[go: up one dir, main page]

JPH11142197A - Fluid detection sensor - Google Patents

Fluid detection sensor

Info

Publication number
JPH11142197A
JPH11142197A JP30873997A JP30873997A JPH11142197A JP H11142197 A JPH11142197 A JP H11142197A JP 30873997 A JP30873997 A JP 30873997A JP 30873997 A JP30873997 A JP 30873997A JP H11142197 A JPH11142197 A JP H11142197A
Authority
JP
Japan
Prior art keywords
fluid
housing member
piezoelectric element
pipeline
detection sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30873997A
Other languages
Japanese (ja)
Inventor
Masakazu Isobe
正和 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP30873997A priority Critical patent/JPH11142197A/en
Publication of JPH11142197A publication Critical patent/JPH11142197A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

(57)【要約】 【課題】 脈動を伴って管路内を流れる流体を検出する
のに用いて好適で、パーティクルの流体への混入を起こ
すことがない流体検出センサを提供すること。 【解決手段】 管路11の内部を脈動を伴いつつ流れる
液剤を検出するのに用いる流体検出センサ1を、開放さ
れた基端5aが管路11の外周面と内周面との肉厚部分
に埋設されて支持され、閉塞された先端5bが管路11
の内部に自由端となって配設されて、管路11の延在方
向Aと平行する液剤の流れの方向Bと直交して延在する
可撓性の収容部材5と、収容部材5の基端5aから先端
5bに亘り収容部材5の内部に収容されて管路11の内
部に配置され、撓み量に応じて電荷が変化する可撓性の
圧電素子7とにより、管路11内を流れる液剤の単位時
間当たりの流量に応じた度合いで、管路11内での液剤
の流れ方向Bの上流側から下流側に向けて、圧電素子7
が収容部材5と共に撓むように構成した。
(57) [Problem] To provide a fluid detection sensor which is suitable for detecting a fluid flowing in a pipeline with pulsation and which does not cause mixing of particles into the fluid. SOLUTION: A fluid detection sensor 1 used for detecting a liquid agent flowing with pulsation inside a pipe 11 is formed by using an open base end 5a having a thick portion between an outer peripheral surface and an inner peripheral surface of the conduit 11. The tip 5b which is buried and supported in the pipe and is closed
And a flexible housing member 5 which is disposed as a free end inside and extends perpendicularly to the direction B of the flow of the liquid agent parallel to the extending direction A of the conduit 11. The flexible piezoelectric element 7, which is housed inside the housing member 5 from the base end 5a to the front end 5b and is arranged inside the pipe 11 and whose electric charge changes according to the amount of bending, allows the inside of the pipe 11 to be moved. The piezoelectric element 7 is moved from the upstream side to the downstream side in the flow direction B of the liquid agent in the pipe 11 at a degree corresponding to the flow rate of the liquid agent flowing per unit time.
Is configured to bend together with the housing member 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、管路内を流れる流
体の有無を検出するセンサに係り、特に、ベローズポン
プやダイヤフラムポンプ等によって管路に送り込まれて
脈動を起こしつつ管路内を流れる流体の有無を検出する
のに適した流体検出センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sensor for detecting the presence or absence of a fluid flowing in a pipeline, and more particularly, to a sensor which is sent into the pipeline by a bellows pump, a diaphragm pump, or the like and causes a pulsation to flow in the pipeline. The present invention relates to a fluid detection sensor suitable for detecting the presence or absence of a fluid.

【0002】[0002]

【従来の技術】例えば、半導体の製造工程においてシリ
コンウェハ上のマスクを酸洗いにより除去した後に、シ
リコンウェハ上に残留する酸を液剤により中和、洗浄す
る際には、これら中和剤や洗浄剤のシリコンウェハ上へ
の送り込みに、供給量の精度を高く保てるベローズポン
プやダイヤフラムポンプが用いられるが、この種のポン
プには、送り込んだ流体が流体搬送用の管路内において
一定の周期の脈動を起こすという特徴がある。
2. Description of the Related Art For example, in a semiconductor manufacturing process, after a mask on a silicon wafer is removed by pickling and then the acid remaining on the silicon wafer is neutralized and washed with a liquid agent, the neutralizing agent and the washing are used. A bellows pump or a diaphragm pump that can maintain a high supply amount accuracy is used to feed the agent onto the silicon wafer.In this type of pump, the pumped fluid has a constant period in a fluid transfer pipe. It has the characteristic of causing pulsation.

【0003】そこで、このような管路内で脈動を起こす
流体を計測するには、従来から、例えば図4に断面図で
示す特開平7−198433号公報に開示されているよ
うな、面積式流量計21を用いている。
[0003] In order to measure a fluid causing pulsation in such a pipeline, conventionally, for example, an area type equation disclosed in Japanese Patent Application Laid-Open No. 7-198433 shown in a sectional view in FIG. A flow meter 21 is used.

【0004】上述した面積式流量計21は、流体流路を
構成する管路23を上下に延在させて、その途中に流量
制限用の環状壁25を設け、円錐台状の浮子27を、環
状壁25の中央の通孔25aよりも径が大きい大径側部
分が環状壁25の上方に位置するように配置し、浮子2
7の上下から突設されたシャフト29を環状壁25の上
方と下方の各管路23内のスラスト軸受31により軸方
向に移動可能に支持すると共に、浮子27の内部にマグ
ネット33を埋設し、管路23の外側に2つの磁気セン
サ35,37を配置して構成されている。
In the area type flowmeter 21 described above, a pipe 23 constituting a fluid flow path extends vertically, an annular wall 25 for restricting the flow is provided in the middle thereof, and a frustoconical float 27 is provided. The large-diameter side portion having a larger diameter than the center through-hole 25a of the annular wall 25 is disposed so as to be located above the annular wall 25.
7, a shaft 29 protruding from above and below is supported movably in the axial direction by a thrust bearing 31 in each of the conduits 23 above and below the annular wall 25, and a magnet 33 is embedded inside the float 27, Two magnetic sensors 35 and 37 are arranged outside the pipeline 23.

