[go: up one dir, main page]

JPH11121343A - Aberration coefficient measuring method of reduced projecting aligner - Google Patents

Aberration coefficient measuring method of reduced projecting aligner

Info

Publication number
JPH11121343A
JPH11121343A JP9288310A JP28831097A JPH11121343A JP H11121343 A JPH11121343 A JP H11121343A JP 9288310 A JP9288310 A JP 9288310A JP 28831097 A JP28831097 A JP 28831097A JP H11121343 A JPH11121343 A JP H11121343A
Authority
JP
Japan
Prior art keywords
aberration coefficient
pattern
pitches
shot
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9288310A
Other languages
Japanese (ja)
Other versions
JP4004603B2 (en
Inventor
Noboru Uchida
登 内田
Kazuyuki Kuwabara
和幸 桑原
Toshio Onodera
俊雄 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP28831097A priority Critical patent/JP4004603B2/en
Publication of JPH11121343A publication Critical patent/JPH11121343A/en
Application granted granted Critical
Publication of JP4004603B2 publication Critical patent/JP4004603B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • G03F7/706Aberration measurement

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily measure the aberration coefficient of a stepper, by a method wherein a plurality of pitches are formed at shot center, and the spherical aberration coefficient for the whole area of shot is measured by the center value in the range of formation of each pattern. SOLUTION: In an optical system having a stepper, a line and space pattern is formed by the three-luminous flux coupling which is symmetrical to optical axis under the illumination approximate to the coherent having the abarration coefficient σ of a stepper of about 0.1 or lower. The line and space pattern is formed at the center of shot by changing focus in several kinds of pitches and shots in the direction of radiation and in the direction which orthogonally intersects with it. The center value of the best focus range is computed for each pattern formed, and if there is an aberation in the center value of the focus range, pattern pitches are different. Accordingly, an aberation can be computed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体製造におけ
るリソグラフィ工程に用いられる縮小投影露光装置(以
下、ステッパーという)の光学系の収差係数測定方法に
関するものである。
[0001] 1. Field of the Invention [0002] The present invention relates to a method for measuring an aberration coefficient of an optical system of a reduction projection exposure apparatus (hereinafter, referred to as a stepper) used in a lithography process in semiconductor manufacturing.

【0002】[0002]

【従来の技術】従来、ステッパーの収差測定方法として
は、例えば、トワイマン型干渉計を用いた方法があっ
た。図3はかかる従来のステッパーの光学系の模式図で
ある。この図に示すように、コリメーター13からの平
行射出光は、半透明鏡15で直角な2方向に分割され、
その一方の光は平面鏡14で反射された後、半透明鏡1
5を透過して観測レンズ18に至る。
2. Description of the Related Art Conventionally, as a method of measuring aberration of a stepper, there has been a method using a Twyman type interferometer, for example. FIG. 3 is a schematic view of an optical system of such a conventional stepper. As shown in this figure, the parallel emission light from the collimator 13 is split by the translucent mirror 15 into two orthogonal directions,
One of the lights is reflected by the plane mirror 14 and then the translucent mirror 1
5 to the observation lens 18.

【0003】また、他方の光は、被検レンズ16を通
り、その焦点に中心がある凸球面鏡17で反射され、再
び逆方向に被検レンズ16を通り、平行光束となって半
透明鏡15で反射されて観測レンズ18に至る。ここ
で、両光束は干渉するので、観測レンズ18の焦点面1
9に目をおいて被検レンズ16の瞳面を観測すれば、干
渉縞を見ることができる。
The other light passes through the lens 16 to be measured, is reflected by the convex spherical mirror 17 having its center at the focal point, passes through the lens 16 in the opposite direction again, becomes a parallel light beam, and becomes a translucent mirror 15. The light is reflected by the lens and reaches the observation lens 18. Here, since both light beams interfere with each other, the focal plane 1 of the observation lens 18 is changed.
By observing the pupil plane of the test lens 16 with an eye on 9, interference fringes can be seen.

