動用モータ61,
62が作動され、これにより測量機本体部15が水平軸
x及び鉛直軸yの回りに回転される。その際、上記駆動
用モータ61,62の制御量は上記上下方向及び水平方
向の偏差量から直接的に求められるため、追尾作動にお
ける制御の容易化が図られる。Then, in accordance with the vertical and horizontal deviations detected by the first and second CCD line sensors 52, 53, the controller 6 drives the driving motor 61,
62 is operated, whereby the surveying instrument main body 15 is rotated around the horizontal axis x and the vertical axis y. At this time, the control amount of the drive motors 61 and 62 is directly obtained from the vertical and horizontal deviation amounts, so that the control in the tracking operation is facilitated.
【0043】上述の如く測量機本体部15が測量対象2
を自動的に追尾作動して、該測量対象2の像2aの中心
点Cが基準受光位置S1 ,S2 に常に位置するようにさ
れた状態で、オペレータの操作により測量対象2の位置
計測が行われる。すなわち、図示しないが測距用レーザ
発振器から反射プリズム21に測距用レーザが投光され
る一方、この反射プリズム21から反射されるレーザ光
線が測距用受光部で受光され、往復するレーザ光線の光
波が計数されて測量対象2までの直線距離が計測され
る。またその際、測量機本体15の水平軸x及び鉛直軸
y回りの回転角度がそれぞれエンコーダにより検出され
て、この回転角度に基づいて上記測量対象2の水平角及
び鉛直角が計測される。As described above, the surveying instrument main body 15 is
Is automatically tracked, and the position measurement of the survey target 2 is performed by the operation of the operator while the center point C of the image 2a of the survey target 2 is always located at the reference light receiving positions S1 and S2. Will be That is, although not shown, a distance measuring laser is emitted from the distance measuring laser oscillator to the reflecting prism 21, while a laser beam reflected from the reflecting prism 21 is received by the distance measuring light receiving unit and reciprocated. Are counted, and the linear distance to the survey target 2 is measured. At this time, the rotation angles of the surveying instrument body 15 around the horizontal axis x and the vertical axis y are respectively detected by the encoder, and the horizontal angle and the vertical angle of the survey target 2 are measured based on the rotation angles.
【0044】したがって、この実施形態に係る測量機1
によれば、移動する測量対象2を測量機1により自動的
に追尾させることができ、該測量対象2の位置計測を極
めて容易に実行することができる。その際、上記測量機
1と測量対象2との間の距離が変化しても追尾作動に変
動が生ずることがないため、測量精度が高精度に保たれ
る。また、上記測量対象2を見失うことなくかつ高速で
自動追尾することができる。Therefore, the surveying instrument 1 according to this embodiment
According to this, the moving surveying object 2 can be automatically tracked by the surveying instrument 1, and the position measurement of the surveying object 2 can be performed extremely easily. At this time, even if the distance between the surveying instrument 1 and the surveying target 2 changes, the tracking operation does not change, so that the surveying accuracy is kept high. In addition, it is possible to automatically track the survey target 2 at high speed without losing sight.
【0045】<他の実施形態>なお、本発明は上記実施
形態に限定されるものではなく、その他種々の実施形態
を包含するものである。すなわち上記実施形態では、受
光手段5において対物レンズ4からの光をビームスプリ
ッタ51により分割して互いに異なる位置に配置した第
1及び第2CCDラインセンサ52,53に入射させる
ようにしているが、これに限らず、例えばCCDライン
センサを十文字状に配置しておいて、そこに光を入射さ
せるようにしてもよい。<Other Embodiments> The present invention is not limited to the above embodiments, but includes various other embodiments. That is, in the above embodiment, the light from the objective lens 4 in the light receiving means 5 is split by the beam splitter 51 and made incident on the first and second CCD line sensors 52 and 53 arranged at different positions. However, the present invention is not limited to this. For example, the CCD line sensors may be arranged in a cross shape, and light may be incident on them.
