[go: up one dir, main page]

JPH11118547A - Air capacity measuring apparatus - Google Patents

Air capacity measuring apparatus

Info

Publication number
JPH11118547A
JPH11118547A JP29793497A JP29793497A JPH11118547A JP H11118547 A JPH11118547 A JP H11118547A JP 29793497 A JP29793497 A JP 29793497A JP 29793497 A JP29793497 A JP 29793497A JP H11118547 A JPH11118547 A JP H11118547A
Authority
JP
Japan
Prior art keywords
pressure measurement
pressure
detector
static pressure
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29793497A
Other languages
Japanese (ja)
Other versions
JP3615371B2 (en
Inventor
Yasuo Yamamoto
保夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wetmaster Co Ltd
Original Assignee
Wetmaster Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wetmaster Co Ltd filed Critical Wetmaster Co Ltd
Priority to JP29793497A priority Critical patent/JP3615371B2/en
Priority to CA002249797A priority patent/CA2249797C/en
Priority to US09/173,715 priority patent/US6044716A/en
Publication of JPH11118547A publication Critical patent/JPH11118547A/en
Application granted granted Critical
Publication of JP3615371B2 publication Critical patent/JP3615371B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a size in the flow direction of fluid, miniaturize an apparatus, and relieve the restriction of fixing into a pipe by arranging static pressure measurement holes of a static pressure measurement detecting member toward the lower stream side. SOLUTION: A plurality of fluid pressure detectors 1 are arranged in parallel, in the lower stream side of a flow straightener 11 installed in a casing 10. As to the detector 1, two fluid pressure detecting members constituted of flat rectangular hollow hexahedrons are connected back to back, such that pressure leading-out ports have the same directions and pressure measurement holes have opposite directions. The holes positioned in the upper stream side are total pressure measurement holes, and a total pressure detecting member is constituted. The holes positioned in the lower stream side are static pressure measurement holes, and a static pressure detecting member is constituted. Since the static pressure measurement holes are arranged in the lowest stream end, apparent dynamic pressure becomes larger than real dynamic pressure, by the effect of vortex formed by itself. In particular, in a low wind velocity region where the dynamic pressure is small, reading error of pressure can be estimated to be small. Since static pressure is measured in the vertex formed by itself, influence of the vertex from the flow straightener 11 is reduced, and measurement precision is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、管路中を流れる風
量を測定する風量測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air flow measuring device for measuring an air flow flowing in a pipeline.

【0002】[0002]

【従来の技術】ケーシングの上流側に整流器を設け、下
流側にピトー管等の流体圧力検知器を設けた風量測定装
置は公知である(実開昭60−80316号公報参
照)。
2. Description of the Related Art An air flow measuring device provided with a rectifier on the upstream side of a casing and a fluid pressure detector such as a pitot tube on the downstream side is known (see Japanese Utility Model Laid-Open No. 60-80316).

【0003】[0003]

【発明が解決しようとする課題】この公知の風量測定装
置は、流体圧力検知器の静圧測定孔が流体の流れ方向に
対し、垂直に開孔していることから、渦のない安定した
流れでの測定が求められる。そのため上流域に位置する
整流器から発生する渦の影響を避けるには、整流器と流
体圧力検知器の間に充分な直管部を設ける必要がある。
そして、一般的に流体圧力検知器の静圧測定孔は、流路
内の真の静圧を検知する目的で、流体の流れに対して垂
直方向に向くよう開口されているため、前述同様、整流
器直後に差圧検知体を設けた場合、整流器の直後に生ず
る渦流の影響を大きく受ける。そのため、検出圧力の測
定精度が悪化するという問題点がある。
In this known air flow measuring device, the static pressure measuring hole of the fluid pressure detector is opened perpendicularly to the flow direction of the fluid, so that a stable flow without vortex is generated. Measurement is required. Therefore, in order to avoid the influence of the vortex generated from the rectifier located in the upstream area, it is necessary to provide a sufficient straight pipe portion between the rectifier and the fluid pressure detector.
And, in general, since the static pressure measurement hole of the fluid pressure detector is opened so as to be oriented in a direction perpendicular to the flow of the fluid for the purpose of detecting the true static pressure in the flow path, as described above, When the differential pressure detecting element is provided immediately after the rectifier, it is greatly affected by the eddy current generated immediately after the rectifier. Therefore, there is a problem that the measurement accuracy of the detected pressure is deteriorated.

