[go: up one dir, main page]

JPH11124683A - Method for forming nonoxidized coating film by electroless composite plating - Google Patents

Method for forming nonoxidized coating film by electroless composite plating

Info

Publication number
JPH11124683A
JPH11124683A JP30633997A JP30633997A JPH11124683A JP H11124683 A JPH11124683 A JP H11124683A JP 30633997 A JP30633997 A JP 30633997A JP 30633997 A JP30633997 A JP 30633997A JP H11124683 A JPH11124683 A JP H11124683A
Authority
JP
Japan
Prior art keywords
hydrogen
composite plating
vacuum
polymer material
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30633997A
Other languages
Japanese (ja)
Inventor
Taichi Mizuno
太一 水野
Takashi Honda
喬 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UST KK
Original Assignee
UST KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UST KK filed Critical UST KK
Priority to JP30633997A priority Critical patent/JPH11124683A/en
Publication of JPH11124683A publication Critical patent/JPH11124683A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)

Abstract

PROBLEM TO BE SOLVED: To securely eliminate hydrogen embrittlement and to prevent oxide from being formed as foreign matter on the surface layer by subjecting the object to be treated to vacuum firing treatment so that hydrogen occluded into composite plating film is degassed and a high polymer material dispersed into the coating is thermally deposited without forming oxide. SOLUTION: Vacuum firing is executed preferably in such a manner that it is divided into a degassing treating stage for degassing hydrogen executed at a relatively low temp. and a nonoxidizing treating stage executed at a temp. in which at least a high polymer material is melted or above. Thus, respective treating temps. can be set in accordance with the occluding state of hydrogen in composite plating coating and the characteristics of the high polymer material composing this coating film, so that more secure degassing of hydrogen and the prevention of the formation of oxide can be attained. Moreover, as for the matter that which is first executed between these two treating stages, it is not limited to either and is suitably selected in accordance with the occluding state of hydrogen, the characteristics of the high polymer material, the materials of the plating and the object to be treated or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複合共析メッキ加
工に代表される、耐蝕・離型性を重視した精密金型、刃
物等、並びに無潤滑で使用可能なモーターシャフト、歯
車、ケーシング等の被膜として特に重用されている複合
めっき被膜、すなわち、金属と高分子材料が混在した被
膜の形成方法に関し、特に、複合めっき被膜中に水素が
吸蔵されるのを防止しかつ被膜の表層に酸化物が形成さ
れるのを防止するように複合めっき被膜を後処理するた
めの方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to precision dies, cutting tools, etc., which are typified by composite eutectoid plating, with emphasis on corrosion resistance and releasability, and motor shafts, gears, casings, etc. usable without lubrication. In particular, the present invention relates to a method for forming a composite plating film, which is particularly frequently used as a coating film, that is, a coating film in which a metal and a polymer material are mixed, particularly, preventing hydrogen from being absorbed in the composite plating film and oxidizing the surface layer of the coating. The present invention relates to a method for post-treating a composite plating film so as to prevent an object from being formed.

【0002】[0002]

【従来の技術】複合めっき被膜の水素脆性、すなわち、
被膜中に水素が吸蔵されていることに起因する脆性は、
被膜を構成する高分子材料の強度が高いほど生じ易く、
そして被膜中の水素量が0.1ppm以下のように非常に少
ない場合でも発生することが知られている。この水素は
原子状であるため、水素ガスを発生するような処理を行
う場合は勿論のこと、水素ガスの発生が認められない場
合であっても、酸洗い、酸浸漬、陰極電解洗浄、電気め
っき、めっきの酸による溶解剥離など(被処理物の材質
によっては、水洗水の汚染)によって被膜中に侵入して
しまい、前処理およびめっき処理時に水素の侵入を回避
することは極めて困難であった。
2. Description of the Related Art Hydrogen embrittlement of composite plating films,
The brittleness due to the occlusion of hydrogen in the coating,
The higher the strength of the polymer material constituting the coating, the more likely it is to occur,
It is known that the generation occurs even when the amount of hydrogen in the film is very small, such as 0.1 ppm or less. Since this hydrogen is in an atomic state, not only when performing a treatment for generating hydrogen gas, but also when no generation of hydrogen gas is recognized, pickling, acid immersion, cathodic electrolytic cleaning, electricity Plating, dissolution and peeling by plating acid, etc. (contamination of washing water depending on the material of the object to be treated) penetrates into the film, and it is extremely difficult to avoid hydrogen intrusion during pre-treatment and plating. Was.

【0003】これに対し、複合めっき被膜を大気炉中で
加熱し、それにより、吸蔵されている水素を除去すると
共に、内部応力の緩和、被処理物と被膜の界面における
格子欠陥の除去および反応層の形成、結晶化の促進など
をも得ようとする方法が提案されている。しかしなが
ら、この方法では、一般的に加熱温度が300℃を超え
ると、被膜の表層が変質、変色すると同時に、複合めっ
き被膜中の高分子材料が溶融して表層の変質、変色を加
速すると共に酸化物を形成して酸化被膜となり易いもの
であった。このため、被膜に適用された高分子材料自体
の特性を損なってその使用目的を達成できなくなるだけ
でなく、酸化物が異物として表層に介在することによ
り、外観、潤滑性、耐摩耗性、非粘着性、撥水性が損な
われてしまう欠点を有するものであった。
On the other hand, the composite plating film is heated in an air furnace to remove the occluded hydrogen, relieve internal stress, remove lattice defects at the interface between the workpiece and the film, and react. A method has also been proposed in which formation of a layer, promotion of crystallization, and the like are also obtained. However, in this method, when the heating temperature exceeds 300 ° C., the surface layer of the coating generally undergoes deterioration and discoloration, and at the same time, the polymer material in the composite plating film melts to accelerate the deterioration and discoloration of the surface layer and oxidize. It was easy to form an oxide film. This not only impairs the properties of the polymer material itself applied to the coating and makes it impossible to achieve its intended purpose, but also causes oxides to be present as foreign matter in the surface layer, resulting in appearance, lubricity, abrasion resistance, It had the disadvantage that the tackiness and water repellency were impaired.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、被膜
に吸蔵され水素を完全に取り除くことにより水素脆性を
確実に除去すると共に、酸化物が異物として表層に形成
されるのを確実に防止することのできる無電解複合めっ
き被膜の形成方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to completely eliminate hydrogen embrittlement by completely absorbing hydrogen absorbed by a coating film and to reliably prevent oxides from being formed as foreign matter on a surface layer. An object of the present invention is to provide a method for forming an electroless composite plating film that can be performed.

【0005】本発明の別の目的は、被膜の表層の変質や
変色および酸化被膜の形成を回避することにより、内部
応力の緩和、被処理物と被膜の界面における格子欠陥の
除去および反応層の形成、結晶化の促進などを行えると
共に、被膜の外観、潤滑性、耐摩耗性、非粘着性、撥水
性の確保並びに被膜の高強度化をも行うことのできる無
電解複合めっき被膜の形成方法を提供することにある。
Another object of the present invention is to avoid deterioration and discoloration of the surface layer of the film and formation of an oxide film, thereby alleviating internal stress, removing lattice defects at the interface between the workpiece and the film, and forming a reaction layer. A method for forming an electroless composite plating film capable of promoting formation, crystallization, etc., and also ensuring the appearance, lubricity, abrasion resistance, non-adhesion, and water repellency of the film and increasing the strength of the film. Is to provide.

【0006】[0006]

【課題を解決するための手段】本発明による被処理物に
無電解めっきされた複合めっき被膜を後処理することに
より無酸化被膜を形成するための方法は、前記複合めっ
き被膜中に吸蔵された水素を脱ガスすると共に該被膜中
に分散する高分子材料を酸化物を生成させることなしに
熱溶着させるように前記複合めっき被膜をめっきされた
被処理物を真空熱処理炉中で真空焼成処理することによ
り遂行される。
According to the present invention, there is provided a method for forming an oxidation-free film by post-processing a composite plating film electrolessly plated on an object to be processed, the method comprising: Degassing the hydrogen and vacuum-treating the object plated with the composite plating film in a vacuum heat treatment furnace so that the polymer material dispersed in the film is thermally welded without generating an oxide. This is accomplished by:

【0007】真空熱処理炉内では水素の沸点が減圧作用
により低下するため、大気圧状態での熱処理と比べ、複
合めっき被膜に吸蔵された水素の蒸発能力が大幅に増加
され、相対的に低い温度での熱処理で水素を確実に脱ガ
スすることが可能となる。また、高温では分解や変質が
進行してしまう高分子材料を含む複合めっき被膜もま
た、相対的に低い温度での熱処理であるため、分解や変
質等が生じるのを確実に防止し、かつ、真空雰囲気中に
おいて処理されるため、酸化物の形成を確実に防止する
ことが可能となる。
[0007] In a vacuum heat treatment furnace, the boiling point of hydrogen is reduced by the action of reduced pressure, so that the evaporation ability of hydrogen absorbed in the composite plating film is greatly increased as compared with the heat treatment under atmospheric pressure, and the temperature is relatively low. Hydrogen can be surely degassed by the heat treatment in step (1). Also, the composite plating film containing a polymer material, which decomposes and degrades at high temperatures, is also a heat treatment at a relatively low temperature, so that decomposition and degeneration, etc. are reliably prevented from occurring, and Since the treatment is performed in a vacuum atmosphere, formation of an oxide can be reliably prevented.

【0008】また、本発明による方法は、前述の真空熱
処理炉中における真空焼成処理を、水素を脱ガスするた
めの相対的に低い温度で真空熱処理を行う脱ガス処理段
階と、少なくとも前記高分子材料が溶融する温度以上の
温度で真空熱処理を行う無酸化処理段階とに分けて処理
することもできる。2つの異なった温度の脱ガスおよび
無酸化処理段階に分けて熱処理することは、複合めっき
被膜中の水素の吸蔵状態と複合めっき被膜を構成する高
分子材料の特性に応じてそれぞれの処理温度を設定でき
ることになり、より確実な水素の脱ガスおよび酸化物の
形成防止を行わせることが可能となる。本発明による方
法はまた、無電解めっき液にPTFEを分散させた無電
解ニッケルめっき液を用いることもでき、それにより、
外観、潤滑性、耐摩耗性、非粘着性、撥水性に優れた金
属表面の被膜を作成することが可能である。
[0008] The method according to the present invention further comprises a degassing step of performing the vacuum heat treatment in the vacuum heat treatment furnace at a relatively low temperature for degassing hydrogen; The treatment may be divided into a non-oxidation treatment step in which vacuum heat treatment is performed at a temperature higher than the temperature at which the material is melted. Separating the heat treatment into two stages of degassing and non-oxidizing treatments at different temperatures makes it possible to set the respective treatment temperatures according to the state of hydrogen absorption in the composite plating film and the characteristics of the polymer material constituting the composite plating film. This makes it possible to more reliably prevent degassing of hydrogen and formation of oxides. The method according to the present invention can also use an electroless nickel plating solution in which PTFE is dispersed in the electroless plating solution,
It is possible to form a metal surface coating excellent in appearance, lubricity, abrasion resistance, non-adhesion, and water repellency.

【0009】[0009]

【発明の実施の形態】図1は本発明の実施例による無電
解複合めっきの無酸化被膜形成方法を示す工程図であ
る。被処理物A(図2参照)は前処理工程1において脱
脂、洗浄、活性化等の所要の前処理が行われ、そして、
無電解下地めっき工程2において下地めっき被膜B(図
2参照)を付着された後、無電解複合めっき工程3によ
り複合めっき被膜C(図2参照)が形成される。しかし
ながら、無電解下地めっき工程2は必ずしも必要な工程
ではなく、被めっき物によってはこの工程を省略するこ
とができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a process chart showing a method for forming an oxidation-free film of electroless composite plating according to an embodiment of the present invention. The object A (see FIG. 2) is subjected to necessary pretreatments such as degreasing, washing, and activation in a pretreatment step 1, and
After the base plating film B (see FIG. 2) is attached in the electroless base plating process 2, a composite plating film C (see FIG. 2) is formed in the electroless composite plating process 3. However, the electroless base plating step 2 is not always a necessary step, and this step can be omitted depending on an object to be plated.