【0005】このような構成による面積式流量計21に
よれば、管路23の内部を下方から上方に向けて流れる
流体の流量に応じて浮子27がシャフト29と共に上下
動して、浮子27内のマグネット33の作る磁束が変化
するため、この磁束の変化を2つの磁気センサ35,3
7により検出し浮子27の上下位置の変化を割り出すこ
とで、管路23内を流れる流体が例え脈動を伴うもので
あっても、その存在を検出することができる。
According to the area type flowmeter 21 having such a configuration, the float 27 moves up and down together with the shaft 29 in accordance with the flow rate of the fluid flowing from the lower part to the upper part in the pipe 23, and Since the magnetic flux generated by the magnet 33 changes, the change in the magnetic flux is detected by the two magnetic sensors 35 and 3.
By detecting the change in the vertical position of the float 27 and detecting the change in the position of the float 27, the presence of the fluid flowing in the pipeline 23 can be detected even if the fluid is accompanied by pulsation.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述し
た従来の面積式流量計21では、管路23内を浮子27
がシャフト29と共に上下動することから、環状壁25
の通孔25aの内周面と浮子27の外周面との接離や、
スラスト軸受31とシャフト29との摺動により、微細
なくず、即ち、パーティクルが発生して、これが管路2
3内を流れる流体に混入してしまい、上述したような、
シリコンウェハ上に送り込む中和剤や洗浄剤の流量測定
の場合にあっては、パーティクルがシリコンウェハに付
着して截断工程に供給できない不良品となって、半導体
生産の歩留まりが悪化するという不具合があった。
However, in the conventional area type flow meter 21 described above, the float 27
Moves up and down together with the shaft 29, so that the annular wall 25
Contact between the inner peripheral surface of the through hole 25a and the outer peripheral surface of the float 27,
Due to the sliding between the thrust bearing 31 and the shaft 29, fine particles, that is, particles are generated.
3 mixed into the fluid flowing inside, and as described above,
In the case of measuring the flow rate of a neutralizing agent or a cleaning agent sent onto a silicon wafer, particles adhere to the silicon wafer and become defective products that cannot be supplied to the cutting process, thereby deteriorating the yield of semiconductor production. there were.

【0007】本発明は前記事情に鑑みなされたもので、
本発明の目的は、脈動を伴って管路内を流れる流体の有
無を検出するのに用いて好適で、しかも、パーティクル
の流体への混入を起こすことがない流体検出センサを提
供することにある。
[0007] The present invention has been made in view of the above circumstances,
An object of the present invention is to provide a fluid detection sensor which is suitable for detecting the presence or absence of fluid flowing in a pipeline with pulsation and which does not cause particles to mix into fluid. .

【0008】[0008]

【課題を解決するための手段】前記第1の目的を達成す
るため請求項1に記載した本発明の流体検出センサは、
管路内を流れる流体を検出するのに用いる流体検出セン
サであって、前記管路の内部に配設されて該管路の延在
方向と交わる方向に延在し、基端が前記管路により支持
されると共に、先端が前記管路と非接触状態で該管路の
内部に配置される可撓性の収容部材と、前記収容部材の
前記基端から前記先端に亘り該収容部材の内部に収容さ
れて前記管路の内部に配置され、撓み量に応じて電荷が
変化する可撓性の圧電素子とを備え、前記管路内を流れ
る流体の単位時間当たりの流量に応じた度合いで、該管
路内での流体の流れの上流側から下流側に向けて前記圧
電素子が前記収容部材と共に撓むことを特徴とする。
According to the first aspect of the present invention, there is provided a fluid detection sensor according to the first aspect of the present invention.
What is claimed is: 1. A fluid detection sensor for detecting a fluid flowing in a pipeline, wherein the fluid detection sensor is disposed inside the pipeline, extends in a direction intersecting with an extending direction of the pipeline, and has a base end provided in the pipeline. And a flexible housing member having a distal end disposed inside the conduit in a non-contact state with the conduit, and a flexible housing member extending from the base end to the distal end of the housing member. And a flexible piezoelectric element whose electric charge changes according to the amount of bending, which is disposed inside the conduit and has a degree according to a flow rate per unit time of a fluid flowing through the conduit. The piezoelectric element is bent together with the housing member from the upstream side to the downstream side of the flow of the fluid in the pipeline.

【0009】また、請求項2に記載した本発明の流体検
出センサは、前記収容部材の前記基端から前記先端に亘
り、前記圧電素子に沿わせて前記収容部材の内部に収容
されるばね材をさらに備え、前記管路内での流体の流れ
により前記上流側から前記下流側に向けて前記収容部材
と共に撓んだ前記圧電素子が、前記管路内を流れる流体
の単位時間当たりの流量の減少に伴い、前記ばね材の復
元力によって撓む前の状態に復帰するものとした。
According to a second aspect of the present invention, in the fluid detection sensor according to the present invention, the spring member is housed in the housing member along the piezoelectric element from the base end to the front end of the housing member. Further, the piezoelectric element bent together with the housing member from the upstream to the downstream by the flow of the fluid in the pipeline, the flow rate of the fluid per unit time of the fluid flowing in the pipeline With the decrease, the spring material returns to the state before being bent by the restoring force.