【0004】以上のことから、日本工業規格のJIS
B 8330 送風機の試験及び検査方法では、整流器
の後の渦流の影響を受けないようにするため、整流器と
流体圧力検知器との間の距離を、ケーシングの管径より
大きくとることが行われている。このことは整流器を内
蔵する風量測定装置にあっては、流体の流れ方向の長さ
が長くなり、装置として大型化が余儀なくされ、装置の
設置スペースが大きくなるという問題点がある。さら
に、管路中の風量を測定する位置は、必ずしも管路が直
管の所ばかりではなく、むしろ曲がり管や分岐管直後の
狭い場所で測定しなければならない場合が一般的であ
る。その為には風量測定装置自身の流れ方向寸法を短く
すると共に、装置上流の直管寸法が短い場所でも測定可
能な風量測定装置が要求されるという課題がある。
[0004] From the above, JIS of Japanese Industrial Standard
In the test and inspection method of the B 8330 blower, the distance between the rectifier and the fluid pressure detector is set to be larger than the pipe diameter of the casing so as not to be affected by the eddy current after the rectifier. I have. This causes a problem in the air flow measuring device having a built-in rectifier that the length of the fluid in the flow direction is long, the device is inevitably increased in size, and the installation space for the device is increased. Furthermore, the position for measuring the air volume in the pipeline is generally not necessarily the location where the pipeline is a straight pipe, but rather the location where measurement must be performed in a narrow place immediately after a bent pipe or a branch pipe. For this purpose, there is a problem that an air flow measuring device that can reduce the flow direction dimension of the air flow measuring device itself and that can measure even a place where the straight pipe dimension is short upstream of the device is required.

【0005】本発明は、上記課題に鑑み、特に流体の流
れ方向の寸法を短くして、装置のコンパクト化を図り、
管路中への取付け上の制限を緩和させると共に、巾広い
用途に対応する新規な流量測定装置を提供することを目
的とする。
The present invention has been made in view of the above problems, and in particular, aims to reduce the size of the apparatus in the flow direction of the fluid, thereby reducing the size of the apparatus.
It is an object of the present invention to provide a novel flow rate measuring device that can be used in a wide range of applications while relaxing restrictions on installation in a pipeline.

【0006】[0006]

【課題を解決するための手段】本発明流量測定装置は、
ケーシング内の上流側に整流器を設け、下流側に流体圧
力検知器を設けた風量測定装置であって、上記流体圧力
検知器が、流体の流れ方向に沿うような中空体からなる
全圧測定検知体と静圧測定検知体とからなり、全圧測定
検知体の全圧測定孔を流体の流れの上流側に向け、静圧
測定検知体の静圧測定孔を流体の流れの下流側に向けて
位置付けてあることを特徴とする。
According to the present invention, there is provided a flow measuring apparatus comprising:
An air flow measuring device provided with a rectifier on an upstream side in a casing and a fluid pressure detector on a downstream side, wherein the fluid pressure detector is a total pressure measuring and detecting device formed of a hollow body along a flow direction of a fluid. Body and static pressure measurement sensor, with the total pressure measurement hole of the total pressure measurement sensor facing upstream of the fluid flow and the static pressure measurement hole of the static pressure measurement sensor facing downstream of the fluid flow It is characterized by being positioned.

【0007】上記全圧測定検知体と静圧測定検知体とが
偏平な略矩形形状の中空体からなることが望ましい。上
記全圧測定検知体と静圧測定検知体とが同一形状,同一
寸法に形成され、これらを背中合わせに連結してあると
よい。また、上記全圧測定検知体と静圧測定検知体とが
同一形状,同一寸法で一体に形成されてあってもよい。
上記全圧測定検知体と静圧測定検知体とが同一形状,同
一寸法に形成され、これらを背中合わせに間隔をおき僅
かな空間をおいて配置してあるとよい。
[0007] It is desirable that the total pressure measurement detector and the static pressure measurement detector are flat, substantially rectangular hollow bodies. It is preferable that the total pressure measurement detector and the static pressure measurement detector are formed in the same shape and the same size, and they are connected back to back. Further, the total pressure measurement detector and the static pressure measurement detector may be integrally formed with the same shape and the same dimensions.
It is preferable that the above-mentioned total pressure measuring detector and the static pressure measuring detector are formed in the same shape and the same size, and they are arranged with a small space between them back to back.

