JPH11136069A - Piezoelectric module element and method of manufacturing the same - Google Patents
Piezoelectric module element and method of manufacturing the sameInfo
- Publication number
- JPH11136069A JPH11136069A JP29512097A JP29512097A JPH11136069A JP H11136069 A JPH11136069 A JP H11136069A JP 29512097 A JP29512097 A JP 29512097A JP 29512097 A JP29512097 A JP 29512097A JP H11136069 A JPH11136069 A JP H11136069A
- Authority
- JP
- Japan
- Prior art keywords
- piezoelectric
- module element
- substrate
- piezoelectric substrate
- piezoelectric module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
(57)【要約】
【課題】 圧電体モジュール素子の動作周波数を高精度
に可変化、安定化できる素子構造と、その効率的な製造
方法を提供すること。
【解決手段】 弾性波送信用電極2および受信用電極3
と、圧電性セラミックス基体1とからなり、前記基体1
表面の少なくとも一部に、前記基板とは結晶配列もしく
は構成元素の異なる部分4とから構成されることを特徴
とする圧電体モジュール素子である。
[PROBLEMS] To provide an element structure capable of changing and stabilizing the operating frequency of a piezoelectric module element with high accuracy, and an efficient manufacturing method thereof. SOLUTION: An elastic wave transmitting electrode 2 and a receiving electrode 3 are provided.
And a piezoelectric ceramic substrate 1.
The piezoelectric module element is characterized in that at least a part of the surface is composed of the substrate and a part 4 having a different crystal arrangement or constituent elements.
Description
【0001】[0001]
【発明の属する技術分野】本発明は移動体通信などに広
く用いられている圧電体素子の構造と製造方法に関する
ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure and a manufacturing method of a piezoelectric element widely used in mobile communication and the like.
【0002】[0002]
【従来の技術】PHS(Personal Handy Phone System)を
初めとする、移動体通信システムでは、数多くのセラミ
ックス電子部品、半導体、などが使われている。中で
も、フィルターには圧電体セラミックスが主に使われて
いる。BACKGROUND OF THE INVENTION beginning with PHS (P ersonal H andy Phone S ystem), in a mobile communication system, a number of ceramic electronic components, semiconductors, and the like are used. Among them, piezoelectric ceramics are mainly used for filters.
【0003】[0003]
【発明が解決しようとする課題】セラミックスフイルタ
ーは、電極と焼成セラミックスを組み合わせたもので、
形状を変えることで、電磁波用の発振子、共振器にも使
うことができる。移動体通信機器の需要の増大に伴い、
通信網での混信を避けるため、フィルターの周波数精度
は極めて高い値が要求される。一般に、通信網でのチャ
ンネル間隔は数10kHz程度である。最も周波数精度の要
求されるのが、IF(Intermediate Frequency;中間周波
数)帯にあるフィルターで、100ppm以下に所望の動作周
波数の精度に抑える必要がある。圧電体フィルターの動
作周波数は、その厚みに反比例することが知られている
が、厚み数mmのフィルターの加工精度を100ppm以下に
することは事実上不可能で、経験則に依っていた。A ceramics filter is a combination of electrodes and fired ceramics.
By changing the shape, it can be used for an oscillator and a resonator for electromagnetic waves. With the growing demand for mobile communication equipment,
In order to avoid interference in a communication network, a very high frequency accuracy of the filter is required. Generally, the channel interval in a communication network is about several tens kHz. Most frequency accuracy is required of the of, IF; a filter in (I ntermediate F requency intermediate frequency) band, it is necessary to suppress the accuracy of a desired operating frequency 100ppm or less. It is known that the operating frequency of a piezoelectric filter is inversely proportional to its thickness, but it is practically impossible to reduce the processing accuracy of a filter having a thickness of several mm to 100 ppm or less, and it has been based on empirical rules.
【0004】[0004]
【課題を解決するための手段】本発明者らによる第1の
発明の圧電体モジュール素子は、弾性波送信用および受
信用電極と、弾性波伝搬用圧電性基体とからなり、前記
圧電性基体表面の少なくとも一部に、前記基板とは結晶
配列もしくは構成元素の異なる部分とから構成されるこ
とを特徴とするものである。According to a first aspect of the present invention, there is provided a piezoelectric module element comprising electrodes for transmitting and receiving elastic waves, and a piezoelectric substrate for propagating elastic waves. At least a part of the surface is composed of the substrate and a portion having a different crystal arrangement or constituent elements.
【0005】さらに第2の発明の圧電体モジュール素子
の製造方法は、弾性波送信用および受信用電極と、弾性
波伝搬用圧電性基体とから構成される圧電体モジュール
素子の、前記圧電性基体表面もしくは、前記圧電性基体
と前記電極を含む前記素子の表面に紫外光を照射するこ
とを特徴とするものである。Further, according to a second aspect of the present invention, there is provided a method of manufacturing a piezoelectric module, comprising: a piezoelectric module comprising an electrode for transmitting and receiving elastic waves; and a piezoelectric substrate for transmitting elastic waves. The surface or the surface of the element including the piezoelectric substrate and the electrode is irradiated with ultraviolet light.
【0006】本発明者らによる第1の発明によると、圧
電体モジュール素子の基板表面に、前記基板とは圧電定
数、固体密度その他が基板とは異なる部分を形成するこ
とによって、発生する弾性波の伝搬速度を基板そのもの
の値からずらすことができ、動作周波数を変えることが
できる。According to a first aspect of the present invention, an elastic wave generated by forming a portion having a piezoelectric constant, a solid density, and the like different from those of the substrate on the surface of the substrate of the piezoelectric module element. Can be shifted from the value of the substrate itself, and the operating frequency can be changed.
【0007】さらに第2の発明によると圧電体モジュー
ル素子の製造方法は、上記基板表面もしくは、上記基板
と上記電極を含む圧電体モジュール素子の表面に紫外光
を照射することで上記部分を有効に形成でき、発生する
弾性波の伝搬速度を基板そのものの値から効率よく変化
させることができ、動作周波数を変えることができる。According to a second aspect of the present invention, in the method of manufacturing a piezoelectric module element, the portion is effectively irradiated by irradiating the substrate surface or the surface of the piezoelectric module element including the substrate and the electrodes with ultraviolet light. Thus, the propagation speed of the generated elastic wave can be efficiently changed from the value of the substrate itself, and the operating frequency can be changed.
【0008】[0008]
【発明の実施の形態】非晶質材料は、熱等のエネルギー
を加えることによって、結晶化し、それに従って、弾性
定数等の材料の物性値も変化することが知られている。
本発明者らは、従来の方法では、困難であった圧電体素
子の周波数を、非接触で調整するために、圧電体素子の
弾性波が伝搬する一部分の、結晶性を変えることで、弾
性波の伝搬速度、すなわち動作周波数(フィルターで
は、中心周波数)を変えれられるのではと考え、本発明
に至った。DESCRIPTION OF THE PREFERRED EMBODIMENTS It is known that an amorphous material is crystallized by applying energy such as heat, and the physical properties of the material such as an elastic constant change accordingly.
The present inventors have adjusted the crystallinity of a portion of the piezoelectric element where the elastic wave propagates, in order to adjust the frequency of the piezoelectric element in a non-contact manner, which has been difficult with the conventional method, and to change the crystallinity. The present invention was thought to be able to change the propagation speed of the wave, that is, the operating frequency (the center frequency in the case of the filter), and reached the present invention.
【0009】図1に、本発明による圧電フィルターの断
面構造概略図を示す。本実施例では、圧電体基体1とし
て、成形後、空気中で10時間1100℃にて焼成した
Pb(Mg1/3Nb2/3)0.125Ti0.435Zr0.44O3の圧電体セラミッ
クスを、厚み5mmに研磨加工して用いた。銀ペースト
を焼き付け、弾性波発生用電極2と、受信用電極3を圧
電体基体1上に形成した。本実施例で作製した圧電体フ
ィルターの中心周波数は、4MHzである。本発明者ら
は、この圧電体フィルター上に、Ti-O薄膜4を約1μ
m、マグネトロンスパッタ法で堆積した。FIG. 1 is a schematic sectional view of a piezoelectric filter according to the present invention. In this embodiment, the piezoelectric substrate 1 was fired at 1100 ° C. for 10 hours in air after molding.
A piezoelectric ceramic of Pb (Mg 1/3 Nb 2/3 ) 0.125 Ti 0.435 Zr 0.44 O 3 was used after being polished to a thickness of 5 mm. The silver paste was baked to form the elastic wave generating electrode 2 and the receiving electrode 3 on the piezoelectric substrate 1. The center frequency of the piezoelectric filter manufactured in this example is 4 MHz. The present inventors set the Ti-O thin film 4 on this piezoelectric filter to about 1 μm.
m, deposited by magnetron sputtering.