【0010】請求項1に記載した本発明の流体検出セン
サによれば、管路内を流れる流体の単位時間当たりの流
量に応じた度合いで、流体の管路内での流れの上流側か
ら下流側に向けて圧電素子が収容部材と共に撓むことか
ら、脈動を伴った流体が管路内を流れて単位時間当たり
の管路内での流体の流量が周期的に変化した場合に、そ
の変化する流量に応じて圧電素子の電荷が変化する。
[0010] According to the fluid detection sensor of the present invention, the flow of the fluid in the pipeline from the upstream side to the downstream side is determined at a degree corresponding to the flow rate of the fluid flowing in the pipeline per unit time. When the pulsating fluid flows through the pipeline and the flow rate of the fluid in the pipeline per unit time changes periodically due to the piezoelectric element flexing with the housing member toward the side, the change occurs. The charge of the piezoelectric element changes according to the flow rate.

【0011】従って、管路内での構造物の接離の繰り返
しや2部材間の摺動といった現象を発生させずに、ひい
ては、このような現象の発生により微細なくず、即ち、
パーティクルの発生やその流体への混入を招かずに、管
路内の流体の有無を検出するのに用いる、管路内の流体
流量に応じた信号レベルの電気信号を、管路内の流体流
量の変動に応じた圧電素子の電荷の変動により発生させ
ることが可能となる。
Therefore, a phenomenon such as repeated contact and separation of the structure in the pipeline and sliding between the two members does not occur, and as a result, the occurrence of such a phenomenon does not result in a fine structure.
An electric signal with a signal level corresponding to the fluid flow rate in the pipe used to detect the presence or absence of fluid in the pipe without causing the generation of particles or contamination with the fluid. It can be generated by a change in the charge of the piezoelectric element in accordance with the change in.

【0012】また、請求項2に記載した本発明の流体検
出センサによれば、管路内を流れる流体の単位時間当た
りの流量に応じて収容部材と共に撓んだ圧電素子が、圧
電素子に沿わせて収容部材の内部に収容されるばね材の
復元力により、管路内を流れる流体の単位時間当たりの
流量の減少に伴って元の状態に復帰する。
Further, according to the fluid detection sensor of the present invention, the piezoelectric element which is bent together with the housing member in accordance with the flow rate of the fluid flowing in the pipe per unit time is moved along the piezoelectric element. In addition, due to the restoring force of the spring member housed inside the housing member, the fluid returns to the original state as the flow rate of the fluid flowing in the pipeline decreases per unit time.

【0013】このため、管路内を流体が脈動を伴いつつ
流れた際に、その流体の流れの継続の度合いに応じて圧
電素子を繰り返し撓ませて、管路内を流れる流体を連続
して検出した際に、その連続時間に応じた振幅数の電気
信号を、管路内を流れる流体の流量の変動に応じた圧電
素子の電荷の変動により、繰り返し発生させることが可
能となる。
For this reason, when the fluid flows in the pipeline with pulsation, the piezoelectric element is repeatedly bent in accordance with the degree of continuation of the flow of the fluid, and the fluid flowing in the pipeline is continuously deformed. Upon detection, it is possible to repeatedly generate an electric signal having an amplitude number corresponding to the continuous time due to a change in the electric charge of the piezoelectric element according to a change in the flow rate of the fluid flowing in the pipeline.

【0014】[0014]

【発明の実施の形態】次に、本発明の実施形態について
図面を参照して説明する。
Next, embodiments of the present invention will be described with reference to the drawings.

【0015】図1は本発明の一実施形態に係る流体検出
センサの概略構成を流体管路と共に示す断面図で、図1
中引用符号1で示す本実施形態の流体検出センサは、例
えば、半導体の製造工程においてシリコンウェハ上のマ
スク除去に用いた酸を中和、洗浄する液剤(図示せず)
が、ベローズポンプやダイヤフラムポンプにより、一定
の周期で一定量ずつ送り込まれて、脈動を伴いつつ内部
を流れる管路11に設けられる。
FIG. 1 is a sectional view showing a schematic configuration of a fluid detection sensor according to one embodiment of the present invention together with a fluid pipe.
The fluid detection sensor according to the present embodiment, denoted by reference numeral 1, for example, is a liquid agent (not shown) that neutralizes and cleans an acid used for removing a mask on a silicon wafer in a semiconductor manufacturing process.
Is supplied by a bellows pump or a diaphragm pump in a constant amount at a constant period, and is provided in a pipeline 11 flowing inside with pulsation.

【0016】そして、前記流体検出センサ1は、信号出
力部3、収容部材5、圧電素子7、及び、ばね材9を備
えている。
The fluid detection sensor 1 includes a signal output unit 3, a housing member 5, a piezoelectric element 7, and a spring member 9.

【0017】前記信号出力部3は、前記管路11の外周
面にステー等によって取着された基板3aを有してお
り、この基板3a上には、図2に電気的構成のブロック
図で示すように、電源13から供給される電力を変圧す
る電源回路3bと、この電源回路3bから供給される変
圧後の電力によって作動する電荷/電圧変換回路3c、
フィルタ回路3d、及び、シュミットトリガ回路3eと
が実装されている。
The signal output section 3 has a substrate 3a attached to the outer peripheral surface of the conduit 11 by a stay or the like. On this substrate 3a, FIG. 2 is a block diagram of the electrical configuration. As shown, a power supply circuit 3b for transforming the power supplied from the power supply 13 and a charge / voltage conversion circuit 3c operated by the transformed power supplied from the power supply circuit 3b;
A filter circuit 3d and a Schmitt trigger circuit 3e are mounted.

【0018】そして、前記信号出力部3においては、電
荷/電圧変換回路3cに発生する圧電素子7の電荷に応
じた波形の電圧信号が、フィルタ回路3dによりノイズ
成分を除去された後、シュミットトリガ回路3eにより
矩形波状のパルス信号に波形成形されるように構成され
ている。
In the signal output section 3, a voltage signal having a waveform corresponding to the electric charge of the piezoelectric element 7 generated in the electric charge / voltage conversion circuit 3c is subjected to a Schmitt trigger after a noise component is removed by a filter circuit 3d. The circuit 3e is configured to shape the pulse into a rectangular pulse signal.