【0046】上記実施形態では、第1及び第2の光電変
換手段としての第1及び第2CCDラインセンサ52,
53を互いに直交するように上下方向又は左右方向に配
置しているが、これに限らず、例えば2つのCCDライ
ンセンサを互いに45度で交差するように配置してもよ
く、また3つ以上のCCDラインセンサを互いに交差す
るように配置してもよい。さらに、CCDラインセンサ
以外の受光素子を用いることも可能である。In the above embodiment, the first and second CCD line sensors 52 as the first and second photoelectric conversion means,
53 are arranged in the up-down direction or the left-right direction so as to be orthogonal to each other, but the invention is not limited to this. For example, two CCD line sensors may be arranged so as to intersect each other at 45 degrees. The CCD line sensors may be arranged to cross each other. Further, a light receiving element other than the CCD line sensor can be used.
【0047】上記実施形態では、投光手段3により、投
射方向に対して十文字に拡がるようにパルス光を投射す
るようにしたが、これに限らず、例えば円形状又は楕円
形状もしくは矩形状に拡がるように光を投射するように
してもよく、また投射する光はパルス光でなくてもよ
い。In the above embodiment, the pulse light is projected by the light projecting means 3 so as to spread in a cross shape in the projection direction. However, the present invention is not limited to this. For example, the light is spread in a circular shape, an elliptical shape, or a rectangular shape. Light may be projected as described above, and the light to be projected may not be pulsed light.
【0048】上記実施形態では、投光手段3から投射さ
れたパルス光を対物レンズ4を介して測量対象2へ投射
するようにしているが、これに限らず、例えば図8に示
すように対物レンズ4の中心部に貫通孔4aを形成し、
この貫通孔4aを通過させてパルス光を測量対象2へ投
射するようにしてもよい。In the above embodiment, the pulse light projected from the light projecting means 3 is projected to the surveying target 2 via the objective lens 4, but the invention is not limited to this. For example, as shown in FIG. A through hole 4a is formed in the center of the lens 4;
The pulse light may be projected onto the survey target 2 through the through hole 4a.
【0049】上記実施形態では、投光手段3として、半
導体レーザ装置31で発生させたパルス光を、光ファイ
バ32a,33aの束を介して上下方向又は水平方向に
偏って拡がるように投射する構成としたが、これに限ら
ず、例えば複数の半導体レーザ装置を上下方向又は水平
方向に並設してそれぞれ光を投射するように構成しても
よい。In the above embodiment, the light projecting means 3 is configured to project the pulse light generated by the semiconductor laser device 31 so as to spread in a vertical or horizontal direction via a bundle of optical fibers 32a and 33a. However, the present invention is not limited to this. For example, a plurality of semiconductor laser devices may be arranged side by side in the vertical or horizontal direction to project light.
【0050】上記実施形態では、位置検出用の特徴光を
投光手段3から測量対象2に対し投射するようにしてい
るが、これに限らず、測量対象に例えば半導体レーザ等
からなる投光手段を配設して、そこから光を投射させる
ようにしてもよい。In the above-described embodiment, the characteristic light for position detection is projected from the light projecting means 3 to the surveying object 2. However, the present invention is not limited to this. May be arranged, and light may be projected therefrom.
【0051】[0051]
【発明の効果】以上説明したように、請求項1記載の発
明における測量機の自動追尾装置によれば、第1及び第
2の光電変換手段を互いに交差するように設けて測量対
象の像の中心点と対物レンズの光軸位置との偏差を求め
るようにし、この偏差に基づいて測量機本体の姿勢を変
化させるようにした。このことで、測量機と測量対象と
の間の距離が変化しても追尾精度の変動を防止すること
ができる。また、従来のCCDエリアセンサ等に比べて
位置検出のための演算処理量を格段に少なくすることが
できるので、比較的小規模の演算処理装置を用いても位
置検出のための時間を短縮して追尾作動の高速化を図る
ことができる。As described above, according to the automatic tracking device of the surveying instrument according to the first aspect of the present invention, the first and second photoelectric conversion means are provided so as to intersect with each other, and the image of the object to be surveyed is provided. The deviation between the center point and the optical axis position of the objective lens is determined, and the attitude of the surveying instrument body is changed based on the deviation. Thereby, even if the distance between the surveying instrument and the surveying target changes, it is possible to prevent a change in tracking accuracy. In addition, the amount of arithmetic processing for position detection can be significantly reduced as compared with a conventional CCD area sensor or the like, so that the time for position detection can be reduced even when a relatively small-scale arithmetic processing device is used. Thus, the speed of the tracking operation can be increased.