【0010】本発明者らは、図1に示した本発明による
圧電体フィルターに対し、光照射を行ったとき圧電体フ
ィルターの動作周波数を有効に変化させることができる
ことを見いだした。The present inventors have found that the operating frequency of the piezoelectric filter according to the present invention shown in FIG. 1 can be effectively changed when light irradiation is performed.
【0011】照射用光源として波長248nmの弗化クリプ
トン(KrF)エキシマレーザーを用いた。本実施例で
はエネルギー60mJの、レーザーパルス光5を集光して
前記圧電体フィルター上の薄膜4表面に10Hzで照射し
て実験を行った。本実施例で用いた前記レーザーのパワ
ー密度は1パルスあたり1.2mW/mm2である。圧電体フ
ィルターの中心周波数測定は増幅器と共振器を構成し、
共振する電波の周波数を周波数測定器で測定することに
よって行った。図2に、レーザーパルス光のショット数
に対する圧電体フィルターの中心周波数の変化を示す。
図2に示すように前記薄膜4表面に紫外線光を照射する
ことによって、圧電体フィルターの中心周波数を変化さ
せることができることを見いだした。A krypton fluoride (KrF) excimer laser having a wavelength of 248 nm was used as an irradiation light source. In this embodiment, an experiment was conducted by condensing a laser pulse light 5 having an energy of 60 mJ and irradiating the surface of the thin film 4 on the piezoelectric filter at 10 Hz. The power density of the laser used in this embodiment is 1.2 mW / mm 2 per pulse. The center frequency measurement of the piezoelectric filter constitutes the amplifier and the resonator,
The measurement was performed by measuring the frequency of a resonating radio wave with a frequency measuring instrument. FIG. 2 shows a change in the center frequency of the piezoelectric filter with respect to the number of shots of the laser pulse light.
As shown in FIG. 2, it has been found that the center frequency of the piezoelectric filter can be changed by irradiating the surface of the thin film 4 with ultraviolet light.
【0012】[0012]
【発明の効果】本発明者らによる第1の発明は従来から
問題となっていた圧電体モジュール素子の動作周波数を
調整する上で、また本発明者らによる第2の発明は第1
の発明をさらに有効に発揮し、しかも圧電体モジュール
素子の製造工程において、光、電磁波で、素子の動作周
波数を測定しながら行え、素子の製品歩留まりを格段に
高め、製造工程を高効率化する上で産業上の利用価値は
極めて大きい。The first invention of the present inventors is for adjusting the operating frequency of the piezoelectric module element, which has been a problem in the past, and the second invention of the present inventors is for the first invention.
In the manufacturing process of the piezoelectric module element, it can be performed while measuring the operating frequency of the element with light and electromagnetic waves, thereby significantly increasing the product yield of the element and increasing the efficiency of the manufacturing process. Above all, the industrial utility value is extremely large.
【図1】圧電体フィルターの断面構造概略図FIG. 1 is a schematic sectional view of a piezoelectric filter.
【図2】レーザー光ショット数に対する圧電体フィルタ
ーの動作周波数を示す図FIG. 2 is a diagram showing the operating frequency of a piezoelectric filter with respect to the number of laser light shots.
1 圧電体セラミックス 2 送信用櫛型電極 3 受信用櫛型電極 4 非晶質薄膜 5 レーザー光 DESCRIPTION OF SYMBOLS 1 Piezoelectric ceramics 2 Comb electrode for transmission 3 Comb electrode for reception 4 Amorphous thin film 5 Laser beam
Claims (6)
圧電性基体の上に設けられた送信用あるいは受信用電極
とを備え、前記圧電性基体の少なくとも一部に、周波数
調整部を構成することを特徴とする圧電体モジュール素
子。1. A piezoelectric substrate for transmitting an elastic wave, and a transmitting or receiving electrode provided on the piezoelectric substrate, wherein at least a part of the piezoelectric substrate comprises a frequency adjusting unit. A piezoelectric module element.
された薄膜であることを特徴とする請求項1に記載の圧
電体モジュール素子。2. The piezoelectric module element according to claim 1, wherein the frequency adjusting section is a thin film deposited on the piezoelectric substrate.
膜が少なくとも結晶部分を含む微結晶−非晶質薄膜であ
ることを特徴とする請求項2に項記載の圧電体モジュー
ル素子。3. The piezoelectric module element according to claim 2, wherein the piezoelectric substrate is a crystalline substrate, and the thin film is a microcrystalline-amorphous thin film including at least a crystalline portion.
とする請求項1または2に記載の圧電体モジュール素
子。4. The piezoelectric module element according to claim 1, wherein the frequency adjusting section is an insulator.
部分を改質したものであることを特徴とする請求項1に
記載の圧電体モジュール素子。5. The piezoelectric module element according to claim 1, wherein the frequency adjusting section is obtained by modifying a part of the surface of the piezoelectric substrate.
圧電性基体の上に設けられた送信用あるいは受信用電極
とを備えた圧電体モジュール素子の、前記圧電性基体表
面もしくは前記圧電性基体と前記電極を含む前記素子の
表面に紫外光を照射して周波数を調整することを特徴と
する圧電体モジュール素子の製造方法。6. A piezoelectric module element comprising a piezoelectric substrate for transmitting an elastic wave and a transmitting or receiving electrode provided on the piezoelectric substrate, wherein the piezoelectric substrate surface or the piezoelectric substrate A method for manufacturing a piezoelectric module element, comprising irradiating a surface of the element including a base and the electrode with ultraviolet light to adjust a frequency.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29512097A JPH11136069A (en) | 1997-10-28 | 1997-10-28 | Piezoelectric module element and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29512097A JPH11136069A (en) | 1997-10-28 | 1997-10-28 | Piezoelectric module element and method of manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11136069A true JPH11136069A (en) | 1999-05-21 |
Family
ID=17816556
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29512097A Pending JPH11136069A (en) | 1997-10-28 | 1997-10-28 | Piezoelectric module element and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11136069A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011507455A (en) * | 2007-12-18 | 2011-03-03 | ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | MEMS resonator structure and method of use associated with the resonator structure |
CN104038177A (en) * | 2014-06-04 | 2014-09-10 | 江苏艾伦摩尔微电子科技有限公司 | Thin film bulk acoustic resonator for ultraviolet detection and preparation method thereof |
-
1997
- 1997-10-28 JP JP29512097A patent/JPH11136069A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011507455A (en) * | 2007-12-18 | 2011-03-03 | ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | MEMS resonator structure and method of use associated with the resonator structure |
CN104038177A (en) * | 2014-06-04 | 2014-09-10 | 江苏艾伦摩尔微电子科技有限公司 | Thin film bulk acoustic resonator for ultraviolet detection and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8248186B2 (en) | Boundary acoustic wave device | |
US5815054A (en) | Surface micromachined acoustic wave piezoelectric crystal with electrodes on raised ridges and in spaces therebetween | |
EP3776854A1 (en) | Surface acoustic wave device on composite substrate | |
KR960036296A (en) | Surface acoustic wave module device and manufacturing method thereof | |
US5320865A (en) | Method of manufacturing a surface acoustic wave device | |
US7223305B2 (en) | Method of manufacturing potassium niobate single crystal thin film, surface acoustic wave element, frequency filter, frequency oscillator, electric circuit, and electronic apparatus | |
GB2152281A (en) | Process for producing miniature piezoelectric devices using laser machining and devices obtained by this process | |
CN114124023B (en) | A multi-layered homogeneous piezoelectric structure and preparation method | |
KR20200072904A (en) | Piezoelectric thin film resonator | |
JPH11136069A (en) | Piezoelectric module element and method of manufacturing the same | |
CN113452340A (en) | Bulk acoustic wave resonator and method for improving energy-gathering structure thereof | |
US5741580A (en) | Crystalline thin film and producing method thereof, and acoustooptic deflection element | |
KR100322478B1 (en) | Surface acoustic wave oscillator module on low temperature co-fired ceramic substrate | |
US20040237882A1 (en) | Method of manufacturing potassium niobate single crystal thin film, surface acoustic wave element, frequency filter, frequency oscillator, electronic circuit, and electronic apparatus | |
EP0141487B1 (en) | Method of manufacturing surface acoustic wave device | |
US6621194B1 (en) | Piezoelectric element having thickness shear vibration and mobile communication device using the same | |
EP0471567B1 (en) | Real-time, in-situ saw filter delay adjustment | |
JP2003034592A (en) | Diamond substrate having piezoelectric thin film formed thereon and method of manufacturing the same | |
JPS58137318A (en) | Thin-film piezoelectric oscillator | |
JPH1131942A (en) | Surface acoustic wave module element and method of manufacturing the same | |
JPH11116397A (en) | Oriented perovskite type potassium niobate thin membrane, and surface acoustic wave element having the thin membrane | |
JPH11136063A (en) | Method of manufacturing piezoelectric module element | |
Oshmyansky et al. | Sputtering processes for bulk acoustic wave filters | |
JP2003264448A (en) | Surface acoustic wave module element | |
JP2000295060A (en) | Surface acoustic wave device and frequency adjustment method thereof |