【0019】前記収容部材5は、図1に示すように、可
撓性を有する材料により基端5aが開放され先端5bが
閉塞された有底の細長筒状を呈していて、収容部材5の
基部5aは管路11の外周面と内周面との肉厚部分に埋
設されて支持されており、収容部材5の先端5bは管路
11の内周面から内部に突出して、図1中矢印Aで示す
管路11の延在方向と直交する方向に延在し、管路11
によって支持されていない自由端となっている。
As shown in FIG. 1, the housing member 5 has an elongated cylindrical shape with a bottom having a base 5a opened and a tip 5b closed by a flexible material. The base 5a is buried and supported in the thick portion between the outer peripheral surface and the inner peripheral surface of the conduit 11, and the tip 5b of the housing member 5 projects from the inner peripheral surface of the conduit 11 to the inside. The pipe 11 extends in a direction orthogonal to the direction in which the pipe 11
Free end not supported by

【0020】前記圧電素子7は、従来公知のバイモルフ
により構成されていて、収容部材5の内部に基端5aか
ら先端5bに亘って収容されており、この圧電素子7に
沿わせて前記ばね材9が、収容部材5の内部に基端5a
から先端5bに亘って収容されている。
The piezoelectric element 7 is formed of a conventionally known bimorph, and is housed in the housing member 5 from the base end 5a to the front end 5b. 9 has a base end 5 a inside the housing member 5.
To the tip 5b.

【0021】そして、収容部材5は、管路11内を流れ
る液剤の流量(流速)に応じて液剤から収容部材5の周
面が受ける流体圧により、圧電素子7及びばね材9と共
に一体となって、図1中矢印Bで示す管路11内での液
剤の流れの方向における上流側(図中左側)から下流側
(図中右側)に向けて、図1に示す直線状の姿勢から先
端5b側が撓み、また、液剤の流量(流速)の低下によ
り液剤から収容部材5の周面が受ける流体圧が下がるこ
とで、ばね材9の復元力により、図1に示す直線状の姿
勢に復帰するように構成されている。
The housing member 5 is integrated with the piezoelectric element 7 and the spring member 9 by the fluid pressure applied to the peripheral surface of the housing member 5 from the liquid agent in accordance with the flow rate (flow velocity) of the liquid agent flowing in the pipeline 11. 1 from the upstream side (left side in the figure) to the downstream side (right side in the figure) in the direction of flow of the liquid agent in the pipeline 11 indicated by the arrow B in FIG. 5b side is bent, and the fluid pressure applied to the peripheral surface of the housing member 5 from the liquid medicine by the decrease in the flow rate (flow velocity) of the liquid medicine is reduced, so that the spring material 9 returns to the linear posture shown in FIG. It is configured to be.

【0022】また、圧電素子7は、収容部材5と一体と
なった圧電素子7の姿勢、即ち、撓み具合に応じて電荷
が変化するように構成され、収容部材5の基端5aから
信号出力部3に導出されたリード線7aを介して圧電素
子7に接続された電荷/電圧変換回路3cが、電源回路
3bから印加されるバイアス電圧を圧電素子7の電荷の
変化に応じて変化させて、フィルタ回路3dを介してシ
ュミットトリガ回路3eに出力するように構成されてい
る。
The piezoelectric element 7 is configured such that the electric charge changes in accordance with the posture of the piezoelectric element 7 integrated with the housing member 5, that is, the degree of bending, and a signal output from the base end 5a of the housing member 5. The charge / voltage conversion circuit 3c connected to the piezoelectric element 7 via the lead wire 7a led to the unit 3 changes the bias voltage applied from the power supply circuit 3b according to the change in the charge of the piezoelectric element 7. , And output to the Schmitt trigger circuit 3e via the filter circuit 3d.

【0023】次に、上述のように構成された本実施形態
の流体検出センサ1の動作(作用)について説明する。
Next, the operation (action) of the fluid detection sensor 1 of the present embodiment configured as described above will be described.

【0024】ベローズポンプやダイヤフラムポンプによ
り一定の周期で一定量ずつ送り込まれた液剤が、脈動を
伴いつつ管路11の内部を流れ、その脈動のピーク時付
近、つまり、短時間でみた時間当たりの流量が最も多い
状態に近づくと、ばね材9のばね力に圧電素子7及び収
容部材5の剛性を加えた力を、液剤から収容部材5の周
面が受ける流体圧が上回り、これにより、収容部材5が
圧電素子7及びばね材9と共に一体となって、収容部材
5の先端5b側が液剤の流れの方向Bにおける上流側か
ら下流側に撓む。
The liquid agent fed by the bellows pump or the diaphragm pump in a constant amount at a constant period flows through the inside of the pipe line 11 with pulsation, and around a peak time of the pulsation, that is, a short time per unit time. As the flow rate approaches the maximum, the fluid pressure applied to the peripheral surface of the housing member 5 from the liquid agent exceeds the force obtained by adding the stiffness of the piezoelectric element 7 and the housing member 5 to the spring force of the spring member 9, thereby increasing the housing force. The member 5 is integrated with the piezoelectric element 7 and the spring member 9, and the tip 5 b side of the housing member 5 bends from the upstream side to the downstream side in the flow direction B of the liquid agent.

【0025】また、その後、液剤の脈動のピークを過ぎ
て、短時間でみた時間当たりの流量が低下して行くと、
液剤から収容部材5の周面が受ける流体圧がばね材9の
ばね力を下回るようになり、ばね材9の復元力により収
容部材5が、圧電素子7及びばね材9と共に一体となっ
て、撓む前の元の姿勢に戻る。
After that, after the peak of the pulsation of the liquid agent, the flow rate per hour as seen in a short time decreases,
The fluid pressure applied to the peripheral surface of the housing member 5 from the liquid material becomes lower than the spring force of the spring member 9, and the housing member 5 is integrated with the piezoelectric element 7 and the spring member 9 by the restoring force of the spring member 9, Return to the original posture before bending.