【0052】請求項2記載の発明では、上記請求項1記
載の発明と同様の効果が得られる上、第1及び第2の光
電変換手段をそれぞれ異なる箇所に配置することがで
き、それらの配置の自由度が向上する。According to the second aspect of the invention, the same effects as those of the first aspect of the invention can be obtained, and the first and second photoelectric conversion means can be arranged at different positions, respectively. The degree of freedom is improved.
【0053】請求項3記載の発明では、第1及び第2の
設定方向を互いに直交するように設定したので、位置検
出のための演算処理の容易化が図られる。According to the third aspect of the present invention, the first and second setting directions are set so as to be orthogonal to each other, so that the arithmetic processing for position detection is facilitated.
【0054】請求項4記載の発明では、光電変換手段と
してCCDラインセンサを用いたことで比較的低コスト
で高い検出精度が得られる。According to the fourth aspect of the present invention, high detection accuracy can be obtained at relatively low cost by using a CCD line sensor as the photoelectric conversion means.
【0055】請求項5記載の発明によれば、測量対象に
は光線反射器を設けるだけでよいので、システムの構成
が簡易なものになる。According to the fifth aspect of the present invention, since it is only necessary to provide a light reflector on the object to be surveyed, the configuration of the system is simplified.
【0056】請求項6記載の発明によれば、測量対象に
投射する光の投射範囲を実質的に狭くすることなく単位
面積あたりの光量を十分に高めることができ、測量対象
を検出し易くかつ見失い難いものにすることができる。According to the invention described in claim 6, the light quantity per unit area can be sufficiently increased without substantially narrowing the projection range of the light projected on the surveying object, and the surveying object can be easily detected and It can be hard to lose track of.
【0057】請求項7記載の発明によれば、光ファイバ
を用いることで発光源からの光の投射方向を容易に設定
することができ、しかも発光源の配置の自由度が向上し
て投光手段のコンパクト化が図られる。According to the seventh aspect of the present invention, the projection direction of light from the light emitting source can be easily set by using the optical fiber, and the degree of freedom of the arrangement of the light emitting source is improved, thereby projecting the light. The means can be made compact.
【0058】請求項8記載の発明によれば、測量機の追
尾作動における制御の容易化及び追尾の高速化が図ら
れ、さらに、投射光の投光範囲を容易に極めて広いもの
とすることができる。According to the eighth aspect of the present invention, the control in the tracking operation of the surveying instrument can be facilitated and the tracking speed can be increased, and the projection range of the projection light can be easily made extremely wide. it can.
【図1】本発明の実施形態に係る測量機の概略構成を示
す側面図である。FIG. 1 is a side view showing a schematic configuration of a surveying instrument according to an embodiment of the present invention.
【図2】測量機本体部に設けられた位置検出用の光学系
を示す上面図である。FIG. 2 is a top view showing an optical system for position detection provided in the surveying instrument main body.
【図3】投光手段において上下左右に延びるように並設
された光ファイバの端部を示す正面図である。FIG. 3 is a front view showing ends of optical fibers arranged side by side so as to extend up, down, left, and right in the light projecting means.
【図4】第1CCDラインセンサによる測量対象の像の
上下方向の位置検出を示す模式図である。FIG. 4 is a schematic diagram showing vertical position detection of an image of a survey target by a first CCD line sensor.
【図5】第2CCDラインセンサによる測量対象の像の
水平方向の位置検出を示す模式図である。FIG. 5 is a schematic diagram showing horizontal position detection of an image of a survey target by a second CCD line sensor.
【図6】測量対象が比較的遠くにある場合の図4相当図
である。FIG. 6 is a diagram corresponding to FIG. 4 when a survey target is relatively far away;
【図7】測量対象が比較的遠くにある場合の図5相当図
である。FIG. 7 is a diagram corresponding to FIG. 5 when a survey target is relatively far away;
【図8】他の実施形態に係る図2相当図である。FIG. 8 is a diagram corresponding to FIG. 2 according to another embodiment.