【0010】前処理工程1から無電解複合めっき処理工
程3までの工程は慣用の手段によって行われる。周知の
如く、これらの工程は被処理物および無電解めっき液の
種類等によって異なるが、大別して、被処理物の材質
が、ステンレス、鉄、鋼、銅または銅合金の場合と、ア
ルミニウムまたはアルミニウム合金の場合とに分けられ
る。前者の場合、前処理工程1は、アルカリ予備洗浄
→ アルカリ電解洗浄 →一次酸活性 → 電解二次酸活性
することなどにより行われ、後者の場合、アルカリ予備
洗浄 → アルカリエッチング → 酸活性 → ジンケート
することなどにより行われる。このほか、被処理物がタ
ングステンやチタン等のような特殊な材質である場合、
前処理液を変更することにより対応することができ、ま
た、その他の周知の前処理方法も同様に適用できること
は当業者にとって容易に理解されよう。同様に、下地め
っき被膜Bは主として被処理物Aと複合めっき被膜Cの
間の親和性を増強するために用いられるものであり、無
電解下地めっき工程2において用いられるめっき液は周
知のものでよく、被処理物Aおよび複合めっき被膜Cの
材質によって適宜に選定されて適用されることも容易に
理解されよう。
The steps from the pretreatment step 1 to the electroless composite plating step 3 are performed by conventional means. As is well known, these steps vary depending on the type of the object to be processed and the electroless plating solution, etc., but are roughly classified into those in which the material of the object to be processed is stainless steel, iron, steel, copper or a copper alloy, aluminum or aluminum. Alloys. In the case of the former, the pretreatment step 1 includes an alkali preliminary cleaning.
→ alkaline electrolytic cleaning → primary acid activity → electrolytic secondary acid activation, etc. In the latter case, alkali preliminary cleaning → alkali etching → acid activity → zincate is performed. In addition, when the object to be processed is a special material such as tungsten or titanium,
It is easily understood by those skilled in the art that this can be dealt with by changing the pretreatment liquid, and that other known pretreatment methods can be similarly applied. Similarly, the base plating film B is mainly used to enhance the affinity between the workpiece A and the composite plating film C, and the plating solution used in the electroless base plating step 2 is a well-known plating solution. It will be readily understood that the material is appropriately selected and applied depending on the materials of the object A and the composite plating film C.

【0011】無電解複合めっき工程3は、前処理されそ
して、好ましくは下地めっきされた被処理物Aを、高分
子材料が分散された無電解金属めっき液に所定の厚さの
複合めっき被膜Cが形成されるまで浸漬することにより
行われる。上述した各工程における処理温度、処理時
間、処理液の組成等の条件については慣用の方法に従っ
て行われるので、冗長を避けるため、それらについての
説明は割愛する。
In the electroless composite plating step 3, the object A, which is pre-treated and preferably under-plated, is coated with a composite plating film C having a predetermined thickness in an electroless metal plating solution in which a polymer material is dispersed. This is performed by immersion until is formed. Conditions such as a processing temperature, a processing time, and a composition of a processing solution in each of the above-described steps are performed according to a conventional method, and therefore, description thereof is omitted to avoid redundancy.

【0012】上述の如くしてめっきされた被処理物A
は、真空焼成工程4において、真空熱処理炉10(図3
参照)内に入れられて真空雰囲気下で加熱処理される。
これにより、被処理物Aに付着した複合めっき被膜Cに
吸蔵された水素は、常態におけるよりも低い温度で蒸発
して水素の脱ガスが行われる。また、複合めっき被膜C
中の高分子材料は常態におけるよりも低い温度で一旦溶
解した後、昇温されるに従って酸化物を生成することな
しに結晶化する。このことは、従来の大気炉での加熱方
法において企図されていた内部応力の緩和、被処理物と
被膜の界面における格子欠陥の除去および反応層の形
成、結晶化の促進などを確実に行うことができると同時
に、従来の大気炉による加熱方法の欠点であった被膜表
層の変質および変色、高分子材料自体の変質並びに異物
としての酸化物による被膜の外観、潤滑性、耐摩耗性、
非粘着性、撥水性への悪影響を確実に防止する。
Workpiece A plated as described above
In the vacuum firing step 4, the vacuum heat treatment furnace 10 (FIG. 3)
And heat-treated in a vacuum atmosphere.
As a result, the hydrogen occluded in the composite plating film C attached to the processing object A evaporates at a lower temperature than in the normal state, and degasses the hydrogen. In addition, composite plating film C
The polymer material therein once melts at a lower temperature than in the normal state, and then crystallizes as the temperature is raised without forming an oxide. This is to ensure the relaxation of internal stress, removal of lattice defects at the interface between the workpiece and the film, formation of a reaction layer, and promotion of crystallization, etc., which were planned in the conventional heating method in the atmospheric furnace. At the same time, the deterioration and discoloration of the coating surface layer, which were disadvantages of the conventional heating method using the atmospheric furnace, the deterioration of the polymer material itself, and the appearance, lubricity and abrasion resistance of the coating due to oxide as a foreign matter,
It reliably prevents non-adhesion and adverse effects on water repellency.

【0013】ここにおいて、真空焼成工程4は、水素を
脱ガスするための相対的に低い温度で真空熱処理を行う
脱ガス処理段階4aと、少なくとも前記高分子材料が溶
融する温度以上の温度で真空熱処理を行う無酸化処理段
階4bとに分けて行うことが望ましい。2つの処理段階
4aおよび4bに分けてそれぞれ熱処理することは、複
合めっき被膜中の水素の吸蔵状態と、複合めっき被膜を
構成する高分子材料の特性とに応じてそれぞれの処理温
度を設定できるため、より確実な水素の脱ガスおよび酸
化物の形成防止を達成することができる。一方、2つの
処理段階4aおよび4bのうちのいずれを先に行うかに
ついては必ずしもどちらかに制限されるものではなく、
水素の吸蔵状態、高分子材料の特性、めっきや被処理物
の材質等によって適宜に選定することができる。
Here, the vacuum firing step 4 includes a degassing step 4a in which a vacuum heat treatment is performed at a relatively low temperature for degassing hydrogen, and a vacuum step at a temperature at least at which the polymer material is melted. It is preferable that the heat treatment is performed separately from the non-oxidation treatment step 4b in which the heat treatment is performed. The heat treatment divided into the two treatment steps 4a and 4b can be performed at different temperatures depending on the occlusion state of hydrogen in the composite plating film and the characteristics of the polymer material constituting the composite plating film. Thus, more reliable prevention of degassing of hydrogen and formation of oxides can be achieved. On the other hand, which of the two processing steps 4a and 4b is performed first is not necessarily limited to one of them.
It can be appropriately selected according to the hydrogen storage state, the characteristics of the polymer material, the material of the plating and the object to be treated, and the like.

【0014】本発明において使用される真空熱処理炉1
0は、金属加工品の熱処理に用いられているものと同様
な真空熱処理炉で、図3に例示するように、その内部に
被処理物を密閉状態で収納するための真空槽11と、真
空槽11の内部を真空状態にするための真空ポンプ12
と、真空槽11の内部を加熱するための加熱ヒータ13
と、真空槽11の内部を冷却するための水ジャケット1
4とから構成される。真空槽11には真空槽11の内部
をまた冷却するための冷却ガスを注入するように冷却ガ
ス注入弁15を備えた注入パイプ16が接続されてい
る。真空ポンプ12は吸気パイプ17により真空槽11
に接続されておりそして真空ポンプ12によって真空槽
11から排出された空気を外部へ排出するための排気パ
イプ18を備えている。図中、符号19および20で示
す弁は、それぞれ、真空槽11と真空ポンプ12との間
の接続を断続するための主弁、および真空槽11と外気
との間の接続を断続するための漏出弁である。
The vacuum heat treatment furnace 1 used in the present invention
Reference numeral 0 denotes a vacuum heat treatment furnace similar to that used for heat treatment of a metal workpiece, as shown in FIG. 3, a vacuum chamber 11 for accommodating an object to be processed in a sealed state, and a vacuum heat treatment furnace. A vacuum pump 12 for evacuating the inside of the tank 11
And a heater 13 for heating the inside of the vacuum chamber 11
And a water jacket 1 for cooling the inside of the vacuum chamber 11
And 4. An injection pipe 16 having a cooling gas injection valve 15 is connected to the vacuum chamber 11 so as to inject a cooling gas for cooling the inside of the vacuum chamber 11 again. The vacuum pump 12 is connected to the vacuum chamber 11 by an intake pipe 17.
And an exhaust pipe 18 for exhausting air exhausted from the vacuum chamber 11 by the vacuum pump 12 to the outside. In the figure, valves indicated by reference numerals 19 and 20 are a main valve for interrupting the connection between the vacuum chamber 11 and the vacuum pump 12, and a valve for interrupting the connection between the vacuum chamber 11 and the outside air, respectively. It is a leak valve.

【0015】真空熱処理炉10は、めっきされた被処理
物を真空槽11に入れて密閉し、主弁19を開いて真空
ポンプ12を作動させることにより真空槽11の内部の
空気を排出して真空状態にされる。次いで、加熱ヒータ
13を作動させて真空槽11内の温度を上昇させ、複合
めっき被膜C中に吸蔵された水素およびその他の気体成
分を脱ガスすると共に該被膜中に分散する高分子材料を
溶融する。このとき、真空ポンプ12は常時一定の真空
状態を保つよう作動されており、それにより、複合めっ
き被膜Cから放出された水素およびその他の気体成分
は、吸気パイプ16、主弁19および真空ポンプ12を
介して排気パイプ15から排気される。水素の脱ガスお
よび高分子材料の溶融が行われると、主弁19を閉じて
真空ポンプ12を停止させ、水ジャケット14に冷却水
を流すと共に冷却ガス注入弁15を開けて冷却ガスを注
入パイプ16から真空槽11に注入することにより被処
理物を常温に冷却する。このとき、溶融された高分子材
料は、真空雰囲気中にあることにより、酸化物を形成さ
せることなく結晶化する。
The vacuum heat treatment furnace 10 puts the plated workpiece in a vacuum chamber 11 and hermetically closes it. The main valve 19 is opened and the vacuum pump 12 is operated to discharge the air inside the vacuum chamber 11. Vacuum is applied. Next, the heater 13 is operated to raise the temperature in the vacuum chamber 11 to degas the hydrogen and other gas components occluded in the composite plating film C and to melt the polymer material dispersed in the coating film. I do. At this time, the vacuum pump 12 is operated so as to always maintain a constant vacuum state, whereby the hydrogen and other gas components released from the composite plating film C are supplied to the suction pipe 16, the main valve 19 and the vacuum pump 12. Is exhausted from the exhaust pipe 15 via the When the degassing of hydrogen and the melting of the polymer material are performed, the main valve 19 is closed, the vacuum pump 12 is stopped, the cooling water flows into the water jacket 14, and the cooling gas injection valve 15 is opened to inject the cooling gas. The object to be processed is cooled to room temperature by injecting it from 16 into the vacuum chamber 11. At this time, the molten polymer material is crystallized without forming an oxide due to being in a vacuum atmosphere.