【0026】そして、短時間でみた時間当たりの流量が
最も少ない状態を過ぎて再び、管路11の内部を流れる
液剤の脈動のピークに近づき、ばね材9のばね力に圧電
素子7及び収容部材5の剛性を加えた力を、液剤から収
容部材5の周面が受ける流体圧が上回ると、最初に述べ
たとおりに収容部材5が圧電素子7及びばね材9と共に
一体となって撓み、その後、脈動のピークを過ぎると、
収容部材5が圧電素子7及びばね材9と共に一体となっ
て、撓む前の元の姿勢に戻る。
Then, after passing through the state where the flow rate per time as seen in a short time is the smallest, it approaches the peak of the pulsation of the liquid agent flowing inside the pipe line 11 again, and the piezoelectric element 7 and the housing member When the fluid pressure applied to the peripheral surface of the housing member 5 from the liquid agent exceeds the force obtained by adding the rigidity of the housing 5, the housing member 5 bends together with the piezoelectric element 7 and the spring material 9 as described first, and thereafter, After the peak of the pulsation,
The housing member 5 is integrated with the piezoelectric element 7 and the spring member 9 to return to the original posture before bending.

【0027】つまり、管路11の内部において収容部材
5は、液剤の脈動と同じ周期で、撓みと復帰とを圧電素
子7及びばね材9と共に一体となって繰り返すことにな
る。
That is, the housing member 5 inside the pipe 11 repeats bending and returning together with the piezoelectric element 7 and the spring material 9 at the same cycle as the pulsation of the liquid agent.

【0028】すると、圧電素子7の電荷が液剤の脈動と
同じ周期で繰り返し増減し、信号回路基板3の電荷/電
圧変換回路3cからシュミットトリガ回路3eに対する
出力も同じ周期で増減して、シュミットトリガ回路3e
に、図3(a)に示す、正弦波をダイオードで半波整流
したような波形の電気信号が入力され、これがシュミッ
トトリガ回路3eで波形成形されて、図3(b)に示
す、液剤の脈動と同じ周期の矩形波状を呈するパルス信
号がシュミットトリガ回路3eから信号出力部3の外部
に出力される。
Then, the charge of the piezoelectric element 7 repeatedly increases and decreases in the same cycle as the pulsation of the liquid agent, and the output from the charge / voltage conversion circuit 3c of the signal circuit board 3 to the Schmitt trigger circuit 3e increases and decreases in the same cycle. Circuit 3e
3 (a), an electric signal having a waveform obtained by half-wave rectification of a sine wave with a diode is input, and this is shaped into a waveform by a Schmitt trigger circuit 3e, and the liquid material shown in FIG. 3 (b) is formed. A pulse signal having a rectangular waveform having the same cycle as the pulsation is output from the signal output unit 3 from the Schmitt trigger circuit 3e.

【0029】従って、シュミットトリガ回路3eから信
号出力部3の外部に前記パルス信号が出力されること
で、管路11内を流れる液剤の存在を検出したことを電
気信号化して報知することができる。
Therefore, by outputting the pulse signal from the Schmitt trigger circuit 3e to the outside of the signal output unit 3, the presence of the liquid agent flowing in the pipe line 11 can be detected by converting it into an electric signal and notified. .

【0030】このように本実施形態によれば、ベローズ
ポンプやダイヤフラムポンプにより一定の周期で一定量
ずつ送り込まれる液剤が、脈動を伴いつつ管路11の内
部を流れているか否かを検出するのに用いる流体検出セ
ンサ1を、開放された基端5aが管路11の外周面と内
周面との肉厚部分に埋設されて支持され、閉塞された先
端5bが管路11の内部に自由端となって配設されて、
管路11の延在方向Aと平行する液剤の流れの方向Bと
直交して延在する可撓性の収容部材5と、収容部材5の
基端5aから先端5bに亘り収容部材5の内部に収容さ
れて管路11の内部に配置され、撓み量に応じて電荷が
変化する可撓性の圧電素子7とにより、管路11内を流
れる液剤の単位時間当たりの流量に応じた度合いで、管
路11内での液剤の流れ方向Bの上流側から下流側に向
けて、圧電素子7が収容部材5と共に撓むように構成し
た。
As described above, according to the present embodiment, it is detected whether or not the liquid agent fed by the bellows pump or the diaphragm pump at a constant interval in a constant amount flows through the inside of the pipeline 11 with pulsation. In the fluid detection sensor 1 used for the above, the open base end 5a is buried and supported in the thick portion between the outer peripheral surface and the inner peripheral surface of the pipeline 11, and the closed distal end 5b is free inside the pipeline 11. It is arranged as an end,
A flexible housing member 5 extending perpendicular to the direction B of flow of the liquid agent parallel to the extending direction A of the conduit 11, and the inside of the housing member 5 from the base end 5a to the distal end 5b of the housing member 5; The flexible piezoelectric element 7, which is accommodated in the pipe 11 and is arranged inside the pipe 11 and changes the electric charge according to the amount of bending, has a degree corresponding to the flow rate of the liquid agent flowing through the pipe 11 per unit time. The piezoelectric element 7 is configured to bend together with the housing member 5 from the upstream side to the downstream side in the flow direction B of the liquid agent in the conduit 11.