【0004】この場合、干渉縞は被検レンズ16を通過
し、収差により変形した実際の波面と凸球面鏡17の中
心に無収差で収束すると考えた参照球面波面との間の光
路差の等しい所に現れ、光は被検レンズ16を2度通過
してから観測されるので、縞と縞との間隔は波面収差の
変化が波長の1/2であることを意味する。これをグラ
フ化し、波面収差を求めることができる。なお、図3に
おいて、11は光源、12はピンホールを示している。
In this case, the interference fringes pass through the lens 16 to be measured, and have an equal optical path difference between the actual wavefront deformed by the aberration and the reference spherical wavefront which is considered to converge without aberration to the center of the convex spherical mirror 17. , And the light is observed after passing through the test lens 16 twice, and the interval between the stripes means that the change in the wavefront aberration is 1 / of the wavelength. This can be graphed to determine the wavefront aberration. In FIG. 3, reference numeral 11 denotes a light source, and reference numeral 12 denotes a pinhole.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、以上述
べた従来のステッパーの収差測定方法では、実際にステ
ッパーで測定しようとした場合、平面鏡や半透明鏡をセ
ッティングする必要があり、特に、半透明鏡は光路中に
セットしなければならず、既に組み上がったステッパー
に、この方法を用いるのは、調整を含めたセッティング
に非常に困難な作業を伴う。
However, in the above-described conventional method for measuring aberration of a stepper, when actually measuring with a stepper, it is necessary to set a plane mirror or a translucent mirror. Has to be set in the optical path, and using this method on a stepper that has already been assembled involves a very difficult operation including setting and adjustment.

【0006】本発明は、上記問題点を除去し、セッティ
ングが容易で、簡便なステッパーの収差係数測定方法を
提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to eliminate the above-mentioned problems and to provide a simple and easy method for measuring the aberration coefficient of a stepper.

【0007】[0007]

【課題を解決するための手段】本発明は、上記目的を達
成するために、 〔1〕縮小投影露光装置の光学系の収差係数を求める収
差係数測定方法において、コヒーレントに近い照明下で
光軸に対称な3光束結像により、ショット中心において
複数のピッチのパターンの形成を実施し、それぞれのパ
ターン形成範囲の中心値よりショット全面にのる球面収
差係数を求めるようにしたものである。
According to the present invention, there is provided a method for measuring an aberration coefficient of an optical system of a reduction projection exposure apparatus, comprising the steps of: A plurality of patterns with a plurality of pitches are formed at the center of the shot by three-beam image formation symmetrical with respect to, and the spherical aberration coefficient over the entire shot is obtained from the center value of each pattern formation range.

【0008】〔2〕縮小投影露光装置の光学系の収差係
数を求める収差係数測定方法において、コヒーレントに
近い照明下で光軸に対称な3光束結像により、複数の像
高において複数のピッチのパターンの形成を実施し、そ
れぞれのパターン形成範囲の中心値より収差係数を求め
るようにしたものである。 〔3〕縮小投影露光装置の光学系の収差係数を求める収
差係数測定方法において、コヒーレントに近い照明下で
光軸に対称な3光束結像により、複数の像高において複
数のピッチのパターンの形成を実施し、ショット中心に
対して放射する方向と直交する方向のピッチの異なる2
種類のライン&スペースのパターンの位置ずれ量差を複
数のピッチ間について求めるようにしたものである。
[2] In an aberration coefficient measuring method for obtaining an aberration coefficient of an optical system of a reduction projection exposure apparatus, three light flux images symmetrical with respect to an optical axis under illumination close to coherent are used to form a plurality of pitches at a plurality of image heights. The pattern is formed, and the aberration coefficient is obtained from the center value of each pattern forming range. [3] In an aberration coefficient measuring method for obtaining an aberration coefficient of an optical system of a reduction projection exposure apparatus, formation of a pattern having a plurality of pitches at a plurality of image heights by forming three light beams symmetrical to an optical axis under illumination close to coherent. 2 with different pitches in the direction orthogonal to the direction of emission to the shot center.
The difference in the amount of positional deviation between the types of line and space patterns is obtained for a plurality of pitches.