【0008】[0008]

【発明の実施の形態】発明の実施の形態を図面に示した
実施例に基づいて説明する。図1及び図2にケーシング
が角型の実施例を示してある。図中10がケーシング
で、その中の上流側に整流器11が取り付けてある。こ
の整流器11の構造は従前公知のハニカム構造でも、メ
ッシュ構造でもよいし、更には平板間にコルゲート形状
の波板を交互に積層構造にした近似ハニカム構造のもの
でもよい。何れにしてもこの整流器は、種々の環境に耐
えられるようステンレス製にすることが耐久性を高める
点で望ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described based on embodiments shown in the drawings. 1 and 2 show an embodiment in which the casing is square. In the figure, reference numeral 10 denotes a casing, and a rectifier 11 is mounted on an upstream side thereof. The structure of the rectifier 11 may be a conventionally known honeycomb structure, a mesh structure, or an approximate honeycomb structure in which corrugated corrugated plates are alternately laminated between flat plates. In any case, it is desirable that the rectifier be made of stainless steel so as to withstand various environments in terms of enhancing durability.

【0009】図中1,1が流体圧力検知器で、上記整流
器11の下流側に複数本が平行に配置固定されている。
この流体圧力検知器は、図4及び図5に示すように同一
形状及び同一寸法からなる流体圧力検知体1a,1bを
背中合わせに連結して構成してある。この流体圧力検知
器1a,1bは、偏平な略矩形形状の中空六面体であ
り、この中空六面体を水平においた状態での平板な上壁
2及び下壁3と左右閉塞壁4,4と流体の流れ方向の前
後の何れかに位置する前後壁5,5とによって形成され
ている。上記左右閉塞壁4,4の何れか片側の閉塞壁4
に圧力取出口6を設け、前後壁5,5の何れか片側壁5
に複数の圧力測定孔7を穿設してある。そして、それぞ
れの圧力取出口6,6を同じ方向に位置付けて、それぞ
れの圧力測定孔7,7が相反する向きになるように背中
合わせに連結する。これによって流れの上流側に位置す
る方を全圧測定孔となる全圧測定検知体とし、下流側に
位置する方を静圧測定孔となる静圧測定検知体とする。
図示した実施例では、圧力測定孔7を穿設してある片側
壁5を断面円弧状にしてあるが、必ずしも円弧状にする
ことなく、流れに直角に位置する平板状であってもよ
い。さらには、流体圧力検知体を偏平にすることなくパ
イプ形状にしたものであってもよい。
In the figure, reference numerals 1 and 1 denote fluid pressure detectors, and a plurality of fluid pressure detectors are arranged and fixed in parallel downstream of the rectifier 11.
As shown in FIGS. 4 and 5, the fluid pressure detector is configured by connecting fluid pressure detectors 1a and 1b having the same shape and the same dimensions back to back. The fluid pressure detectors 1a and 1b are flat and substantially rectangular hollow hexahedrons, and the flat upper wall 2 and lower wall 3, the left and right closing walls 4 and 4, and the fluid It is formed by front and rear walls 5, 5 located either before or after in the flow direction. The closing wall 4 on one of the left and right closing walls 4 and 4
A pressure outlet 6 is provided in one of the front and rear walls 5 and 5.
Are provided with a plurality of pressure measurement holes 7. Then, the respective pressure outlets 6, 6 are positioned in the same direction, and are connected back to back such that the respective pressure measurement holes 7, 7 are in opposite directions. Thus, the one located on the upstream side of the flow is a total pressure measurement detector serving as a total pressure measurement hole, and the one located on the downstream side is a static pressure measurement detector serving as a static pressure measurement hole.
In the illustrated embodiment, the one side wall 5 in which the pressure measurement hole 7 is formed has an arc-shaped cross section. However, the side wall 5 does not necessarily have to be arc-shaped, but may be a flat plate positioned at right angles to the flow. Further, the fluid pressure detector may be formed in a pipe shape without being flat.

【0010】上記した流体圧力検知器1は、静圧測定孔
が最下流端に位置付くから、流体圧力検知体自体がつく
る渦流によって真の静圧より低めの見掛静圧となるた
め、全圧と見掛静圧との差圧である見掛動圧が真の動圧
より大きくなる。特に、動圧の小さくなる低風速域で
は、真の動圧を検出する装置に比し、圧力の読み誤差率
を小さく見積もることができる。また、流体圧力検知体
自体がつくる渦流内で静圧を測定することより整流器か
ら発生する渦の影響を受け難くなり、計測精度の向上が
期待できる。また、流体圧力検知器1を偏平な中空体と
することにより、流体圧力検知器自身が、流体の流れを
整える作用を有するため効果的である。
In the above-described fluid pressure detector 1, since the static pressure measuring hole is located at the most downstream end, the apparent static pressure is lower than the true static pressure due to the vortex generated by the fluid pressure detector itself. The apparent dynamic pressure, which is the difference between the pressure and the apparent static pressure, is greater than the true dynamic pressure. In particular, in a low wind speed region where the dynamic pressure decreases, the pressure reading error rate can be estimated to be smaller than that of a device that detects the true dynamic pressure. Further, by measuring the static pressure in the vortex generated by the fluid pressure detector itself, the influence of the vortex generated from the rectifier is reduced, and improvement in measurement accuracy can be expected. Further, by making the fluid pressure detector 1 a flat hollow body, the fluid pressure detector itself has an effect of regulating the flow of the fluid, which is effective.

【0011】図3に示した実施例では左右閉塞壁4,4
を流体圧力検知体の左右開放部に例えばキャップ状の鋳
造品等の嵌め込み型に構成してあり、シール材ならびに
接着材を使用して極力溶接加工を少なくし、作業工程を
省力化している。それぞれの圧力取出口6は、ケーシン
グ10から外に突出させてあり、このケーシングに左右
閉塞壁4をビス止めして固定してある。複数の流体圧力
検知装置の圧力取出口6を1本の連通管12によって連
通し、平均圧力取出口18により平均全圧又は平均静圧
を取り出すようにしてある。また、この連通管12の取
付けも図3に示すようにカバー体13を被せ、このカバ
ー体13と一体的にして左右閉塞壁4をビス14によっ
て取り付けるようにしてある。さらには、連通管をゴム
チューブ形状のものとし、チューブに形成した連通孔に
圧力取出口6を気密に挿入するだけの構造としてもよ
い。
In the embodiment shown in FIG.
Are formed in the left and right open portions of the fluid pressure detecting body, for example, by fitting a cap-shaped casting or the like. The use of a sealing material and an adhesive material minimizes welding work and saves work steps. Each of the pressure outlets 6 protrudes out of the casing 10, and the left and right closing walls 4 are fixed to the casing by screws. The pressure outlets 6 of the plurality of fluid pressure detection devices are connected by a single communication pipe 12, and an average total pressure or an average static pressure is taken out by an average pressure outlet 18. Also, as shown in FIG. 3, the communication pipe 12 is covered with a cover 13, and the left and right closing walls 4 are attached integrally with the cover 13 with screws 14. Further, the communication pipe may be formed in a rubber tube shape, and the pressure outlet 6 may be simply inserted into the communication hole formed in the tube in an airtight manner.

【0012】図6には丸型の本発明装置の実施例が示し
てある。角型と同様に整流器11を上流側に配置し、流
体圧力検知器1を下流側に配置してある。図6〜8に示
すとおり、丸型に取り付けられる流体圧力検知器1は、
十字状に組み合わされている。図示実施例では、4本の
流体圧力検知器を中空体からなるセンサーソケット15
に、このソケットを中心として放射状に連結してある。
それぞれの全圧測定検知体同士及び静圧測定検知体同士
をセンサーソケット15の中空部16を介して全圧同士
及び静圧同士を平均化させるように連通してある。4つ
の全圧測定検知体あるいは4つの静圧測定検知体のうち
の1つの測定検知体の全圧取出口6及び静圧取出口6に
それぞれの測定検知体内部を貫通するように圧力取出管
17を連結し、その内端をセンサーソケット15内に開
口させ、平均圧力取出口18より4つの流体圧力検知体
の平均全圧又は平均静圧を取り出すようにしてある。
FIG. 6 shows an embodiment of the device of the present invention in a round shape. As in the case of the square type, the rectifier 11 is arranged on the upstream side, and the fluid pressure detector 1 is arranged on the downstream side. As shown in FIGS. 6 to 8, the fluid pressure detector 1 mounted in a round shape is
Combined in a cross shape. In the illustrated embodiment, four fluid pressure detectors are connected to a sensor socket 15 made of a hollow body.
And radially connected around the socket.
The respective total pressure measurement detectors and the respective static pressure measurement detectors are communicated via the hollow portion 16 of the sensor socket 15 so as to equalize the total pressures and the static pressures. A pressure outlet pipe is provided to the total pressure outlet 6 and the static pressure outlet 6 of one of the four total pressure measurement detectors or one of the four static pressure measurement detectors so as to penetrate the inside of each measurement detector. 17 is connected, the inner end thereof is opened in the sensor socket 15, and an average total pressure or an average static pressure of the four fluid pressure detectors is taken out from an average pressure outlet 18.

【0013】図面には示してないが、上記センサーソケ
ットを中心に放射状に複数連結した流体圧力検知器を、
流体の流れ方向に直交した異断面に複数段設け、前記複
数連結の流体圧力検知器が流体の流れ方向で上流側と下
流側に重ならない位置に配備することもできる。
Although not shown in the drawings, a plurality of fluid pressure detectors radially connected around the sensor socket are provided.
A plurality of fluid pressure detectors may be provided in different sections perpendicular to the flow direction of the fluid, and the plurality of connected fluid pressure detectors may be provided at positions not overlapping the upstream side and the downstream side in the fluid flow direction.

【0014】図9及び図10に全圧測定検知体1aと静
圧測定検知体1bとの間に僅かに空間部8をおいて配置
した本発明装置を示してある。この空間部8をおいて配
置した流体圧力検知器1では、流れ方向に対する指向性
を低めることができ、迎え角でのヨー特性を高めること
ができる。このことから上流に位置する整流器の効果と
相まって、偏流の著しい条件下や流れの方向が安定しな
い非定常的な流れの場に於いても検出圧力に誤差を生じ
にくい装置とすることができた。実験して得た結果を表
として表示し、これを図11に示す。この実験では、既
に実用化されている公知の装置(A装置という)と、流
体圧力検知体1a,1bを背中合わせに連結した図1,
図6に示した装置(B装置という)及び図9及び図10
に示した装置(C装置という)とを対比したものであ
る。これによると迎え角0度〜18度の間で好結果を得
た。この実験に使用した実施例は次の通りである。厚み
10mm,幅30mm,長さ200mmの流体圧力検知
体であって、圧力測定孔7,7を穿設してある片側壁を
円弧状にしてある図3に示した実施例を背中合わせに連
結した上記B装置と、同じ寸法のものを使用して流体圧
力検知体間を2mmの空間を介して配置した装置を使用
し、200mm×300mmのダクト内に配置し、風速
毎秒11mの状態でテストした。
FIGS. 9 and 10 show a device according to the present invention in which a space 8 is provided slightly between the total pressure measuring detector 1a and the static pressure measuring detector 1b. In the fluid pressure detector 1 provided with the space 8, the directivity in the flow direction can be reduced, and the yaw characteristics at the angle of attack can be improved. From this, coupled with the effect of the rectifier located upstream, it was possible to make the device less likely to cause an error in the detected pressure even under the condition of significant drift or unsteady flow where the flow direction is not stable. . The results obtained from the experiment are displayed as a table, which is shown in FIG. In this experiment, a known device (referred to as an A device) already in practical use and fluid pressure detectors 1a and 1b were connected back to back as shown in FIGS.
Apparatus shown in FIG. 6 (referred to as apparatus B) and FIGS. 9 and 10
(Compared with the device C). According to this, a good result was obtained between the attack angles of 0 to 18 degrees. The example used in this experiment is as follows. A fluid pressure detector having a thickness of 10 mm, a width of 30 mm, and a length of 200 mm is connected back to back with the embodiment shown in FIG. Using a device having the same dimensions as the above B device and using a device having the same size and arranged between the fluid pressure detecting members via a space of 2 mm, the device was placed in a 200 mm × 300 mm duct, and tested at a wind speed of 11 m / sec. .

【0015】本発明装置では、流体圧力検知器を流体の
流れ方向に沿うような形状の中空体によって構成し、静
圧測定検知体の静圧測定孔を下流側に向けて位置付けて
あるため、流体圧力検知器自身で誘起した渦流内にて圧
力を検知している。これにより、整流器の後の渦流の影
響を受けることが少なく、従って流体圧力検知器と整流
器との間の寸法を短くすることができる。即ち図2に示
すように整流器と流体圧力検知器との間の寸法Lとケー
シングの管径Dとの関係をJISの規定より短いL<D
とすることができる。
In the device of the present invention, the fluid pressure detector is formed by a hollow body having a shape along the flow direction of the fluid, and the static pressure measurement hole of the static pressure measurement detector is positioned toward the downstream side. The pressure is detected in the vortex induced by the fluid pressure detector itself. This reduces the effect of eddy currents after the rectifier, and thus reduces the size between the fluid pressure detector and the rectifier. That is, as shown in FIG. 2, the relationship between the dimension L between the rectifier and the fluid pressure detector and the pipe diameter D of the casing is L <D shorter than the JIS standard.
It can be.

【0016】本発明風量計測装置の図6に示す実施例に
より機能性試験をした結果を図12に示してある。この
機能性試験は、412mm直径の丸型装置を使用し、フ
ァン下流にハニカム構造の整流器付きの本発明装置と、
整流器なしの装置とを設置し、風速23m/s及び2.
5m/sで試験したものである。その結果、整流器の存
在により真の風速に対する誤差率がきわめて少なく高精
度の測定結果が得られた。さらに、流体圧力検知器にあ
っては、全圧測定検知体と静圧測定検知体とを同一形
状,同一寸法の構造体とし、これを背中合わせに配置す
ると、その制作、加工が簡単である。また、差圧検知体
の材質が、アルミや樹脂等であれば、押出し加工が可能
であるため、全圧測定検知体と静圧測定検知体とが一体
の流体圧力検知器を成形することができた。
FIG. 12 shows the results of a functional test performed by the embodiment shown in FIG. 6 of the air flow measuring device of the present invention. This functional test uses a 412 mm diameter round device, a device of the present invention with a rectifier having a honeycomb structure downstream of the fan,
1. Install a device without rectifier, wind speed 23 m / s and 2.
It was tested at 5 m / s. As a result, due to the presence of the rectifier, the error rate with respect to the true wind speed was extremely small, and a highly accurate measurement result was obtained. Furthermore, in the fluid pressure detector, if the total pressure measurement detector and the static pressure measurement detector are formed into a structure having the same shape and the same dimensions, and are arranged back to back, the production and processing thereof are easy. In addition, if the material of the differential pressure detector is aluminum, resin, or the like, it can be extruded. Therefore, it is possible to form a fluid pressure detector in which the total pressure measurement detector and the static pressure measurement detector are integrated. did it.

【0017】[0017]

【発明の効果】以上の通り、本発明装置では、静圧測定
検知体の静圧測定孔を流体の流れの下流側に向けて配置
したことにより、整流器から発生する流体の流れの渦の
影響を受けにくい利点を有し、整流器の整流効果と相ま
って測定誤差率を少なくすることができた。その結果、
整流器と流体圧力検知体との間に充分な直管部を設ける
必要をなくし、測定装置のコンパクト化を可能とした効
果を有する。従って、管路中のフアンあるいはエルボ直
後への装置の取付けも可能となり、管路中への装置の取
付けの制限を緩和でき、巾広い用途に対応できるという
実用上の大きな効果が得られた。
As described above, in the device according to the present invention, the static pressure measurement hole of the static pressure measurement detector is arranged toward the downstream side of the flow of the fluid, so that the influence of the vortex of the flow of the fluid generated from the rectifier. This has the advantage of being less susceptible to inconvenience, and the measurement error rate can be reduced in combination with the rectification effect of the rectifier. as a result,
This eliminates the need to provide a sufficient straight pipe section between the rectifier and the fluid pressure detector, and has the effect of making the measuring device compact. Therefore, it is possible to mount the device immediately after the fan or the elbow in the pipeline, and it is possible to relax the limitation of the installation of the device in the pipeline, and to obtain a large practical effect that it can be applied to a wide range of applications.

【図面の簡単な説明】[Brief description of the drawings]

【図1】角型の本発明装置の実施例の一部切欠斜視図FIG. 1 is a partially cutaway perspective view of an embodiment of a square-shaped device of the present invention.

【図2】同じくその一部切欠側面図FIG. 2 is a partially cutaway side view of the same.

【図3】流体圧力検知器の実施例を示す一部切欠側面図FIG. 3 is a partially cutaway side view showing an embodiment of a fluid pressure detector.

【図4】流体圧力検知体の基本構造を示す一部切欠斜視
FIG. 4 is a partially cutaway perspective view showing a basic structure of a fluid pressure detector.

【図5】同上の基本構造の断面図FIG. 5 is a sectional view of the basic structure of the above.

【図6】丸型の本発明実施例を示す一部切欠斜視図FIG. 6 is a partially cutaway perspective view showing a round-shaped embodiment of the present invention.

【図7】丸型に装備する流体圧力検知器の一部切欠側面
FIG. 7 is a partially cutaway side view of a fluid pressure detector mounted in a round shape.

【図8】同上要部の一部切欠正面図FIG. 8 is a partially cutaway front view of a main part of the above.

【図9】流体圧力検知体間に僅かな空間部を設けた角型
実施例の一部切欠斜視図
FIG. 9 is a partially cutaway perspective view of a square-shaped embodiment in which a slight space is provided between fluid pressure sensing elements.

【図10】同じく丸型実施例の一部切欠斜視図FIG. 10 is a partially cutaway perspective view of the same circular embodiment.

【図11】迎え角のヨー特性の比較を実験により得た表
である。
FIG. 11 is a table obtained by an experiment comparing the yaw characteristics of the angle of attack.

【図12】図6に示す実施例により整流器付きと整流器
なしの装置で機能性試験を行った結果を表すグラフであ
る。
FIG. 12 is a graph showing the results of performing a functional test on the apparatus with and without a rectifier according to the embodiment shown in FIG. 6;

【図13】流体の流れ方向と圧力検知体の相対的角度θ
を示す説明図である。
FIG. 13 shows the relative angle θ between the flow direction of the fluid and the pressure detector.
FIG.

【符号の説明】[Explanation of symbols]

1 流体圧力検知器 1a 流体圧力検知体 1b 流体圧力検知体 2 上壁 3 下壁 4 左右閉塞壁 5 前後壁 6 圧力取出口 7 圧力測定孔 8 空間部 10 ケーシング 11 整流器 12 連通管 13 カバー体 14 ビス 15 センサーソケット 16 中空部 17 圧力取出管 18 平均圧力取出口 DESCRIPTION OF SYMBOLS 1 Fluid pressure detector 1a Fluid pressure detector 1b Fluid pressure detector 2 Upper wall 3 Lower wall 4 Left and right closing wall 5 Front and rear walls 6 Pressure outlet 7 Pressure measurement hole 8 Space 10 Casing 11 Rectifier 12 Communication pipe 13 Cover body 14 Screw 15 Sensor socket 16 Hollow part 17 Pressure outlet pipe 18 Average pressure outlet

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ケーシング内の上流側に整流器を設け、
下流側に流体圧力検知器を設けた風量測定装置であっ
て、上記流体圧力検知器が、流体の流れ方向に沿うよう
な中空体からなる全圧測定検知体と静圧測定検知体とか
らなり、全圧測定検知体の全圧測定孔を流体の流れの上
流側に向け、静圧測定検知体の静圧測定孔を流体の流れ
の下流側に向けて位置付けてあることを特徴とする風量
測定装置。
1. A rectifier is provided upstream in a casing,
An air volume measurement device provided with a fluid pressure detector on the downstream side, wherein the fluid pressure detector comprises a total pressure measurement detector and a static pressure measurement detector each formed of a hollow body along a flow direction of a fluid. Characterized in that the total pressure measurement hole of the total pressure measurement detector is positioned toward the upstream side of the fluid flow, and the static pressure measurement hole of the static pressure measurement detector is positioned toward the downstream side of the fluid flow. measuring device.
【請求項2】 上記全圧測定検知体と静圧測定検知体と
が偏平な略矩形形状の中空体からなる上記請求項1に記
載の風量測定装置。
2. The air flow measuring device according to claim 1, wherein the total pressure measurement detector and the static pressure measurement detector are flat, substantially rectangular hollow bodies.
【請求項3】 上記全圧測定検知体と静圧測定検知体と
が同一形状,同一寸法に形成され、これらを背中合わせ
に連結してある上記請求項1に記載の風量測定装置。
3. The air flow measuring device according to claim 1, wherein the total pressure measurement detector and the static pressure measurement detector are formed in the same shape and the same size, and are connected back to back.
【請求項4】 上記全圧測定検知体と静圧測定検知体と
が同一形状,同一寸法で一体成形されていることを特徴
とする上記請求項1に記載の風量測定装置。
4. The air flow measuring device according to claim 1, wherein the total pressure measurement detector and the static pressure measurement detector are integrally formed with the same shape and the same dimensions.
【請求項5】 上記全圧測定検知体と静圧測定検知体と
が同一形状,同一寸法に形成され、これらを背中合わせ
に間隔をおき僅かな空間をおいて配置してある上記請求
項1に記載の風量測定装置。
5. The method according to claim 1, wherein the total pressure measurement detector and the static pressure measurement detector are formed in the same shape and the same size, and are arranged with a small space between them back to back. The air volume measuring device as described.
JP29793497A 1997-10-16 1997-10-16 Airflow measuring device Expired - Lifetime JP3615371B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP29793497A JP3615371B2 (en) 1997-10-16 1997-10-16 Airflow measuring device
CA002249797A CA2249797C (en) 1997-10-16 1998-10-08 Fluid pressure detector and air flow rate measuring apparatus using same
US09/173,715 US6044716A (en) 1997-10-16 1998-10-16 Fluid pressure detector and air flow rate measuring apparatus using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29793497A JP3615371B2 (en) 1997-10-16 1997-10-16 Airflow measuring device

Publications (2)

Publication Number Publication Date
JPH11118547A true JPH11118547A (en) 1999-04-30
JP3615371B2 JP3615371B2 (en) 2005-02-02

Family

ID=17852992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29793497A Expired - Lifetime JP3615371B2 (en) 1997-10-16 1997-10-16 Airflow measuring device

Country Status (1)

Country Link
JP (1) JP3615371B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122795A (en) * 2009-12-14 2011-06-23 Hibiya Eng Ltd Air volume adjustment device
KR101326189B1 (en) * 2012-08-20 2013-11-07 주식회사 대한인스트루먼트 Average Pitot Pipe Type Flow Measurement System
JP2016164543A (en) * 2015-06-16 2016-09-08 山洋電気株式会社 measuring device
US9857209B2 (en) 2015-03-06 2018-01-02 Sanyo Denki Co., Ltd. Measurement device for measuring airflow volume and ventilation resistance of wind-blowing apparatus
CN110631235A (en) * 2019-09-26 2019-12-31 国药奇贝德(上海)工程技术有限公司 Wind speed and wind volume measuring device and efficient air port with same
CN111207798A (en) * 2020-02-17 2020-05-29 杭州老板电器股份有限公司 Air volume testing device and testing method thereof
WO2023151565A1 (en) * 2022-02-09 2023-08-17 付成 Modular flow measurement method and apparatus, and application

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8888711B2 (en) * 2008-04-08 2014-11-18 Carefusion 203, Inc. Flow sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122795A (en) * 2009-12-14 2011-06-23 Hibiya Eng Ltd Air volume adjustment device
KR101326189B1 (en) * 2012-08-20 2013-11-07 주식회사 대한인스트루먼트 Average Pitot Pipe Type Flow Measurement System
US9857209B2 (en) 2015-03-06 2018-01-02 Sanyo Denki Co., Ltd. Measurement device for measuring airflow volume and ventilation resistance of wind-blowing apparatus
JP2016164543A (en) * 2015-06-16 2016-09-08 山洋電気株式会社 measuring device
CN110631235A (en) * 2019-09-26 2019-12-31 国药奇贝德(上海)工程技术有限公司 Wind speed and wind volume measuring device and efficient air port with same
CN110631235B (en) * 2019-09-26 2023-10-24 国药奇贝德(上海)工程技术有限公司 Wind speed and air quantity measuring device and efficient air port with same
CN111207798A (en) * 2020-02-17 2020-05-29 杭州老板电器股份有限公司 Air volume testing device and testing method thereof
WO2023151565A1 (en) * 2022-02-09 2023-08-17 付成 Modular flow measurement method and apparatus, and application

Also Published As

Publication number Publication date
JP3615371B2 (en) 2005-02-02

Similar Documents

Publication Publication Date Title
US5014552A (en) Flow meter
EP1344027B1 (en) Microelectronic flow sensor
US4825704A (en) Fluid flow speed measuring apparatus
JP3193837B2 (en) Heating resistance type flow measurement device
US6044716A (en) Fluid pressure detector and air flow rate measuring apparatus using same
US4343194A (en) Flow sensing apparatus
CA1167665A (en) Average fluid flow sensor
JP3292817B2 (en) Thermal flow sensor
US6487918B1 (en) Airflow sensor for averaging total pressure
JPH11118547A (en) Air capacity measuring apparatus
JP7034480B2 (en) Fluid pressure detector
FI81447B (en) ANALYZING FOLLOWING VOLUME IN BLAESTER.
JP2742388B2 (en) Flow velocity measuring device
JPS6113112A (en) Air flow rate measuring apparatus
JP3615369B2 (en) Fluid pressure detector
JPH09101186A (en) Pitot-tube type mass flowmeter
JPH01299416A (en) Converting apparatus of flow rate
JP3615370B2 (en) Fluid pressure detector
US5535634A (en) Enhanced Type S pitot tube with reduced and symmetric response to pitch
CN111473826A (en) Ultrasonic flow measuring equipment and gas monitoring system
US7013738B2 (en) Flow sensor
JP3375939B2 (en) Pitot tube flow meter
JPH09329473A (en) Gas flow measuring device
CA1049810A (en) Fluid pressure sensing apparatus
JPH07151326A (en) Combustion device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041029

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term