[go: up one dir, main page]

JPH11116825A - Resin composition - Google Patents

Resin composition

Info

Publication number
JPH11116825A
JPH11116825A JP29350797A JP29350797A JPH11116825A JP H11116825 A JPH11116825 A JP H11116825A JP 29350797 A JP29350797 A JP 29350797A JP 29350797 A JP29350797 A JP 29350797A JP H11116825 A JPH11116825 A JP H11116825A
Authority
JP
Japan
Prior art keywords
resin composition
resin
conductive
filler
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29350797A
Other languages
Japanese (ja)
Other versions
JP3017145B2 (en
Inventor
Akira Tabuchi
明 田淵
Atsushi Ogawa
淳 小川
Motoshige Sakabe
元重 阪部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Tigers Polymer Corp
Original Assignee
Otsuka Chemical Co Ltd
Tigers Polymer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17795641&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH11116825(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Otsuka Chemical Co Ltd, Tigers Polymer Corp filed Critical Otsuka Chemical Co Ltd
Priority to JP9293507A priority Critical patent/JP3017145B2/en
Publication of JPH11116825A publication Critical patent/JPH11116825A/en
Application granted granted Critical
Publication of JP3017145B2 publication Critical patent/JP3017145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

(57)【要約】 【課題】 外部環境の変化、とりわけ印加電圧の変化に
対して安定な抵抗率を有し、更に機械的強度に優れ、寸
法安定性及び耐摩耗性に優れた導電性もしくは半導電性
樹脂組成物を提供する。 【解決手段】 樹脂に導電性充填材及び誘電体充填材が
共に配合されてなることを特徴とする樹脂組成物。
PROBLEM TO BE SOLVED: To provide a conductive material having a stable resistivity against a change in an external environment, in particular, a change in an applied voltage, and further having excellent mechanical strength, dimensional stability and abrasion resistance. Provided is a semiconductive resin composition. A resin composition comprising a resin and a conductive filler and a dielectric filler mixed together.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は抵抗率の印加電圧依
存性が少ない導電性もしくは半導電性を有する樹脂組成
物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive or semiconductive resin composition having a small dependence of resistivity on applied voltage.

【0002】[0002]

【従来の技術】導電性樹脂材料は、各種の電子部品用材
料や構造材料として用いられている。これらのうち電極
用材料や抵抗素子材料、電子複写機等の転写ロール、ベ
ルト等に用いられる導電性もしくは半導電性材料として
は、導電率が均一且つ安定していることが要求されてい
る。これまでに、印加電圧が一定な場合に抵抗率を安定
に保ち得る導電性樹脂材料については知られているが
(例えば特開平5−286056号公報等)、印加電圧
の変化に拘わらず抵抗率を概ね安定に保ち得るような導
電性樹脂材料は知られていなかった。
2. Description of the Related Art Conductive resin materials are used as materials for various electronic parts and structural materials. Among these, conductive or semiconductive materials used for electrode materials, resistance element materials, transfer rolls and belts of electronic copying machines and the like are required to have uniform and stable conductivity. Although a conductive resin material capable of maintaining a stable resistivity when the applied voltage is constant is known (for example, Japanese Patent Application Laid-Open No. Hei 5-286605), the resistivity is not affected by the change in the applied voltage. There has been no known conductive resin material capable of maintaining the stability of the resin.

【0003】[0003]

【発明が解決しようとする課題】本発明の課題は、外部
環境の変化、とりわけ印加電圧の変化に対して安定な抵
抗率を有する導電性もしくは半導電性樹脂組成物を提供
することにある。更に本発明の課題は、機械的強度に優
れ、寸法安定性及び耐摩耗性に優れた導電性もしくは半
導電性樹脂組成物を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a conductive or semiconductive resin composition having a stable resistivity to changes in the external environment, especially changes in applied voltage. A further object of the present invention is to provide a conductive or semiconductive resin composition having excellent mechanical strength, excellent dimensional stability and abrasion resistance.

【0004】[0004]

【課題を解決するための手段】本発明は、樹脂に導電性
充填材及び誘電体充填材が共に配合されてなることを特
徴とする樹脂組成物に係る。
SUMMARY OF THE INVENTION The present invention relates to a resin composition comprising a resin and a conductive filler and a dielectric filler.