【0016】真空焼成工程4における真空槽11の真空
度、加熱温度および処理時間については、相対的に真空
度が高いほどより低い加熱温度またはより短い処理時間
で真空焼成工程を行うことができる。一方、高分子材料
を熱溶着させるには高分子材料の溶融温度以上の温度
(常態における温度よりは低い)まで加熱することが必
要であるのに対し、水素を完全に脱ガスするのに必要な
温度は、真空状態下では沸点が低下することにより、相
対的に低い温度で十分に達成することができる。そのた
め、真空焼成工程は、前述したように、水素を脱ガスす
るための相対的に低い温度で真空熱処理を行う脱ガス処
理段階と、少なくとも前記高分子材料が溶融する温度以
上の温度で真空熱処理を行う無酸化処理段階とに分けて
行われる。この2つの処理段階における温度管理は、加
熱ヒータ13による加熱と、水ジャケット14への冷却
水の供給および/または真空槽11への冷却ガスの注入
とを適宜に制御することによって行われる。
With respect to the degree of vacuum, heating temperature and processing time of the vacuum chamber 11 in the vacuum firing step 4, the higher the degree of vacuum, the lower the heating temperature or the shorter the processing time. On the other hand, it is necessary to heat the polymer material to a temperature higher than the melting temperature of the polymer material (lower than the temperature in the normal state), while it is necessary to completely degas hydrogen. Such a temperature can be sufficiently achieved at a relatively low temperature by lowering the boiling point under a vacuum state. Therefore, as described above, the vacuum firing step includes a degassing step in which vacuum heat treatment is performed at a relatively low temperature for degassing hydrogen, and a vacuum heat treatment step at least at a temperature at which the polymer material is melted. And a non-oxidation treatment step. Temperature management in these two processing stages is performed by appropriately controlling heating by the heater 13 and supply of cooling water to the water jacket 14 and / or injection of cooling gas into the vacuum chamber 11.

【0017】[0017]

【実験例1】被処理物Aとして200×200×2mmの
ステンレス板(SUS304)を使用した。慣用の前処
理(アルカリ予備洗浄、アルカリ電解洗浄、一次酸活性
および電解二次酸活性)を行った後、硫酸ニッケル、次
亜リン酸ナトリウムを主成分とする無電解めっき液に浸
漬してニッケル−リン合金の下地めっき被膜Bを付着さ
せた。次いで、この下地めっきされた被処理物Aを、荏
原ユージライト株式会社製の無電解複合めっき液「エン
ルーブプロセス(商品名)」に浸漬して両面にそれぞれ
複合めっき被膜Cを付着させた(試料1)。ここにおい
て、無電解複合めっき液「エンルーブプロセス」は、硫
酸ニッケル、次亜リン酸ナトリウムを主成分とする無電
解めっき液に高分子材料としてのPTFEと分散剤とを
加えたものである。被処理物A上に形成された複合めっ
き被膜Cは、ニッケル−リン合金の層中に粒子径1ミク
ロン以下のPTFEが共析した被膜であった。被処理物
Aの各面における複合めっき被膜Cの厚さは平均12ミ
クロンであった。
EXPERIMENTAL EXAMPLE 1 A 200 × 200 × 2 mm stainless steel plate (SUS304) was used as the processing object A. After performing the conventional pretreatment (alkaline pre-cleaning, alkaline electrolytic cleaning, primary acid activity and electrolytic secondary acid activity), immersion in an electroless plating solution containing nickel sulfate and sodium hypophosphite as main components -A base plating film B of a phosphorus alloy was deposited. Next, the object A, which has been subjected to the base plating, is immersed in an electroless composite plating solution “Enlube Process (trade name)” manufactured by EBARA Uzilite Co., Ltd. to apply a composite plating film C on both surfaces ( Sample 1). Here, the electroless composite plating solution “Enlube Process” is obtained by adding PTFE as a polymer material and a dispersant to an electroless plating solution containing nickel sulfate and sodium hypophosphite as main components. The composite plating film C formed on the workpiece A was a film in which PTFE having a particle diameter of 1 μm or less was codeposited in a layer of a nickel-phosphorus alloy. The thickness of the composite plating film C on each surface of the workpiece A was 12 μm on average.

【0018】この複合めっき被膜を付着された被処理
物、すなわち試料1、を真空熱処理炉10の真空槽11
内に入れて密閉し、真空ポンプ12を作動して真空槽1
1を真空状態にし、加熱ヒータ13を作動して真空槽1
1内の温度を350〜370℃の範囲内に保持し、約4
5分間過熱した後、水ジャケット14に冷却水を供給す
ると共に真空槽11へ冷却ガスを注入して被処理物を常
温に戻して本発明の試料1aを作成した。加熱開始から
冷却開始までの真空槽11内の気圧は2Pa 以下に保持
された。
The object to be treated, that is, the sample 1, to which the composite plating film is attached, is placed in a vacuum chamber 11 of a vacuum heat treatment furnace 10.
Then, the container is sealed and the vacuum pump 12 is operated to operate the vacuum tank 1.
1 is evacuated, and the heater 13 is operated to activate the vacuum chamber 1
1 is maintained in the range of 350 to 370 ° C.
After heating for 5 minutes, cooling water was supplied to the water jacket 14 and a cooling gas was injected into the vacuum tank 11 to return the object to room temperature to prepare a sample 1a of the present invention. The pressure in the vacuum chamber 11 from the start of heating to the start of cooling was kept at 2 Pa or less.

【0019】一方、試料1aと同様に、試料1を真空熱
処理炉10の真空槽11内に入れて密閉し、真空槽11
を真空状態にし、加熱ヒータ13を作動して185〜2
00℃の温度で約20分間加熱処理した。次いで、真空
槽11内を更に加熱して350〜370℃の温度で約3
0分間加熱処理した後、被処理物を常温に戻して本発明
の別の試料1bを作成した。加熱開始から冷却開始まで
の真空槽11内の気圧は同様に2Pa 以下に保持され
た。
On the other hand, similarly to the sample 1a, the sample 1 is placed in a vacuum chamber 11 of a vacuum heat treatment furnace 10 and hermetically closed.
Is brought into a vacuum state, and the heater 13 is operated to operate the 185-2.
Heat treatment was performed at a temperature of 00 ° C. for about 20 minutes. Next, the inside of the vacuum chamber 11 is further heated to a temperature of 350 to 370 ° C. for about 3 hours.
After the heat treatment for 0 minutes, the object to be processed was returned to room temperature to prepare another sample 1b of the present invention. The pressure in the vacuum chamber 11 from the start of heating to the start of cooling was similarly kept at 2 Pa or less.

【0020】比較のため、上述の複合めっき被膜を付着
された被処理物(試料1)を慣用の大気炉内で周知の熱
処理を行って試料1xを作成した。大気炉中での加熱温
度は被膜の表層の変質、変色、複合めっき被膜中の高分
子材料の溶融を避けるために280±5℃内に保持され
た。
For comparison, a sample 1x was prepared by subjecting the object to be treated (sample 1) to which the above-mentioned composite plating film was adhered to a known heat treatment in a conventional atmospheric furnace. The heating temperature in the air furnace was kept within 280 ± 5 ° C. to avoid the deterioration and discoloration of the surface layer of the coating and the melting of the polymer material in the composite plating coating.

【0021】各10枚の試料1、1a、1bおよび1x
について、LECO RH-404型水素分析装置を用い
て基材(被処理物自体)との比較による水素量の変化か
ら複合めっき被膜C中の水素吸蔵量を測定したところ、
平均して、 試料1 (未処理) 19.1 ppm 試料1a(本発明) 1.4 ppm 試料1b(本発明) 0.9 ppm 試料1x(比較例) 13.4 ppm であった。
Each of ten samples 1, 1a, 1b and 1x
About the measured hydrogen absorption amount in the composite plating film C from a change in the hydrogen amount in comparison with the substrate (the object itself) using a LECO RH-404 type hydrogen analyzer,
On average, sample 1 (untreated) 19.1 ppm sample 1a (invention) 1.4 ppm sample 1b (invention) 0.9 ppm sample 1x (comparative example) 13.4 ppm.

【0022】また、各10枚の試料1、1a、1bおよ
び1xについて、EPMA観察(20kV/15mA/ビ
ーム径200ミクロン)により表面酸化物量を測定した
ところ、X線強度PKI値での平均値で、 試料1 (未処理) 4.3 CPS 試料1a(本発明) 5.2 CPS 試料1b(本発明) 5.2 CPS 試料1x(比較例) 23.0 CPS であった。
The surface oxide amount of each of the ten samples 1, 1a, 1b and 1x was measured by EPMA observation (20 kV / 15 mA / beam diameter 200 μm). The average value of the X-ray intensity PKI value was obtained. Sample 1 (untreated) 4.3 CPS Sample 1a (invention) 5.2 CPS Sample 1b (invention) 5.2 CPS Sample 1x (comparative example) 23.0 CPS.

【0023】これらの測定から、本発明の方法により熱
処理された複合めっき被膜を備えた試料1aおよび1b
は、1段階の熱処理であっても2段階の熱処理であって
も、大気炉内で熱処理した従来例としての試料1xに比
べ、水素吸蔵量が約10分の1以上、表面酸化物量が約
4分の1以上減少されることが判明した。また、試料1
xの表面は濃茶色に変色しており、酸化膜があることが
目視により確認されたのに対し、試料1aおよび1bに
は酸化膜がなかった。なお、試料1の表面酸化物量の測
定値が本発明の試料1aおよび1bよりも小さくなって
いるが、これは試料1が熱処理されていないため、熱処
理による被膜の酸化が生じないためであることは用意に
理解されよう。
From these measurements, it was found that Samples 1a and 1b provided with the composite plating film heat-treated by the method of the present invention.
In both the one-stage heat treatment and the two-stage heat treatment, the hydrogen storage amount is about 1/10 or more and the surface oxide amount is about 1/10 or more as compared with the conventional sample 1x heat-treated in an atmospheric furnace. It was found to be reduced by more than a quarter. Sample 1
The surface of x was discolored to dark brown, and it was visually confirmed that an oxide film was present, whereas samples 1a and 1b did not have an oxide film. Note that the measured value of the surface oxide amount of Sample 1 is smaller than that of Samples 1a and 1b of the present invention. This is because the heat treatment of Sample 1 does not cause oxidation of the coating due to the heat treatment. Will be easily understood.

【0024】[0024]

【実験例2】被処理物Aとして200×200×2mmの
アルミニウム板(Al 7075)を使用した。被処理物
Aに、前記実験例と同様に、前処理および下地めっき処
理を行った後、複合めっき処理することにより、ニッケ
ル・リン合金の層中に粒子径1ミクロン以下の高分子材
料としてのPTFEが共析した複合めっき被膜を付着さ
せた(試料2)。
EXPERIMENTAL EXAMPLE 2 A 200 × 200 × 2 mm aluminum plate (Al 7075) was used as the processing object A. The object to be treated A is subjected to a pre-treatment and a base plating treatment in the same manner as in the above-mentioned experimental example, and then to a composite plating treatment, whereby a nickel-phosphorus alloy layer having a particle diameter of 1 μm or less as a polymer material is formed. A composite plating film on which PTFE was eutectoid was adhered (Sample 2).

【0025】試料2を、試料1aを作成したときおよび
試料1bを作成したときとそれぞれ同様に、真空熱処理
炉中でそれぞれ1段階および2段階の真空焼成処理して
試料2aおよび2bを作成した。比較のため、試料1x
を作成したときと同様に、試料2を慣用の大気炉内で周
知の熱処理(処理温度、280±5℃)を行って試料2
xを作成した。
Sample 2 was subjected to one-stage and two-stage vacuum firing treatments in a vacuum heat treatment furnace, respectively, to prepare samples 2a and 2b in the same manner as when preparing sample 1a and when preparing sample 1b, respectively. Sample 1x for comparison
In the same manner as when the sample 2 was prepared, the sample 2 was subjected to a well-known heat treatment (processing temperature: 280 ± 5 ° C.) in a conventional atmospheric furnace to obtain a sample 2
x was created.

【0026】これらの試料2、2a、2bおよび2x、
各10枚について、前記実験例で述べたのと同様にして
複合めっき被膜Cの水素吸蔵量および表面酸化物量をそ
れぞれ測定したところ、平均して、 《水素吸蔵量》 試料1 (未処理) 19.1 ppm 試料1a(本発明) 1.4 ppm 試料1b(本発明) 1.1 ppm 試料1x(比較例) 12.4 ppm 《表面酸化物量》 試料1 (未処理) 5.3 CPS 試料1a(本発明) 6.7 CPS 試料1b(本発明) 6.3 CPS 試料1x(比較例) 12.4 CPS (X線強度PKI値による平均値) であった。
These samples 2, 2a, 2b and 2x,
The hydrogen absorption amount and the surface oxide amount of the composite plating film C were measured for each of the ten sheets in the same manner as described in the experimental example, and, on average, << Hydrogen storage amount >> Sample 1 (untreated) 19 .1 ppm sample 1a (invention) 1.4 ppm sample 1b (invention) 1.1 ppm sample 1x (comparative example) 12.4 ppm << Amount of surface oxide >> sample 1 (untreated) 5.3 CPS sample 1a (Invention) 6.7 CPS sample 1b (Invention) 6.3 CPS sample 1x (Comparative example) 12.4 CPS (average value by X-ray intensity PKI value).

【0027】これらの測定から、前記実験例と同様に、
本発明の1段階および2段階の真空熱処理による試料1
aおよび1bは、大気炉内で熱処理した試料1xに比
べ、水素吸蔵量で約10分の1以上、表面酸化物量で約
2分の1以上減少されることが判明した。また同様に、
目視により、試料2xの表面に酸化膜がある(濃茶色に
変色)ことが確認されたのに対し、試料2aおよび2b
に酸化膜はなかった。なお、試料2の表面酸化物量の測
定値については、前記実施例で説明したように、熱処理
されていないことによる被膜酸化が回避されたためであ
る。
From these measurements, as in the experimental example,
Sample 1 by one-stage and two-stage vacuum heat treatment of the present invention
It was found that “a” and “1b” were reduced by about one-tenth or more in hydrogen storage amount and about one-half or more in surface oxide amount, as compared with Sample 1x heat-treated in an atmospheric furnace. Similarly,
While it was confirmed by visual observation that an oxide film was present on the surface of sample 2x (discolored to dark brown), samples 2a and 2b
There was no oxide film. Note that the measured value of the surface oxide amount of the sample 2 was because the oxidation of the film due to the absence of the heat treatment was avoided as described in the above example.

【0028】[0028]

【発明の効果】本発明によれば、複合めっき被膜を付着
された被処理物を真空熱処理炉10中で真空焼成処理す
ることにより、複合めっき被膜に吸蔵された水素の脱ガ
スを確実に行うことができ、かつ、酸化物を生成するこ
となしに複合めっき被膜中の高分子材料を一旦溶融して
溶着させた後、共析膜にさせることができるため、従来
の大気炉での加熱方法におけると同様に、内部応力の緩
和、被処理物と被膜の界面における格子欠陥の除去およ
び反応層の形成、結晶化の促進などを確実に行うことが
できると共に、被膜表層の変質および変色並びに高分子
材料自体の変質を防止することができ、かつ、異物とし
ての酸化物による被膜の外観、潤滑性、耐摩耗性、非粘
着性、撥水性が損なわれるのを確実に防止することがで
きる。
According to the present invention, the object to which the composite plating film is adhered is subjected to vacuum baking treatment in the vacuum heat treatment furnace 10 so that the hydrogen absorbed in the composite plating film can be reliably degassed. Since the polymer material in the composite plating film can be once melted and welded without forming an oxide and then formed into a eutectoid film, a conventional heating method in an atmospheric furnace can be used. As in the above, it is possible to reliably alleviate internal stress, remove lattice defects at the interface between the object to be treated and the film, form a reaction layer, promote crystallization, and so on. The deterioration of the molecular material itself can be prevented, and the appearance, lubricity, abrasion resistance, non-adhesiveness, and water repellency of the coating film due to the oxide as a foreign substance can be reliably prevented from being impaired.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例による無電解複合めっき被膜の
形成方法を示す工程図である。
FIG. 1 is a process chart showing a method for forming an electroless composite plating film according to an embodiment of the present invention.

【図2】図1の方法により形成された複合めっき被膜を
有する被処理物を模式的に示す部分断面図である。
FIG. 2 is a partial cross-sectional view schematically showing an object to be processed having a composite plating film formed by the method of FIG.

【図3】図1の方法で用いられる真空熱処理炉の例を示
す模式的な図である。
FIG. 3 is a schematic view showing an example of a vacuum heat treatment furnace used in the method of FIG.

【符号の説明】[Explanation of symbols]

1 前処理工程 2 無電解下地めっき工程 3 無電解複合めっき工程 4 真空焼成工程 4a 脱ガス処理段階 4b 無酸化処理段階 10 真空熱処理炉 11 真空槽 12 真空ポンプ 13 加熱ヒータ 14 水ジャケット 15 冷却ガス注入弁 16 注入パイプ 17 吸気パイプ 18 排気パイプ 19 主弁 20 漏出弁 A 被処理物 B 下地めっき被膜 C 複合めっき被膜 Reference Signs List 1 Pretreatment step 2 Electroless base plating step 3 Electroless composite plating step 4 Vacuum baking step 4a Degassing step 4b Nonoxidizing step 10 Vacuum heat treatment furnace 11 Vacuum tank 12 Vacuum pump 13 Heater 14 Water jacket 15 Cooling gas injection Valve 16 Injection pipe 17 Intake pipe 18 Exhaust pipe 19 Main valve 20 Leakage valve A Workpiece B Base plating C Composite plating

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被処理物に無電解めっきされた複合めっ
き被膜を後処理することにより無酸化被膜を形成するた
めの方法であって、前記複合めっき被膜中に吸蔵された
水素を脱ガスすると共に該被膜中に分散する高分子材料
を酸化物を生成させることなしに熱溶着させるように前
記複合めっき被膜をめっきされた被処理物を真空熱処理
炉中で真空焼成処理することを特徴とする方法。
1. A method for forming an oxidation-free film by post-treating a composite plating film obtained by electroless plating an object to be processed, wherein the hydrogen absorbed in the composite plating film is degassed. A process in which the object to be plated with the composite plating film is vacuum-baked in a vacuum heat treatment furnace so that the polymer material dispersed in the film is thermally welded without generating an oxide. Method.
【請求項2】 前記真空熱処理炉中における真空焼成処
理は、水素を脱ガスするための相対的に低い温度で真空
熱処理する脱ガス処理段階と、少なくとも前記高分子材
料が溶融する温度以上の温度で真空熱処理を行う無酸化
処理段階とから構成されることを特徴とする請求項1記
載の方法。
2. The vacuum baking treatment in the vacuum heat treatment furnace includes a degassing step of performing a vacuum heat treatment at a relatively low temperature for degassing hydrogen, and a temperature at least equal to or higher than a temperature at which the polymer material is melted. 2. The method according to claim 1, further comprising a non-oxidizing treatment step of performing a vacuum heat treatment in the step.
【請求項3】 前記無電解複合めっき液はPTFEを分
散させた無電解ニッケルめっき液であることを特徴とす
る請求項1または2記載の方法。
3. The method according to claim 1, wherein the electroless composite plating solution is an electroless nickel plating solution in which PTFE is dispersed.
JP30633997A 1997-10-22 1997-10-22 Method for forming nonoxidized coating film by electroless composite plating Pending JPH11124683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30633997A JPH11124683A (en) 1997-10-22 1997-10-22 Method for forming nonoxidized coating film by electroless composite plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30633997A JPH11124683A (en) 1997-10-22 1997-10-22 Method for forming nonoxidized coating film by electroless composite plating

Publications (1)

Publication Number Publication Date
JPH11124683A true JPH11124683A (en) 1999-05-11

Family

ID=17955918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30633997A Pending JPH11124683A (en) 1997-10-22 1997-10-22 Method for forming nonoxidized coating film by electroless composite plating

Country Status (1)

Country Link
JP (1) JPH11124683A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002046479A1 (en) * 2000-12-07 2002-06-13 Aoyama Seisakusho Co., Ltd. Method for baking steel part
JP2008202101A (en) * 2007-02-21 2008-09-04 Ulvac Japan Ltd Fastener, manufacturing method thereof, and vacuum apparatus assembly method
KR100938375B1 (en) * 2005-06-30 2010-01-22 닛코 킨조쿠 가부시키가이샤 Copper Alloy Sn Plating Tank with Excellent Fatigue Properties

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002046479A1 (en) * 2000-12-07 2002-06-13 Aoyama Seisakusho Co., Ltd. Method for baking steel part
US6855217B2 (en) 2000-12-07 2005-02-15 Aoyama Seisakusho Co., Ltd. Method of baking treatment of steel product parts
KR100938375B1 (en) * 2005-06-30 2010-01-22 닛코 킨조쿠 가부시키가이샤 Copper Alloy Sn Plating Tank with Excellent Fatigue Properties
US8182932B2 (en) 2005-06-30 2012-05-22 JP Nippon Mining & Metals Corporation Sn-plated copper alloy strip having improved fatigue characteristics
JP2008202101A (en) * 2007-02-21 2008-09-04 Ulvac Japan Ltd Fastener, manufacturing method thereof, and vacuum apparatus assembly method

Similar Documents

Publication Publication Date Title
US4451302A (en) Aluminum nitriding by laser
CA1237380A (en) Process for ion nitriding aluminum or aluminum alloys
CZ20031587A3 (en) Method for baking steel parts of a product
GB2458507A (en) Oxidation of non ferrous metal components
CH660028A5 (en) PROCESS FOR THE PREPARATION BY DIFFUSION OF A PROTECTIVE LAYER ON ALLOYS BASED ON NICKEL, COBALT AND IRON.
EP0370838A1 (en) Process for the surface protection of metallic articles against high-temperature corrosion, and article treated by this process
CN100436639C (en) Metal material and method for production thereof
JPH11124683A (en) Method for forming nonoxidized coating film by electroless composite plating
FR2556011A1 (en) Process for the surface treatment of titanium articles
CN102943231B (en) Surface three-step nitridation method of aluminium and aluminium alloy
EP0091222B1 (en) Process for the diffusion bonding of aluminium based materials
JP3066798B2 (en) Surface treatment method for sliding members
FR2568270A2 (en) PROCESS FOR SURFACE TREATMENT OF TITANIUM PIECES
CN111041501A (en) Mixed alkali for removing titanium alloy surface oxide and method for removing titanium alloy surface oxide
CN110438421A (en) A kind of aluminum alloy materials and the synchronous intensifying method of Aluminium Alloy Solution Treatment+PVD coating
EP0885980B1 (en) Process for forming a superficial layer having a high hardness by plasma-free thermochemical treatment
Xu et al. Plasma surface alloying
JP4392087B2 (en) Surface treatment method of die casting mold and die
JP3009527B2 (en) Aluminum material excellent in wear resistance and method for producing the same
CN113622003A (en) A kind of surface coating of tungsten or tungsten alloy with high temperature resistance and erosion resistance under oxidizing atmosphere and preparation method thereof
CN114774822B (en) Method for preparing high temperature oxidation resistant coating on 316L stainless steel surface
JP4441128B2 (en) Baking process for titanium alloy
JP3637255B2 (en) Aluminum nitride material and manufacturing method thereof
GB2120278A (en) Removing surface oxide layer
JPS63216976A (en) Pretreatment by reduction under heating before plating