JPH1112712A - Manufacturing method of high strength galvannealed steel sheet - Google Patents
Manufacturing method of high strength galvannealed steel sheetInfo
- Publication number
- JPH1112712A JPH1112712A JP9173720A JP17372097A JPH1112712A JP H1112712 A JPH1112712 A JP H1112712A JP 9173720 A JP9173720 A JP 9173720A JP 17372097 A JP17372097 A JP 17372097A JP H1112712 A JPH1112712 A JP H1112712A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- weight
- alloying
- plating
- hot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 34
- 239000010959 steel Substances 0.000 title claims abstract description 34
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 238000005275 alloying Methods 0.000 claims abstract description 52
- 238000007747 plating Methods 0.000 claims abstract description 50
- 238000011282 treatment Methods 0.000 claims abstract description 25
- 238000005246 galvanizing Methods 0.000 claims abstract description 18
- 229910001335 Galvanized steel Inorganic materials 0.000 claims abstract description 13
- 239000008397 galvanized steel Substances 0.000 claims abstract description 13
- 238000010438 heat treatment Methods 0.000 claims abstract description 13
- 230000009467 reduction Effects 0.000 claims abstract description 9
- 229910000881 Cu alloy Inorganic materials 0.000 claims abstract description 7
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 6
- 239000011701 zinc Substances 0.000 claims abstract description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052802 copper Inorganic materials 0.000 claims abstract description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 abstract description 13
- 238000000576 coating method Methods 0.000 abstract description 13
- 238000006243 chemical reaction Methods 0.000 abstract description 10
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 6
- 230000002349 favourable effect Effects 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 26
- 238000000034 method Methods 0.000 description 12
- 229910052742 iron Inorganic materials 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 238000013077 scoring method Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000033116 oxidation-reduction process Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 229910018137 Al-Zn Inorganic materials 0.000 description 1
- 229910018573 Al—Zn Inorganic materials 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 229910007570 Zn-Al Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/021—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/023—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/023—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
- C23C28/025—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only with at least one zinc-based layer
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Coating With Molten Metal (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
(57)【要約】
【課題】 Pを含有する高張力鋼板の溶融亜鉛めっき後
の合金化反応が遅く生産性が低下する問題を解消し、め
っき層合金化速度を高め、しかもめっき密着性の良好な
合金化溶融亜鉛めっき鋼板の製造方法を提供する。
【解決手段】 0.02〜0.2重量%のPを含有する
高張力鋼板またはSi:0.02〜2.5重量%Mn:
0.3〜2.5重量%、Cr:0.1〜6.0重量%の
うち、一種以上を含有する高張力鋼板に、0.002〜
2.0g/m2 のCuまたはCu合金を被覆し、加熱還
元処理を行ったのち、Al0.05〜0.25重量%お
よび必要に応じてMg0.1〜1.0重量%を含有する
亜鉛めっき浴中で溶融亜鉛めっきし、ワイピング後、4
60〜550℃で合金化加熱処理を行うことを特徴とす
るめっき密着性に優れた高張力合金化溶融亜鉛めっき鋼
板の製造方法。(57) [Problem] To solve the problem that the alloying reaction of hot-dip galvanizing of a high-tensile steel sheet containing P is slow and the productivity is reduced, to increase the alloying speed of a plating layer, and to further improve the plating adhesion. Provided is a method for producing a favorable galvannealed steel sheet. A high-strength steel sheet containing 0.02 to 0.2% by weight of P or Si: 0.02 to 2.5% by weight Mn:
Among high-strength steel sheets containing at least one of 0.3 to 2.5% by weight and Cr: 0.1 to 6.0% by weight,
After coating with 2.0 g / m 2 of Cu or Cu alloy and performing a heat reduction treatment, zinc containing 0.05 to 0.25% by weight of Al and 0.1 to 1.0% by weight of Mg as needed After hot dip galvanizing in a plating bath and wiping, 4
A method for producing a high-tensile alloyed hot-dip galvanized steel sheet having excellent plating adhesion, wherein an alloying heat treatment is performed at 60 to 550 ° C.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高張力合金化溶融
亜鉛めっき鋼板の製造方法に関するものである。The present invention relates to a method for producing a high-tensile alloyed hot-dip galvanized steel sheet.
【0002】[0002]
【従来の技術】従来より、合金化溶融亜鉛めっき鋼板
は、自動車、建材用途などを中心として、塗装後の耐食
性およびめっき密着性等に優れることから、広く使用さ
れている。最近、自動車の軽量化対策の一環として、ボ
ディーの内板あるいは下周り部品、足周り部品などへの
340〜590MPaクラスの高張力鋼板適用への期待
が高まっている。2. Description of the Related Art Conventionally, galvannealed steel sheets have been widely used in automobiles, building materials and the like because of their excellent corrosion resistance after coating and plating adhesion. Recently, as part of measures to reduce the weight of automobiles, expectations for the application of a high-strength steel sheet of 340 to 590 MPa class to the inner plate of the body, the lower peripheral parts, the suspension parts, and the like are increasing.
【0003】[0003]
【発明が解決しようとする課題】自動車用表面処理鋼板
の一つとして、塗膜にきずが入った場合の塗膜ふくれ性
などの塗装後の耐食性の観点から一般に溶融亜鉛めっき
後合金化処理した合金化溶融亜鉛めっき鋼板が使用され
ているが、Pを0.02〜0.2重量%含有した高張力
鋼板やSi:0.02〜2.5重量%、Mn:0.3〜
2.5重量%、Cr:0.1〜6.0重量%のうち、一
種以上を含有した高張力鋼板においては、従来の無酸化
―還元(焼鈍)方式の溶融亜鉛めっき法においては、め
っき前の焼鈍工程においてPなどの高強度のために添加
された元素が粒界等に濃縮すること等に起因して、めっ
き層のZn−Fe合金化反応速度が遅く、他の鋼種に比
較すると生産性が極めて悪いことが問題となっている。
本発明の目的は、このような問題点を解消し、P添加系
高張力鋼板の溶融亜鉛めっきにおいて合金化速度を速
め、生産性の高い高張力合金化溶融亜鉛めっき鋼板の製
造方法を提供することにある。As one of surface-treated steel sheets for automobiles, alloying treatment is generally performed after hot-dip galvanizing from the viewpoint of corrosion resistance after coating such as coating swelling when a coating is scratched. An alloyed hot-dip galvanized steel sheet is used, but a high-tensile steel sheet containing 0.02 to 0.2% by weight of P, Si: 0.02 to 2.5% by weight, and Mn: 0.3 to 0.3%
Among high-strength steel sheets containing at least one of 2.5% by weight and Cr: 0.1 to 6.0% by weight, in the conventional non-oxidation-reduction (annealing) hot-dip galvanizing method, Due to the fact that elements added for high strength such as P in the previous annealing step are concentrated at the grain boundaries and the like, the Zn-Fe alloying reaction rate of the plating layer is slow, and compared with other steel types. The problem is that productivity is extremely poor.
An object of the present invention is to solve such problems and to provide a method for producing a high-tensile alloyed hot-dip galvanized steel sheet with high productivity by increasing the alloying speed in hot-dip galvanizing of a P-added high-tensile steel sheet. It is in.
【0004】本発明者らはすでに、めっき層のZn−F
e合金化速度を速めるための方法を特開平4―3335
52号公報および特開平4―346644号公報で開示
している。これら、プレNiめっきと急速低温加熱を利
用した合金化溶融亜鉛めっき鋼板の製造方法は、例えば
P:0.02〜0.2%またはSi:0.02〜2.5
%を含有する高張力鋼板において合金化速度が、従来の
高温の無酸化―還元方式の溶融亜鉛めっき法よりも合金
化処理時のZn−Fe合金化速度が改善される。しか
し、この方法においては、プレNiめっき後に急速低温
加熱が必須であることから、生産ラインにおいては、大
幅な設備上の制約をうけ、また、通常の高温で行う無酸
化―還元方式、あるいはオール還元方式の溶融亜鉛めっ
きラインにおいては、プレNi層が加熱中に地鉄中に拡
散してしまうことから、その効果が薄れるなど、実用上
の問題点が多かった。そのため、通常のめっきラインに
おいても適用できるより有効な前処理方法の開発が望ま
れていた。[0004] The present inventors have already found that the Zn-F
Japanese Patent Laid-Open No. 4-33535 discloses a method for increasing the e-alloying speed.
No. 52 and JP-A-4-346644. These methods for producing an alloyed hot-dip galvanized steel sheet using pre-Ni plating and rapid low-temperature heating include, for example, P: 0.02 to 0.2% or Si: 0.02 to 2.5%.
%, The alloying speed in the alloying process at the time of alloying treatment is improved as compared with the conventional high-temperature hot-oxidation-reduction hot-dip galvanizing method. However, in this method, rapid low-temperature heating is essential after pre-Ni plating. Therefore, the production line is subject to significant equipment limitations, and is also subject to a non-oxidation-reduction method performed at a normal high temperature, In the hot-dip galvanizing line of the reduction system, the pre-Ni layer diffuses into the base iron during the heating, so that there are many practical problems such as its effect being reduced. Therefore, development of a more effective pretreatment method that can be applied to a normal plating line has been desired.
【0005】本発明者らは、上記の課題を解決するため
に、さらに鋭意検討を続けたところ、Pを0.02〜
0.2%含有する高張力鋼板やSi:0.02〜2.5
重量%Mn:0.3〜2.5重量%、Cr:0.1〜
6.0重量%のうち、一種以上を含有する高張力鋼板の
表面にあらかじめCuもしくはCu合金を被覆したの
ち、通常の高温加熱還元方式で溶融亜鉛めっき後、合金
化処理を行った場合に施したところ、めっき層のZn−
Fe合金化速度が著しく向上し、例えば、通常Zn−F
e反応が進みにくい0.06%P鋼であっても、一定の
合金化条件でFe反応量を30〜50%程度増加させる
ことができ、しかも、めっき密着性の高いめっき層が得
られることを発見した。[0005] The present inventors have conducted further intensive studies to solve the above-mentioned problems.
High strength steel sheet containing 0.2% or Si: 0.02 to 2.5
Wt% Mn: 0.3 to 2.5 wt%, Cr: 0.1 to
After coating the surface of a high-strength steel sheet containing at least one of 6.0% by weight with Cu or a Cu alloy in advance, hot-dip galvanizing by a normal high-temperature heating reduction method, and then performing an alloying treatment. As a result, the Zn-
The rate of Fe alloying is remarkably improved, for example, usually Zn-F
(e) Even with 0.06% P steel in which the reaction does not easily proceed, the Fe reaction amount can be increased by about 30 to 50% under a constant alloying condition, and a plating layer having high plating adhesion can be obtained. Was found.
【0006】[0006]
【課題を解決するための手段】本発明は、この発見に基
づいて完成したもので、その要旨とするところは下記の
通りである。 (1)0.02〜0.2重量%のPを含有する高張力鋼
板に、0.002〜2.0g/m2 のCuまたはCu合
金を被覆し、加熱還元処理を行ったのち、Al0.05
〜0.25重量%を含有する亜鉛めっき浴中で溶融亜鉛
めっきし、ワイピング後、460〜550℃で合金化加
熱処理を行うことを特徴とするめっき密着性に優れた高
張力合金化溶融亜鉛めっき鋼板の製造方法。The present invention has been completed based on this finding, and the gist thereof is as follows. (1) A high-tensile steel sheet containing 0.02 to 0.2% by weight of P is coated with 0.002 to 2.0 g / m 2 of Cu or a Cu alloy and subjected to a heat reduction treatment. .05
Hot-dip galvanizing in a galvanizing bath containing up to 0.25% by weight, and after wiping, performing an alloying heat treatment at 460 to 550 ° C., characterized by excellent galvanic adhesion, Manufacturing method of plated steel sheet.
【0007】(2)Si:0.02〜2.5重量%、M
n:0.3〜2.5重量%、Cr:0.1〜6.0重量
%のうち、一種以上を含有する高張力鋼板に、0.00
2〜2.0g/m2 のCuまたはCu合金を被覆し、加
熱還元処理を行ったのち、Al0.05〜0.25重量
%を含有する亜鉛めっき浴中で溶融亜鉛めっきし、ワイ
ピング後、460〜550℃で合金化加熱処理を行うこ
とを特徴とするめっき密着性に優れた高張力合金化溶融
亜鉛めっき鋼板の製造方法。 (3)上記亜鉛めっき浴がAl0.05〜0.25重量
%およびMg0.1〜1.0重量%を含有することを特
徴とする前記(1)または(2)に記載のめっき密着性
に優れた高張力合金化溶融亜鉛めっき鋼板の製造方法に
ある。(2) Si: 0.02 to 2.5% by weight, M
n: 0.3 to 2.5% by weight, and Cr: 0.1 to 6.0% by weight.
After coating with 2 to 2.0 g / m 2 of Cu or Cu alloy, performing a heat reduction treatment, hot-dip galvanizing in a zinc plating bath containing 0.05 to 0.25% by weight of Al, and after wiping, A method for producing a high-tensile alloyed hot-dip galvanized steel sheet having excellent plating adhesion, comprising performing an alloying heat treatment at 460 to 550 ° C. (3) The plating adhesion as described in (1) or (2) above, wherein the zinc plating bath contains 0.05 to 0.25% by weight of Al and 0.1 to 1.0% by weight of Mg. It is a method for producing an excellent high-tensile alloyed hot-dip galvanized steel sheet.
【0008】[0008]
【発明の実施の形態】以下、本発明の実施の形態を詳細
に説明する。本発明者らは、極低C系高張力鋼板の表面
に予め厚みの異なるCu処理(0.002〜2g/
m2 )を浸漬法による置換めっきで行った後、水素10
%―窒素雰囲気中で加熱温度780℃で60秒還元し、
450℃のZn−Al(0.05〜0.25%)浴中で3
秒溶融亜鉛めっきし、ワイピングにより所定のめっき厚
(60g/m2 )とした。その後、合金化炉を用いて4
60〜550℃で合金化処理を行い、めっき層中のFe
反応量を測定することにより、Zn−Fe合金化の促進
程度を詳細に調査した。その結果をもとに、以下に本発
明における各条件の限定理由について述べる。Embodiments of the present invention will be described below in detail. The present inventors preliminarily applied Cu treatments having different thicknesses (0.002 to 2 g /
m 2 ) by displacement plating using an immersion method, followed by hydrogen 10
%-Reduced at a heating temperature of 780 ° C for 60 seconds in a nitrogen atmosphere,
3 in a 450 ° C. Zn-Al (0.05-0.25%) bath
Secondly hot-dip galvanized, and a predetermined plating thickness (60 g / m 2 ) was obtained by wiping. Then, using an alloying furnace,
Alloying treatment is performed at 60 to 550 ° C, and Fe in the plating layer is
By measuring the reaction amount, the degree of promotion of Zn—Fe alloying was investigated in detail. Based on the results, the reasons for limiting each condition in the present invention will be described below.
【0009】Pは高張力化添加元素として最も代表的で
ある。まず、対象とする鋼におけるP量の範囲を0.0
2〜0.2%の範囲内としたのはP0.02%以上で通
常の合金化溶融亜鉛めっき製造法において合金化速度の
遅延が生じること、また、材質上強度を確保するためで
ある。また、鋼中Pの上限を0.2%としたのは、材質
上これ以上添加すると硬くなりすぎるためである。高張
力化添加元素としてPを用いないときは、Si、Mn、
Crのうち1種以上を添加した高張力鋼板を使用する。P is the most representative element for increasing the tensile strength. First, the range of the P content in the target steel is set to 0.0
The reason for setting the content within the range of 2 to 0.2% is that if the content of P is 0.02% or more, a delay in the alloying speed occurs in a normal method for producing a galvannealed alloy, and also the strength of the material is secured. The reason why the upper limit of P in steel is set to 0.2% is that if it is added more than that, it becomes too hard. When P is not used as a high-tension additive element, Si, Mn,
A high-tensile steel sheet to which one or more of Cr is added is used.
【0010】Si量の範囲を0.02〜2.5%の範囲
内としたのは、Si0.02%以上で通常の合金化溶融
Znめっき製造法において、めっき濡れ性が低下すると
ともに、合金化速度の遅延が生じること、また、材質上
強度を確保するためである。また、鋼中Siの上限を
2.5%としたのは、材質上これ以上添加すると硬くな
りすぎるためである。Mn量の範囲を0.3〜2.5重
量%の範囲としたのは、0.3%以上で強化効果が現れ
ること、2.5%を上限としたのは、これ以上添加する
と伸びに悪影響を及ぼすためである。The reason why the range of the Si content is set in the range of 0.02 to 2.5% is that when the content of Si is 0.02% or more, the plating wettability decreases in a normal alloyed hot-dip galvanizing production method, and This is for the purpose of delaying the formation speed and ensuring strength in terms of material. The upper limit of the content of Si in steel is set to 2.5% because if the content is further increased, the material becomes too hard. The reason that the range of the Mn content is in the range of 0.3 to 2.5% by weight is that the strengthening effect appears at 0.3% or more, and that the upper limit of 2.5% is that the elongation increases when added more. This is because it has an adverse effect.
【0011】Cr量の範囲を0.1〜6.0重量%の範
囲としたのは、0.1%以上で強化効果が現れること、
6.0%を上限としたのは、これ以上の添加では、強化
の向上が見られないためである。なお、本発明の高張力
合金化亜鉛めっき鋼板は、対象となる高張力鋼板の成分
によらず全く同じ方法で製造が可能である。The reason that the range of the Cr content is in the range of 0.1 to 6.0% by weight is that the effect of strengthening appears at 0.1% or more;
The upper limit of 6.0% is because no further improvement is observed in the addition of Nb. The high-strength galvanized steel sheet of the present invention can be manufactured by exactly the same method regardless of the components of the high-strength steel sheet to be processed.
【0012】次に、Cu処理層の付着量の下限を0.0
02g/m2 としたのは、溶融亜鉛めっき鋼板の合金化
処理速度が向上するための最小付着量が0.002g/
m2であるためである。また、上限を2.0g/m2 を超
えると溶融亜鉛めっき浴中へのCu溶出量が多くなりす
ぎることを考慮したことと、合金化速度向上効果が飽和
するためである。また、それに加えて、製造コスト上の
経済的な面も考慮して、本発明のCu処理層の付着量範
囲を0.002〜2.0g/m2 とした。また、被覆材
料としてNi、Fe、P、Co、Zn、Crなどを含有
したCu合金を用いた場合についても検討を行ったが、
CuによるZn−Fe合金化促進効果は、全く同様であ
った。Next, the lower limit of the adhesion amount of the Cu treatment layer is set to 0.0
The reason why it was set to 02 g / m 2 was that the minimum adhesion amount for improving the alloying treatment speed of the hot-dip galvanized steel sheet was 0.002 g / m 2.
m 2 . Further, when the upper limit is more than 2.0 g / m 2 , the amount of Cu eluted into the hot-dip galvanizing bath is considered to be too large, and the effect of improving the alloying speed is saturated. In addition, in consideration of economical aspects in terms of manufacturing cost, the range of the amount of the Cu treatment layer of the present invention to be applied is set to 0.002 to 2.0 g / m 2 . In addition, a case where a Cu alloy containing Ni, Fe, P, Co, Zn, Cr, or the like was used as a coating material was also examined.
The effect of promoting Zn-Fe alloying by Cu was exactly the same.
【0013】Cu被覆処理により合金化が促進される理
由の詳細については不明であるが、Cuが地鉄中に侵入
しにくく、高温加熱還元後もめっき−地鉄境界に残存す
ることによって、めっき層のZn−Fe合金化速度を決
定する最大の要因であると考えられているFe-Al-Z
n系バリア層の形成を、なんらかの形で抑制しているた
めではないかと考えられる。めっき浴中Alの下限を
0.05%としたのは、これ未満だと合金化処理時にお
いてZn―Fe合金化が進みすぎ、地鉄界面に脆い合金
層が発達しすぎるためめっき密着性が劣化するためであ
る。Alの上限を0.25%としたのは0.25%を超
えるとめっき時にFe-Al-Zn系バリア層が形成され
やすく合金化処理時において合金化が進まないためであ
る。Although the details of the reason why the alloying is promoted by the Cu coating treatment is unknown, it is difficult for Cu to penetrate into the base iron, and remains at the plating-base iron boundary even after high-temperature heating and reduction. Fe-Al-Z, which is considered to be the largest factor in determining the Zn-Fe alloying rate of the layer
This is probably because the formation of the n-type barrier layer is suppressed in some way. The reason why the lower limit of Al in the plating bath is set to 0.05% is that if it is less than this, the Zn—Fe alloying proceeds too much during the alloying treatment, and a brittle alloy layer develops too much at the interface of the base iron, so that the plating adhesion is poor. This is due to deterioration. The reason why the upper limit of Al is set to 0.25% is that if it exceeds 0.25%, an Fe—Al—Zn-based barrier layer is easily formed at the time of plating and alloying does not proceed at the time of alloying treatment.
【0014】また、めっき浴中に、さらに、Mgを含有
させる場合においての、Mgの下限を0.1%と定めた
のは、合金化促進効果とともに塗装傷部の耐赤錆性が向
上する効果も認められたためである。上限を1%とした
のは、それを超える浴中のドロスの発生量が大幅に増加
するためである。また、さらに、めっき浴中には、通
常、微量添加元素として添加される、Ni、Sb、P
b、Feを含んでいても、本発明の効果に特に影響はな
い。When Mg is further contained in the plating bath, the lower limit of Mg is set to 0.1%, because the alloying is promoted and the red rust resistance of the coating flaw is improved. Was also recognized. The upper limit is set to 1% because the amount of dross generated in the bath exceeding the upper limit is greatly increased. Further, in the plating bath, Ni, Sb, P which is usually added as a trace additive element is added.
Even if b and Fe are contained, the effects of the present invention are not particularly affected.
【0015】合金化処理温度は460〜550℃が最適
である。460℃未満では合金化が進みにくく、550
℃を超えると合金化が進みすぎ、地鉄界面合金層が発達
しすぎてめっき密着性が劣化する。合金化時間について
は、特に定めないが、合金化温度とのバランスで決ま
り、10〜40秒の範囲が実際の操業上適切である。め
っき付着量についても、特に制約は設けないが、耐食性
の観点から10g/m2 以上、加工性の観点からすると
150g/m2 以下であることが望ましい。なお、下地
のP添加系高張力鋼板としては、熱延鋼板、冷延鋼板共
に使用でき、また、通常の極低炭素系のTi、Nb、B
などをさらに添加した高張力鋼板においても、本発明の
高張力合金化溶融亜鉛めっき鋼板の製造方法を有効に適
用できる。The optimum temperature for the alloying treatment is 460 to 550 ° C. If the temperature is lower than 460 ° C., the alloying is difficult to proceed, and
If the temperature exceeds ℃, the alloying proceeds too much, the base iron interface alloy layer develops too much, and the plating adhesion deteriorates. The alloying time is not particularly defined, but is determined by the balance with the alloying temperature, and a range of 10 to 40 seconds is appropriate for actual operation. Although there is no particular limitation on the amount of plating, it is preferable that the plating amount is 10 g / m 2 or more from the viewpoint of corrosion resistance and 150 g / m 2 or less from the viewpoint of workability. As the P-added high-strength steel sheet, both hot-rolled steel sheets and cold-rolled steel sheets can be used, and ordinary ultra-low carbon Ti, Nb, B
The method for producing a high-tensile alloyed hot-dip galvanized steel sheet of the present invention can also be effectively applied to a high-tensile steel sheet further added with such.
【0016】[0016]
【実施例】以下、実施例によって本発明をさらに詳細に
説明する。 (実施例1)極低炭素系0.03〜0.18%P添加冷
延鋼板に、種々の方法でCu被覆処理を付着量を変化さ
せて行った。表1に示すような、めっき条件、および合
金化加熱処理条件下で、めっき鋼板を製造した。被覆処
理液としては硫酸Cu10g/リットル、pH0〜3程
度の硫酸酸性液を用い、浸漬やスプレーの処理時間を1
〜30秒の範囲で変化させて、Cu付着量を調節した。
還元処理は10%H2―N2 雰囲気中において780℃
で60秒行い、460℃に冷却後、浴温460℃、Al
およびMgを表1に示した量含有する溶融亜鉛めっき浴
でめっきし、N 2 ワイピングで付着量を60g/m2 に
調整した。その後、合金化炉で20秒間、合金化処理を
行い、得られためっき鋼板について、めっき層のZn−
Fe合金化度およびめっき密着性を比較した。評価法
は、合金化度については外観によるめっき層中Fe反応
量、めっき密着性については60度V曲げ試験により剥
離具合をテープテストで判定した。評価は下記に示した
基準により、5段階の評点法で行った。The present invention will be described in more detail with reference to the following examples.
explain. (Example 1) Extra low carbon type 0.03-0.18% P added cold
Cu coating treatment is applied to the rolled steel sheet by various methods to change the adhesion amount.
Let's go. As shown in Table 1, the plating conditions and
Under the conditions of heat treatment for metallization, plated steel sheets were produced. Coating
As a physical solution, sulfuric acid Cu10g / liter, pH about 0-3
Immersion and spray treatment time is 1
The amount of Cu adhesion was adjusted by changing the amount in the range of 3030 seconds.
Reduction treatment is 10% HTwo-NTwo780 ° C in atmosphere
And then cooled to 460 ° C, bath temperature 460 ° C, Al
Hot-dip galvanizing bath containing Mg and Mg in the amounts shown in Table 1.
Plated with N Two60g / m of adhesion amount by wipingTwoTo
It was adjusted. After that, the alloying process is performed for 20 seconds in the alloying furnace.
Performing, about the obtained plated steel sheet, Zn-
The degree of Fe alloying and plating adhesion were compared. Evaluation method
Indicates the Fe reaction in the plating layer depending on the appearance
The amount and plating adhesion were peeled by a 60 degree V bending test.
The degree of release was determined by a tape test. Evaluation is shown below
According to the standard, a five-point scoring method was used.
【0017】 合金化度(評点3点以上が合格) 評点 外観 めっき層中鉄反応量(%) 5 均一 11〜12%未満 4 ほぼ均一 10〜11%未満 3 ほぼ均一 8〜10%未満 2 不均一 7〜 8%未満 1 不均一 7%未満Degree of alloying (three points or more passed) Rating Appearance Iron reaction amount in plating layer (%) 5 Uniform Less than 11-12% 4 Almost uniform Less than 10-11% 3 Almost uniform Less than 8-10% 2 Not good Uniform less than 7-8% 1 Uneven less than 7%
【0018】 それぞれ表下欄外に示した基準により、5段階の評点法
で行った。[0018] The evaluation was carried out by a five-point scoring method according to the criteria shown in the lower margin of the table.
【0019】[0019]
【表1】 [Table 1]
【0020】表1に示したとおり、本発明の製造方法で
作成した高張力めっき鋼板は、合金化が促進されてお
り、20秒という比較的短時間の合金化処理にもかから
ず、合金化度、めっき密着性ともに評点3以上と良好で
あった。それに対して、比較例においては、下線を付し
た条件が本発明の範囲外であるために合金化が遅く、合
金化度、めっき密着性のいずれかの評点が2以下とめっ
き不良を示した。As shown in Table 1, the alloying of the high-strength plated steel sheet produced by the production method of the present invention is promoted. Both the degree of conversion and the plating adhesion were good with a rating of 3 or more. On the other hand, in the comparative example, alloying was slow because the underlined conditions were out of the range of the present invention, and the degree of alloying or plating adhesion was evaluated as 2 or less, indicating poor plating. .
【0021】(実施例2)表2に示すようなP以外の添
加元素により強化された極低炭系冷延鋼板に、種々の方
法でCu処理を付着量を変化させて行った。表2に示す
ようなめっき条件、および合金化加熱処理条件下で、本
発明に示すめっき鋼板を製造した。被覆処理液としては
硫酸Cu10g/リットル、pH0〜3程度の硫酸酸性
液を用い、浸漬やスプレーの処理時間を1〜30秒の範
囲で変化させて、Cu付着量を調節した。還元処理は1
0%H2 ―N2 雰囲気中において780℃で60秒行
い、460℃に冷却後、浴温460℃、AlおよびMg
を表2に示した量含有する溶融亜鉛めっき浴でめっき
し、N2 ワイピングで付着量を60g/m2 に調整し
た。その後、合金化炉で20秒間、合金化処理を行い、
得られためっき鋼板について、めっき層のZn−Fe合
金化度およびめっき密着性を比較した。評価法は、合金
化度については外観によるめっき層中Fe反応量、めっ
き密着性については60度V曲げ試験により剥離具合を
テープテストで判定した。評価は実施例1と同様の基準
により、5段階の評点法で行った。(Example 2) Cu treatment was performed on various types of cold-rolled ultra-low carbon steel sheets reinforced with additional elements other than P as shown in Table 2 by changing the amount of Cu. The plated steel sheet according to the present invention was manufactured under the plating conditions and alloying heat treatment conditions shown in Table 2. As a coating treatment solution, a sulfuric acid acid solution having a sulfuric acid concentration of 10 g / liter and a pH of about 0 to 3 was used, and the immersion or spraying treatment time was changed within a range of 1 to 30 seconds to adjust the Cu adhesion amount. Reduction process is 1
In an atmosphere of 0% H 2 —N 2 at 780 ° C. for 60 seconds, after cooling to 460 ° C., bath temperature 460 ° C., Al and Mg
Was plated in a hot-dip galvanizing bath containing the amount shown in Table 2, and the amount of adhesion was adjusted to 60 g / m 2 by N 2 wiping. After that, alloying treatment is performed for 20 seconds in an alloying furnace,
About the obtained plating steel plate, the Zn-Fe alloying degree of a plating layer and plating adhesion were compared. The evaluation method was such that the degree of alloying was evaluated by the amount of Fe reaction in the plating layer depending on the appearance, and the degree of peeling was determined by a 60 ° V bending test with a tape test for the plating adhesion. The evaluation was performed according to the same standard as in Example 1 by a five-point scoring method.
【0022】[0022]
【表2】 [Table 2]
【0023】表2に示したとおり、本発明の製造方法で
作成した高張力めっき鋼板は、合金化が促進されてお
り、20秒という比較的短時間の合金化処理にもかから
ず、合金化度、めっき密着性ともに評点3以上と良好で
あった。それに対して、比較例においては、下線を付し
た条件が本発明の範囲外であるために合金化が遅く、合
金化度、めっき密着性のいずれかの評点が2以下とめっ
き不良を示した。As shown in Table 2, the alloying of the high-strength plated steel sheet produced by the production method of the present invention is promoted, and the alloying treatment is performed in a relatively short time of 20 seconds. Both the degree of conversion and the plating adhesion were good with a rating of 3 or more. On the other hand, in the comparative example, alloying was slow because the underlined conditions were out of the range of the present invention, and the degree of alloying or plating adhesion was evaluated as 2 or less, indicating poor plating. .
【0024】[0024]
【発明の効果】本発明の製造方法によれば、自動車、建
材などの用途に利用されるめっき密着性に優れた高張力
合金化溶融亜鉛めっき鋼板を非常に効率良く生産でき
る。従って、本発明は、工業的に価値の高い発明である
といえる。According to the production method of the present invention, a high-tensile alloyed hot-dip galvanized steel sheet having excellent plating adhesion and used for applications such as automobiles and building materials can be produced very efficiently. Therefore, it can be said that the present invention is an industrially valuable invention.
Claims (3)
高張力鋼板に、0.002〜2.0g/m2 のCuまた
はCu合金を被覆し、加熱還元処理を行ったのち、Al
0.05〜0.25重量%を含有する亜鉛めっき浴中で
溶融亜鉛めっきし、ワイピング後、460〜550℃で
合金化加熱処理を行うことを特徴とするめっき密着性に
優れた高張力合金化溶融亜鉛めっき鋼板の製造方法。1. A high-tensile steel sheet containing 0.02 to 0.2% by weight of P is coated with 0.002 to 2.0 g / m 2 of Cu or a Cu alloy, and subjected to a heat reduction treatment. , Al
A high-tensile alloy excellent in plating adhesion, characterized in that hot-dip galvanizing is performed in a zinc plating bath containing 0.05 to 0.25% by weight, and after wiping, an alloying heat treatment is performed at 460 to 550 ° C. Manufacturing method of galvannealed steel sheet.
〜2.0g/m2 のCuまたはCu合金を被覆し、加熱
還元処理を行ったのち、Al0.05〜0.25重量%
を含有する亜鉛めっき浴中で溶融亜鉛めっきし、ワイピ
ング後、460〜550℃で合金化加熱処理を行うこと
を特徴とするめっき密着性に優れた高張力合金化溶融亜
鉛めっき鋼板の製造方法。2. A high-strength steel sheet containing one or more of Si: 0.02 to 2.5% by weight, Mn: 0.3 to 2.5% by weight, and Cr: 0.1 to 6.0% by weight. , 0.002
-2.0 g / m 2 of Cu or Cu alloy, after heat reduction treatment, Al 0.05-0.25 wt%
A hot-dip galvanized steel sheet excellent in plating adhesion, characterized in that hot-dip galvanizing is performed in a zinc plating bath containing, and after wiping, an alloying heat treatment is performed at 460 to 550 ° C.
重量%およびMg0.1〜1.0重量%を含有すること
を特徴とする請求項1または2に記載のめっき密着性に
優れた高張力合金化溶融亜鉛めっき鋼板の製造方法。3. The galvanizing bath has an Al content of 0.05 to 0.25.
3. The method for producing a high-tensile alloyed hot-dip galvanized steel sheet having excellent plating adhesion according to claim 1, comprising 0.1% by weight of Mg and 0.1 to 1.0% by weight of Mg.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9173720A JPH1112712A (en) | 1997-04-28 | 1997-06-30 | Manufacturing method of high strength galvannealed steel sheet |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10997597 | 1997-04-28 | ||
JP9-109975 | 1997-04-28 | ||
JP9173720A JPH1112712A (en) | 1997-04-28 | 1997-06-30 | Manufacturing method of high strength galvannealed steel sheet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1112712A true JPH1112712A (en) | 1999-01-19 |
Family
ID=26449685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9173720A Ceased JPH1112712A (en) | 1997-04-28 | 1997-06-30 | Manufacturing method of high strength galvannealed steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1112712A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005200766A (en) * | 2003-12-19 | 2005-07-28 | Jfe Steel Kk | Method for producing high strength alloyed zinc hot dip galvanized steel sheet having excellent stability of mechanical property |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57114650A (en) * | 1980-12-30 | 1982-07-16 | Nippon Steel Corp | Production of zinc hot dipped steel plate of superior adhesive strength |
JPS58120771A (en) * | 1982-01-09 | 1983-07-18 | Kawasaki Steel Corp | Manufacture of alloyed galvanized steel plate |
JPH0324255A (en) * | 1989-06-22 | 1991-02-01 | Nippon Steel Corp | Hot-dip galvanized hot rolled steel plate and its production |
JPH0688187A (en) * | 1992-09-03 | 1994-03-29 | Nkk Corp | Production of alloyed galvannealed steel sheet |
JPH06128758A (en) * | 1992-10-20 | 1994-05-10 | Sumitomo Metal Ind Ltd | Method for hot dip galvanizing steel sheet containing silicon |
-
1997
- 1997-06-30 JP JP9173720A patent/JPH1112712A/en not_active Ceased
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57114650A (en) * | 1980-12-30 | 1982-07-16 | Nippon Steel Corp | Production of zinc hot dipped steel plate of superior adhesive strength |
JPS58120771A (en) * | 1982-01-09 | 1983-07-18 | Kawasaki Steel Corp | Manufacture of alloyed galvanized steel plate |
JPH0324255A (en) * | 1989-06-22 | 1991-02-01 | Nippon Steel Corp | Hot-dip galvanized hot rolled steel plate and its production |
JPH0688187A (en) * | 1992-09-03 | 1994-03-29 | Nkk Corp | Production of alloyed galvannealed steel sheet |
JPH06128758A (en) * | 1992-10-20 | 1994-05-10 | Sumitomo Metal Ind Ltd | Method for hot dip galvanizing steel sheet containing silicon |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005200766A (en) * | 2003-12-19 | 2005-07-28 | Jfe Steel Kk | Method for producing high strength alloyed zinc hot dip galvanized steel sheet having excellent stability of mechanical property |
JP4604699B2 (en) * | 2003-12-19 | 2011-01-05 | Jfeスチール株式会社 | Method for producing high-strength galvannealed steel sheet with excellent mechanical property stability |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4457667B2 (en) | Surface-treated steel sheet | |
JP2517169B2 (en) | Method for producing hot dip galvanized steel sheet | |
JP2526320B2 (en) | Method for producing high-strength galvannealed steel sheet | |
JPH04346644A (en) | Production of high tensile strength galvanized steel sheet and galannealed steel sheet | |
JPH11140587A (en) | Galvannealed steel sheet excellent in plating adhesion | |
JP2003183797A (en) | Method for producing high-strength hot-dip Zn-Mg-Al plated steel sheet | |
JPH1112712A (en) | Manufacturing method of high strength galvannealed steel sheet | |
JP3347152B2 (en) | Method for producing cold-rolled high-strength hot-dip galvanized steel sheet with excellent resistance to pitting corrosion | |
JP3078456B2 (en) | Manufacturing method of high-strength hot-dip galvanized steel sheet | |
JP3383125B2 (en) | Hot-dip aluminized steel sheet with excellent corrosion resistance and heat resistance, and its manufacturing method | |
JP4299429B2 (en) | Method for producing high-tensile molten Zn-Al alloy-plated steel sheet | |
JP2000119832A (en) | Hot-dip galvanized steel sheet with excellent plating adhesion | |
JP2783457B2 (en) | Manufacturing method of hot-dip Zn-Al plated steel sheet | |
JP3383121B2 (en) | Stainless steel hot-dip aluminized steel sheet with excellent corrosion resistance and heat resistance and method for producing the same | |
JPH0232326B2 (en) | TOSOYAKITSUKEKOKASEIOJUSURUTOSOKOHANNOSEIZOHOHO | |
JP2956361B2 (en) | Manufacturing method of alloyed hot-dip galvanized steel sheet for strong working with excellent plating adhesion | |
JPH05132740A (en) | Production of hot-dip galvanized steel sheet for deep drawing excellent in pitting corrosion resistance | |
JP2565054B2 (en) | Method for producing galvannealed steel sheet with excellent deep drawability and plating adhesion | |
JPH07292436A (en) | Surface treated steel sheet for deep drawing, excellent in corrosion resistance, and its production | |
JP3838277B2 (en) | Alloyed hot-dip galvanized steel sheet with excellent powdering resistance | |
JP2976845B2 (en) | Galvannealed steel sheet | |
JP3766655B2 (en) | Method for producing high-Si high-strength galvannealed steel sheet with excellent plating adhesion and workability | |
JP2000144261A (en) | Production of hot rolled base hot dip galvanized and hot dip galvannealed high tensile strength steel sheet excellent in ductility | |
KR100210866B1 (en) | Cold rolled steel sheet and hot-dip galvanized steel sheet with good workability and manufacturing method | |
JPH075971B2 (en) | Method for producing alloy electroplated steel sheet for deep drawing with excellent impact peel resistance after painting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20031014 |
|
A045 | Written measure of dismissal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A045 Effective date: 20040224 |