1 測量機 2 測量対象 2a 測量対象の像 3 投光手段 4 対物レンズ 5 受光手段 21 反射プリズム(光線反射器) 31,31… 光ファイバ 51 ビームスプリッタ 52,53 CCDラインセンサ 61,62 駆動用モータ(駆動手段) C 測量対象の像の中心点 L 対物レンズの光軸 S1 ,S2 基準受光位置 Reference Signs List 1 surveying instrument 2 surveying object 2a image of surveying object 3 light projecting means 4 objective lens 5 light receiving means 21 reflecting prism (light beam reflector) 31, 31 optical fiber 51 beam splitter 52, 53 CCD line sensor 61, 62 driving motor (Drive means) C Center point of the image to be measured L Optical axis of objective lens S1, S2 Reference light receiving position
Claims (8)
光の像が対物レンズにより結像される受光手段と、測量
機本体の姿勢を変化させる駆動手段とを備え、上記受光
手段に結像される測量対象の像の中心点が上記対物レン
ズの光軸上に位置するように、上記受光手段からの出力
信号に基づいて駆動手段を作動制御するようにした測量
機の自動追尾装置において、 上記受光手段は、 上記対物レンズの光軸方向に直交する第1の設定方向に
延びるように並設された多数の受光部を有する第1の光
電変換手段と、 上記対物レンズの光軸方向に直交しかつ上記第1の設定
方向と交差する第2の設定方向に延びるように並設され
た多数の受光部を有する第2の光電変換手段とを備えて
いることを特徴とする測量機の自動追尾装置。1. An image forming apparatus comprising: a light receiving unit configured to form an image of characteristic light for position detection emitted from an object to be surveyed by an objective lens; and a driving unit configured to change a posture of a surveying instrument main body. In the automatic tracking device of a surveying instrument, the operation of driving means is controlled based on an output signal from the light receiving means so that the center point of the image of the surveying object is located on the optical axis of the objective lens. The light receiving means includes: first photoelectric conversion means having a plurality of light receiving portions juxtaposed so as to extend in a first setting direction orthogonal to the optical axis direction of the objective lens; A second photoelectric conversion means having a large number of light receiving sections arranged side by side so as to be orthogonal and extend in a second setting direction intersecting with the first setting direction. Automatic tracking device.
光の像が対物レンズにより結像される受光手段と、測量
機本体の姿勢を変化させる駆動手段とを備え、上記受光
手段に結像される測量対象の像の中心点が上記対物レン
ズの光軸上に位置するように、上記受光手段からの出力
信号に基づいて駆動手段を作動制御するようにした測量
機の自動追尾装置において、 上記受光手段は、 上記対物レンズからの光の一部を透過させる一方、残り
を反射させるビームスプリッタと、 上記ビームスプリッタからの透過光を受光する位置に設
けられ、該透過光の光軸方向に直交する第1の設定方向
に延びるように並設された多数の受光部を有する第1の
光電変換手段と、 上記ビームスプリッタからの反射光を受光する位置に設
けられ、該反射光の光軸方向に直交しかつ上記第1の設
定方向と交差する第2の設定方向に延びるように並設さ
れた多数の受光部を有する第2の光電変換手段とを備え
ていることを特徴とする測量機の自動追尾装置。2. A light-receiving means for forming an image of characteristic light for position detection radiated from an object to be surveyed by an objective lens, and a driving means for changing a posture of a surveying instrument main body; In the automatic tracking device of a surveying instrument, the operation of driving means is controlled based on an output signal from the light receiving means so that the center point of the image of the surveying object is located on the optical axis of the objective lens. The light receiving means is provided at a position for receiving a transmitted light from the beam splitter and a beam splitter for transmitting a part of the light from the objective lens and reflecting the remaining light, and in a direction of an optical axis of the transmitted light. A first photoelectric conversion unit having a plurality of light receiving units arranged side by side so as to extend in a first set direction orthogonal to each other; an optical axis of the reflected light provided at a position for receiving reflected light from the beam splitter; One And a second photoelectric conversion means having a plurality of light receiving portions arranged in parallel so as to extend in a second setting direction orthogonal to the first setting direction and intersecting the first setting direction. Automatic tracking device.
徴とする測量機の自動追尾装置。3. The automatic tracking device of a surveying instrument according to claim 1, wherein the first and second setting directions are orthogonal to each other.
ることを特徴とする測量機の自動追尾装置。4. The automatic tracking device of a surveying instrument according to claim 3, wherein the first and second photoelectric conversion means are CCD line sensors.
光を反射する光線反射器とを備え、 受光手段は上記光線反射器により反射された光を位置検
出用特徴光として受光するように構成されていることを
特徴とする測量機の自動追尾装置。5. The light emitting device according to claim 3, further comprising: a light projecting unit that projects light onto the object to be surveyed; and a light beam reflector that is disposed on the object to be surveyed and reflects light projected from the light projecting unit. An automatic tracking device for a surveying instrument, wherein the light receiving means is configured to receive the light reflected by the light beam reflector as characteristic light for position detection.
それぞれ偏って拡がるように光を投射する2つの投光器
を備え、測量対象に対し対物レンズの光軸に沿って光を
投射するように構成されていることを特徴とする測量機
の自動追尾装置。6. The light projection device according to claim 5, wherein the light projection means includes two light projectors for projecting light so as to be biased and spread in first and second setting directions orthogonal to each other. An automatic tracking device for a surveying instrument configured to project light along an optical axis.
れぞれ第1及び第2の設定方向に並設された光ファイバ
の束を備えていて、上記発光源で発生した光をそれぞれ
上記光ファイバの他端部から投射するように構成されて
いることを特徴とする測量機の自動追尾装置。7. The projector according to claim 6, wherein each of the projectors includes a bundle of optical fibers having one end connected to the light emitting source and the other end arranged in the first and second setting directions, respectively. An automatic tracking device for a surveying instrument, wherein the light generated by the light emitting source is projected from the other end of the optical fiber.
載の発明において、 第1及び第2の設定方向は、それぞれ鉛直方向及び水平
方向に設定されており、 駆動手段は、測量機本体を鉛直軸及び水平軸の回りにそ
れぞれ回転作動させるように構成されていることを特徴
とする測量機の自動追尾装置。8. The invention according to claim 3, wherein the first and second setting directions are set in a vertical direction and a horizontal direction, respectively. An automatic tracking device for a surveying instrument, characterized in that the instrument body is configured to rotate around a vertical axis and a horizontal axis, respectively.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16446897A JP3647608B2 (en) | 1997-06-20 | 1997-06-20 | Surveyor automatic tracking device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16446897A JP3647608B2 (en) | 1997-06-20 | 1997-06-20 | Surveyor automatic tracking device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1114357A true JPH1114357A (en) | 1999-01-22 |
JP3647608B2 JP3647608B2 (en) | 2005-05-18 |
Family
ID=15793762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16446897A Expired - Fee Related JP3647608B2 (en) | 1997-06-20 | 1997-06-20 | Surveyor automatic tracking device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3647608B2 (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002296032A (en) * | 2001-03-29 | 2002-10-09 | Topcon Corp | Position detection device |
US6693664B2 (en) | 1999-06-30 | 2004-02-17 | Negevtech | Method and system for fast on-line electro-optical detection of wafer defects |
WO2004023073A1 (en) * | 2002-09-03 | 2004-03-18 | Kabushiki Kaisha Topcon | Measurement device |
EP1439385A1 (en) * | 2003-01-15 | 2004-07-21 | Negevtech Ltd. | Method and system for fast on-line electro-optical detection of wafer defects |
US6892013B2 (en) | 2003-01-15 | 2005-05-10 | Negevtech Ltd. | Fiber optical illumination system |
US6924891B2 (en) | 1999-11-17 | 2005-08-02 | Applied Materials, Inc. | Method and apparatus for article inspection including speckle reduction |
US7081917B2 (en) | 2001-08-10 | 2006-07-25 | Sokkoia Company Limited | Automatic collimation surveying apparatus having image pick-up device |
JP2006308441A (en) * | 2005-04-28 | 2006-11-09 | Sokkia Co Ltd | Light wave distance meter |
US7180586B2 (en) | 2003-01-15 | 2007-02-20 | Negevtech Ltd. | System for detection of wafer defects |
US7274444B2 (en) | 2004-07-12 | 2007-09-25 | Negevtech Ltd. | Multi mode inspection method and apparatus |
JP2008180720A (en) * | 2008-02-01 | 2008-08-07 | Topcon Corp | Surveying equipment |
US7486861B2 (en) | 2003-01-15 | 2009-02-03 | Negevtech Ltd. | Fiber optical illumination system |
US7499583B2 (en) | 1990-11-16 | 2009-03-03 | Applied Materials, Israel, Ltd. | Optical inspection method for substrate defect detection |
US7714998B2 (en) | 2006-11-28 | 2010-05-11 | Applied Materials South East Asia Pte. Ltd. | Image splitting in optical inspection systems |
US7719674B2 (en) | 2006-11-28 | 2010-05-18 | Applied Materials South East Asia Pte. Ltd. | Image splitting in optical inspection systems |
US7804993B2 (en) | 2005-02-28 | 2010-09-28 | Applied Materials South East Asia Pte. Ltd. | Method and apparatus for detecting defects in wafers including alignment of the wafer images so as to induce the same smear in all images |
US7813541B2 (en) | 2005-02-28 | 2010-10-12 | Applied Materials South East Asia Pte. Ltd. | Method and apparatus for detecting defects in wafers |
US8031931B2 (en) | 2006-04-24 | 2011-10-04 | Applied Materials South East Asia Pte. Ltd. | Printed fourier filtering in optical inspection tools |
US8310535B2 (en) | 2008-03-25 | 2012-11-13 | Kabushiki Kaisha Topcon | Surveying system |
CN114067367A (en) * | 2022-01-14 | 2022-02-18 | 南京甄视智能科技有限公司 | Small animal detection method in infrared scene, computer equipment and storage medium |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59190608A (en) * | 1983-04-12 | 1984-10-29 | Daikin Ind Ltd | Tilt angle sensor |
JPS6418001A (en) * | 1987-07-14 | 1989-01-20 | Matsushita Electric Ind Co Ltd | Bright spot position detector |
JPH07198383A (en) * | 1993-12-28 | 1995-08-01 | Topcon Corp | Surveying instrument |
-
1997
- 1997-06-20 JP JP16446897A patent/JP3647608B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59190608A (en) * | 1983-04-12 | 1984-10-29 | Daikin Ind Ltd | Tilt angle sensor |
JPS6418001A (en) * | 1987-07-14 | 1989-01-20 | Matsushita Electric Ind Co Ltd | Bright spot position detector |
JPH07198383A (en) * | 1993-12-28 | 1995-08-01 | Topcon Corp | Surveying instrument |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7499583B2 (en) | 1990-11-16 | 2009-03-03 | Applied Materials, Israel, Ltd. | Optical inspection method for substrate defect detection |
US6693664B2 (en) | 1999-06-30 | 2004-02-17 | Negevtech | Method and system for fast on-line electro-optical detection of wafer defects |
US6924891B2 (en) | 1999-11-17 | 2005-08-02 | Applied Materials, Inc. | Method and apparatus for article inspection including speckle reduction |
JP2002296032A (en) * | 2001-03-29 | 2002-10-09 | Topcon Corp | Position detection device |
US7081917B2 (en) | 2001-08-10 | 2006-07-25 | Sokkoia Company Limited | Automatic collimation surveying apparatus having image pick-up device |
WO2004023073A1 (en) * | 2002-09-03 | 2004-03-18 | Kabushiki Kaisha Topcon | Measurement device |
US7127822B2 (en) | 2002-09-03 | 2006-10-31 | Kabushiki Kaisha Topcon | Surveying instrument |
US7486861B2 (en) | 2003-01-15 | 2009-02-03 | Negevtech Ltd. | Fiber optical illumination system |
US7843559B2 (en) | 2003-01-15 | 2010-11-30 | Applied Materials South East Asia Pte. Ltd. | System for detection of wafer defects |
US7180586B2 (en) | 2003-01-15 | 2007-02-20 | Negevtech Ltd. | System for detection of wafer defects |
US7260298B2 (en) | 2003-01-15 | 2007-08-21 | Negevtech Ltd. | Fiber optical illumination system |
US7961763B2 (en) | 2003-01-15 | 2011-06-14 | Applied Materials South East Asia Pte. Ltd. | System for detection of wafer defects |
US6892013B2 (en) | 2003-01-15 | 2005-05-10 | Negevtech Ltd. | Fiber optical illumination system |
EP1439385A1 (en) * | 2003-01-15 | 2004-07-21 | Negevtech Ltd. | Method and system for fast on-line electro-optical detection of wafer defects |
US7633041B2 (en) | 2003-01-15 | 2009-12-15 | Applied Materials South East Asia Pte, Ltd. | Apparatus for determining optimum position of focus of an imaging system |
US7477383B2 (en) | 2003-01-15 | 2009-01-13 | Negevtech Ltd. | System for detection of wafer defects |
US7525659B2 (en) | 2003-01-15 | 2009-04-28 | Negevtech Ltd. | System for detection of water defects |
US7274444B2 (en) | 2004-07-12 | 2007-09-25 | Negevtech Ltd. | Multi mode inspection method and apparatus |
US7804993B2 (en) | 2005-02-28 | 2010-09-28 | Applied Materials South East Asia Pte. Ltd. | Method and apparatus for detecting defects in wafers including alignment of the wafer images so as to induce the same smear in all images |
US7813541B2 (en) | 2005-02-28 | 2010-10-12 | Applied Materials South East Asia Pte. Ltd. | Method and apparatus for detecting defects in wafers |
JP2006308441A (en) * | 2005-04-28 | 2006-11-09 | Sokkia Co Ltd | Light wave distance meter |
US8031931B2 (en) | 2006-04-24 | 2011-10-04 | Applied Materials South East Asia Pte. Ltd. | Printed fourier filtering in optical inspection tools |
US7714998B2 (en) | 2006-11-28 | 2010-05-11 | Applied Materials South East Asia Pte. Ltd. | Image splitting in optical inspection systems |
US7719674B2 (en) | 2006-11-28 | 2010-05-18 | Applied Materials South East Asia Pte. Ltd. | Image splitting in optical inspection systems |
JP2008180720A (en) * | 2008-02-01 | 2008-08-07 | Topcon Corp | Surveying equipment |
US8310535B2 (en) | 2008-03-25 | 2012-11-13 | Kabushiki Kaisha Topcon | Surveying system |
CN114067367A (en) * | 2022-01-14 | 2022-02-18 | 南京甄视智能科技有限公司 | Small animal detection method in infrared scene, computer equipment and storage medium |
Also Published As
Publication number | Publication date |
---|---|
JP3647608B2 (en) | 2005-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH1114357A (en) | Automatic tracking device of surveying equipment | |
JP5016245B2 (en) | Measurement system for determining the six degrees of freedom of an object | |
US5481355A (en) | Flying spherical body measuring apparatus | |
JP4531965B2 (en) | Vibration detection device, rotating laser device with vibration detection device, and position measurement setting system with vibration detection correction device | |
US5589939A (en) | Laser surveying system | |
JP7138525B2 (en) | Surveying instrument and surveying instrument system | |
JP4236326B2 (en) | Automatic surveying machine | |
US11635490B2 (en) | Surveying system having a rotating mirror | |
CN114415189A (en) | A lidar system and its calibration method | |
CN215064355U (en) | Displacement sensor based on photodetector array | |
JP3120885B2 (en) | Mirror surface measuring device | |
EP4141385B1 (en) | Surveying instrument | |
JP2023127742A (en) | Surveying device | |
JPH07190773A (en) | Optical three-dimensional position detecting device | |
JPS581120A (en) | Telecentric beam generator and measurement of dimensions and position of object | |
JP2694647B2 (en) | Distance measuring theodolite | |
JP2840951B2 (en) | Automatic collimation device | |
JPH07117414B2 (en) | Automatic collimating lightwave rangefinder | |
JP2736558B2 (en) | Position measuring method and device | |
JP2823112B2 (en) | Rangefinder | |
JPS60205383A (en) | Fixed point tracking method for measurement target in distance measuring device | |
JP4175736B2 (en) | Automatic tracking device for position measurement drawing | |
JP2000162307A (en) | Laser tracking apparatus for locating position of reactor vessel-inspecting robot | |
JPS62287107A (en) | Center position measuring instrument | |
JPH0861917A (en) | Position detecting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20010116 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041101 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041221 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050209 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080218 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090218 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090218 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100218 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100218 Year of fee payment: 5 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100218 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110218 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110218 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110218 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110218 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120218 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120218 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130218 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130218 Year of fee payment: 8 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130218 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130218 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130218 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130218 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140218 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140218 Year of fee payment: 9 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140218 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |