[go: up one dir, main page]

JPH11126516A - Anisotropic conductive adhesive and conductive connection structure - Google Patents

Anisotropic conductive adhesive and conductive connection structure

Info

Publication number
JPH11126516A
JPH11126516A JP28857797A JP28857797A JPH11126516A JP H11126516 A JPH11126516 A JP H11126516A JP 28857797 A JP28857797 A JP 28857797A JP 28857797 A JP28857797 A JP 28857797A JP H11126516 A JPH11126516 A JP H11126516A
Authority
JP
Japan
Prior art keywords
fine particles
conductive
conductive fine
particles
anisotropic conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28857797A
Other languages
Japanese (ja)
Inventor
Takuo Suzuki
卓夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP28857797A priority Critical patent/JPH11126516A/en
Publication of JPH11126516A publication Critical patent/JPH11126516A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an anisotropic conductive adhesive having low connection resistance and giving high current capacity and stable connection when connected, causing no leakage phenomenon and to provide a conductive connection structure. SOLUTION: This anisotropic conductive adhesive contains conductive fine particles and an insulating particles. The conductive fine particles have an average particle size of 0.3-50 μm and the insulating particles have an average particle size 0.6-1 times of the conductive fine particles and the CV value of the conductive fine particles and the insulating fine particles is 15% or lower.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、微細電極間の接続
に用いられる異方性導電接着剤及び導電接続構造体に関
する。
The present invention relates to an anisotropic conductive adhesive used for connection between fine electrodes and a conductive connection structure.

【0002】[0002]

【従来の技術】異方性導電材料は、液晶ディスプレー、
パーソナルコンピュータ、携帯通信機器等のエレクトロ
ニクス製品において、半導体素子等の小型部品を基板に
電気的に接続したり、基板同士を電気的に接続するため
に使用されている。
2. Description of the Related Art Anisotropic conductive materials include liquid crystal displays,
2. Description of the Related Art In electronic products such as personal computers and portable communication devices, small electronic components such as semiconductor elements are used to electrically connect substrates and to electrically connect substrates.

【0003】このような異方性導電材料としては、導電
性微粒子をバインダー樹脂に混合したもの等が用いられ
ている。この導電性微粒子としては、有機基材粒子又は
無機基材粒子の表面に金属メッキを施したものが用いら
れてきた。この導電性微粒子としては、例えば、特公平
6−96771号公報、特開平4−36902号公報、
特開平4−269720号公報、特開平3−25771
0号公報等に開示されたもの等がある。
As such an anisotropic conductive material, a material obtained by mixing conductive fine particles with a binder resin is used. As the conductive fine particles, those obtained by applying metal plating to the surface of organic base particles or inorganic base particles have been used. As the conductive fine particles, for example, Japanese Patent Publication No. 6-96871, Japanese Patent Application Laid-Open No. 4-36902,
JP-A-4-269720, JP-A-3-25771
No. 0 is disclosed.

【0004】このような導電性微粒子をバインダー樹脂
と混ぜ合わせてフィルム状又はペースト状にした異方性
導電接着剤材料としては、例えば、特開昭63−231
889号公報、特開平4−259766号公報、特開平
3−291807号公報、特開平5−75250号公報
等に開示されたもの等がある。
As an anisotropic conductive adhesive material obtained by mixing such conductive fine particles with a binder resin to form a film or paste, for example, JP-A-63-231
889, JP-A-4-259766, JP-A-3-291807, and JP-A-5-75250.

【0005】従来の異方性導電材料は、導電性微粒子の
基材として、電気的絶縁材料が使用されていることか
ら、接続時の電流容量が小さいという問題があった。
The conventional anisotropic conductive material has a problem that the current capacity at the time of connection is small since an electrically insulating material is used as a base material of the conductive fine particles.

【0006】特に近年、電子機器や電子部品が小型化す
るに伴い、基板等の配線が微細になり、接続部の電気抵
抗が大きくなる傾向にある。更に、最近開発されている
プラズマディスプレイ用途等の素子は、大電流駆動タイ
プとなっていることもあり、大電流対応が必要とされて
きている。電流容量の問題を解決するためには、導電粒
子の濃度を上げる方法があるが、濃度を上げると隣接す
る電極間でのリークが発生し易くなるという問題があっ
た。
In particular, in recent years, as electronic devices and electronic components have been reduced in size, wirings on substrates and the like have become finer, and the electrical resistance of connection portions tends to increase. Furthermore, recently developed devices for plasma display applications and the like may be of a large current drive type, and are required to handle large currents. In order to solve the problem of the current capacity, there is a method of increasing the concentration of the conductive particles. However, when the concentration is increased, there is a problem that a leak easily occurs between adjacent electrodes.

【0007】この問題を解決する方法としては、導電性
微粒子の表面を絶縁材で被覆し、接続時に電極との接触
面の絶縁材を破壊させる技術や導電性微粒子の密な部分
と粗な部分を設ける技術等が提案されている。しかしな
がら、これらの技術は、その製造方法が非常に煩雑であ
り生産性が低いため、実際にはあまり用いられていな
い。
As a method for solving this problem, a technique of covering the surface of the conductive fine particles with an insulating material and destroying the insulating material on the contact surface with the electrode at the time of connection, or a method of dense and coarse conductive fine particles. And the like are proposed. However, these techniques are not often used in practice because their production methods are very complicated and their productivity is low.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記に鑑
み、接続抵抗が低く、接続時の電流容量が大きく、接続
が安定していてリーク現象を起こさない異方性導電接着
剤及び導電接続構造体を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above, an object of the present invention is to provide an anisotropic conductive adhesive having a low connection resistance, a large current capacity at the time of connection, a stable connection, and no leakage phenomenon. It is intended to provide a structure.

【0009】[0009]

【課題を解決するための手段】本発明は、導電性微粒子
と絶縁粒子とからなる異方性導電接着剤であって、上記
導電性微粒子は、平均粒径が0.3〜50μmであり、
上記絶縁粒子は、平均粒径が上記導電性微粒子の平均粒
径の0.6〜1倍であり、上記導電性微粒子及び上記絶
縁粒子のCV値は、15%以下であるものからなる異方
性導電接着剤である。
The present invention relates to an anisotropic conductive adhesive comprising conductive fine particles and insulating particles, wherein the conductive fine particles have an average particle size of 0.3 to 50 μm,
The insulating particles have an average particle size of 0.6 to 1 times the average particle size of the conductive fine particles, and the CV values of the conductive fine particles and the insulating particles are 15% or less. Conductive adhesive.

【0010】本明細書において異方性導電接着剤は、異
方性導電膜、異方性導電ペースト、異方性導電インキを
含むものとする。本発明の異方性導電接着剤は、導電性
微粒子と絶縁粒子からなるものである。
In this specification, the anisotropic conductive adhesive includes an anisotropic conductive film, an anisotropic conductive paste, and an anisotropic conductive ink. The anisotropic conductive adhesive of the present invention comprises conductive fine particles and insulating particles.

【0011】本発明において用いられる導電性微粒子と
しては特に限定されず、例えば、金、銀、パラジウム、
ニッケル、銅、タングステン、錫、ハンダ等の金属粒
子、カーボン等の単体、混合体、複合体、合金等が挙げ
られる。また、これらの導電性微粒子を核材とするか又
は非導電性のガラス、セラミック、プラスチック等の高
分子等からなる核材に、上述したような材質からなる導
電層を被覆形成したものであってもよい。なかでも、後
述するCV値の小さいものが得られるという点から、高
分子微球やガラスビーズを核にしたものが好ましく、信
頼性が高いという点から、貴金属をメッキ等で被覆した
ものが好ましい。より好ましくは、高分子微球に金をメ
ッキしたものである。
The conductive fine particles used in the present invention are not particularly restricted but include, for example, gold, silver, palladium,
Metal particles such as nickel, copper, tungsten, tin, and solder, simple substances such as carbon, mixtures, composites, alloys, and the like. Further, these conductive fine particles are used as a core material, or a core material made of a polymer such as non-conductive glass, ceramic, plastic or the like is coated with a conductive layer made of the above-mentioned material. You may. Among them, those having polymer microspheres or glass beads as a nucleus are preferable from the viewpoint that a material having a small CV value to be described later is obtained, and those obtained by coating a noble metal with plating or the like from the viewpoint of high reliability are preferable. . More preferably, gold particles are plated on polymer microspheres.

【0012】本発明において用いられる絶縁粒子として
は、通常、絶縁粒子として使用されているものであれば
特に限定されず、例えば、ガラス、セラミック、プラス
チック等の高分子等が挙げられる。なかでも、後述する
CV値の小さいものが得られるという点から、高分子微
球やガラスビーズを核にしたものが好ましく、後述する
K値が小さいという点から、高分子微球がより好ましく
用いられる。
The insulating particles used in the present invention are not particularly limited as long as they are usually used as insulating particles, and include, for example, polymers such as glass, ceramic and plastic. Above all, polymer microspheres and glass beads are preferred in that they have a small CV value, which will be described later, and polymer microspheres are more preferably used, since they have a small K value, which will be described later. Can be

【0013】上記導電性微粒子は、平均粒径が0.3〜
50μmである。平均粒径が0.3μm未満であると、
接合すべき電極面に導電性微粒子が接触せず、電極間に
隙間ができ、接触不良を発生し、50μmを超えると、
導電性微粒子が大きいため、隣接する電極と接触し、電
極間でのショートが発生するため、上記範囲に限定され
る。好ましくは、1〜10μmである。
The conductive fine particles have an average particle diameter of 0.3 to 0.3.
50 μm. When the average particle size is less than 0.3 μm,
When the conductive fine particles do not come into contact with the electrode surface to be joined, a gap is formed between the electrodes, and a contact failure occurs.
Since the conductive fine particles are large, the conductive fine particles come into contact with adjacent electrodes and short-circuit occurs between the electrodes. Preferably, it is 1 to 10 μm.

【0014】上記絶縁粒子は、平均粒径が上記導電性微
粒子の平均粒径の0.6〜1倍である。0.6倍未満で
あると、導電性微粒子に対して絶縁粒子が小さいため、
導電性微粒子同士の接触を充分阻止できず、隣接する電
極間でリークが発生する可能性があり、また、異方性導
電接着剤を圧着する際に樹脂の流れとともに押し流され
てしまい、本来の目的である電極間でのリークを阻止す
ることができなくなる。平均粒径が1倍を超えると、導
電性微粒子に対して絶縁粒子が大きいため、導電性微粒
子が電極と接触できなくなり、導通がとれなくなる。よ
って、上記範囲に限定される。好ましくは、平均粒径が
導電性微粒子の平均粒径の0.9〜1倍である。上記絶
縁粒子は、20℃におけるK値が、導電性微粒子のK値
よりも小さいものが好ましい。より好ましくは、導電性
微粒子のK値の90%以下である。
The average particle size of the insulating particles is 0.6 to 1 times the average particle size of the conductive fine particles. If it is less than 0.6 times, the insulating particles are smaller than the conductive fine particles,
The contact between the conductive fine particles cannot be sufficiently prevented, and there is a possibility that a leak may occur between adjacent electrodes. Leakage between the electrodes, which is the target, cannot be prevented. When the average particle size exceeds 1 time, the insulating particles are larger than the conductive fine particles, so that the conductive fine particles cannot contact the electrode, and conduction cannot be achieved. Therefore, it is limited to the above range. Preferably, the average particle size is 0.9 to 1 times the average particle size of the conductive fine particles. The insulating particles preferably have a K value at 20 ° C. smaller than the K value of the conductive fine particles. More preferably, it is 90% or less of the K value of the conductive fine particles.

【0015】本明細書において上記K値とは、下記式 K=(3/√2)・F・S-3/2・R-1/2 (式中、Fは、微球体の10%圧縮変形における荷重値
(kgf)を表し、Sは、圧縮変位(mm)を表し、R
は、微球体の半径(mm)を表す。)で定義されるもの
をいう。上記K値は球体の硬さを普遍的かつ定量的に表
すものであり、K値を用いることにより、導電性微粒子
及び絶縁粒子の好適な硬さを定量的かつ一義的に表すこ
とが可能となる。
In the present specification, the K value is defined by the following equation: K = (3 / √2)) FS -3 / 2 ・ R- 1 / 2 (where F is 10% compression of microspheres ) Represents a load value (kgf) in deformation, S represents a compression displacement (mm), and R
Represents the radius (mm) of the microsphere. ). The K value represents the hardness of a sphere universally and quantitatively, and by using the K value, it is possible to quantitatively and uniquely represent a suitable hardness of the conductive fine particles and the insulating particles. Become.

【0016】上記絶縁粒子のK値が上記導電性微粒子の
K値以上であると、圧着時に導電性微粒子が電極と充分
に接触するのを絶縁粒子が阻止し、導通抵抗が大きくな
り易い。
When the K value of the insulating particles is equal to or larger than the K value of the conductive fine particles, the insulating particles prevent the conductive fine particles from sufficiently contacting the electrode during press-fitting, and the conduction resistance tends to increase.

【0017】上記導電性微粒子のCV値及び絶縁粒子の
CV値は、15%以下である。本明細書においてCV値
とは、下記式 CV=(σ/Dn)×100 (σは、粒子径の標準偏差を表し、Dnは、数平均粒子
径を表す。)で表されるものである。
The CV value of the conductive fine particles and the CV value of the insulating particles are 15% or less. In the present specification, the CV value is represented by the following formula: CV = (σ / Dn) × 100 (σ represents the standard deviation of the particle diameter, and Dn represents the number average particle diameter). .

【0018】上記導電性微粒子のCV値が15%を超え
ると、粒子径が不揃いとなるため、導電性微粒子を介し
て電極同士を接触させる際、接触しない粒子が発生し、
隣接電極間でのリーク現象が発生しやすくなり、粒子径
が不揃いとなると、粒子径が大きいものは導電性微粒子
が電極と充分に接触するのを阻止し、粒子径が小さいも
のは、目的の効果を果たさないため、上記範囲に限定さ
れる。
If the conductive fine particles have a CV value of more than 15%, the particle diameters become uneven, so that when the electrodes are brought into contact with each other via the conductive fine particles, particles that do not come into contact are generated.
Leakage between adjacent electrodes is likely to occur, and when the particle size is not uniform, a large particle size prevents the conductive fine particles from sufficiently contacting the electrode, and a small particle size Since the effect is not achieved, it is limited to the above range.

【0019】上記導電性微粒子及び上記絶縁粒子の平均
粒径、CV値は、任意の粒子100個を電子顕微鏡で観
察することにより得ることができる。
The average particle diameter and CV value of the conductive fine particles and the insulating particles can be obtained by observing 100 arbitrary particles with an electron microscope.

【0020】本発明の異方性導電接着剤中における上記
導電性微粒子の全占有体積は3〜30体積%であること
が好ましい。上記導電性微粒子の含有量が3体積%未満
であると、接続の際の電気抵抗が大きくなり、30体積
%を超えると、接着性が劣る。
The total occupied volume of the conductive fine particles in the anisotropic conductive adhesive of the present invention is preferably 3 to 30% by volume. When the content of the conductive fine particles is less than 3% by volume, the electric resistance at the time of connection increases, and when it exceeds 30% by volume, the adhesiveness is poor.

【0021】本発明において、異方性導電接着剤中にお
ける上記絶縁粒子の全占有体積は、上記導電性微粒子の
全占有体積より大きいことが好ましい。上記絶縁粒子の
全占有体積が上記導電性微粒子の全占有体積以下である
と、充分な効果を得ることができない。より好ましく
は、100体積%以上である。
In the present invention, the total volume of the insulating particles in the anisotropic conductive adhesive is preferably larger than the total volume of the conductive fine particles. If the total volume occupied by the insulating particles is less than the total volume occupied by the conductive fine particles, a sufficient effect cannot be obtained. More preferably, it is 100% by volume or more.

【0022】上記異方性導電接着剤の製造方法は、既存
の導電性微粒子と絶縁粒子を混合するだけで済むので、
容易で生産性が高く、導電性微粒子の表面を絶縁材で被
覆したり、導電性微粒子の密な部分と粗な部分を設けた
りする煩雑で生産性が低いプロセスを必要としない。
According to the above-mentioned method for producing an anisotropic conductive adhesive, it is only necessary to mix existing conductive fine particles and insulating particles.
It is easy and has high productivity, and does not require a complicated and low-productivity process of covering the surface of the conductive fine particles with an insulating material or providing a dense portion and a rough portion of the conductive fine particles.

【0023】本発明の異方性導電接着剤における導電性
微粒子は、複数の電極間に挟まれた状態で抑えられる場
合、一方の電極から他方の電極へこの導電性微粒子を介
して電流が流れるが、絶縁粒子の存在により隣接する電
極間でのリークが阻止されるため、導電性微粒子の濃度
を上げることができ、これにより接続抵抗を小さくし、
電流容量の問題を解決することができる。
When the conductive fine particles in the anisotropic conductive adhesive of the present invention are suppressed while being sandwiched between a plurality of electrodes, a current flows from one electrode to the other electrode via the conductive fine particles. However, since leakage between adjacent electrodes is prevented by the presence of the insulating particles, the concentration of the conductive fine particles can be increased, thereby reducing the connection resistance,
The problem of the current capacity can be solved.

【0024】本発明の異方性導電接着剤を用いて相対向
する二つの電極を電気的に接続する方法としては、特に
限定されず、あらかじめ各成分を配合して異方性導電接
着剤として用いる方法、バインダー樹脂と導電性微粒子
及び絶縁粒子を別々に使用する方法等が挙げられる。
The method for electrically connecting two electrodes facing each other using the anisotropic conductive adhesive of the present invention is not particularly limited, and the components are previously blended to form an anisotropic conductive adhesive. And a method in which the binder resin and the conductive fine particles and the insulating particles are separately used.

【0025】上記あらかじめ各成分を配合して異方性導
電接着剤として用いる方法には、異方性導電ペーストと
して用いる方法及び異方性導電膜として用いる方法の二
つの態様がある。
There are two modes in which the respective components are previously blended and used as an anisotropic conductive adhesive, a method of using the anisotropic conductive paste and a method of using the anisotropic conductive film.

【0026】上記異方性導電ペーストは、導電性微粒
子、絶縁粒子、バインダー樹脂及び溶剤を混ぜ合わせて
ペースト状にして使用される。上記異方性導電膜は、導
電性微粒子、絶縁粒子及びバインダー樹脂が混合され、
成膜されて使用される。この場合、膜厚は、10〜数百
μmが好ましい。
The above-mentioned anisotropic conductive paste is used in the form of a paste by mixing conductive fine particles, insulating particles, a binder resin and a solvent. The anisotropic conductive film, conductive fine particles, insulating particles and a binder resin are mixed,
It is used after being formed into a film. In this case, the film thickness is preferably 10 to several hundred μm.

【0027】上記バインダー樹脂としては特に限定され
ず、例えば、アクリレート樹脂、エチレン−酢酸ビニル
樹脂、スチレン−ブタジエンブロック共重合体等の熱可
塑性樹脂;グリシジル基を有するモノマーやオリゴマー
とイソシアネート等の硬化剤との硬化性組成物等の熱や
光によって硬化する組成物等が挙げられる。
The binder resin is not particularly restricted but includes, for example, thermoplastic resins such as acrylate resins, ethylene-vinyl acetate resins and styrene-butadiene block copolymers; monomers and oligomers having glycidyl groups and curing agents such as isocyanates. And a composition curable by heat or light, such as a curable composition.

【0028】本発明の異方性導電接着剤が用いられる接
続対象としては、基板、半導体等の部品等が挙げられ
る。これらの表面にそれぞれ電極が形成されている。上
記基板は、フレキシブル基板とリジッド基板とに大別さ
れる。上記フレキシブル基板としては特に限定されず、
50〜500μm厚みの樹脂シートが用いられ、上記樹
脂シートとしては特に限定されず、例えば、ポリイミ
ド、ポリアミド、ポリエステル、ポリスルホン等が挙げ
られる。
The connection object to which the anisotropic conductive adhesive of the present invention is used includes a substrate, a component such as a semiconductor, and the like. Electrodes are formed on these surfaces, respectively. The above substrate is roughly classified into a flexible substrate and a rigid substrate. The flexible substrate is not particularly limited,
A resin sheet having a thickness of 50 to 500 μm is used, and the resin sheet is not particularly limited, and examples thereof include polyimide, polyamide, polyester, and polysulfone.

【0029】上記リジッド基板としては、樹脂製のもの
とセラミック製のものとに分けられる。上記樹脂製のも
のとしては特に限定されず、例えば、ガラス繊維強化エ
ポキシ樹脂、フェノール樹脂、セルロース繊維強化フェ
ノール樹脂等が挙げられる。上記セラミック製のものと
しては特に限定されず、例えば、二酸化ケイ素、アルミ
ナ等が挙げられる。
The rigid substrate is divided into a resin substrate and a ceramic substrate. The resin is not particularly limited, and examples thereof include a glass fiber reinforced epoxy resin, a phenol resin, and a cellulose fiber reinforced phenol resin. The ceramic is not particularly limited, and examples thereof include silicon dioxide and alumina.

【0030】上記基板の構造としては、単層のものを使
用してもよいし、また、単位面積当たりの電極数を増や
すために、例えば、スルーホール形成等の手段により複
数の層を形成し、相互に電気的接続を行わせる多層基板
を使用してもよい。
As the structure of the substrate, a single-layer structure may be used. In order to increase the number of electrodes per unit area, a plurality of layers are formed by means such as through-hole formation. Alternatively, a multi-layer substrate for making electrical connection with each other may be used.

【0031】上記部品としては特に限定されず、例え
ば、トランジスタ、ダイオード、IC、LSI等の半導
体等の能動部品;抵抗、コンデンサ、水晶振動子等の受
動部品等が挙げられる。
The above components are not particularly limited, and include, for example, active components such as semiconductors such as transistors, diodes, ICs, and LSIs; and passive components such as resistors, capacitors, and crystal oscillators.

【0032】上記基板及び上記部品の表面に形成される
電極の形状としては特に限定されず、例えば、縞状、ド
ット状、任意形状のもの等が挙げられる。上記電極の材
質としては特に限定されず、例えば、金、銀、銅、ニッ
ケル、パラジウム、カーボン、アルミニウム、ITO等
が挙げられる。接触抵抗を低減させるために、銅、ニッ
ケル等の上に更に金を被覆したものを用いることもでき
る。上記電極の厚みは、0.1〜100μmが好まし
く、上記電極の幅は、1〜500μmが好ましい。
The shape of the electrodes formed on the surface of the substrate and the component is not particularly limited, and examples thereof include stripes, dots, and arbitrary shapes. The material of the electrode is not particularly limited, and examples thereof include gold, silver, copper, nickel, palladium, carbon, aluminum, and ITO. In order to reduce the contact resistance, a material obtained by further coating gold on copper, nickel or the like can be used. The thickness of the electrode is preferably 0.1 to 100 μm, and the width of the electrode is preferably 1 to 500 μm.

【0033】本発明の異方性導電接着剤と上記基板、上
記部品等との接合方法としては、例えば、以下のものが
ある。表面に電極が形成された基板又は部品の上に、導
電性微粒子を用いた異方性導電膜を載せた後、もう一方
の電極面を有する基板又は部品を置き、加熱、加圧す
る。異方性導電膜を用いる代わりに、スクリーン印刷や
ディスペンサー等の印刷手段により、導電性微粒子を用
いた導電性ペーストを所定量用いることもできる。上記
加熱、加圧には、ヒーターが付いた圧着機やボンディン
グマシーン等が用いられる。
As a method for joining the anisotropic conductive adhesive of the present invention to the above-mentioned substrate, the above-mentioned parts, etc., for example, there are the following methods. After an anisotropic conductive film using conductive fine particles is placed on a substrate or component having electrodes formed on the surface, a substrate or component having the other electrode surface is placed, and heated and pressed. Instead of using an anisotropic conductive film, a predetermined amount of conductive paste using conductive fine particles can be used by printing means such as screen printing or a dispenser. For the above-mentioned heating and pressurizing, a crimping machine equipped with a heater, a bonding machine or the like is used.

【0034】上記異方性導電膜や異方性導電ペーストを
用いない方法も可能であり、例えば、導電性微粒子を介
して貼り合わせた二つの電極部の隙間に液状のバインダ
ーを注入した後、硬化させる方法等を用いることができ
る。
It is also possible to use a method that does not use the above-mentioned anisotropic conductive film or anisotropic conductive paste. For example, after injecting a liquid binder into a gap between two electrode portions bonded together via conductive fine particles, A curing method or the like can be used.

【0035】上述のようにして得られた基板又は部品の
接合体を、本明細書中では導電接続構造体という。この
ように、本発明の異方性導電接着剤を用いてなる導電接
続構造体もまた本発明の一つである。
The joined body of substrates or components obtained as described above is referred to as a conductive connection structure in this specification. Thus, the conductive connection structure using the anisotropic conductive adhesive of the present invention is also one of the present invention.

【0036】[0036]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例)以下に実施例を掲げて本発明を更に詳しく説
明するが、本発明はこれら実施例のみに限定されるもの
ではない。
(Examples) Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0037】実施例1 平均粒径8μm、K値350kgf/mm2 、CV値8
%の架橋ポリスチレン重合体に、厚さ0.05μmに金
メッキした導電性微粒子と絶縁粒子として平均粒径が導
電性微粒子の0.95倍、K値が2/3、CV値5%の
架橋ポリスチレン重合体をエポキシ樹脂及びアクリル樹
脂の混合物をトルエンに溶解させたバインダー溶液に混
合、分散させた。次いで、導電性微粒子分散溶液を離型
フィルム上に一定厚みに塗布し、トルエンを蒸発させ、
異方性導電膜を作成した。膜厚は30μmであり、導電
性微粒子は7体積%、絶縁粒子はその倍の濃度であっ
た。
Example 1 Average particle size 8 μm, K value 350 kgf / mm 2 , CV value 8
% Of a crosslinked polystyrene polymer having a mean particle size of 0.95 times that of the conductive fine particles, a K value of 2/3, and a CV value of 5%. The polymer was mixed and dispersed in a binder solution obtained by dissolving a mixture of an epoxy resin and an acrylic resin in toluene. Next, a conductive fine particle dispersion solution is applied to a fixed thickness on a release film, and toluene is evaporated,
An anisotropic conductive film was prepared. The film thickness was 30 μm, the conductive fine particles were 7% by volume, and the insulating particles were twice as concentrated.

【0038】ガラス−エポキシ銅張り基板(厚み1.6
mm、配線幅40μm、電極ピッチ80μm)に得られ
た異方性導電膜を貼付けた。この上に厚み80μmのポ
リイミドフィルム基板(厚み30μm、配線幅40μ
m、電極ピッチ80μm)を重ね合わせ、150℃、2
分間加熱、加圧し導電接合構造体を作製した。
Glass-epoxy copper-clad substrate (thickness 1.6)
mm, a wiring width of 40 μm, and an electrode pitch of 80 μm). On this, a polyimide film substrate having a thickness of 80 μm (thickness 30 μm, wiring width 40 μm)
m, electrode pitch 80 μm) at 150 ° C, 2
Heating and pressing were performed for a minute to produce a conductive bonding structure.

【0039】この導電接続構造体の接続抵抗値は0.0
3Ωで、隣接する電極間の接続抵抗は、1×109 以上
となり、線間絶縁性は充分保たれていた。また、異方性
導電膜中の導電性微粒子及び絶縁粒子の濃度を同じ比率
で上げていったところ、導電性微粒子の濃度が20体積
%まで電極間のリークが発生せず、その時の接続抵抗値
は、0.008Ωと充分低かった。結果を表1に示し
た。
The connection resistance value of this conductive connection structure is 0.0
At 3Ω, the connection resistance between adjacent electrodes was 1 × 10 9 or more, and the line insulation was sufficiently maintained. In addition, when the concentrations of the conductive fine particles and the insulating particles in the anisotropic conductive film were increased at the same ratio, no leak occurred between the electrodes until the concentration of the conductive fine particles reached 20% by volume. The value was sufficiently low at 0.008Ω. The results are shown in Table 1.

【0040】実施例2 実施例1において、絶縁粒子として平均粒径が導電性微
粒子の0.7倍の架橋ポリスチレン重合体を用いたこと
以外は実施例1と同様にして導電接続構造体を作製し、
同様の評価を行った。この導電接続構造体の接続抵抗値
は、0.03Ωで、隣接する電極間の接続抵抗は、1×
109 以上となり、線間絶縁性は充分保たれていた。ま
た、異方性導電膜中の導電性微粒子及び絶縁粒子の濃度
を同じ比率で上げていったところ、導電性微粒子の濃度
が17体積%まで電極間のリークが発生せず、その時の
接続抵抗値は、0.011Ωと充分低かった。結果を表
1に示した。
Example 2 A conductive connection structure was prepared in the same manner as in Example 1 except that a crosslinked polystyrene polymer having an average particle diameter 0.7 times that of the conductive fine particles was used as the insulating particles. And
The same evaluation was performed. The connection resistance value of this conductive connection structure is 0.03Ω, and the connection resistance between adjacent electrodes is 1 ×
It was 10 9 or more, and the line insulation was sufficiently maintained. In addition, when the concentrations of the conductive fine particles and the insulating particles in the anisotropic conductive film were increased at the same ratio, no leak occurred between the electrodes until the concentration of the conductive fine particles reached 17% by volume. The value was sufficiently low at 0.011Ω. The results are shown in Table 1.

【0041】実施例3 実施例1において、絶縁粒子としてK値が導電性微粒子
の1.4倍の架橋ポリスチレン重合体を用いたこと以外
は実施例1と同様にして導電接続構造体を作製し、同様
の評価を行った。この導電接続構造体の接続抵抗値は、
0.037Ωで、隣接する電極間の接続抵抗は、1×1
9 以上となり、線間絶縁性は充分保たれていた。ま
た、異方性導電膜中の導電性微粒子及び絶縁粒子の濃度
を同じ比率で上げていったところ、導電性微粒子の濃度
が20体積%まで電極間のリークが発生せず、その時の
接続抵抗値は、0.011Ωと充分低かった。結果を表
1に示した。
Example 3 A conductive connection structure was prepared in the same manner as in Example 1, except that a crosslinked polystyrene polymer having a K value 1.4 times that of the conductive fine particles was used as the insulating particles. The same evaluation was performed. The connection resistance value of this conductive connection structure is
0.037Ω, the connection resistance between adjacent electrodes is 1 × 1
09 or more, and the line insulation was sufficiently maintained. In addition, when the concentrations of the conductive fine particles and the insulating particles in the anisotropic conductive film were increased at the same ratio, no leak occurred between the electrodes until the concentration of the conductive fine particles reached 20% by volume. The value was sufficiently low at 0.011Ω. The results are shown in Table 1.

【0042】実施例4 実施例1において、導電性微粒子として平均粒径が4μ
m、K値450kgf/mm2 、CV値5%のものを用
い、絶縁粒子としてCV値10%のものを用い、濃度を
導電性微粒子の1.5倍の架橋ポリスチレン重合体を用
いたこと以外は実施例1と同様にして導電接続構造体を
作製し、同様の評価を行った。この導電接続構造体の接
続抵抗値は、0.03Ωで、隣接する電極間の接続抵抗
は、1×109 以上となり、線間絶縁性は充分保たれて
いた。また、異方性導電膜中の導電性微粒子及び絶縁粒
子の濃度を同じ比率で上げていったところ、導電性微粒
子の濃度が19体積%まで電極間のリークが発生せず、
その時の接続抵抗値は、0.009Ωと充分低かった。
結果を表1に示した。
Example 4 In Example 1, the conductive fine particles had an average particle size of 4 μm.
m, a K value of 450 kgf / mm 2 , a CV value of 5%, a CV value of 10% as insulating particles, and a cross-linked polystyrene polymer having a concentration 1.5 times that of the conductive fine particles. Produced a conductive connection structure in the same manner as in Example 1, and performed the same evaluation. The connection resistance value of this conductive connection structure was 0.03Ω, the connection resistance between adjacent electrodes was 1 × 10 9 or more, and the line insulation was sufficiently maintained. In addition, when the concentrations of the conductive fine particles and the insulating particles in the anisotropic conductive film were increased at the same ratio, no leak occurred between the electrodes until the concentration of the conductive fine particles reached 19% by volume.
The connection resistance value at that time was sufficiently low at 0.009Ω.
The results are shown in Table 1.

【0043】比較例1 絶縁粒子を用いなかったこと以外は実施例1と同様にし
て導電接続構造体を作製し、同様の評価を行った。この
導電接続構造体の接続抵抗値は、0.03Ωで、隣接す
る電極間の接続抵抗は、1×109 以上となり、線間絶
縁性は充分保たれていた。しかし、異方性導電膜中の導
電性微粒子及び絶縁粒子の濃度を同じ比率で上げていっ
たところ、導電性微粒子の濃度が10体積%で電極間の
リークが発生し、その時の接続抵抗値は、0.02Ωと
劣っていた。結果を表1に示した。
Comparative Example 1 A conductive connection structure was prepared in the same manner as in Example 1 except that no insulating particles were used, and the same evaluation was performed. The connection resistance value of this conductive connection structure was 0.03Ω, the connection resistance between adjacent electrodes was 1 × 10 9 or more, and the line insulation was sufficiently maintained. However, when the concentrations of the conductive fine particles and the insulating particles in the anisotropic conductive film were increased at the same ratio, leakage occurred between the electrodes when the concentration of the conductive fine particles was 10% by volume. Was inferior to 0.02Ω. The results are shown in Table 1.

【0044】比較例2 実施例1において、絶縁粒子として平均粒径が導電性微
粒子の1.1倍の架橋ポリスチレン重合体を用いたこと
以外は実施例1と同様にして導電接続構造体を作製し、
同様の評価を行ったところ、導電接続構造体に一部導通
不良が発生した。結果を表1に示した。
Comparative Example 2 A conductive connection structure was prepared in the same manner as in Example 1, except that a crosslinked polystyrene polymer having an average particle diameter 1.1 times that of the conductive fine particles was used as the insulating particles. And
When the same evaluation was performed, a conduction failure occurred partially in the conductive connection structure. The results are shown in Table 1.

【0045】比較例3 実施例1において、絶縁粒子として平均粒径が導電性微
粒子の0.2倍の架橋ポリスチレン重合体を用いたこと
以外は実施例1と同様にして導電接続構造体を作製し、
同様の評価を行った。この導電接続構造体の接続抵抗値
は、0.03Ωで、隣接する電極間の接続抵抗は、1×
109 以上となり、線間絶縁性は充分保たれていた。し
かし、異方性導電膜中の導電性微粒子及び絶縁粒子の濃
度を同じ比率で上げていったところ、導電性微粒子の濃
度が11体積%で電極間のリークが発生し、その時の接
続抵抗値は、0.018Ωと劣っていた。結果を表1に
示した。
Comparative Example 3 A conductive connection structure was produced in the same manner as in Example 1 except that a crosslinked polystyrene polymer having an average particle diameter 0.2 times that of the conductive fine particles was used as the insulating particles. And
The same evaluation was performed. The connection resistance value of this conductive connection structure is 0.03Ω, and the connection resistance between adjacent electrodes is 1 ×
It was 10 9 or more, and the line insulation was sufficiently maintained. However, when the concentrations of the conductive fine particles and the insulating particles in the anisotropic conductive film were increased at the same ratio, a leak occurred between the electrodes when the concentration of the conductive fine particles was 11% by volume. Was inferior to 0.018Ω. The results are shown in Table 1.

【0046】比較例4 実施例1において、平均粒径200μmの導電性微粒子
を用いたこと以外は実施例1と同様にして導電接続構造
体を作製し、同様の評価を行ったところ、導電接続構造
体の隣接する電極間でショートが発生した。結果を表1
に示した。
Comparative Example 4 A conductive connection structure was prepared in the same manner as in Example 1 except that conductive fine particles having an average particle diameter of 200 μm were used, and the same evaluation was performed. A short circuit occurred between adjacent electrodes of the structure. Table 1 shows the results
It was shown to.

【0047】比較例5 実施例1において、平均粒径0.2μm以下の絶縁粒子
とその絶縁粒子に金メッキをした導電性微粒子を用いた
こと以外は実施例1と同様にして導電接続構造体を作製
し、同様の評価を行おうとしたが、導電性微粒子の濃度
を高くしても接続不良を起こす部分が発生したため、う
まくテストすることができなかった。結果を表1に示し
た。
Comparative Example 5 A conductive connection structure was prepared in the same manner as in Example 1 except that insulating particles having an average particle size of 0.2 μm or less and conductive fine particles obtained by plating the insulating particles with gold were used. It was manufactured and the same evaluation was performed. However, even when the concentration of the conductive fine particles was increased, a portion where a connection failure occurred occurred, and thus the test could not be performed well. The results are shown in Table 1.

【0048】比較例6 実施例1において、CV値20%の導電性微粒子を用い
たこと以外は実施例1と同様にして導電接続構造体を作
製し、同様の評価を行ったところ、隣接する電極間の接
続抵抗は、1×109 以上となり、線間絶縁性は充分保
たれていたものの、接続抵抗は0.06Ωと本発明に比
べて高かった。また、異方性導電膜中の導電性微粒子及
び絶縁粒子の濃度を同じ比率で上げていったところ導電
性微粒子の濃度が18体積%まで電極間のリークは発生
しなかったが、その時の接続抵抗値は0.02と本発明
に比べて劣っていた。
Comparative Example 6 A conductive connection structure was produced in the same manner as in Example 1 except that conductive fine particles having a CV value of 20% were used, and the same evaluation was performed. The connection resistance between the electrodes was 1 × 10 9 or more, and although the line insulation was sufficiently maintained, the connection resistance was 0.06Ω, which was higher than that of the present invention. When the concentration of the conductive fine particles and the concentration of the insulating particles in the anisotropic conductive film were increased at the same ratio, no leak occurred between the electrodes until the concentration of the conductive fine particles reached 18% by volume. The resistance value was 0.02, which was inferior to that of the present invention.

【0049】比較例7 実施例1において、CV値20%の絶縁粒子を用いたこ
と以外は実施例1と同様にして導電接続構造体を作製
し、同様の評価を行ったところ、隣接する電極間の接続
抵抗は、1×109 以上となり、線間絶縁性は充分保た
れていたものの、接続抵抗は0.06Ωと本発明に比べ
て高かった。また、異方性導電膜中の導電性微粒子及び
絶縁粒子の濃度を同じ比率で上げていったところ導電性
微粒子の濃度が18体積%まで電極間のリークは発生し
なかったが、その時の接続抵抗値は0.02と本発明に
比べて劣っていた。
Comparative Example 7 A conductive connection structure was prepared and evaluated in the same manner as in Example 1 except that insulating particles having a CV value of 20% were used. The connection resistance between them was 1 × 10 9 or more, and although the line insulation was sufficiently maintained, the connection resistance was 0.06Ω, which was higher than that of the present invention. When the concentration of the conductive fine particles and the concentration of the insulating particles in the anisotropic conductive film were increased at the same ratio, no leak occurred between the electrodes until the concentration of the conductive fine particles reached 18% by volume. The resistance value was 0.02, which was inferior to that of the present invention.

【0050】[0050]

【表1】 [Table 1]

【0051】[0051]

【発明の効果】本発明は、上述の構成よりなるので、接
続抵抗が低く、接続時の電流容量が大きく、接続が安定
していてリーク現象を起こさない異方性導電接着剤及び
導電接続構造体を提供することができる。
Since the present invention has the above-described structure, the anisotropic conductive adhesive and the conductive connection structure which have a low connection resistance, a large current capacity at the time of connection, a stable connection and do not cause a leak phenomenon. Body can be provided.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 導電性微粒子と絶縁粒子とからなる異方
性導電接着剤であって、前記導電性微粒子は、平均粒径
が0.3〜50μmであり、前記絶縁粒子は、平均粒径
が前記導電性微粒子の平均粒径の0.6〜1倍であり、
前記導電性微粒子及び前記絶縁粒子のCV値は、15%
以下であることを特徴とする異方性導電接着剤。
1. An anisotropic conductive adhesive comprising conductive fine particles and insulating particles, wherein said conductive fine particles have an average particle size of 0.3 to 50 μm, and said insulating particles have an average particle size of Is 0.6 to 1 times the average particle size of the conductive fine particles,
CV values of the conductive fine particles and the insulating particles are 15%
Anisotropic conductive adhesive characterized by the following.
【請求項2】 絶縁粒子は、平均粒径が導電性微粒子の
平均粒径の0.9〜1倍であり、K値が導電性微粒子の
K値の90%以下であり、異方性導電接着剤中における
全占有体積が導電性微粒子の全占有体積の20%以上で
あることを特徴とする請求項1記載の異方性導電接着
剤。
2. The insulating particles have an average particle size of 0.9 to 1 times the average particle size of the conductive fine particles, have a K value of 90% or less of the K value of the conductive fine particles, and have an anisotropic conductive particle. 2. The anisotropic conductive adhesive according to claim 1, wherein the total occupied volume in the adhesive is 20% or more of the total occupied volume of the conductive fine particles.
【請求項3】 導電性微粒子は、平均粒径が1〜10μ
mであり、異方性導電接着剤中における全占有体積が3
〜30体積%であり、絶縁粒子の全占有体積よりも小さ
いことを特徴とする請求項1又は2記載の異方性導電接
着剤。
3. The conductive fine particles have an average particle size of 1 to 10 μm.
m, and the total occupied volume in the anisotropic conductive adhesive is 3
The anisotropic conductive adhesive according to claim 1 or 2, wherein the content is less than 30% by volume, and is smaller than the total volume occupied by the insulating particles.
【請求項4】 請求項1、2又は3記載の異方性導電接
着剤を用いてなることを特徴とする導電接続構造体。
4. A conductive connection structure comprising the anisotropic conductive adhesive according to claim 1, 2 or 3.
JP28857797A 1997-10-21 1997-10-21 Anisotropic conductive adhesive and conductive connection structure Pending JPH11126516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28857797A JPH11126516A (en) 1997-10-21 1997-10-21 Anisotropic conductive adhesive and conductive connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28857797A JPH11126516A (en) 1997-10-21 1997-10-21 Anisotropic conductive adhesive and conductive connection structure

Publications (1)

Publication Number Publication Date
JPH11126516A true JPH11126516A (en) 1999-05-11

Family

ID=17732076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28857797A Pending JPH11126516A (en) 1997-10-21 1997-10-21 Anisotropic conductive adhesive and conductive connection structure

Country Status (1)

Country Link
JP (1) JPH11126516A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180107207A (en) * 2016-05-05 2018-10-01 데쿠세리아루즈 가부시키가이샤 Filler batch film
US20180297154A1 (en) * 2015-11-20 2018-10-18 Sekisui Chemical Co., Ltd. Particles, connecting material and connection structure
US20180297153A1 (en) * 2015-11-20 2018-10-18 Sekisui Chemical Co., Ltd. Connecting material and connection structure
US20180318970A1 (en) * 2015-11-20 2018-11-08 Sekisui Chemical Co., Ltd. Particles, connecting material and connection structure
KR20190038603A (en) * 2016-10-18 2019-04-08 데쿠세리아루즈 가부시키가이샤 Filler-containing film
CN114364162A (en) * 2022-01-05 2022-04-15 业成科技(成都)有限公司 Electrode bonding method and bonding assembly
KR20230088851A (en) * 2016-10-18 2023-06-20 데쿠세리아루즈 가부시키가이샤 Filler-containing film

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11017916B2 (en) * 2015-11-20 2021-05-25 Sekisui Chemical Co., Ltd. Particles, connecting material and connection structure
US20180297154A1 (en) * 2015-11-20 2018-10-18 Sekisui Chemical Co., Ltd. Particles, connecting material and connection structure
US20180301237A1 (en) * 2015-11-20 2018-10-18 Sekisui Chemical Co., Ltd. Particles, connecting material and connection structure
US20180297153A1 (en) * 2015-11-20 2018-10-18 Sekisui Chemical Co., Ltd. Connecting material and connection structure
US20180318970A1 (en) * 2015-11-20 2018-11-08 Sekisui Chemical Co., Ltd. Particles, connecting material and connection structure
US11020825B2 (en) * 2015-11-20 2021-06-01 Sekisui Chemical Co., Ltd. Connecting material and connection structure
US11024439B2 (en) * 2015-11-20 2021-06-01 Sekisui Chemical Co., Ltd. Particles, connecting material and connection structure
US11027374B2 (en) * 2015-11-20 2021-06-08 Sekisui Chemical Co., Ltd. Particles, connecting material and connection structure
KR20210074417A (en) * 2016-05-05 2021-06-21 데쿠세리아루즈 가부시키가이샤 Filler alignment film
KR20180107207A (en) * 2016-05-05 2018-10-01 데쿠세리아루즈 가부시키가이샤 Filler batch film
KR20230088851A (en) * 2016-10-18 2023-06-20 데쿠세리아루즈 가부시키가이샤 Filler-containing film
KR20190038603A (en) * 2016-10-18 2019-04-08 데쿠세리아루즈 가부시키가이샤 Filler-containing film
CN114364162A (en) * 2022-01-05 2022-04-15 业成科技(成都)有限公司 Electrode bonding method and bonding assembly
CN114364162B (en) * 2022-01-05 2023-11-21 业成科技(成都)有限公司 Electrode bonding method and bonding assembly

Similar Documents

Publication Publication Date Title
KR101183317B1 (en) Adhesive composition, circuit connecting material using the adhesive composition, method for connecting circuit member, and circuit connecting body
US8846142B2 (en) Conductive particle, anisotropic conductive interconnection material that uses the conductive particle, and method for producing the conductive particle
KR100621463B1 (en) Insulated Conductive Particles and an Anisotropic Conductive film Containing the Particles
KR20100049668A (en) Anisotropic conductive film and its production method, and bonded body employing anisotropic conductive film
JP4605225B2 (en) Circuit connection material, circuit member connection structure using the same, and manufacturing method thereof
JP2000133050A (en) Anisotropic conductive film and conductive connection structural body
JP3581618B2 (en) Conductive fine particles, anisotropic conductive adhesive, and conductive connection structure
JPH11126516A (en) Anisotropic conductive adhesive and conductive connection structure
JPH08148211A (en) Connection member and structure and method for connecting electrode using the same
JP4107769B2 (en) Conductivity imparting particles for anisotropic conductive adhesive and anisotropic conductive adhesive using the same
JP3782590B2 (en) Conductive fine particles, anisotropic conductive adhesive, and conductive connection structure
JP2000067647A (en) Insulating coating conductive fine particle, anisotropic conductive adhesive and conductive connecting structure
JP2001155540A (en) Conductive fine particle, anisotropic conductive adhesive and conductive connecting structure
JPH11339558A (en) Anisotropic conductive adhesive and conductive connection structural body
JP2000030526A (en) Conductive corpuscle, anisotropic conductive adhesive and conductive connection structural body
JPH11134936A (en) Conductive fine grains, anisotropic conductive adhesive, and conductive connecting structure
JPH11329060A (en) Conductive corpuscle, anisotropic conductive adhesive and conductive connection structure
JPH11134935A (en) Conductive fine grain, anisotropic conductive adhesive, and conductive connecting structure
JP4157627B2 (en) Method for coating fine particles, coated fine particles, anisotropic conductive adhesive, conductive connection structure, and spacer for liquid crystal display element
JP2000003621A (en) Anisotropic conductive film and conductive connecting structure
JPH03101007A (en) Anisotropic conductive film
KR101117768B1 (en) Anisotropic Conductive Film
JP4052743B2 (en) Conductive fine particles
JP2000129157A (en) Insulation coated electroconductive microparticle, anisotropic electroconductive adhesive and electroconductive connecting structure
JP2006199833A (en) Anisotropic conductive adhesive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061011