【0031】このため、管路11内での構造物の接離の
繰り返しや2部材間の摺動といった現象を発生させず
に、ひいては、このような現象の発生により微細なく
ず、即ち、パーティクルの発生やその流体への混入を招
かずに、管路11内を液剤が流れている間、その流量に
応じた信号レベルの電気信号を、管路11内での圧電素
子の撓みに伴う電荷の変動により発生させることができ
る。
For this reason, phenomena such as repetition of contact and separation of the structure in the pipeline 11 and sliding between the two members do not occur, and the occurrence of such phenomena does not result in fine particles. While the liquid agent is flowing through the pipe 11 without causing the generation of the liquid or the mixing thereof into the fluid, the electric signal of the signal level corresponding to the flow rate is generated by the electric charge caused by the bending of the piezoelectric element in the pipe 11. Can be caused by the variation of

【0032】また、本実施形態の流体検出センサ1によ
れば、収容部材5の基端5aから先端5bに亘り、収容
部材5の内部に圧電素子7に沿わせてばね材9をさらに
収容し、管路11内での液剤の脈動がピーク付近に達し
て上流側から下流側に向けて収容部材5と共に撓んだ圧
電素子7が、脈動のピークを過ぎて管路11内を流れる
液剤の単位時間当たりの流量が減少するのに伴い、ばね
材9の復元力によって撓む前の状態に復帰する構成とし
た。
Further, according to the fluid detection sensor 1 of the present embodiment, the spring member 9 is further accommodated in the accommodation member 5 along the piezoelectric element 7 from the base end 5a to the distal end 5b of the accommodation member 5. When the pulsation of the liquid agent in the pipe 11 reaches the vicinity of the peak and the piezoelectric element 7 bent together with the housing member 5 from the upstream side to the downstream side, the piezoelectric element 7 of the liquid agent flowing through the pipe 11 after the peak of the pulsation. As the flow rate per unit time decreases, the spring member 9 returns to the state before bending due to the restoring force.

【0033】このため、管路11内を液剤が脈動を伴い
つつ流れた際に、その液剤の流れの継続の度合いに応じ
て圧電素子7を繰り返し撓ませて、管路11内を流れる
液剤を連続して検出した際に、その連続時間に応じた振
幅数の電気信号を、管路11内での液剤の脈動と同じ周
期で撓みと復帰を繰り返す圧電素子7の電荷の変動によ
り発生させることができる。
For this reason, when the liquid material flows in the pipeline 11 with pulsation, the piezoelectric element 7 is repeatedly bent according to the degree of continuation of the flow of the liquid material, so that the liquid material flowing in the pipeline 11 When continuously detected, an electric signal having an amplitude number corresponding to the continuous time is generated by the fluctuation of the electric charge of the piezoelectric element 7 which repeatedly bends and returns in the same cycle as the pulsation of the liquid medicine in the pipeline 11. Can be.

【0034】尚、本実施形態において説明した、収容部
材5の内部に圧電素子7に沿わせてばね材9をさらに収
容する構成は、収容部材5や圧電素子7の剛性により必
要な復元力を得ることができる場合は省略してもよい。
The configuration described in the present embodiment in which the spring member 9 is further housed inside the housing member 5 along the piezoelectric element 7 provides a necessary restoring force due to the rigidity of the housing member 5 and the piezoelectric element 7. If it can be obtained, it may be omitted.

【0035】また、本実施形態においては、ベローズポ
ンプやダイヤフラムポンプにより一定の周期で一定量ず
つ送り込まれる液剤が、脈動を伴って管路11内を流れ
ることを前提に、その脈動を伴う液剤の存在を外部に電
気信号化して報知することができるパルス信号を、電荷
/電圧変換回路3cの出力する電気信号からシュミット
トリガ回路3eにより得る構成としたが、圧電素子7の
撓み具合が管路11内を流れる液剤の流量に正比例する
ように構成して、信号レベルにより流量を計測できるよ
うな電気信号を電荷/電圧変換回路3cから直に出力す
るように信号出力部3を構成してもよい。
Further, in the present embodiment, on the assumption that the liquid agent fed by the bellows pump or the diaphragm pump in a fixed amount at a constant period flows through the pipeline 11 with the pulsation, Although a pulse signal capable of notifying the existence by converting it into an electric signal to the outside is notified from the electric signal output from the charge / voltage conversion circuit 3c by the Schmitt trigger circuit 3e, the bending degree of the piezoelectric element 7 is changed by the conduit 11 The signal output unit 3 may be configured so as to be directly proportional to the flow rate of the liquid agent flowing therein, and to directly output an electric signal from which the flow rate can be measured based on the signal level from the charge / voltage conversion circuit 3c. .

【0036】即ち、管路11内を流れる液剤の流量に応
じた量で圧電素子7を撓ませる形式であれば、管路11
内を流れる液剤の流量に応じた電気信号を如何なる内容
で出力する形態とするかは、任意である。
That is, if the piezoelectric element 7 is flexed by an amount corresponding to the flow rate of the liquid agent flowing in the conduit 11, the conduit 11
What kind of content is to output the electric signal according to the flow rate of the liquid agent flowing through the inside is arbitrary.

【0037】また、圧電素子7はバイモルフに限らず、
撓み具合によって電荷が変化する材料であれば、任意の
ものを用いることができることは言うまでもない。
The piezoelectric element 7 is not limited to a bimorph,
It goes without saying that any material can be used as long as the charge changes depending on the degree of bending.

【0038】[0038]

【発明の効果】以上説明したように請求項1に記載した
本発明の流体検出センサによれば、管路内を流れる流体
を検出するのに用いる流体検出センサであって、前記管
路の内部に配設されて該管路の延在方向と交わる方向に
延在し、基端が前記管路により支持されると共に、先端
が前記管路と非接触状態で該管路の内部に配置される可
撓性の収容部材と、前記収容部材の前記基端から前記先
端に亘り該収容部材の内部に収容されて前記管路の内部
に配置され、撓み量に応じて電荷が変化する可撓性の圧
電素子とを備え、前記管路内を流れる流体の単位時間当
たりの流量に応じた度合いで、該管路内での流体の流れ
の上流側から下流側に向けて前記圧電素子が前記収容部
材と共に撓む構成とした。
As described above, according to the fluid detection sensor of the first aspect of the present invention, there is provided a fluid detection sensor for detecting a fluid flowing in a pipe, wherein the inside of the pipe is And extends in a direction intersecting with the extending direction of the pipeline, a base end is supported by the pipeline, and a distal end is disposed inside the pipeline in a non-contact state with the pipeline. A flexible accommodation member that is accommodated inside the accommodation member from the base end to the distal end of the accommodation member and is disposed inside the conduit, and the electric charge changes according to the amount of bending. A piezoelectric element, and the piezoelectric element moves from the upstream side to the downstream side of the flow of the fluid in the pipeline at a degree corresponding to the flow rate of the fluid flowing in the pipeline per unit time. It was configured to bend with the housing member.

【0039】このため、管路内を流れる流体の単位時間
当たりの流量に応じた度合いで、流体の管路内での流れ
の上流側から下流側に向けて圧電素子が収容部材と共に
撓むことから、脈動を伴った流体が管路内を流れて単位
時間当たりの管路内での流体の流量が周期的に変化した
場合に、その変化する流量に応じて圧電素子の電荷が変
化する。
For this reason, the piezoelectric element bends together with the housing member from the upstream side to the downstream side of the flow of the fluid in the pipeline to a degree corresponding to the flow rate of the fluid flowing in the pipeline per unit time. Therefore, when the fluid accompanied by the pulsation flows in the pipeline and the flow rate of the fluid in the pipeline per unit time changes periodically, the electric charge of the piezoelectric element changes according to the changing flow rate.

【0040】従って、管路内での構造物の接離の繰り返
しや2部材間の摺動といった現象を発生させずに、ひい
ては、このような現象の発生により微細なくず、即ち、
パーティクルの発生やその流体への混入を招かずに、管
路内の流体の有無を検出するのに用いる、管路内の流体
流量に応じた信号レベルの電気信号を、管路内の流体流
量の変動に応じた圧電素子の電荷の変動により発生させ
ることができる。
Therefore, a phenomenon such as repeated contact and separation of a structure in a pipeline and sliding between two members does not occur, and as a result, the occurrence of such a phenomenon is not fine, that is,
An electric signal with a signal level corresponding to the fluid flow rate in the pipe used to detect the presence or absence of fluid in the pipe without causing the generation of particles or contamination with the fluid. Can be generated by a change in the electric charge of the piezoelectric element in accordance with the change in.

【0041】また、請求項2に記載した本発明の流体検
出センサによれば、前記収容部材の前記基端から前記先
端に亘り、前記圧電素子に沿わせて前記収容部材の内部
に収容されるばね材をさらに備え、前記管路内での流体
の流れにより前記上流側から前記下流側に向けて前記収
容部材と共に撓んだ前記圧電素子が、前記管路内を流れ
る流体の単位時間当たりの流量の減少に伴い、前記ばね
材の復元力によって撓む前の状態に復帰する構成とし
た。
Further, according to the fluid detection sensor of the present invention, the housing member is housed in the housing member along the piezoelectric element from the base end to the tip end. Further comprising a spring material, wherein the piezoelectric element bent together with the housing member from the upstream side to the downstream side by the flow of the fluid in the conduit, the per unit time of the fluid flowing in the conduit As the flow rate decreases, the spring member returns to a state before being bent by the restoring force of the spring member.

【0042】このため、管路内を流れる流体の単位時間
当たりの流量に応じて収容部材と共に撓んだ圧電素子
が、圧電素子に沿わせて収容部材の内部に収容されるば
ね材の復元力により、管路内を流れる流体の単位時間当
たりの流量の減少に伴って元の状態に復帰する。
For this reason, the piezoelectric element bent together with the housing member in accordance with the flow rate of the fluid flowing in the conduit per unit time is applied to the restoring force of the spring material housed inside the housing member along the piezoelectric element. Accordingly, the fluid returns to the original state as the flow rate of the fluid flowing in the pipeline decreases per unit time.

【0043】従って、管路内を流体が脈動を伴いつつ流
れた際に、その流体の流れの継続の度合いに応じて圧電
素子を繰り返し撓ませて、管路内を流れる流体を連続し
て検出した際に、その連続時間に応じた振幅数の電気信
号を、管路内を流れる流体の流量の変動に応じた圧電素
子の電荷の変動により、繰り返し発生させることができ
る。
Accordingly, when the fluid flows in the pipeline with pulsation, the piezoelectric element is repeatedly bent according to the degree of continuation of the fluid flow, and the fluid flowing in the pipeline is continuously detected. Then, an electric signal having an amplitude corresponding to the continuous time can be repeatedly generated by a change in the electric charge of the piezoelectric element in accordance with a change in the flow rate of the fluid flowing in the pipeline.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る流体検出センサの概
略構成を流体管路と共に示す断面図である。
FIG. 1 is a sectional view showing a schematic configuration of a fluid detection sensor according to an embodiment of the present invention, together with a fluid pipeline.

【図2】図1の信号出力部の電気的構成を示すブロック
図である。
FIG. 2 is a block diagram illustrating an electrical configuration of a signal output unit in FIG. 1;

【図3】(a)は図2のシュミットトリガ回路に入力さ
れる電気信号の波形図、(b)はシュミットトリガ回路
から出力される電気信号の波形図である。
3A is a waveform diagram of an electric signal input to the Schmitt trigger circuit of FIG. 2, and FIG. 3B is a waveform diagram of an electric signal output from the Schmitt trigger circuit.

【図4】従来例に係る面積式流量計の断面図である。FIG. 4 is a sectional view of an area type flow meter according to a conventional example.

【符号の説明】[Explanation of symbols]

1 流体検出センサ 5 収容部材 5a 収容部材基端 5b 周用部材先端 7 圧電素子 9 ばね材 11 管路 A 管路延在方向 DESCRIPTION OF SYMBOLS 1 Fluid detection sensor 5 Housing member 5a Housing member base end 5b Peripheral member distal end 7 Piezoelectric element 9 Spring material 11 Pipe line A Pipe extending direction

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 管路内を流れる流体を検出するのに用い
る流体検出センサであって、 前記管路の内部に配設されて該管路の延在方向と交わる
方向に延在し、基端が前記管路により支持されると共
に、先端が前記管路と非接触状態で該管路の内部に配置
される可撓性の収容部材と、 前記収容部材の前記基端から前記先端に亘り該収容部材
の内部に収容されて前記管路の内部に配置され、撓み量
に応じて電荷が変化する可撓性の圧電素子とを備え、 前記管路内を流れる流体の単位時間当たりの流量に応じ
た度合いで、該管路内での流体の流れの上流側から下流
側に向けて前記圧電素子が前記収容部材と共に撓む、 ことを特徴とする流体検出センサ。
1. A fluid detection sensor used for detecting a fluid flowing in a pipeline, wherein the fluid detection sensor is disposed inside the pipeline, extends in a direction intersecting with an extension direction of the pipeline, and has a base. A flexible accommodating member having an end supported by the conduit and a distal end disposed inside the conduit in a non-contact state with the conduit, and extending from the base end to the distal end of the accommodating member. A flexible piezoelectric element that is housed inside the housing member and is arranged inside the conduit, and changes the charge according to the amount of bending, and the flow rate of the fluid flowing through the conduit per unit time Wherein the piezoelectric element bends together with the housing member from the upstream side to the downstream side of the flow of the fluid in the pipeline at a degree corresponding to the following.
【請求項2】 前記収容部材の前記基端から前記先端に
亘り、前記圧電素子に沿わせて前記収容部材の内部に収
容されるばね材をさらに備え、前記管路内での流体の流
れにより前記上流側から前記下流側に向けて前記収容部
材と共に撓んだ前記圧電素子が、前記管路内を流れる流
体の単位時間当たりの流量の減少に伴い、前記ばね材の
復元力によって撓む前の状態に復帰する請求項1記載の
流体検出センサ。
And a spring member that is housed inside the housing member along the piezoelectric element from the base end to the front end of the housing member, and is provided by a flow of a fluid in the pipe. The piezoelectric element bent together with the housing member from the upstream side to the downstream side before bending due to the restoring force of the spring material with a decrease in the flow rate per unit time of the fluid flowing in the pipeline. The fluid detection sensor according to claim 1, wherein the fluid detection sensor returns to the state of (1).
JP30873997A 1997-11-11 1997-11-11 Fluid detection sensor Withdrawn JPH11142197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30873997A JPH11142197A (en) 1997-11-11 1997-11-11 Fluid detection sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30873997A JPH11142197A (en) 1997-11-11 1997-11-11 Fluid detection sensor

Publications (1)

Publication Number Publication Date
JPH11142197A true JPH11142197A (en) 1999-05-28

Family

ID=17984711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30873997A Withdrawn JPH11142197A (en) 1997-11-11 1997-11-11 Fluid detection sensor

Country Status (1)

Country Link
JP (1) JPH11142197A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125861A (en) * 2004-10-26 2006-05-18 Sumitomo Chemical Co Ltd Fluid detection device and fluid detection method using the same
US7839057B2 (en) * 2007-08-02 2010-11-23 Brother Kogyo Kabushiki Kaisha Movement detector
CN110646032A (en) * 2019-09-03 2020-01-03 中国科学院地理科学与资源研究所 Water flow measuring device driven by piezoelectric motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125861A (en) * 2004-10-26 2006-05-18 Sumitomo Chemical Co Ltd Fluid detection device and fluid detection method using the same
US7839057B2 (en) * 2007-08-02 2010-11-23 Brother Kogyo Kabushiki Kaisha Movement detector
CN110646032A (en) * 2019-09-03 2020-01-03 中国科学院地理科学与资源研究所 Water flow measuring device driven by piezoelectric motor

Similar Documents

Publication Publication Date Title
KR100216646B1 (en) Electronic flow meter
US20110137580A1 (en) Flow measurement method and device
CN106796130B (en) Magnetic flowmeter with automatic in-situ self-cleaning function
JP2010156712A (en) Coriolis flowmeter and manufacturing thereof
CN101852667A (en) Flow-through pressure sensor apparatus
EP1188036A1 (en) Rocker style sensor system for use in a vortex shedding flowmeter
JPH11142197A (en) Fluid detection sensor
CN108463694A (en) Converter apparatus and the measuring system constituted using this converter apparatus
JP6026963B2 (en) Flow sensor and flow detection system
US6444927B1 (en) Microbalance with reduced temperature and / or pressure sensitivity
TWI802865B (en) flow measuring device
JP2011075309A (en) Flowmeter and mass flow controller
JP2000146640A (en) Flow rate detecting device and flow rate detecting method
Zylka et al. Vortex anemometer using MEMS cantilever sensor
Yoon et al. Fabrication of a microelectromagnetic flow sensor for microflow rate measurement
CN112654842B (en) Non-invasive sensor for vortex flowmeter
JP7255943B1 (en) Semiconductor pressure chip sensor
US6679125B1 (en) Fine particle flowmeter
JP2006125861A (en) Fluid detection device and fluid detection method using the same
CA2391307C (en) Fine particle flowmeter
CN213601098U (en) A fault diagnosis device
JPH04155219A (en) Minute flow rate sensor
JP2723306B2 (en) Mass flow meter
JP2007248258A (en) On-site indicator
JPH0198926A (en) Mass flowmeter

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050201