【0009】〔4〕縮小投影露光装置の光学系の収差係
数を求める収差係数測定方法において、コヒーレントに
近い照明下で光軸に対称な2光束結像により、複数の像
高においてパターンの形成を実施し、ショット中心に対
して放射する方向と直交する方向のピッチの異なる2種
類のライン&スペースのパターンの位置ずれ量差を複数
のピッチ間について求めるようにしたものである。
[4] In an aberration coefficient measuring method for obtaining an aberration coefficient of an optical system of a reduction projection exposure apparatus, a pattern is formed at a plurality of image heights by imaging two light beams symmetrical to an optical axis under illumination close to coherent. In this embodiment, the difference in the amount of positional deviation between two types of line and space patterns having different pitches in the direction orthogonal to the direction radiated from the shot center is obtained for a plurality of pitches.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照しながら詳細に説明する。図1は本発明の
第1実施例を示すステッパーの光学系の模式図である。
この図において、21は開口絞り、22はコンデンサレ
ンズ、23はマスク、24は回折光、25は投影レン
ズ、26は開口絞り、27はウエハである。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic view of an optical system of a stepper according to a first embodiment of the present invention.
In this figure, 21 is an aperture stop, 22 is a condenser lens, 23 is a mask, 24 is diffracted light, 25 is a projection lens, 26 is an aperture stop, and 27 is a wafer.

【0011】例えば、ステッパーの収差係数σが0.1
程度以下のコヒーレントに近い照明下で、図1に示すよ
うな光軸に対して対称な3光束結像により、ライン&ス
ペースのパターンを形成する。このライン&スペースの
パターンは、ショット中心に対し、放射する方向及びそ
れと直交する方向について、何種類かのピッチ及びショ
ット内位置について、フォーカスを変化させて形成す
る。
For example, if the aberration coefficient σ of the stepper is 0.1
A line and space pattern is formed by imaging three light beams symmetrical with respect to the optical axis as shown in FIG. The line and space pattern is formed by changing the focus with respect to several types of pitches and positions within the shot in the direction of emission and the direction perpendicular to the center of the shot.

【0012】ピッチは解像限界まで変化させ、ショット
内位置はショット中心から最大露光位置まで変化させ
る。ピッチが大きい場合は、NA(投影レンズの開口
数)を小さくする(開口絞り26を小さくする)ことに
より、3光束結像が実現できる。そして、形成されたそ
れぞれのパターンについて、ベストフォーカス、すなわ
ちパターンが良好に形成されているフォーカス範囲の中
心値を求める。
The pitch is changed to the resolution limit, and the position in the shot is changed from the shot center to the maximum exposure position. When the pitch is large, three-beam imaging can be realized by reducing the NA (numerical aperture of the projection lens) (decreasing the aperture stop 26). Then, for each of the formed patterns, the best focus, that is, the center value of the focus range in which the pattern is formed well is obtained.

【0013】このフォーカス範囲の中心値は収差がある
場合、パターンピッチあるいはショット内位置によって
異なるので、これより収差を求めることができる。とこ
ろで、コヒーレント照明下で光軸に対して対称な3光束
結像により、ライン&スペースのパターンを形成した場
合、その光強度分布は次式で表すことができる。
If the center value of the focus range has an aberration, it differs depending on the pattern pitch or the position in the shot, so that the aberration can be obtained from this. By the way, when a line-and-space pattern is formed by imaging three light beams symmetrically with respect to the optical axis under coherent illumination, the light intensity distribution can be expressed by the following equation.

【0014】 I=a+b1・cos〔(2πX/P)+kW1 〕+b2・cos〔(2πX /P)−kW-1〕+c1・cos〔(4πX/P)+kW1 −kW-1〕 …(1) ここで、Pはピッチ、kは波数、W1 は+1次回折光の
波面収差、W-1は−1次回折光の波面収差である。波面
収差は、ショット内位置及び瞳面位置をそれぞれ(r,
ω)、(ρ,φ)の極座標により表した場合、次式で示
される。ただし、r,ρは規格化した値とする。
I = a + b1 · cos [(2πX / P) + kW 1 ] + b2 · cos [(2πX / P) −kW −1 ] + c1 · cos [(4πX / P) + kW 1 −kW −1 ] (1) Here, P is the pitch, k is the wave number, W1 is the wavefront aberration of the + 1st- order diffracted light, and W- 1 is the wavefront aberration of the -1st- order diffracted light. The wavefront aberration is obtained by setting the in-shot position and the pupil plane position to (r,
ω) and (ρ, φ) are represented by the following equations. Here, r and ρ are standardized values.

【0015】 W=Σa1,m,n 21+mρn cosm (φ−ω) …(2) この収差の中で、球面収差や像面湾曲や非点収差のよう
なnが偶数の収差は、ピッチによるベストフォーカス差
及びショット内位置によるベストフォーカス差及びショ
ット中心に対し、放射する方向及びそれと直交する方向
のベストフォーカス差を生じさせる。
W = Σa 1, m, n r 21 + m ρ n cos m (φ−ω) (2) Among these aberrations, n such as spherical aberration, field curvature and astigmatism is an even number Causes the best focus difference due to the pitch, the best focus difference due to the position in the shot, and the best focus difference in the direction of emission and the direction orthogonal to the center of the shot.

【0016】ショット内全面による球面収差は以下のよ
うにして求めることができる。上記(2)式で表せる収
差の内、ショット中心の球面収差は次式で表すことがで
きる。 Wa =b3 ρ4 +c6 ρ6 +d10ρ8 +・・・・ …(3−1) W1 =W-1 …(3−2) ここで、デフォーカスによる収差を考えると、 Wdef =(1/2)NA2 ρ2 z …(4) NAは投影レンズの開口数、zはフォーカス位置であ
る。
The spherical aberration due to the entire surface within the shot can be obtained as follows. Of the aberrations expressed by the above equation (2), the spherical aberration at the shot center can be expressed by the following equation. W a = b 3 ρ 4 + c 6 ρ 6 + d 10 ρ 8 + (3-1) W 1 = W -1 (3-2) Here, considering the aberration due to defocus, W def = (1/2) NA 2 ρ 2 z (4) NA is the numerical aperture of the projection lens, and z is the focus position.

【0017】コヒーレント照明での3光束結像により形
成したパターンのベストフォーカス位置は、上記式
(1)及び式(3−2)より、 Wa +Wdef =0 …(5) 上式より、ベストフォーカス位置zb は以下のように表
すことができる。 zb =(−2/NA2 )(b3 ρ2 +c6 ρ4 +d10ρ6 +・・) …(6) パターンピッチを変えて、ρが0〜1の範囲でベストフ
ォーカス、すなわち、パターンが良好に形成されている
フォーカス範囲の中心値を求め、横軸をρ、縦軸をベス
トフォーカス位置としたグラフより、以下に示す形の多
項式でフィッティングし、この式と上記式(6)より収
差係数を求めることができる。
From the above equations (1) and (3-2), the best focus position of the pattern formed by the three-beam image formation by coherent illumination is: W a + W def = 0 (5) The focus position z b can be expressed as follows. z b = (− 2 / NA 2 ) (b 3 ρ 2 + c 6 ρ 4 + d 10 ρ 6 +...) (6) The best focus, that is, ρ is in the range of 0 to 1 by changing the pattern pitch, that is, The center value of the focus range in which the pattern is formed favorably is obtained, and a graph with the horizontal axis being ρ and the vertical axis being the best focus position is fitted by a polynomial of the following form. More aberration coefficients can be obtained.

【0018】 zb =A0+αρ2 +βρ4 γρ6 +・・・ …(7) 次に、ショット内位置によって変わる収差まで含めた場
合は、次のようにして求めることができる。このような
収差は、上記式(2)を、ショット中心に対し放射する
方向及びそれと直交する方向Wm 、WS について、それ
ぞれ、以下のように展開することができる。
Z b = A 0 + αρ 2 + βρ 4 γρ 6 + (7) Next, when the aberrations that vary depending on the position within the shot are also included, they can be obtained as follows. Such aberrations can be developed by applying the above equation (2) to the direction radiating to the shot center and the directions W m and W S orthogonal thereto, as follows.

【0019】 Wm =(b1 +b5 )r2 ρ2 +b3 ρ4 +(c1 +c5 )r4 ρ2 +(c3 +c8 )r2 ρ4 +c6 ρ6 +・・・・ …(8) Ws =b1 2 ρ2 +b3 ρ4 +c1 4 ρ2 +c3 2 ρ4 +c6 ρ6 +・ ・・・・ …(9) ショット中心に対して放射する方向及びそれと直交する
方向のベストフォーカス位置は、上記式(5)のWa
m 、Ws に置き換えれば良く、よって、ベストフォー
カス位置zbm、zbsは以下のように表すことができる。
W m = (b 1 + b 5 ) r 2 ρ 2 + b 3 ρ 4 + (c 1 + c 5 ) r 4 ρ 2 + (c 3 + c 8 ) r 2 ρ 4 + c 6 ρ 6 +... ··· (8) W s = b 1 r 2 ρ 2 + b 3 ρ 4 + c 1 r 4 ρ 2 + c 3 r 2 ρ 4 + c 6 ρ 6 + ······ (9) Radiation to the shot center The best focus position in the direction of movement and the direction perpendicular thereto can be obtained by replacing W a in the above equation (5) with W m and W s . Therefore, the best focus positions z bm and z bs can be expressed as follows. it can.

【0020】 zbm=−2Wm /(NA2 ρ2 ) …(10) zbs=−2Ws /(NA2 ρ2 ) …(11) 上記式(10)zbm及び(11)zbsは共に、以下の形
の多項式となる。zb =A0+αr2 +βρ2 +γr4
+δr2 ρ2 +ερ4 +・・・ …(12) これより、露光可能範囲内の複数の位置でパターンピッ
チは解像限界まで変えて、ρが0〜1の範囲でショット
中心に対し、放射する方向及びそれと直交する方向のラ
イン&スペースのパターンのベストフォーカスを求め、
それぞれ上記式(12)のρとrの2変数多項式でフィ
ッティングし、係数α、β、γ、δ、ε・・・を求め、
これと上記式(8)及び式(9)との比較により、収差
係数を求めることができる。
Z bm = −2 W m / (NA 2 ρ 2 ) (10) z bs = −2 W s / (NA 2 ρ 2 ) (11) The above equations (10) z bm and (11) z bs Are both polynomials of the form z b = A0 + αr 2 + βρ 2 + γr 4
+ Δr 2 ρ 2 + ερ 4 +... (12) From this, the pattern pitch is changed to the resolution limit at a plurality of positions within the exposure range, and radiated to the shot center when ρ is in the range of 0 to 1. Find the best focus of the line and space pattern in the direction of
Each is fitted with a two-variable polynomial of ρ and r in the above equation (12), and coefficients α, β, γ, δ, ε.
The aberration coefficient can be obtained by comparing this with Expressions (8) and (9).

【0021】次に、本発明の第2実施例について説明す
る。例えば、ステッパーの収差係数σが0.1程度以下
のコヒーレント照明下で、光軸に対し対称な3光束結像
により、2種類のパターンピッチのライン&スペースの
パターンを形成する。この2種類のパターン間の位置ず
れ量差を求める。収差がある場合、パターンピッチある
いはショット内位置によって、位置ずれ量差が異なるの
でこれを用い、収差を求めることができる。ピッチが大
きい場合は、NAを小さくする(開口絞り26を小さく
する)ことにより、3光束結像が実現できる。
Next, a second embodiment of the present invention will be described. For example, under coherent illumination in which the aberration coefficient σ of the stepper is about 0.1 or less, a line-and-space pattern having two pattern pitches is formed by imaging three light beams symmetrically with respect to the optical axis. The difference between the two types of patterns is calculated. If there is an aberration, the difference in the amount of positional deviation differs depending on the pattern pitch or the position in the shot. When the pitch is large, three-beam imaging can be realized by reducing the NA (reducing the aperture stop 26).

【0022】2種類のパターンピッチ間の位置ずれ量差
の測定は、従来よりある方法として、例えば、以下のよ
うにして行うことができる。まず、1層目として、露
光、現像によりライン&スペースのレジストパターンを
形成した後、基板をエッチングし、下地にライン&スペ
ースを形成する。次に、1層目の1/2ピッチのライン
&スペースを1層目のライン&スペースに合わせて露
光、現像によりレジストパターンを形成する。
The difference between the two types of pattern pitches can be measured as a conventional method, for example, as follows. First, as a first layer, a line and space resist pattern is formed by exposure and development, and then the substrate is etched to form a line and space under the substrate. Next, a resist pattern is formed by exposing and developing the 1/2 layer line & space of the first layer so as to match the line & space of the first layer.

【0023】このようにして形成されたパターンの断面
図を図2に示す。この図に示すように、基板31上のレ
ジストパターン32の両側の下地のラインパターンの幅
(ずれ量1)33及び(ずれ量2)34を測定すること
により、1層目と2層目のずれは、その差の1/2とし
て求められる。このようにして求めた位置ずれは、上記
(2)式におけるnが1以外の奇数の収差が存在する場
合に現れる。このずれ量xsは以下の式で表せる。
FIG. 2 shows a sectional view of the pattern formed in this manner. As shown in this figure, by measuring the widths (shift amount 1) 33 and (shift amount 2) 34 of the underlying line patterns on both sides of the resist pattern 32 on the substrate 31, the first layer and the second layer are measured. The shift is determined as 1/2 of the difference. The positional deviation obtained in this manner appears when there is an odd aberration other than 1 in the above equation (2). This shift amount xs can be expressed by the following equation.

【0024】 xs=(1/λ)×{〔b4 (ρ1 3 1 −ρ2 3 2 )+c7 (ρ1 5 1 −ρ2 5 2 )+・・〕r+〔c4 (ρ1 3 1 −ρ2 3 2 )+・・〕r3 + ・・・} …(13) 上記式(11)は、rを変数とする多項式であり、各項
の係数をα、β、γ・・・とすると、以下のように表せ
る。
[0024] xs = (1 / λ) × { [b 4 (ρ 1 3 P 1 -ρ 2 3 P 2) + c 7 (ρ 1 5 P 1 -ρ 2 5 P 2) + ·· ] r + [c 4 (ρ 1 3 P 1 -ρ 2 3 P 2) + ·· ] r 3 + ···} ... (13 ) the formula (11) is a polynomial as a variable r, the coefficient of each term α, β, γ... can be expressed as follows.

【0025】 xs=A0+αr+βr3 +γr5 +・・・ …(14) これより、露光エリア内のショット中心〜最大露光位置
まででピッチの異なる2種類のライン&スペースのパタ
ーンのショット中心に対して放射する方向の位置ずれ量
差を複数の像高について求め、横軸をr、縦軸を2種類
のパターン間の位置ずれとしたグラフより、上記式(1
4)の関数でフィッティングし、係数α、β、γ・・・
を求める。
[0025] xs = A0 + αr + βr 3 + γr 5 + ··· ... (14) than this, radiation to the shot center of the pattern of the two types of lines and spaces of different pitch up shot center to a maximum exposure position of the exposure in the area Is obtained for a plurality of image heights, and from the graph in which the horizontal axis is r and the vertical axis is the positional shift between the two types of patterns, the above equation (1) is obtained.
Fit by the function of 4), and coefficient α, β, γ ...
Ask for.

【0026】なお、A0は1層目と2層目の重ね合わせ
のオフセット成分である。ここで、3次収差までであれ
ば、上記式(13)内の係数はb4 だけであり、すぐに
求めることができる。また、5次以上の収差であれば、
収差係数は多くなるので、複数のピッチの異なる2種類
のライン&スペースのパターン位置ずれ量差を求め、そ
れぞれについて、係数α、β、γ・・・を求め、上記式
(13)との比較により、収差係数を求めることができ
る。
A0 is an offset component of the superposition of the first layer and the second layer. Here, if up to the third order aberration coefficients in the above equation (13) it is only b 4, can be obtained quickly. Also, if it is a fifth-order or higher aberration,
Since the aberration coefficient increases, the difference in the amount of pattern displacement between two types of lines and spaces having different pitches is obtained, and the coefficients α, β, γ... Thus, the aberration coefficient can be obtained.

【0027】上述の説明では、3光束結像によりパター
ン形成を行っているが、斜入射照明や位相シフト法を利
用した光軸に対して対称な2光束結像でも同様な方法に
より、2パターン間の位置ずれ量差より収差係数を測定
することができる。なお、本発明は上記実施例に限定さ
れるものではなく、本発明の趣旨に基づいて種々の変形
が可能であり、これらを本発明の範囲から排除するもの
ではない。
In the above description, pattern formation is performed by three light beam imaging. However, two light beam imaging symmetrical with respect to the optical axis using oblique incidence illumination or a phase shift method is used to form two patterns. The aberration coefficient can be measured from the positional deviation amount difference between them. It should be noted that the present invention is not limited to the above embodiment, and various modifications can be made based on the gist of the present invention, and these are not excluded from the scope of the present invention.

【0028】[0028]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、ステッパーの収差係数をセッティングが容易
で、簡便に求めることができる。
As described in detail above, according to the present invention, the setting of the aberration coefficient of the stepper is easy and simple.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例を示すステッパーの光学系
の模式図である。
FIG. 1 is a schematic view of an optical system of a stepper according to a first embodiment of the present invention.

【図2】本発明の第2実施例を示すステッパーの収差係
数測定方法を示す形成されたパターンの断面図である。
FIG. 2 is a sectional view of a formed pattern showing a method for measuring an aberration coefficient of a stepper according to a second embodiment of the present invention.

【図3】従来のステッパーの光学系の模式図である。FIG. 3 is a schematic view of an optical system of a conventional stepper.

【符号の説明】[Explanation of symbols]

21,26 開口絞り 22 コンデンサレンズ 23 マスク 24 回折光 25 投影レンズ 27 ウエハ 31 基板 32 レジストパターン 33 ずれ量1 34 ずれ量2 21, 26 aperture stop 22 condenser lens 23 mask 24 diffracted light 25 projection lens 27 wafer 31 substrate 32 resist pattern 33 shift amount 1 34 shift amount 2

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 縮小投影露光装置の光学系の収差係数を
求める収差係数測定方法において、 コヒーレントに近い照明下で光軸に対称な3光束結像に
より、ショット中心において複数のピッチのパターンの
形成を実施し、それぞれのパターン形成範囲の中心値よ
りショット全面にのる球面収差係数を求めることを特徴
とする縮小投影露光装置の収差係数測定方法。
1. A method of measuring an aberration coefficient of an optical system of a reduction projection exposure apparatus, comprising: forming a pattern having a plurality of pitches at the center of a shot by forming three light beams symmetrical with respect to an optical axis under illumination close to coherent. And measuring the spherical aberration coefficient over the entire shot from the center value of each pattern formation range.
【請求項2】 縮小投影露光装置の光学系の収差係数を
求める収差係数測定方法において、 コヒーレントに近い照明下で光軸に対称な3光束結像に
より、複数の像高において複数のピッチのパターンの形
成を実施し、それぞれのパターン形成範囲の中心値より
収差係数を求めることを特徴とする縮小投影露光装置の
収差係数測定方法。
2. A method for measuring an aberration coefficient of an optical system of a reduction projection exposure apparatus, comprising: a three-beam image symmetric with respect to an optical axis under illumination close to coherent; And measuring an aberration coefficient from a center value of each pattern formation range.
【請求項3】 縮小投影露光装置の光学系の収差係数を
求める収差係数測定方法において、 コヒーレントに近い照明下で光軸に対称な3光束結像に
より、複数の像高において複数のピッチのパターンの形
成を実施し、ショット中心に対して放射する方向と直交
する方向のピッチの異なる2種類のライン&スペースの
パターンの位置ずれ量差を複数のピッチ間について求め
ることを特徴とする縮小投影露光装置の収差係数測定方
法。
3. A method for measuring an aberration coefficient of an optical system of a reduction projection exposure apparatus, comprising: a method of forming a plurality of pitches at a plurality of image heights by forming three light beams symmetrical with respect to an optical axis under nearly coherent illumination. Reduction projection exposure wherein a difference between positional deviation amounts of two types of line & space patterns having different pitches in a direction orthogonal to a direction radiating from a shot center is obtained for a plurality of pitches. Method for measuring aberration coefficient of device.
【請求項4】 縮小投影露光装置の光学系の収差係数を
求める収差係数測定方法において、 コヒーレントに近い照明下で光軸に対称な2光束結像に
より、複数の像高においてパターンの形成を実施し、シ
ョット中心に対して放射する方向と直交する方向のピッ
チの異なる2種類のライン&スペースのパターンの位置
ずれ量差を複数のピッチ間について求めることを特徴と
する縮小投影露光装置の収差係数測定方法。
4. An aberration coefficient measuring method for obtaining an aberration coefficient of an optical system of a reduction projection exposure apparatus, wherein a pattern is formed at a plurality of image heights by two light flux images symmetrical with respect to an optical axis under illumination close to coherent. An aberration coefficient of the reduced projection exposure apparatus, wherein a difference between positional deviation amounts of two types of line and space patterns having different pitches in a direction orthogonal to a direction radiating from a shot center is obtained for a plurality of pitches. Measuring method.
JP28831097A 1997-10-21 1997-10-21 Aberration coefficient measuring method of reduction projection exposure apparatus Expired - Fee Related JP4004603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28831097A JP4004603B2 (en) 1997-10-21 1997-10-21 Aberration coefficient measuring method of reduction projection exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28831097A JP4004603B2 (en) 1997-10-21 1997-10-21 Aberration coefficient measuring method of reduction projection exposure apparatus

Publications (2)

Publication Number Publication Date
JPH11121343A true JPH11121343A (en) 1999-04-30
JP4004603B2 JP4004603B2 (en) 2007-11-07

Family

ID=17728530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28831097A Expired - Fee Related JP4004603B2 (en) 1997-10-21 1997-10-21 Aberration coefficient measuring method of reduction projection exposure apparatus

Country Status (1)

Country Link
JP (1) JP4004603B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100554256B1 (en) * 2000-06-14 2006-02-24 에이에스엠엘 네델란즈 비.브이. Optical imaging system operating method, lithographic projection apparatus, device manufacturing method, and device manufactured thereby
JP2010032260A (en) * 2008-07-25 2010-02-12 Jfe Steel Corp Apparatus and method for correcting distortion of optical system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100554256B1 (en) * 2000-06-14 2006-02-24 에이에스엠엘 네델란즈 비.브이. Optical imaging system operating method, lithographic projection apparatus, device manufacturing method, and device manufactured thereby
JP2010032260A (en) * 2008-07-25 2010-02-12 Jfe Steel Corp Apparatus and method for correcting distortion of optical system

Also Published As

Publication number Publication date
JP4004603B2 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
JP3256678B2 (en) Lens aberration measurement method
US7190443B2 (en) Reticle and optical characteristic measuring method
JP3843308B2 (en) Mask pattern image forming apparatus
KR100879306B1 (en) Measuring method and apparatus and exposure apparatus
JP3927774B2 (en) Measuring method and projection exposure apparatus using the same
JP6917477B2 (en) Lithography equipment and lithography method
JP3605064B2 (en) Focus monitor photomask, focus monitor method, focus monitor device and device manufacturing method
TWI865438B (en) Two-dimensional diffraction grating and method of manufacturing the two-dimensional diffraction grating
JP2000121491A (en) Evaluation method for optical system
JP2009182253A (en) Exposure apparatus and device manufacturing method
JP2000277411A (en) Projection aligner
CN108475024A (en) Method and apparatus for being focused in inspection system
CN110531587B (en) Evaluation method, exposure method, and method for manufacturing article
JP3870153B2 (en) Measuring method of optical characteristics
JP2006032692A (en) Wavefront aberration measurement device, optical projection system, manufacturing method thereof, projection aligner, manufacturing method thereof, micro device and manufacturing method thereof
US6839132B2 (en) Aberration measuring method of projection optical system
JP4912205B2 (en) Exposure apparatus and device manufacturing method
JP2007059566A (en) Aligner and method of manufacturing device
JP3309865B2 (en) Imaging characteristic measuring method and mask used in the method
JP4004603B2 (en) Aberration coefficient measuring method of reduction projection exposure apparatus
JP4280521B2 (en) Aberration measuring apparatus and projection exposure apparatus
JP2000266640A (en) Aberration evaluation method
JP3854231B2 (en) Aberration measurement method for projection optical system
JP3673783B2 (en) Aberration measuring method and projection exposure apparatus
JPH06124870A (en) Projection exposure apparatus and exposure method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070822

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees