[go: up one dir, main page]

JPH1111905A - Method for purification of methane-containing hydrogen chloride of gas and use of this hydrogen chloride - Google Patents

Method for purification of methane-containing hydrogen chloride of gas and use of this hydrogen chloride

Info

Publication number
JPH1111905A
JPH1111905A JP10160689A JP16068998A JPH1111905A JP H1111905 A JPH1111905 A JP H1111905A JP 10160689 A JP10160689 A JP 10160689A JP 16068998 A JP16068998 A JP 16068998A JP H1111905 A JPH1111905 A JP H1111905A
Authority
JP
Japan
Prior art keywords
hydrogen chloride
methane
reactor
gaseous
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10160689A
Other languages
Japanese (ja)
Other versions
JP2948210B2 (en
Inventor
Ludwig Dr Schmidhammer
シュミットハマー ルートヴィヒ
Klaus Haselwarter
ハーゼルヴァルター クラウス
Hermann Klaus
クラウス ヘルマン
Albin Dr Frank
フランク アルビン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacker Chemie AG
Original Assignee
Wacker Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemie AG filed Critical Wacker Chemie AG
Publication of JPH1111905A publication Critical patent/JPH1111905A/en
Application granted granted Critical
Publication of JP2948210B2 publication Critical patent/JP2948210B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/07Purification ; Separation
    • C01B7/0706Purification ; Separation of hydrogen chloride
    • C01B7/0712Purification ; Separation of hydrogen chloride by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • C01B33/1071Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof
    • C01B33/10742Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof prepared by hydrochlorination of silicon or of a silicon-containing material
    • C01B33/10757Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof prepared by hydrochlorination of silicon or of a silicon-containing material with the preferential formation of trichlorosilane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Silicon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to decrease the methane component in methane- contg. hydrogen chloride of gas to the extent of satisfying the purity requirement of the chlorine of an electron level by partially condensing this hydrogen chloride under and at a specific pressure and temp. and separating a gaseous component, then isolating the liquefied hydrogen chloride after evaporation. SOLUTION: Condensation conditions are an overpressure of 8 to 13 bare and -22 to -36 deg.C. The degree of liquefaction of the partial condensation is 0.1 to 0.3. The hydrogen chloride component existing in liquid after the partial condensation is evaporated under the absolute pressure of 5 to 20 bar and is heated to 120 to 220 deg.C and is then brought into reaction in the adiabatically operating reactor with the gaseous chlorine of the amt. at which 100 to 2000 vol.ppm chlorine is still contained in the hydrogen chloride at the time of releasing from the reactor in the presence of an active carbon catalyst impregnated with a transition metal chloride. The reaction product is then brought into reaction with 100 to 1500 vol.ppm olefin or chloroolefin at 80 to 180 deg.C by the same catalyst in the second adiabatically operating reactor. Finally, the pure hydrogen chloride is separated by low-temp. compression rectification.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高い純度の塩化水
素を製造する方法および半導体材料を製造する際の該塩
化水素の使用に関する。
The present invention relates to a method for producing high purity hydrogen chloride and to the use of said hydrogen chloride in producing semiconductor materials.

【0002】[0002]

【従来の技術】コンピュータチップを製造するために使
用されるようなウェーハー板は多工程により製造され、
その際まずトリクロロシランを熱分解し、これにより得
られる多結晶シリコンを帯域溶融法またはるつぼ溶融法
により棒状の単結晶に更に加工し、最後に単結晶の棒を
鋸で削ることによりウェーハーを製造する。異種原子に
よるシリコン単結晶の汚染をできるだけ阻止することが
重要である。これは、特に炭素による汚染(シリコン1
cm3当たりC原子1015未満)に該当する。
BACKGROUND OF THE INVENTION Wafer plates, such as those used to produce computer chips, are manufactured in multiple steps.
At that time, first, trichlorosilane is thermally decomposed, and the resulting polycrystalline silicon is further processed into a rod-shaped single crystal by a zone melting method or a crucible melting method, and finally, a single crystal rod is sawn to produce a wafer. I do. It is important to prevent contamination of the silicon single crystal by foreign atoms as much as possible. This is especially true for carbon contamination (silicon 1
less than 10 15 C atoms per cm 3 ).

【0003】しかしながら、フェロシリコンを塩化水素
と反応することにより得られる出発生成物であるトリク
ロロシランを製造する際に、種々の供給源からの塩化水
素が使用され、該塩化水素はしばしばアルカン、アルケ
ンおよびアルキンのような炭化水素化合物で汚染されて
いる。1,2−ジクロロエタン熱分解から生じる塩化水
素は、特にエチレンおよびアセチレンで汚染されてい
る。塩化アリル合成から生じる塩化水素は高級オレフィ
ン、たとえばプロピレンを含有する。メタン塩素化およ
び塩化メチル塩素化の際に生じる塩化水素はアルカン、
特にメタンで汚染されている。
However, in producing trichlorosilane, the starting product obtained by reacting ferrosilicon with hydrogen chloride, hydrogen chloride from various sources is used, and the hydrogen chloride is often an alkane, an alkene or an alkene. And is contaminated with hydrocarbon compounds such as alkynes. Hydrogen chloride resulting from 1,2-dichloroethane pyrolysis is particularly contaminated with ethylene and acetylene. The hydrogen chloride resulting from the allyl chloride synthesis contains higher olefins, such as propylene. Hydrogen chloride generated during methane chlorination and methyl chloride chlorination is alkane,
Especially contaminated with methane.

【0004】1,2−ジクロロエタン熱分解から生じる
塩化水素を浄化する方法はドイツ特許第3817938
号明細書から公知であり、この方法では塩化水素からア
セチレンおよびエチレンを除去することができる。その
際第1工程でアセチレンおよびエチレンを過剰の塩素で
塩素化し、相当する飽和または不飽和のクロロ炭化水素
を生じる。第2工程で、第1工程からの過剰の塩素を、
大気圧で気体であり、かつ大気圧で−50〜+10℃で
沸騰するオレフィンと反応させることにより除去し、引
き続き塩化水素を低温圧縮精留により分離する。
A method for purifying hydrogen chloride resulting from 1,2-dichloroethane pyrolysis is disclosed in German Patent No. 3,817,938.
From this specification, it is possible to remove acetylene and ethylene from hydrogen chloride. In the first step, acetylene and ethylene are chlorinated with excess chlorine to give the corresponding saturated or unsaturated chlorohydrocarbons. In the second step, the excess chlorine from the first step is
It is removed by reacting with an olefin that is gaseous at atmospheric pressure and boils at -50 to + 10 ° C. at atmospheric pressure, followed by separation of the hydrogen chloride by cold compression rectification.

【0005】ドイツ特許第3817938号明細書に開
示された塩化水素を浄化する3工程の方法により、塩化
水素からエチレンおよびアセチレンのほかに同族のアル
ケンおよびアルキンを分離することができる。しかしな
がらアルカンはこの触媒による塩素化の際に蒸留により
分離できない高沸点物に変換される。しかしながらC 3
−アルカンおよび高級の同族物はこの方法の最後の工程
で精留により塩化水素から分離することができる、それ
というのもこれらは塩化水素より高い温度で沸騰するか
らである。メタンおよびエタンは塩化水素に対して易沸
点物であり、従って蒸留により塩化水素から分離でき
ず、塩化水素中に残留する。
[0005] German Patent No. 3817938 discloses
According to the indicated three-step method for purifying hydrogen chloride,
From hydrogen to ethylene and acetylene;
Ken and alkyne can be separated. But
The alkane is removed by distillation during chlorination with this catalyst.
It is converted to a high-boiling substance that cannot be separated. However C Three
Alkanes and higher homologues are the last step in the process
Which can be separated from hydrogen chloride by rectification
Because they boil at a higher temperature than hydrogen chloride
It is. Methane and ethane boil easily with hydrogen chloride
It is spotted and therefore can be separated from hydrogen chloride by distillation.
And remains in hydrogen chloride.

【0006】きわめて純粋な珪素を製造する際の第1工
程である、フェロシリコンおよび塩化水素から前記のト
リクロロシランを合成する際に、浄化された塩化水素中
に含まれるエタンは問題を生じない、それというのもた
とえば形成されるエチルジクロロシラン(HSiCl2
25)は約35℃だけ高いその沸点により、トリクロ
ロシランおよびトリクロロシラン合成の使用可能な主要
副生成物、四塩化珪素(沸点56.7℃)から蒸留によ
り容易に分離することができるからである。しかしなが
らメタンはフェロシリコンおよび塩化水素からトリクロ
ロシランを合成する際に、すでに塩化水素中で20〜1
00容量ppmの程度で妨害作用する。すなわちメタン
は反応してメチルジクロロシラン(HSiCl2CH3
沸点40.4℃)を生じ、これを目的生成物、トリクロ
ロシラン(SiHCl3、沸点31.7℃)から蒸留によ
り分離することは、狭い沸点の差により、多くの収率を
損失してもきわめて困難である。出発生成物、トリクロ
ロシラン中のメタン含量により、最終生成物、単結晶シ
リコン中の炭素含量が許容できない値に上昇する。
[0006] In the synthesis of the above-mentioned trichlorosilane from ferrosilicon and hydrogen chloride, which is the first step in the production of extremely pure silicon, the ethane contained in the purified hydrogen chloride does not cause any problems. This is because, for example, the ethyldichlorosilane (HSiCl 2
C 2 H 5 ) can be easily separated by distillation from silicon tetrachloride (boiling point 56.7 ° C.), a possible by-product of trichlorosilane and the trichlorosilane synthesis, due to its boiling point which is higher by about 35 ° C. Because. However, when synthesizing trichlorosilane from ferrosilicon and hydrogen chloride, methane is already 20 to 1 in hydrogen chloride.
It interferes at about 00 ppm by volume. That is, methane reacts with methyldichlorosilane (HSiCl 2 CH 3 ,
Boiling point 40.4 ° C.), which is separated from the desired product, trichlorosilane (SiHCl 3 , boiling point 31.7 ° C.) by distillation, due to the narrow boiling point difference, even if many yields are lost. Extremely difficult. The methane content in the starting product, trichlorosilane, raises the carbon content in the final product, single crystal silicon, to unacceptable values.

【0007】[0007]

【発明が解決しようとする課題】従って、本発明の課題
は、電子レベルの塩素の純度要求を満たす程度に塩化水
素中のメタン成分を減少することができる、種々の供給
源からのメタン含有塩化水素を浄化するための経済的な
方法を開発することである。
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a method for reducing the methane content of hydrogen chloride from various sources which can reduce the methane content in hydrogen chloride to the extent that it meets the purity requirements of electronic chlorine. Develop an economical method for purifying hydrogen.

【0008】[0008]

【課題を解決するための手段】意想外にも、メタン含有
塩化水素を部分的に凝縮する際に、塩化水素気相中でメ
タンの濃縮が行われ、液化した成分が、溶解したメタン
を著しく濃縮した形で含有することが判明した。
Surprisingly, when partially condensing methane-containing hydrogen chloride, methane is concentrated in the hydrogen chloride gas phase, and the liquefied component significantly dissolves the dissolved methane. It was found to be contained in concentrated form.

【0009】本発明の対象は、気体の、メタン含有塩化
水素を浄化する方法において、8〜13バールの過圧お
よび−22℃〜−36℃の温度で気体の塩化水素を部分
的に凝縮し、気体成分を分離し、液化した塩化水素を蒸
発後に単離することを特徴とする。
It is an object of the present invention to provide a process for purifying gaseous, methane-containing hydrogen chloride by partially condensing gaseous hydrogen chloride at an overpressure of 8 to 13 bar and a temperature of -22 ° C. to -36 ° C. The gaseous component is separated, and liquefied hydrogen chloride is isolated after evaporation.

【0010】本発明の方法は、種々の供給源、たとえば
塩化ビニルを製造する1,2−ジクロロエタン熱分解か
ら、メタン塩素化からおよび塩化メチル塩素化から生じ
る気体の、メタン含有塩化水素を浄化するために適して
いる。種々の塩化水素を製造する方法に由来する塩化水
素の混合物を使用することもできる。
The process of the present invention purifies methane-containing hydrogen chloride in gases from various sources, such as 1,2-dichloroethane pyrolysis to produce vinyl chloride, methane chlorination and methyl chloride chlorination. Suitable for. Mixtures of hydrogen chlorides from various methods of producing hydrogen chloride can also be used.

【0011】部分的凝縮の際の液化程度(Verfluessigu
ngsgrad)は塩化水素中のメタンの量の割合および本発
明の方法により液化した塩化水素の所望の純度に依存す
る。これと並んで液化程度は本発明の方法の経済性を決
定する。
The degree of liquefaction during partial condensation (Verfluessigu
ngsgrad) depends on the proportion of the amount of methane in the hydrogen chloride and on the desired purity of the hydrogen chloride liquefied by the process according to the invention. Along with this, the degree of liquefaction determines the economics of the process according to the invention.

【0012】経験により以下の関係式が確定される。The following relational expression is determined by experience.

【0013】凝縮した塩化水素成分中のメタンの容量p
pm = 0.0485×気体の出発塩化水素中のメタ
ンの容量ppm有利には液化程度0.1〜0.3で作動
し、すなわち気体の、メタン含有塩化水素0.1〜0.3
重量部を部分的に凝縮する。
The volume p of methane in the condensed hydrogen chloride component
pm = 0.0485 × ppm of methane in gaseous starting hydrogen chloride, preferably operating at a liquefaction degree of 0.1 to 0.3, ie gaseous, methane-containing hydrogen chloride 0.1 to 0.3.
Partially condense parts by weight.

【0014】本発明による方法を使用して、出発生成物
中のメタン100容量ppmにおいて、メタン含量5容
量ppm未満の塩化水素を使用することができる。この
種の高い純度の塩化水素を、純粋の珪素を製造する前工
程で、たとえばトリクロロシランの合成に使用すること
ができる。凝縮されない、メタンが多くなった成分は、
たとえばオキシ塩素化、メタノールエステル化、または
塩酸の製造に使用することができる。
Using the process according to the invention, it is possible to use hydrogen chloride having a methane content of less than 5 ppm by volume, based on 100 ppm by volume of methane in the starting product. Such high-purity hydrogen chloride can be used in a pre-process for producing pure silicon, for example in the synthesis of trichlorosilane. Non-condensed, methane-rich components
For example, it can be used for the production of oxychlorination, methanol esterification, or hydrochloric acid.

【0015】メタンのほかになお高い割合のアルケンま
たはアルキンを含有する気体の塩化水素を浄化する場合
は、本発明の方法により更にドイツ特許第381793
8号明細書に記載の3工程の浄化法を実施することがで
きる。
In the case of purifying gaseous hydrogen chloride which, in addition to methane, also contains a high proportion of alkenes or alkynes, the process according to the invention further provides German Patent 38,793.
The three-stage purification method described in the specification of Japanese Patent No. 8 can be carried out.

【0016】このために、部分的凝縮後に液体で存在す
る塩化水素成分を5〜20バール絶対の圧力で蒸発さ
せ、120〜220℃の温度に加熱し、断熱的に作動す
る反応器中で、遷移金属塩化物が含浸されている活性炭
触媒の存在で、反応器から放出する際に塩化水素中にな
お塩素100〜2000容量ppmが含有されている量
の塩素ガスと反応させる。第2工程で、第2の断熱的に
作動する反応器中で、第1反応器と同じ触媒の存在で、
80〜180℃の温度で、反応混合物を、大気圧で気体
であり、大気圧で−50℃〜+10℃の温度範囲で沸騰
するオレフィンまたはクロロオレフィンと反応させ、そ
の際このオレフィンまたはクロロオレフィンの量は、反
応器から放出される塩化水素中になおこのオレフィンま
たはクロロオレフィンが100〜1500容量ppm含
有されている量である。最後の工程で、これらの工程で
得られる反応混合物を、低温圧縮精留により分離し、純
粋の塩化水素を9〜14バール絶対の圧力および−20
℃〜−40℃の温度で凝縮により単離する。この変法は
ドイツ特許第3817938号第2欄、34行から第5
欄55行に詳細に記載されている。
For this purpose, the hydrogen chloride component present in the liquid after the partial condensation is evaporated at a pressure of 5 to 20 bar absolute, heated to a temperature of 120 to 220 ° C. and in an adiabatically operating reactor, In the presence of an activated carbon catalyst impregnated with a transition metal chloride, it reacts on discharge from the reactor with an amount of chlorine gas which still contains 100 to 2000 ppm by volume of chlorine in hydrogen chloride. In a second step, in a second adiabatically operating reactor, in the presence of the same catalyst as the first reactor,
At a temperature of from 80 to 180 ° C., the reaction mixture is reacted with an olefin or chloroolefin which is gaseous at atmospheric pressure and boils at atmospheric pressure in the temperature range from -50 ° C. to + 10 ° C., wherein the olefin or chloroolefin is The amount is such that the olefin or chloroolefin is still contained in the hydrogen chloride discharged from the reactor in an amount of 100 to 1500 ppm by volume. In the last step, the reaction mixture obtained in these steps is separated by cold compression rectification and pure hydrogen chloride is separated off at 9-14 bar absolute pressure and -20
Isolate by condensation at a temperature between -40 and -40C. This variant is described in DE 38 17 938 at column 2, line 34 to 5
Details are described in column 55, line.

【0017】[0017]

【実施例】本発明を以下の実施例により詳細に説明す
る。
The present invention will be described in detail with reference to the following examples.

【0018】例1 メタン50容量ppmを有する気体の塩化水素毎時5k
モルを8.5バール過圧にして、−33℃に冷却し、そ
の際塩化水素毎時0.5kモルを液化し(液化程度0.
1)、塩化水素毎時4.5kモルを気体で残留した。液
化した塩化水素を分離し、引き続き熱交換器中で蒸発し
た。分離し、引き続き蒸発した液体の塩化水素中で、メ
タン含量2.40容量ppmを測定した。部分的凝縮の
際に残留する気体の塩化水素はメタン55.3ppmを
含有した。
Example 1 5 kph of gaseous hydrogen chloride with 50 ppm by volume of methane
The mol is brought to 8.5 bar overpressure and cooled to -33 DEG C., liquefying 0.5 kmol / h of hydrogen chloride (degree of liquefaction of 0.5).
1), 4.5 kmol of hydrogen chloride per hour remained as a gas. The liquefied hydrogen chloride was separated and subsequently evaporated in a heat exchanger. Separation and subsequent measurement of the methane content of 2.40 ppm by volume in the evaporated liquid hydrogen chloride. The gaseous hydrogen chloride remaining on partial condensation contained 55.3 ppm of methane.

【0019】例2 例1と同様に実施したが、8.5バール過圧および−3
3℃の温度で、メタン50容量ppmを有する塩化水素
毎時5kモルから塩化水素毎時1.25kモルを液化し
た(液化程度0.25)。引き続き蒸発した液体塩化水
素はメタンなお2.42容量ppmのみを含有し、残留
する気体の塩化水素はメタン65.9容量ppmを含有
した。
Example 2 The procedure was as in Example 1, but with an overpressure of 8.5 bar and -3.
At a temperature of 3 ° C., 5 kmol / h of hydrogen chloride having 50 ppm by volume of methane to 1.25 kmol / h of hydrogen chloride were liquefied (liquefaction degree 0.25). The subsequently evaporated liquid hydrogen chloride contained only 2.42 ppm by volume of methane and the residual gaseous hydrogen chloride contained 65.9 ppm by volume of methane.

【0020】例3 例1と同様に実施したが、メタン含量80容量ppmを
有する塩化水素毎時5kモルを11.5バール過圧にし
て、−25℃に冷却した。毎時0.75kモルの成分を
凝縮した(液化程度0.15)。凝縮した成分を熱交換
器中で蒸発し、メタン成分3.9容量ppmを測定し
た。部分的凝縮の際に残留する気体の塩化水素成分はメ
タン93.4容量ppmを含有した。
Example 3 The procedure was as in Example 1, except that 5 kmol / h of hydrogen chloride having a methane content of 80 ppm by volume was cooled to -25 ° C. at an overpressure of 11.5 bar. 0.75 kmol / h of components were condensed (liquefaction 0.15). The condensed component was evaporated in the heat exchanger, and 3.9 vol ppm of the methane component was measured. The gaseous hydrogen chloride component remaining on partial condensation contained 93.4 ppm by volume of methane.

【0021】例4 1,2−ジクロロエタン熱分解から、塩化ビニル毎時3
0tおよび塩化水素毎時482kモルの分解ガス混合物
が得られた。−33℃および8.5バール過圧で分解ガ
ス混合物から塩化水素を分離した。カラムから放出され
る気体の塩化水素はメタン60容量ppm、エタン2.
5容量ppm、エチレン362容量ppm、アセチレン
2560容量ppm、塩化ビニル1.2容量ppmおよ
び塩化エチル2.1容量ppmで汚染されていた。
EXAMPLE 4 1,2-Dichloroethane pyrolysis yields vinyl chloride at 3 h / h
A cracked gas mixture of 0 t and 482 kmol / h of hydrogen chloride was obtained. Hydrogen chloride was separated from the cracked gas mixture at -33 ° C and 8.5 bar overpressure. The gaseous hydrogen chloride released from the column contains 60 ppm by volume of methane and 2.
It was contaminated with 5 ppm by volume, 362 ppm by volume of ethylene, 2560 ppm by volume of acetylene, 1.2 ppm by volume of vinyl chloride and 2.1 ppm by volume of ethyl chloride.

【0022】前記の圧力および温度水準で、汚染された
塩化水素毎時110kモルを液化し(液化程度0.2
3)、引き続き液体のHClポンプを介して圧力を上昇
後、13バール過圧で蒸発した。蒸発した液体の塩化水
素はなおメタン3.4容量ppm、エタン0.7容量pp
m、エチレン220.9容量ppm、アセチレン386
6.6容量ppm、塩化ビニル1.1容量ppmおよび塩
化エチル6.2容量ppmを含有した。
At the above pressure and temperature levels, 110 kmol of contaminated hydrogen chloride per hour is liquefied (liquefaction of 0.2
3) Subsequently, after increasing the pressure via a liquid HCl pump, the mixture was evaporated at an overpressure of 13 bar. The evaporated liquid hydrogen chloride still has 3.4 vol ppm methane, 0.7 vol pp ethane
m, ethylene 20.9 ppm by volume, acetylene 386
It contained 6.6 ppm by volume, 1.1 ppm by volume of vinyl chloride and 6.2 ppm by volume of ethyl chloride.

【0023】この混合物を150℃に予熱し、相当する
圧力の塩素ガス毎時22.5m3を添加後、CuCl2
よびMnCl2それぞれ16重量%をドープした活性炭
からなる触媒0.8m3が充填されている第1の反応器に
導入した。断熱的反応の実施の際にエチレン、アセチレ
ンおよび塩化ビニルを塩素と反応させ、1,1,2,2−
テトラクロロエタン、1,2−ジクロロエタンおよび1,
1,2−トリクロロエタンを生じた。反応混合物は約1
000容量ppmの過剰の塩素を有して第1の反応器を
離れた。エチレンおよびアセチレンの濃度は1容量pp
m未満の値であった。
[0023] The mixture was preheated to 0.99 ° C., after addition of the corresponding chlorine gas per hour 22.5 m 3 pressure, CuCl 2 and MnCl 2 catalyst 0.8 m 3 comprising each 16% by weight doped activated carbon is filled Into the first reactor. In carrying out the adiabatic reaction, ethylene, acetylene and vinyl chloride are reacted with chlorine to form 1,1,2,2-
Tetrachloroethane, 1,2-dichloroethane and 1,
1,2-Trichloroethane was obtained. The reaction mixture is about 1
The first reactor was left with an excess of 000 ppm by volume of chlorine. The concentration of ethylene and acetylene is 1 volume pp
m.

【0024】相当する圧力の気体の塩化ビニル毎時5m
3を混合し、約125℃に中間冷却した後、遊離塩素を
塩化ビニルと反応させ、1,1,2−トリクロロエタンを
生じるために、反応混合物を、第1の反応器と同じ触媒
0.5m3が充填されている第2の反応器に導入した。反
応混合物は、塩素不含で、塩化ビニル約1000容量p
pmの含量を有して第2の反応器を離れた。
5 m / hr of gaseous vinyl chloride at a corresponding pressure
3 were mixed, the mixture was intermediate cooled to about 125 ° C., the free chlorine is reacted with vinyl chloride, 1,1,2-trichloroethane to produce the reaction mixture, the same catalyst 0.5m in the first reactor 3 was introduced into a second reactor packed. The reaction mixture is chlorine-free and contains approximately 1000 volumes
Leave the second reactor with a content of pm.

【0025】冷却し、形成された塩素化生成物を部分的
に凝縮した後、蒸留カラム中で、12.5バール過圧お
よび塔頂温度−23℃で、カラムへの還流として液体の
塩化水素毎時1.5tを還流して、ガス流を分留した。
一定の蒸留状態および約75℃の一定の蒸留温度を維持
するために、蒸留器に塩化ビニル毎時約20kgを液体
で供給した。カラムの底部に生じる生成物は塩化ビニル
および塩化エチルのほかに塩素化生成物、1,2−ジク
ロロエタン、1,1,2−トリクロロエタンおよび1,1,
2,2−テトラクロロエタンを含有した。カラムの塔頂
に生じる塩化水素は以下の純度を有してトリクロロシラ
ンを製造するために使用した。 メタン 3.4容量ppm エタン 0.7容量ppm エチレン 0.1容量ppm アセチレン 0.4容量ppm 塩化ビニル 0.3容量ppm 塩化エチル 9.1容量ppm
After cooling and partial condensation of the chlorinated product formed, the liquid hydrogen chloride is refluxed in the distillation column at 12.5 bar overpressure and at an overhead temperature of -23 ° C. as reflux to the column. The gas stream was fractionated by refluxing 1.5 t / h.
In order to maintain a constant distillation state and a constant distillation temperature of about 75 ° C., the distiller was fed with liquid at about 20 kg per hour of vinyl chloride. The products formed at the bottom of the column are, in addition to vinyl chloride and ethyl chloride, chlorinated products, 1,2-dichloroethane, 1,1,2-trichloroethane and 1,1,1,2
It contained 2,2-tetrachloroethane. Hydrogen chloride generated at the top of the column was used to produce trichlorosilane with the following purity. Methane 3.4 vol ppm ppm Ethane 0.7 vol ppm Ethylene 0.1 vol ppm Acetylene 0.4 vol ppm ppm Vinyl chloride 0.3 vol ppm Ethyl chloride 9.1 vol ppm

───────────────────────────────────────────────────── フロントページの続き (72)発明者 クラウス ハーゼルヴァルター ドイツ連邦共和国 エマーティング デー ブルシュトラーセ 3 (72)発明者 ヘルマン クラウス ドイツ連邦共和国 マルクトゥル アーダ ルベルト−シュティフター−シュトラーセ 1アー (72)発明者 アルビン フランク ドイツ連邦共和国 ブルクハウゼン シュ ピタールガッセ 208 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Klaus Haselwalter Germany, Emerging Day Bulstraße 3 (72) Inventor Hermann Klaus, Germany Marktur Ada Luber-Stifter-Strasse 1a (72) Inventor Albin Frank Germany Burghausen Spitalgasse 208

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 気体の、メタン含有塩化水素を浄化する
方法において、8〜13バールの過圧および−22℃〜
−36℃の温度で気体の塩化水素を部分的に凝縮し、気
体成分を分離し、液化した塩化水素を蒸発後に単離する
ことを特徴とする、気体の、メタン含有塩化水素を浄化
する方法。
1. A process for purifying gaseous, methane-containing hydrogen chloride, comprising the steps of: overpressure of 8 to 13 bar and -22 ° C.
A method for purifying gaseous methane-containing hydrogen chloride, comprising partially condensing gaseous hydrogen chloride at a temperature of -36 ° C, separating gaseous components and isolating liquefied hydrogen chloride after evaporation. .
【請求項2】 液化程度0.1〜0.3での部分的凝縮を
行う請求項1記載の方法。
2. The process as claimed in claim 1, wherein the partial condensation at a liquefaction degree of 0.1 to 0.3 is carried out.
【請求項3】 部分的凝縮後に液体で存在する塩化水素
成分を、 a)5〜20バール絶対の圧力で蒸発させ、120〜2
20℃の温度に加熱し、かつ断熱的に作動する反応器中
で、遷移金属塩化物が含浸されている活性炭触媒の存在
で、反応器から放出する際に塩化水素中になお塩素10
0〜2000容量ppmが含有されている量の塩素ガス
と反応させ、 b)第2の断熱的に作動する反応器中で、第1反応器と
同じ触媒の存在で、80〜180℃の温度で、反応混合
物を、大気圧で気体であり、かつ大気圧で−50℃〜+
10℃の温度範囲で沸騰するオレフィンまたはクロロオ
レフィンと反応させ、その際このオレフィンまたはクロ
ロオレフィンの量は、反応器から放出される塩化水素中
にこのオレフィンまたはクロロオレフィンがなお100
〜1500容量ppm含有されている量であり、かつ c)これらの工程で得られる反応混合物を低温圧縮精留
により分離し、純粋の塩化水素を9〜14バール絶対の
圧力および−20℃〜−40℃の温度で凝縮により単離
する、請求項1または2記載の方法。
3. The hydrogen chloride component present in the liquid after partial condensation is a) evaporated at a pressure of 5 to 20 bar absolute,
In a reactor heated to a temperature of 20 ° C. and operated adiabatically, in the presence of an activated carbon catalyst impregnated with transition metal chlorides, chlorine is still present in the hydrogen chloride on discharge from the reactor.
B) reacting with an amount of chlorine gas containing from 0 to 2000 ppm by volume; b) in a second adiabatically operating reactor in the presence of the same catalyst as in the first reactor, at a temperature of 80 to 180 ° C. At which the reaction mixture is gaseous at atmospheric pressure and from -50 ° C to +
The olefin or chloroolefin boiling in the temperature range of 10 ° C. is reacted with the olefin or chloroolefin in such a way that the amount of olefin or chloroolefin is still less than 100% in the hydrogen chloride discharged from the reactor.
C) The reaction mixture obtained in these steps is separated by low-temperature compression rectification and pure hydrogen chloride is separated off at a pressure of 9-14 bar absolute and -20 ° C. 3. The process according to claim 1, wherein the isolation is by condensation at a temperature of 40.degree.
【請求項4】 半導体材料の製造の際の請求項1から3
までのいずれか1項記載の方法により得られる塩化水素
の使用。
4. The method according to claim 1, wherein the semiconductor material is manufactured.
Use of hydrogen chloride obtained by the method according to any one of the above.
【請求項5】 トリクロロシラン合成のために塩化水素
を使用する請求項4記載の使用。
5. Use according to claim 4, wherein hydrogen chloride is used for the synthesis of trichlorosilane.
JP10160689A 1997-06-12 1998-06-09 Method for purifying gaseous methane-containing hydrogen chloride and use of said hydrogen chloride Expired - Lifetime JP2948210B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19724965A DE19724965A1 (en) 1997-06-12 1997-06-12 Electronic grade hydrogen chloride used to produce semiconductor material
DE19724965.5 1997-06-12

Publications (2)

Publication Number Publication Date
JPH1111905A true JPH1111905A (en) 1999-01-19
JP2948210B2 JP2948210B2 (en) 1999-09-13

Family

ID=7832341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10160689A Expired - Lifetime JP2948210B2 (en) 1997-06-12 1998-06-09 Method for purifying gaseous methane-containing hydrogen chloride and use of said hydrogen chloride

Country Status (4)

Country Link
JP (1) JP2948210B2 (en)
KR (1) KR100255969B1 (en)
CN (1) CN1202454A (en)
DE (1) DE19724965A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117123A (en) * 2008-10-15 2010-05-27 Bayer Materialscience Ag Method of removing carbon monoxide from coarse hcl gas, and hcl oxidizing method using purified hcl gas obtained by the method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6719957B2 (en) * 2002-04-17 2004-04-13 Bayer Corporation Process for purification of anhydrous hydrogen chloride gas
CN101993041B (en) * 2009-08-27 2013-06-26 林大昌 Method for recovering and recycling hydrochloric acid in waste acid liquid of D-glucosamine hydrochloride
CN102153051A (en) * 2011-05-19 2011-08-17 河北邢矿硅业科技有限公司 Method for removing moisture in hydrogen chloride gas
DE102015210762A1 (en) * 2015-06-12 2016-12-15 Wacker Chemie Ag Process for the treatment of chlorosilanes or chlorosilane mixtures contaminated with carbon compounds
CN107804827B (en) * 2017-11-02 2020-03-31 成都蜀菱科技发展有限公司 Hydrogen chloride recovery method and hydrogen chloride recovery system
CN109110732A (en) * 2018-09-11 2019-01-01 安徽东至广信农化有限公司 For reducing the method for harmful substance in by-product hydrochloric acid in benzene chloride production technique

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117123A (en) * 2008-10-15 2010-05-27 Bayer Materialscience Ag Method of removing carbon monoxide from coarse hcl gas, and hcl oxidizing method using purified hcl gas obtained by the method

Also Published As

Publication number Publication date
KR100255969B1 (en) 2000-05-01
CN1202454A (en) 1998-12-23
KR19990006517A (en) 1999-01-25
DE19724965A1 (en) 1998-12-24
JP2948210B2 (en) 1999-09-13

Similar Documents

Publication Publication Date Title
JP4389389B2 (en) Azeotropic composition comprising 1,1,1,3,3-pentafluoropropane and 1,1,1-trifluoro-3-chloro-2-propene, separation and purification method using the same, and 1,1,1 Of 3,3,3-pentafluoropropane and 1,1,1-trifluoro-3-chloro-2-propene
JP5491069B2 (en) Method for separating hydrogen fluoride from organic raw materials
JP5788380B2 (en) Separation of R-1233 from hydrogen fluoride
US7790132B2 (en) Method for producing trichlorosilane and method for producing polycrystalline silicon
US6120652A (en) Method for purifying crude 1,1,1,3,3-pentafluoropropane
JP2001524461A (en) Process for separating hydrogen fluoride from fluorocarbon
JP2948210B2 (en) Method for purifying gaseous methane-containing hydrogen chloride and use of said hydrogen chloride
JP2947158B2 (en) Production of hexafluoroethane
WO1999019286A1 (en) Process for producing 1,1,1,2,2-pentafluoroethane
US4839153A (en) Process for purification of HCl from pyrolysis of EDC
US5723703A (en) Purification of allyl chloride
JP3182869B2 (en) Azeotropic mixture of pentafluoroethane and pentafluorochloroethane and method for separating pentafluorochloroethane
JPH05178768A (en) Method for separating 1,1,1,2-tetrafluoroethane and hydrogen fluoride
JPH09512793A (en) Method for purifying pentafluoroethane
JP2018531906A (en) Chlorinated methane production process
JPH08291087A (en) Preparation of 1,1-difluoroethane
JPH0571524B2 (en)
JP3175286B2 (en) An azeotropic mixture of hydrogen fluoride and 1,1,1-trifluoro-2-chloroethane and a method for purifying 1,1,1-trifluoro-2-chloroethane
CN112608213B (en) Method for preparing 1, 1-difluoroethane in gas phase
JP2555513B2 (en) Method for producing tetrachlorethylene
US2827129A (en) Hydrogen chloride recovery
JPH06263657A (en) Production of difluoromethane
JP2000281602A (en) Separation of mixture containing hydrogen fluoride and 1,1,1,3,3-pentafluorobutane and synthesis of 1,1,1,3,3- pentafluorobutane
KR20020082793A (en) Recovery of HFC-32
JP2778162B2 (en) How to remove hydrogen fluoride