【0005】[0005]

【発明の実施の形態】本発明の導電性もしくは半導電性
を有する樹脂組成物とは、比抵抗が概ね1012程度未満
の樹脂組成物をいう。本発明の樹脂組成物のマトリック
スとして用いられる樹脂としては、特に制限はなく、目
的とする材料の用途に応じて適宜選定し得る。樹脂の具
体例としては、天然ゴム、スチレン−ブタジエンゴム、
ネオプレンゴム、エチレン−プロピレン共重合体ゴム、
ニトリルゴム等の各種エラストマー、フェノール樹脂、
エポキシ樹脂、ユリア樹脂、不飽和ポリエステル樹脂、
シリコーン樹脂、フッ素樹脂、ポリウレタン樹脂等の熱
硬化性もしくは反応硬化性樹脂、ポリエチレン、ポリプ
ロピレン、ポリ塩化ビニル等の汎用熱可塑性樹脂、ポリ
アミド、熱可塑性ポリエステル等の液晶ポリマー、ポリ
アセタール、ポリフェニレンサルファイド、ポリサルフ
ォン、ポリエーテルイミド、ポリエーテルエーテルケト
ン等のエンジニアリングプラスチックス等を挙げられ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The conductive or semiconductive resin composition of the present invention refers to a resin composition having a specific resistance of less than about 10 12 . The resin used as the matrix of the resin composition of the present invention is not particularly limited, and can be appropriately selected depending on the intended use of the material. Specific examples of the resin include natural rubber, styrene-butadiene rubber,
Neoprene rubber, ethylene-propylene copolymer rubber,
Various elastomers such as nitrile rubber, phenolic resins,
Epoxy resin, urea resin, unsaturated polyester resin,
Thermosetting or reaction curable resins such as silicone resin, fluorine resin and polyurethane resin, general-purpose thermoplastic resins such as polyethylene, polypropylene and polyvinyl chloride, liquid crystal polymers such as polyamide and thermoplastic polyester, polyacetal, polyphenylene sulfide and polysulfone. Engineering plastics such as polyetherimide and polyetheretherketone;

【0006】本発明に用いられる導電性充填材として
は、粒状、繊維状、鱗片状等の各種の形状のものが用い
られ、比抵抗0〜107Ω・cm、好ましくは10-3〜1
4Ω・cmのものが用いられる。具体例としては、金、
銅、銀、亜鉛、アルミニウム、鉄、酸化錫等の導電性金
属又は導電性金属酸化物の径0.1〜100μmの粒状粉
末もしくは径0.1〜30μm、長さ3〜2000μmの
繊維状粉末、シリカ、カオリン、タルク、マイカ等の粒
状もしくは鱗片状無機粉末やナイロン糸、ポリエステル
糸等の合成樹脂繊維の表面に、アンチモンやインジウム
等がドープされていてもよい酸化錫やカーボン等の導電
層を被覆してなる粉末状もしくは繊維状導電性粉体、ケ
ッチェンブラック、アセチレンブラック、カーボン繊維
(カーボンウィスカを含む)、黒鉛粒等の炭素類、チタ
ン酸カリウム、チタン酸アルミン酸カリウム、ホウ酸マ
グネシウム、ホウ酸アルミニウム、チタニア、ワラスト
ナイト、ゾノトライト、窒化ケイ素等の酸化物系もしく
は非酸化物系セラミックスの繊維状物(単結晶繊維、ア
モルファス繊維、多結晶繊維のいずれでもよく、ウィス
カを含む)の表面に、アンチモンやインジウム等がドー
プされていてもよい酸化錫やカーボン等の導電層を被覆
するか、酸化物系セラミックスを還元焼成することによ
り導電性の付与された繊維状セラミックス粉体(以下、
導電性セラミックス繊維と総称する)が例示できる。
As the conductive filler used in the present invention, those having various shapes such as granular, fibrous, and scale-like are used, and the specific resistance is from 0 to 10 7 Ω · cm, preferably from 10 -3 to 1.
It is used those of the 0 4 Ω · cm. Specific examples include gold,
Conductive metal or conductive metal oxide such as copper, silver, zinc, aluminum, iron, tin oxide or the like, granular powder having a diameter of 0.1 to 100 μm or fibrous powder having a diameter of 0.1 to 30 μm and a length of 3 to 2000 μm A conductive layer of tin oxide or carbon, which may be doped with antimony or indium, on the surface of granular or flaky inorganic powder such as silica, kaolin, talc, mica, or synthetic resin fibers such as nylon thread or polyester thread. Powder or fibrous conductive powder coated with Ketjen black, acetylene black, carbon fiber (including carbon whiskers), carbon such as graphite particles, potassium titanate, potassium titanate aluminate, boric acid Oxide or non-oxide ceramics such as magnesium, aluminum borate, titania, wollastonite, zonotolite, and silicon nitride The surface of a fibrous material (a single crystal fiber, an amorphous fiber, or a polycrystal fiber, which may be any of whiskers) is coated with a conductive layer of tin oxide or carbon which may be doped with antimony or indium. Or fibrous ceramic powder (hereinafter, referred to as “conductivity”) given conductivity by reducing and firing an oxide ceramic.
Conductive ceramic fibers).

【0007】酸化物系もしくは非酸化物系セラミックス
の表面にアンチモンやインジウム等がドープされていて
もよい酸化錫を被覆する方法としては、化学蒸着法、無
電解メッキ法、浸漬法、スプレーコート法等を用いるこ
とができ、例えば特開昭59−102820号、特開平
2−149424号等に記載の方法に準じて製造するこ
とができる。また、カーボン導電層を被覆する方法とし
ては、被覆されるセラミックスとアルカンガス、オレフ
ィンガス、トルエン、キシレン等の炭素化合物との混合
物を還元又は不活性雰囲気下に昇温し500〜1300
℃で加熱焼成する方法を例示できる。中でも、抵抗率の
均一性及び樹脂組成物の機械的強度、寸法精度の向上の
観点からは、カーボン繊維、導電性セラミックス繊維が
好ましく、更に平均径0.01〜3μm、平均長さ1〜5
00μm、平均アスペクト比5〜500の範囲のものが
特に好ましい。ここで平均径とは、前記繊維状物質の断
面が円形でない場合には相当直径を意味する。
As a method for coating the surface of an oxide or non-oxide ceramic with tin oxide which may be doped with antimony or indium, chemical vapor deposition, electroless plating, immersion, spray coating, etc. And the like, and can be produced, for example, according to the methods described in JP-A-59-102820 and JP-A-2-149424. As a method of coating the carbon conductive layer, a mixture of the ceramic to be coated and a carbon compound such as an alkane gas, an olefin gas, toluene, or xylene is heated in a reducing or inert atmosphere to 500 to 1300.
A method of heating and sintering at ° C. can be exemplified. Among them, carbon fibers and conductive ceramic fibers are preferable from the viewpoint of uniformity of resistivity and mechanical strength of the resin composition, and improvement of dimensional accuracy, and furthermore, the average diameter is 0.01 to 3 μm, and the average length is 1 to 5
Those having a thickness of 00 μm and an average aspect ratio of 5 to 500 are particularly preferred. Here, the average diameter means an equivalent diameter when the cross section of the fibrous substance is not circular.

【0008】本発明に用いられる誘電体充填材とは、2
0℃、10MHzにおける比誘電率が30以上、好まし
くは100以上の充填材であり、その具体例としては、
一般式MO・TiO2(式中、MはBa、Sr、Ca、Mg、
Co、Pb、Zn、Be、Cdより選ばれる一種又は二種以
上)で表わされるチタン酸金属塩化合物、ニオブ酸アル
カリ金属塩、ニオブ酸鉛、ジルコン酸鉛、チタン酸ジル
コン酸鉛、錫酸鉛、タンタル酸アルカリ金属塩、タンタ
ル酸鉛、タンタル酸ルビジウム、酸化モリブデン、酸化
タングステン等が例示できる。中でもチタン酸バリウ
ム、チタン酸カルシウム、チタン酸マグネシウム、チタ
ン酸ストロンチウム、チタン酸バリウムストロンチウ
ム、チタン酸バリウムカルシウム等のチタン酸アルカリ
土類金属塩は安定で高い誘電率を示し入手が容易なため
好ましく用いられる。
[0008] The dielectric filler used in the present invention is 2
It is a filler having a relative dielectric constant of 30 or more, preferably 100 or more at 0 ° C. and 10 MHz, and specific examples thereof include:
General formula MO · TiO 2 (where M is Ba, Sr, Ca, Mg,
One or more selected from Co, Pb, Zn, Be and Cd), a metal titanate compound, an alkali metal niobate, lead niobate, lead zirconate, lead zirconate titanate, lead stannate , Alkali metal tantalate, lead tantalate, rubidium tantalate, molybdenum oxide, tungsten oxide and the like. Among them, barium titanate, calcium titanate, magnesium titanate, strontium titanate, barium strontium titanate, alkaline earth metal titanates such as barium calcium titanate are preferably used because they exhibit a stable and high dielectric constant and are easily available. Can be

【0009】これらの誘電体充填材の形状としては、特
に制限はないが、通常、粒状又は繊維状のものが用いら
れる。これらは単結晶体、多結晶体、アモルファス状も
しくはこれらの混合物のいずれであってもよい。粒状の
ものを用いる場合、平均径0.1〜100μm程度のもの
が、又、繊維状のものを用いる場合は、平均径0.1〜
5μm、平均長5〜500μmの範囲のものが好ましく用
いられる。これらの誘電体充填材は一種を単独で用いて
もよく、又は二種以上を併用してもよい。尚、これらの
誘電体充填材の表面を、アンチモンやインジウム等がド
ープされていてもよい酸化錫やカーボン等の導電層で被
覆する等して導電性を付与して用いる場合、これらは誘
電体充填材であるとともに導電性充填材としても作用す
るので、斯かる充填材のみを配合した樹脂組成物も本発
明の樹脂組成物の範疇に含まれる。
The shape of these dielectric fillers is not particularly limited, but usually, granular or fibrous ones are used. These may be any of single crystal, polycrystal, amorphous, or a mixture thereof. When a granular material is used, the average diameter is about 0.1 to 100 μm, and when a fibrous material is used, the average diameter is 0.1 to 100 μm.
Those having a size of 5 μm and an average length of 5 to 500 μm are preferably used. One of these dielectric fillers may be used alone, or two or more thereof may be used in combination. When the surface of these dielectric fillers is used by imparting conductivity by, for example, coating the surface with a conductive layer such as tin oxide or carbon which may be doped with antimony or indium, these may be dielectric materials. Since it acts as a filler and also functions as a conductive filler, a resin composition containing only such a filler is also included in the category of the resin composition of the present invention.

【0010】本発明の樹脂組成物の各成分の配合割合
は、選択された成分や目的材料に要求される物性により
適宜設定し得るが、樹脂100重量部に対して導電性充
填材を、好ましくは1〜50重量部、更に好ましくは5
〜30重量部、誘電体充填材を、好ましくは1〜30重
量部、更に好ましくは5〜20重量部配合するのがよ
い。導電性充填材の配合量が少なすぎると、所望の導電
性もしくは半導電性が得られないため好ましくない。ま
た導電性充填材の配合量が多すぎると成形が困難とな
り、また物性を低下させるため好ましくない。誘電体充
填材の配合量が少なすぎると抵抗率安定効果が発現され
ないため好ましくなく、多すぎると経済的に不利とな
り、また成形が困難となったり、物性が低下する虞があ
るため好ましくない。
The mixing ratio of each component of the resin composition of the present invention can be appropriately set according to the physical properties required for the selected component and the target material. However, the conductive filler is preferably added to 100 parts by weight of the resin. Is from 1 to 50 parts by weight, more preferably 5
The dielectric filler is preferably blended in an amount of 1 to 30 parts by weight, more preferably 5 to 20 parts by weight. If the amount of the conductive filler is too small, the desired conductivity or semi-conductivity cannot be obtained, which is not preferable. On the other hand, if the amount of the conductive filler is too large, molding becomes difficult and the physical properties are deteriorated. If the amount of the dielectric filler is too small, the effect of stabilizing the resistivity is not exhibited, which is not preferable. If the amount is too large, it is economically disadvantageous, and molding is difficult or physical properties may be deteriorated.

【0011】本発明の樹脂組成物の製造に当たっては、
慣用の方法を適宜採用し得るが、例えば、熱可塑性樹脂
を用いる場合には充填材成分と樹脂ペレットを予め乾式
混合した後、二軸押出機を用いて溶融混練押出し、ペレ
ット化する方法を例示できる。尚、本発明の樹脂組成物
は、一旦ペレット化して、保管・流通・使用できるが、
溶融状態から直接各種の成形品に成形してもよい。熱又
は反応硬化性樹脂を用いる場合には、液状樹脂と充填材
成分を撹拌混合することにより製造できる。得られた樹
脂組成物は任意の成形方法で成形することができる。本
発明の樹脂組成物を用いて成形品を製造する際には、押
出成形、カレンダー成形、プレス成形、ブロー成形、射
出成形等の各種成形法を採用できる。また硬化性樹脂を
用いる場合は本発明の樹脂組成物をシートモールディン
グコンパウンドもしくはバルクモールディングコンパウ
ンド用材料として用いることも可能である。
In producing the resin composition of the present invention,
Conventional methods can be appropriately adopted.For example, when a thermoplastic resin is used, a method in which a filler component and resin pellets are dry-mixed in advance and then melt-kneaded and extruded using a twin-screw extruder to form pellets is exemplified. it can. Incidentally, the resin composition of the present invention, once pelletized, can be stored, distributed and used,
You may shape | mold directly into various molded articles from a molten state. When a heat or reaction curable resin is used, it can be produced by stirring and mixing a liquid resin and a filler component. The obtained resin composition can be molded by any molding method. When producing a molded article using the resin composition of the present invention, various molding methods such as extrusion molding, calendar molding, press molding, blow molding, and injection molding can be employed. When a curable resin is used, the resin composition of the present invention can be used as a material for a sheet molding compound or a bulk molding compound.

【0012】[0012]

【実施例】以下に実施例を示し、本発明を更に詳細に説
明する。尚、以下において部とあるのは重量部を意味す
る。
The present invention will be described in more detail with reference to the following examples. In the following, “parts” means “parts by weight”.

【0013】実施例1 シリコーンゴム 100部に対し、導電性チタン酸カリ
ウム(デントールBK300、大塚化学株式会社製、チ
タン酸カリウム繊維の表面に酸化アンチモン及び酸化錫
を被覆したもの、繊維径0.4〜0.7μm、繊維長10
〜20μm、比抵抗率4.3Ω・cm)20部及び繊維状チ
タン酸バリウム[BTW、大塚化学株式会社製、繊維径
0.1〜0.5μm、繊維長1〜5μm、比誘電率240
(10MHz)]10部、酸化亜鉛 20部、シリコーン
変性オイル 5部、発泡剤 5部、少量の加硫剤を混練機
を用いて添加混合して本発明のエラストマー樹脂組成物
を得た。得られたエラストマーにつき、室温で印加電圧
を1〜3kVの範囲で変化させ印加電圧の変化に対する
エラストマーの抵抗率の変化を測定した。得られた抵抗
率を常用対数に換算した最大値と最小値との差は0.3
であった。
Example 1 Conductive potassium titanate (Denthol BK300, manufactured by Otsuka Chemical Co., Ltd., potassium titanate fiber coated with antimony oxide and tin oxide on 100 parts of silicone rubber, fiber diameter 0.4) ~ 0.7 μm, fiber length 10
20 parts by mass and fibrous barium titanate [BTW, manufactured by Otsuka Chemical Co., Ltd., fiber diameter 0.1 to 0.5 μm, fiber length 1 to 5 μm, relative dielectric constant 240]
(10 MHz)], 10 parts of zinc oxide, 5 parts of a silicone-modified oil, 5 parts of a foaming agent, and a small amount of a vulcanizing agent were added and mixed using a kneader to obtain an elastomer resin composition of the present invention. With respect to the obtained elastomer, the applied voltage was changed in the range of 1 to 3 kV at room temperature, and the change in the resistivity of the elastomer with respect to the change in the applied voltage was measured. The difference between the maximum value and the minimum value obtained by converting the obtained resistivity into a common logarithm is 0.3.
Met.

【0014】実施例2 繊維状チタン酸バリウムの配合量を20部とした他は実
施例1と同様にしてエラストマーを製造した。得られた
エラストマーの印加電圧の変化に対する抵抗率の変化を
実施例1と同様に測定した結果、最大値と最小値の差は
0.2であった。
Example 2 An elastomer was produced in the same manner as in Example 1 except that the amount of fibrous barium titanate was changed to 20 parts. The change in resistivity with respect to the change in applied voltage of the obtained elastomer was measured in the same manner as in Example 1. As a result, the difference between the maximum value and the minimum value was 0.2.

【0015】実施例3 実施例1の繊維状チタン酸バリウムに代えて繊維状チタ
ン酸バリウムストロンチウム[BSTW、大塚化学株式
会社製、繊維径0.1〜0.5、繊維長5〜10、誘電率
380(10MHz)]を20部用いた他は実施例1と
同様にしてエラストマーを製造した。得られたエラスト
マーの印加電圧の変化に対する抵抗率の変化を実施例1
と同様に測定した結果、最大値と最小値の差は0.3で
あった。
Example 3 A fibrous barium strontium titanate [BSTW, manufactured by Otsuka Chemical Co., Ltd., fiber diameter 0.1-0.5, fiber length 5-10, dielectric material] in place of the fibrous barium titanate of Example 1 A rate of 380 (10 MHz)] was used in the same manner as in Example 1 except that 20 parts of the elastomer were used. Example 1 shows the change in resistivity with respect to the change in applied voltage of the obtained elastomer.
As a result, the difference between the maximum value and the minimum value was 0.3.

【0016】実施例4 熱可塑性ポリエステルエラストマー 100部に対し導
電性チタン酸カリウム30部(実施例1で用いたも
の)、繊維状チタン酸バリウム 20部(実施例1で用
いたもの)を混練機を用いて混合し、樹脂組成物を製造
した。得られたエラストマーの印加電圧の変化に対する
抵抗率の変化を実施例1と同様に測定した結果、最大値
と最小値の差は0.4であった。
Example 4 A kneading machine was used in which 30 parts of conductive potassium titanate (used in Example 1) and 20 parts of fibrous barium titanate (used in Example 1) were mixed with 100 parts of a thermoplastic polyester elastomer. Was used to produce a resin composition. The change in resistivity with respect to the change in applied voltage of the obtained elastomer was measured in the same manner as in Example 1. As a result, the difference between the maximum value and the minimum value was 0.4.

【0017】[0017]

【表1】 (測定方法:直流抵抗計を用い厚さ2mmのシートの厚み
方向の抵抗率を測定した。例えば6E9とは 6×109
の意である。)
[Table 1] (Measurement method: The resistivity in the thickness direction of a sheet having a thickness of 2 mm was measured using a DC resistance meter. For example, 6E9 means 6 × 10 9
It means. )

【0018】[0018]

【発明の効果】本発明の樹脂組成物は、外部環境の変
化、とりわけ印加電圧の変化に対して安定な抵抗率(例
えば印加電圧を1〜3KVの範囲で変化させた際の抵抗
率の変化が常用対数に換算した最大値と最小値の差で
0.5以下)を示すので、電極用材料や抵抗素子用材
料、電子写真複写機、レーザープリンター等の転写ロー
ル、ベルトの成形材料等に好適に用いられる。また、本
発明の樹脂組成物のうち、導電性充填材として径0.0
1〜3μm、長さが1〜500μm、アスペクト比5〜5
00の導電性セラミックス繊維又はカーボン繊維を用い
るものは、前記の電気特性に加えて優れた機械的強度と
表面平滑性、耐摩耗性、寸法安定性を具備する材料とな
るので一層好適である。
The resin composition of the present invention has a stable resistivity against a change in the external environment, especially a change in the applied voltage (for example, a change in the resistivity when the applied voltage is changed in the range of 1 to 3 KV). Is 0.5 or less as the difference between the maximum value and the minimum value converted to the common logarithm), and is used as a material for electrodes, a material for resistive elements, a transfer roll of an electrophotographic copying machine, a laser printer, a molding material of a belt, and the like. It is preferably used. In the resin composition of the present invention, the conductive filler has a diameter of 0.0.
1-3 μm, length 1-500 μm, aspect ratio 5-5
A material using conductive ceramic fibers or carbon fibers of No. 00 is more preferable because it becomes a material having excellent mechanical strength, surface smoothness, abrasion resistance, and dimensional stability in addition to the above-mentioned electrical characteristics.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01B 3/00 H01B 3/00 A 3/12 304 3/12 304 (72)発明者 阪部 元重 大阪府高槻市東上牧1丁目1番3号 タイ ガースポリマー株式会社大阪工場内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H01B 3/00 H01B 3/00 A 3/12 304 3/12 304 (72) Inventor Motoshige Sakabe 1 Higashijomaki, Takatsuki City, Osaka Prefecture 1-3-3 Chome Garth Polymer Co., Ltd. Osaka Plant

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 樹脂に導電性充填材及び誘電体充填材が
共に配合されてなることを特徴とする樹脂組成物。
1. A resin composition comprising a resin and a conductive filler and a dielectric filler.
【請求項2】 樹脂は熱可塑性樹脂である請求項1の樹
脂組成物。
2. The resin composition according to claim 1, wherein the resin is a thermoplastic resin.
【請求項3】 樹脂100部に対して導電性充填材1〜
50部及び誘電体充填材が1〜30重量部配合されてな
る請求項1又は2記載の樹脂組成物。
3. A conductive filler 1 to 100 parts of resin.
3. The resin composition according to claim 1, wherein 50 parts and 1 to 30 parts by weight of a dielectric filler are blended.
【請求項4】 導電性充填材は径0.01〜3μm、長さ
が1〜500μm、アスペクト比5〜500の導電性セ
ラミックス繊維又はカーボン繊維である請求項1〜3の
いずれかに記載の樹脂組成物。
4. The conductive filler according to claim 1, wherein the conductive filler is a conductive ceramic fiber or carbon fiber having a diameter of 0.01 to 3 μm, a length of 1 to 500 μm, and an aspect ratio of 5 to 500. Resin composition.
【請求項5】 導電性充填材の比抵抗が10-3〜104
Ω・cmである請求項1〜4のいずれかに記載の樹脂組成
物。
5. The conductive filler has a specific resistance of 10 -3 to 10 4.
The resin composition according to any one of claims 1 to 4, wherein Ω · cm.
【請求項6】 誘電体充填材は、20℃、10MHzに
おける比誘電率が100以上のものである請求項1〜5
のいずれかに記載の樹脂組成物。
6. The dielectric filler has a relative dielectric constant of 100 or more at 20 ° C. and 10 MHz.
The resin composition according to any one of the above.
【請求項7】 誘電体充填材は、繊維状チタン酸アルカ
リ土類金属塩である請求項1〜6のいずれかに記載の樹
脂組成物。
7. The resin composition according to claim 1, wherein the dielectric filler is a fibrous alkaline earth metal titanate.
JP9293507A 1997-10-09 1997-10-09 Resin composition Expired - Fee Related JP3017145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9293507A JP3017145B2 (en) 1997-10-09 1997-10-09 Resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9293507A JP3017145B2 (en) 1997-10-09 1997-10-09 Resin composition

Publications (2)

Publication Number Publication Date
JPH11116825A true JPH11116825A (en) 1999-04-27
JP3017145B2 JP3017145B2 (en) 2000-03-06

Family

ID=17795641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9293507A Expired - Fee Related JP3017145B2 (en) 1997-10-09 1997-10-09 Resin composition

Country Status (1)

Country Link
JP (1) JP3017145B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001032781A1 (en) * 1999-11-02 2001-05-10 Daicel Chemical Industries, Ltd. Thermoplastic resin composition
JP2001192499A (en) * 2000-01-14 2001-07-17 Otsuka Chem Co Ltd Electroconductive resin composition
JP2002060595A (en) * 2000-08-11 2002-02-26 Sumitomo Chem Co Ltd Dielectric paste and dielectric film
JP2002371197A (en) * 2001-04-09 2002-12-26 Ube Ind Ltd Conductive resin composition and method for producing the same
WO2002102882A1 (en) * 2001-06-15 2002-12-27 Kaneka Corporation Semiconductive polyimide film and process for production thereof
JP2003238745A (en) * 2002-02-15 2003-08-27 Toyobo Co Ltd Resin composition, adhesive by using the same and method for bonding using the adhesive
JP2003530463A (en) * 2000-04-06 2003-10-14 スリーエム イノベイティブ プロパティズ カンパニー Low microwave loss low density dielectric
JP2020519705A (en) * 2017-05-12 2020-07-02 ダウ シリコーンズ コーポレーション Polymer composites with high dielectric constant and low dielectric dissipation
CN113667246A (en) * 2021-08-05 2021-11-19 浙江大铭新材料股份有限公司 High-stability PTC material

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001131427A (en) * 1999-11-02 2001-05-15 Daicel Chem Ind Ltd Thermoplastic resin composition
WO2001032781A1 (en) * 1999-11-02 2001-05-10 Daicel Chemical Industries, Ltd. Thermoplastic resin composition
US6812275B1 (en) 1999-11-02 2004-11-02 Daicel Chemical Industries, Ltd. Thermoplastic resin composition
JP2001192499A (en) * 2000-01-14 2001-07-17 Otsuka Chem Co Ltd Electroconductive resin composition
JP2003530463A (en) * 2000-04-06 2003-10-14 スリーエム イノベイティブ プロパティズ カンパニー Low microwave loss low density dielectric
JP2002060595A (en) * 2000-08-11 2002-02-26 Sumitomo Chem Co Ltd Dielectric paste and dielectric film
JP2002371197A (en) * 2001-04-09 2002-12-26 Ube Ind Ltd Conductive resin composition and method for producing the same
KR100840835B1 (en) * 2001-06-15 2008-06-23 가부시키가이샤 가네카 Semiconductive polyimide film and its manufacturing method
WO2002102882A1 (en) * 2001-06-15 2002-12-27 Kaneka Corporation Semiconductive polyimide film and process for production thereof
US7416695B2 (en) 2001-06-15 2008-08-26 Kaneka Corporation Semiconductive polymide film and process for production thereof
JP2003238745A (en) * 2002-02-15 2003-08-27 Toyobo Co Ltd Resin composition, adhesive by using the same and method for bonding using the adhesive
JP2020519705A (en) * 2017-05-12 2020-07-02 ダウ シリコーンズ コーポレーション Polymer composites with high dielectric constant and low dielectric dissipation
CN113667246A (en) * 2021-08-05 2021-11-19 浙江大铭新材料股份有限公司 High-stability PTC material
CN113667246B (en) * 2021-08-05 2024-06-04 浙江大铭新材料股份有限公司 PTC material with high stability

Also Published As

Publication number Publication date
JP3017145B2 (en) 2000-03-06

Similar Documents

Publication Publication Date Title
US5591382A (en) High strength conductive polymers
JP3017145B2 (en) Resin composition
TW381271B (en) Semiconductive roll
EP0401489B1 (en) Electrostratic attracting sheet
JP2002531660A (en) Synthetic resin composition
JPH01157827A (en) Elevated melting extrusion of thermoplastic substance including silicone penetration type polymer reticulate structure
CN1938790A (en) Conductive composition for producing carbon flexible heating structure, carbon flexible heating structure using the same, and manu not facturing method thereof
JP2008179752A (en) Resin composition
JPH03190964A (en) Rubber composition and rubber cured article and production of the same rubber composition
US20050159540A1 (en) Fluororesin composition
JP6413424B2 (en) Thermoplastic resin composition, method for producing the same, and molded article
JP2562048B2 (en) Dielectric or piezoelectric composition
KR100642622B1 (en) Planar heating element using carbon nanotube and its manufacturing method
JPH0825232B2 (en) Seamless semi-conductive belt
JPH06166819A (en) Method for producing conductive silicone rubber composition
JPH08333474A (en) Semiconductive resin composite
EP1270673A1 (en) Electrically conductive resin composition
JP2004207097A (en) Conductive resin composition
JPH08328356A (en) Semiconductor gigged member
JP2534873B2 (en) Conductive resin composition
JP4209974B2 (en) Sliding member for transfer device
JP3342544B2 (en) Conductive resin molding
JPH0267358A (en) Thermoplastic resin composition
Ali et al. Flexible Electrically Conductive Elastomers
JP2000178395A (en) Thermoplastic fluororesin composition and toner fixation member

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees