[go: up one dir, main page]

JPH11111288A - Method for producing lithium manganese composite oxide for non-aqueous lithium secondary battery and use thereof - Google Patents

Method for producing lithium manganese composite oxide for non-aqueous lithium secondary battery and use thereof

Info

Publication number
JPH11111288A
JPH11111288A JP9268844A JP26884497A JPH11111288A JP H11111288 A JPH11111288 A JP H11111288A JP 9268844 A JP9268844 A JP 9268844A JP 26884497 A JP26884497 A JP 26884497A JP H11111288 A JPH11111288 A JP H11111288A
Authority
JP
Japan
Prior art keywords
lithium
manganese
secondary battery
composite oxide
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9268844A
Other languages
Japanese (ja)
Other versions
JP3818753B2 (en
Inventor
Teruyuki Takahashi
輝行 高橋
Yutaka Umetsu
豊 梅津
Shigeo Fukuyasu
繁夫 福安
Masumi Terauchi
真澄 寺内
Toshihiko Shiotani
俊彦 塩谷
Masanao Terasaki
正直 寺崎
Hiroshi Mukai
寛 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Toryo Co Ltd
Japan Storage Battery Co Ltd
Original Assignee
Dai Nippon Toryo Co Ltd
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo Co Ltd, Japan Storage Battery Co Ltd filed Critical Dai Nippon Toryo Co Ltd
Priority to JP26884497A priority Critical patent/JP3818753B2/en
Publication of JPH11111288A publication Critical patent/JPH11111288A/en
Application granted granted Critical
Publication of JP3818753B2 publication Critical patent/JP3818753B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

(57)【要約】 【課題】 サイクル特性に優れた非水リチウム二次電池
に使用することのできるリチウムマンガン複合酸化物を
提供する。 【解決手段】 水酸化リチウムと、二酸化マンガン及び
炭酸マンガンから選ばれるマンガン化合物とを混合し、
350〜500℃で一次焼成し、100℃以下に冷却
し、解砕した後、600〜800℃で二次焼成した後、
更に水酸化リチウムを加えて、均一混合し、600〜8
00℃で焼成する。
(57) [Problem] To provide a lithium manganese composite oxide which can be used for a non-aqueous lithium secondary battery having excellent cycle characteristics. SOLUTION: A mixture of lithium hydroxide and a manganese compound selected from manganese dioxide and manganese carbonate,
After first firing at 350 to 500 ° C., cooling to 100 ° C. or less, and crushing, after second firing at 600 to 800 ° C.,
Further, lithium hydroxide is added and uniformly mixed, and 600 to 8
Bake at 00 ° C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、充放電サイクル特
性に優れた非水リチウム二次電池用リチウムマンガン複
合酸化物の製造方法及びその用途に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a lithium manganese composite oxide for a non-aqueous lithium secondary battery having excellent charge / discharge cycle characteristics and its use.

【0002】[0002]

【従来の技術】非水リチウム二次電池の正極材料として
は、これまでにチタンやモリブデンの硫化物や酸化物、
並びにバナジウムやリンの酸化物等が提案されている
が、これらは保存性が悪く高価なため、未だ実用化され
るまでには至っていない。一方、非水一次電池の正極活
物質としては、二酸化マンガンが代表的に用いられ、既
に実用化されている。二酸化マンガンは、資源的にも豊
富で安価であり、更に化学的に安定であるため、電池と
しての保存性に優れている。しかしながら、二酸化マン
ガンは可逆性に難があるため、非水系二次電池の正極活
物質としては不適当であり、そのため改質されたマンガ
ン酸化物が種々提案されている。
2. Description of the Related Art As a positive electrode material of a nonaqueous lithium secondary battery, sulfides and oxides of titanium and molybdenum,
In addition, oxides of vanadium and phosphorus have been proposed, but these have not been put to practical use yet because of their poor preservability and high cost. On the other hand, manganese dioxide is typically used as a positive electrode active material of a non-aqueous primary battery and has already been put to practical use. Manganese dioxide is abundant and inexpensive in terms of resources, and is chemically stable, and thus has excellent storage stability as a battery. However, since manganese dioxide has difficulty in reversibility, it is not suitable as a positive electrode active material of a non-aqueous secondary battery, and various modified manganese oxides have been proposed.

【0003】例えば、特開昭63−114064号や、
特開昭63−187569号、特開平1−235158
号の各公報に開示されているように、二酸化マンガン
と、リチウム塩との混合物を熱処理して、その結晶構造
中にリチウムを含有したマンガン酸化物が提案されてい
る。これらのマンガン酸化物は、熱処理温度によって、
生成するリチウム含有マンガン酸化物の構造が変動し、
例えば、熱処理温度が250〜300℃では、X線回折
図において、2θ=22°、31.7°、37°、42°、
55°付近にピークを有する結晶構造のマンガン酸化物
となり、300〜430℃では、Li2 MnO3 を含有
したマンガン酸化物となり、そして800〜900℃で
は、スピネル型構造を有するマンガン酸化物となる。
For example, JP-A-63-114064 and
JP-A-63-187569, JP-A-1-235158
As disclosed in each of the above publications, there has been proposed a manganese oxide containing lithium in its crystal structure by heat-treating a mixture of manganese dioxide and a lithium salt. These manganese oxides, depending on the heat treatment temperature,
The structure of the generated lithium-containing manganese oxide fluctuates,
For example, when the heat treatment temperature is 250 to 300 ° C., in the X-ray diffraction diagram, 2θ = 22 °, 31.7 °, 37 °, 42 °,
It becomes a manganese oxide having a crystal structure having a peak at around 55 °, becomes a manganese oxide containing Li 2 MnO 3 at 300 to 430 ° C., and becomes a manganese oxide having a spinel structure at 800 to 900 ° C. .

【0004】また、これらの改良法では二酸化マンガン
とリチウム塩とを固相同士で反応させるため、二酸化マ
ンガン粒子の内部まで改質が及ばず、高電流密度での充
放電サイクルでは劣化が早いという欠点があった。そこ
で、例えば、特開平2−183963号公報に開示され
ているように、リチウム塩を溶解した水溶液中に二酸化
マンガンを浸漬し、水分を蒸発乾固した後に熱処理し、
二酸化マンガン粒子の細孔内部にまで改質反応を進める
方法が提案されている。しかしながら、これまでに提案
されているリチウム含有二酸化マンガンでは、電気化学
活性が不十分であり、正極に用いた場合、優れた初期容
量及び容量保持率を有し、優れたサイクル特性を有する
非水リチウム二次電池を製造することは困難であった。
In these improved methods, manganese dioxide and a lithium salt are reacted with each other in a solid phase, so that the modification does not reach the inside of the manganese dioxide particles, and the deterioration is rapid in a charge / discharge cycle at a high current density. There were drawbacks. Therefore, for example, as disclosed in JP-A-2-183963, manganese dioxide is immersed in an aqueous solution in which a lithium salt is dissolved, moisture is evaporated to dryness, and then heat treatment is performed.
A method has been proposed in which the reforming reaction is advanced to the inside of the pores of the manganese dioxide particles. However, the lithium-containing manganese dioxide proposed so far has insufficient electrochemical activity, and when used for a positive electrode, has a good initial capacity and capacity retention, and has excellent cycle characteristics. It has been difficult to manufacture a lithium secondary battery.

【0005】なお、特開平6−203834号や、特開
平7−245106号、特開平7−307155号の各
公報には、二酸化マンガン又はマンガン塩と、リチウム
塩との混合物を熱処理して、リチウムイオン電池用のリ
チウムとマンガンとの複合酸化物が提案されている。し
かしながら、何れの技術でも、高い初期容量及び高い容
量保持率を提供するリチウムマンガン複合酸化物は得ら
れていない。
It is to be noted that JP-A-6-203834, JP-A-7-245106 and JP-A-7-307155 disclose that a manganese dioxide or a mixture of a manganese salt and a lithium salt is heat-treated to form lithium. Composite oxides of lithium and manganese for ion batteries have been proposed. However, none of the techniques has provided a lithium manganese composite oxide that provides high initial capacity and high capacity retention.

【0006】[0006]

【発明が解決しようとする課題】従って、本発明は、優
れた初期容量及び容量保持率を有し、サイクル特性に優
れた非水リチウム二次電池を提供することを目的とす
る。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a non-aqueous lithium secondary battery having excellent initial capacity and capacity retention and excellent cycle characteristics.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意検討を行った結果、水酸化リチウ
ムと、二酸化マンガン及び炭酸マンガンから選ばれるマ
ンガン化合物とを混合し、350〜500℃で一次焼成
し、100℃以下に冷却し、解砕した後、600〜80
0℃で二次焼成し、更に、水酸化リチウムを加えて、均
一混合し、600〜800℃で焼成することによりサイ
クル特性に優れた非水リチウム二次電池を製造すること
のできるリチウムマンガン複合酸化物が得られることを
見出し、本発明に到達したものである。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, mixed lithium hydroxide with a manganese compound selected from manganese dioxide and manganese carbonate to obtain a mixture of 350 ml Primary firing at ~ 500 ° C, cooling to 100 ° C or less, crushing, 600-80
Lithium manganese composite capable of producing a non-aqueous lithium secondary battery having excellent cycle characteristics by secondary firing at 0 ° C., further adding lithium hydroxide, mixing uniformly, and firing at 600 to 800 ° C. The inventors have found that an oxide can be obtained, and have reached the present invention.

【0008】[0008]

【発明の実施の形態】以下、本発明について更に詳細に
説明する。本発明で使用する水酸化リチウムとしては、
例えば、LiOH・H2 Oで示される一水塩として市販
されているものが好適に使用される。水酸化リチウムと
しては、粒状のものを使用することが適当である。粒状
物の平均粒径は、通常20〜100 μm、好ましくは40〜80
μmであることが適当である。本発明で使用されるマン
ガン化合物としては、二酸化マンガン又は炭酸マンガン
が使用される。マンガン化合物としては、粒状のものを
使用することが適当である。粒状物の平均粒径は、通常
20〜100 μm、好ましくは40〜80μmであることが適当
である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. As the lithium hydroxide used in the present invention,
For example, a commercially available monohydrate represented by LiOH.H 2 O is preferably used. It is appropriate to use granular lithium hydroxide. The average particle size of the granules is usually 20 to 100 μm, preferably 40 to 80 μm.
Suitably, it is μm. Manganese dioxide or manganese carbonate is used as the manganese compound used in the present invention. It is appropriate to use granular manganese compounds. The average particle size of the granules is usually
Suitably, it is 20 to 100 μm, preferably 40 to 80 μm.

【0009】二酸化マンガン又は炭酸マンガンとして
は、各種の材料を使用することができる。例えば、二酸
化マンガンとして、マンガン鉱石を400℃以上の温度
で焼成して得られるMn2 3 又はMn3 4 等の低級
マンガン酸化物を硫酸や硝酸、又はこれらの混合物等の
鉱酸により不均化反応させることによって得られる化学
合成二酸化マンガンを使用することができる。また、電
解によって得られる電解二酸化マンガンを使用すること
ができる。水酸化リチウムと、マンガン化合物とは、湿
式混合でも乾式混合でも、混合することができる。湿式
混合では、水酸化リチウムは、スラリー状に水に溶解し
た状態にあり、この溶解状態にある水酸化リチウムが、
マンガン化合物中に高度に分散された状態となるので、
得られるリチウムマンガン複合酸化物は、組成的に非常
に均一となり、好ましい。
Various materials can be used as manganese dioxide or manganese carbonate. For example, as manganese dioxide, a lower manganese oxide such as Mn 2 O 3 or Mn 3 O 4 obtained by calcining a manganese ore at a temperature of 400 ° C. or more cannot be treated with a mineral acid such as sulfuric acid, nitric acid, or a mixture thereof. A chemically synthesized manganese dioxide obtained by a leveling reaction can be used. Further, electrolytic manganese dioxide obtained by electrolysis can be used. Lithium hydroxide and a manganese compound can be mixed by wet mixing or dry mixing. In wet mixing, lithium hydroxide is in a state of being dissolved in water in a slurry state, and lithium hydroxide in this dissolved state is
Because it becomes a state highly dispersed in the manganese compound,
The obtained lithium manganese composite oxide is very uniform in composition and is preferable.

【0010】水酸化リチウムと、マンガン化合物との混
合は、例えば、水酸化リチウム(LiOH・H2 O)
と、マンガン化合物とを、通常、LiとMnとのモル比
で0.80:2〜1.10:2、好ましくは、1.90:2〜1.00:
2となるように配合し、これをポットミルを用いて水を
加えて湿式又は水を加えないで乾式で混合することによ
って行うことができる。このようにして得られた混合物
は、水を加えたものは水を蒸発させた後、350〜50
0℃、好ましくは400〜500℃、更に好ましくは4
50〜500℃の温度において焼成(一次焼成)する。
水酸化リチウムの融点は、445℃であるので、好まし
くは、500℃以下の温度で焼成することにより、リチ
ウムイオンがマンガン化合物の細孔内部に、浸透し、均
一なマンガン酸リチウムが得られる。
The mixing of lithium hydroxide and a manganese compound can be performed, for example, by mixing lithium hydroxide (LiOH.H 2 O)
And a manganese compound, usually in a molar ratio of Li to Mn of 0.80: 2 to 1.10: 2, preferably 1.90: 2 to 1.00:
The mixture can be prepared by adding water using a pot mill and mixing the mixture in a wet system or in a dry system without adding water. The mixture obtained in this way, after adding water, after evaporating the water,
0 ° C, preferably 400-500 ° C, more preferably 4 ° C
Firing (primary firing) at a temperature of 50 to 500 ° C.
Since the melting point of lithium hydroxide is 445 ° C., preferably, by baking at a temperature of 500 ° C. or less, lithium ions penetrate into the pores of the manganese compound to obtain uniform lithium manganate.

【0011】このようにして得られた一次焼成物は、一
旦、100℃以下、好ましくは45℃以下、更に好まし
くは20℃以下に冷却した後、解砕する。冷却温度の下
限としては、実際の操作上、0℃以上が適当である。こ
の冷却操作によって、更に均一なリチウムマンガン複合
酸化物を得ることが出来る。解砕物の平均粒径は、通常
20〜100μm、好ましくは40〜80μmであるこ
とが好ましい。100μm以上では、解砕、均一混合が
十分ではない傾向にある。20μm以下では、解砕過剰
で、化合物の構造を破壊する懸念があり好ましくない。
更に、作業者への微粉吸入を増大させ易い。このように
して得られた解砕物は、再度焼成(二次焼成)される。
二次焼成は、600〜800℃、好ましくは650〜7
50℃で行うことが適当である。
The primary fired product thus obtained is once cooled to 100 ° C. or lower, preferably 45 ° C. or lower, more preferably 20 ° C. or lower, and then crushed. As a lower limit of the cooling temperature, 0 ° C. or more is appropriate for practical operation. By this cooling operation, a more uniform lithium manganese composite oxide can be obtained. The average particle size of the crushed product is usually 20 to 100 μm, preferably 40 to 80 μm. If it is 100 μm or more, crushing and uniform mixing tend to be insufficient. If it is less than 20 μm, there is a concern that the compound may be excessively disintegrated and destroy the structure of the compound.
Further, it is easy to increase the fine powder suction to the operator. The crushed material thus obtained is fired again (secondary firing).
The secondary firing is performed at 600 to 800 ° C., preferably 650 to 7
Suitably, it is carried out at 50 ° C.

【0012】このようにして得られた二次焼成物には、
再度、水酸化リチウムを配合し、均一に混合する。水酸
化リチウムの添加量は、改質分として、マンガンに対し
てモル比で、0.01〜0.30:2モル、好ましくは、0.02〜
0.20:2モルとなる量であることが適当である。均一な
混合は、例えば、ポットミルを用いて乾式で混合するこ
とによって達成することができる。このようにして得ら
れた混合物は、次いで、600〜800℃、好ましく
は、650〜750℃で焼成(三次焼成)することによ
り、均一構造の芯部とLi改質を進めた表面部との2層
構造を持ったリチウムマンガン複合酸化物が得られる。
三次焼成は、解砕処理を間に挟んで、2回以上行っても
良い。このようにして得られたリチウムマンガン複合酸
化物は、2層構造を持つことで、高い初期容量及び高い
容量保持率を有するものと考えられる。特に、リチウム
改質を進めた表層部は、充放電でLiの出し入れに伴う
内部結晶構造の壊れを少なくしていると考えられる。こ
れに対して、二次焼成までの工程のみで、これらの化合
物を乾式混合すると、混合が不十分となるため、得られ
るリチウムマンガン複合酸化物におけるマンガン酸リチ
ウムの組成が全体的に不均一となり、放電容量及び容量
保持率の高いリチウムマンガン複合酸化物を得ることが
できない。
[0012] The secondary fired product thus obtained includes:
Again, lithium hydroxide is blended and uniformly mixed. The amount of lithium hydroxide to be added is 0.01 to 0.30: 2 mol, preferably 0.02 to 0.3 mol, as a reforming component, relative to manganese.
It is appropriate that the amount is 0.20: 2 mol. Uniform mixing can be achieved, for example, by dry mixing using a pot mill. The mixture thus obtained is then fired (tertiary firing) at 600 to 800 ° C., preferably 650 to 750 ° C., so that the core having a uniform structure and the surface which has undergone Li modification are advanced. A lithium manganese composite oxide having a two-layer structure is obtained.
The tertiary firing may be performed twice or more with a crushing process interposed therebetween. It is considered that the thus obtained lithium manganese composite oxide has a high initial capacity and a high capacity retention by having a two-layer structure. In particular, it is considered that the surface layer portion that has undergone lithium reforming has reduced the breakage of the internal crystal structure accompanying the inflow and outflow of Li during charging and discharging. On the other hand, when these compounds are dry-mixed only in the process up to the secondary firing, the mixing becomes insufficient, so that the composition of lithium manganate in the obtained lithium-manganese composite oxide becomes entirely uneven. In addition, a lithium manganese composite oxide having a high discharge capacity and a high capacity retention cannot be obtained.

【0013】得られたリチウムマンガン複合酸化物は、
非水リチウム二次電池の正極材料として使用する。正極
材料としての使用方法等は、従来の正極材料の使用方法
等の場合と同様である。この場合、非水リチウム二次電
池における負極としては従来より使用されている金属リ
チウムや、リチウム合金及びリチウムがドープ、脱ドー
プできる炭素質素材や、酸化物等を使用することができ
る。
The obtained lithium manganese composite oxide is
Used as a positive electrode material for non-aqueous lithium secondary batteries. The method of using the positive electrode material is the same as the method of using the conventional positive electrode material. In this case, as the negative electrode in the non-aqueous lithium secondary battery, conventionally used metal lithium, a lithium alloy or a carbonaceous material which can be doped or dedoped with lithium, an oxide, or the like can be used.

【0014】[0014]

【実施例】以下、実施例により、本発明について更に詳
細に説明する。実施例1 水酸化リチウム(LiOH・H2 O)と、電解二酸化マ
ンガンとを、LiとMnとのモル比が1.00:2となるよ
うに配合し、配合物の合計の20重量%の脱イオン水を
加えて、スラリーを形成した。このスラリーをポットミ
ル中で混合した後、150℃で乾燥し、大気雰囲気下で
470℃、12時間一次焼成した。次いで、焼成物を室
温(20℃)まで下げた後、平均粒径が55μmとなる
ように解砕し、大気雰囲気下で700℃、12時間二次
焼成した。得られた二次焼成物に更に、水酸化リチウム
(LiOH・H2 O)をLiとマンガンとのモル比が、
0.05:2モルとなるように加えてポットミル中で混合し
た後、大気雰囲気下で700℃、12時間焼成した。こ
の焼成物を正極活物質として、82重量部を使用し、更
に、アセチレンブラック10重量部、バインダーとして
ポリ弗化ビニリデン8重量部を予めN−メチル−2−ピ
ロリドン58重量部に溶解したものを加えて十分に混合
し、ペーストを得た。このペーストをアルミニウム網に
塗布し、圧着、乾燥させることによって正極板を作成し
た。対極には、正極と同じ大きさの金属リチウム板を使
用し、正極電位測定には金属リチウム基準電極を用い
た。電解液とし1モル/dm3 のLiPF6 を溶解したエ
チレンカーボネート及びジエチルカーボネート1:1の
混合溶媒を用いることによって試験電池を作成した。実施例2 正極活物質を生成するに際し、電解二酸化マンガンを化
学合成二酸化マンガンに代えること以外は、実施例1と
同様にして試験電池を作成した。実施例3 マンガン化合物として炭酸マンガン(MnCO3 )を使
用すること以外は、実施例1と同様にして試験電池を作
成した。
The present invention will be described in more detail with reference to the following examples. Example 1 Lithium hydroxide (LiOH.H 2 O) and electrolytic manganese dioxide were blended so that the molar ratio of Li to Mn was 1.00: 2, and deionized to 20% by weight of the total blend. Water was added to form a slurry. This slurry was mixed in a pot mill, dried at 150 ° C., and fired at 470 ° C. for 12 hours in an air atmosphere. Next, after lowering the calcined product to room temperature (20 ° C.), the calcined product was crushed so that the average particle size became 55 μm, and secondary calcining was performed at 700 ° C. for 12 hours in an air atmosphere. Lithium hydroxide (LiOH.H 2 O) was further added to the obtained secondary fired product by a molar ratio of Li to manganese,
After mixing in a pot mill at 0.05: 2 mol, the mixture was baked at 700 ° C. for 12 hours in an air atmosphere. Using 82 parts by weight of the fired product as a positive electrode active material, 10 parts by weight of acetylene black, and 8 parts by weight of polyvinylidene fluoride as a binder previously dissolved in 58 parts by weight of N-methyl-2-pyrrolidone In addition, the mixture was sufficiently mixed to obtain a paste. This paste was applied to an aluminum net, pressed and dried to prepare a positive electrode plate. As a counter electrode, a metal lithium plate having the same size as the positive electrode was used, and a metal lithium reference electrode was used for positive electrode potential measurement. A test battery was prepared by using a mixed solvent of ethylene carbonate and diethyl carbonate 1: 1 in which 1 mol / dm 3 of LiPF 6 was dissolved as an electrolyte. Example 2 A test battery was prepared in the same manner as in Example 1 except that electrolytic manganese dioxide was replaced with chemically synthesized manganese dioxide when producing a positive electrode active material. Example 3 A test battery was prepared in the same manner as in Example 1 except that manganese carbonate (MnCO 3 ) was used as a manganese compound.

【0015】比較例1 水酸化リチウム(LiOH・H2 O)と、電解二酸化マ
ンガンとを、LiとMnとのモル比が1:2となるよう
に配合し、配合物合計の20重量%の脱イオン水を加え
て、スラリーを調製した。このスラリーをポットミル中
で湿式混合を行い、150℃で乾燥した後、大気雰囲気
下で700℃、12時間一次焼成した。この焼成物を正
極活物質として用いた以外は、実施例1と同様にして試
験電池を作成した。比較例2 水酸化リチウム(LiOH・H2 O)と、電解二酸化マ
ンガンとを、LiとMnとのモル比が1:2となるよう
に配合し、配合物合計の20重量%の脱イオン水を加え
て、スラリーを調製し、これをポットミル中で湿式混合
を行った。このスラリーを、150℃で乾燥した後、大
気雰囲気下で470℃、12時間一次焼成し、続けて更
に700℃、12時間二次焼成した。この焼成物を正極
活物質として用いた以外は、実施例1と同様にして試験
電池を作成した。比較例3 (特開平6−203834号公報記載の技術) 酢酸リチウムと、酢酸マンガン四水和物とを1:2のモ
ル比となるように、配合し、配合物合計の220重量%
のエチレングリコール中で加熱溶解し、酢酸臭がなくな
り、エチレングリコールが除去されるまで加熱を続け、
固化させた。次いで、得られた混合物を400℃で3時
間熱処理し、空気中700℃で焼成し、得られた焼成物
を実施例1と同様にしてペースト状にし、試験電池を作
成した。物性試験 以上のようにして作成した試験電池を電流密度0.5 mA/c
m2の定電流で 4.3Vまで充電した後、 3.0Vまで放電す
る充放電サイクルを繰り返すことによって放電特性を評
価した。その際、1サイクル目の放電容量を初期容量
(mAh/g )とし、初期容量に対する10サイクル目の放
電容量を容量保持率(%)とした。結果を表1に示す。
Comparative Example 1 Lithium hydroxide (LiOH.H 2 O) and electrolytic manganese dioxide were blended so that the molar ratio of Li to Mn was 1: 2, and 20% by weight of the total blend was blended. A slurry was prepared by adding deionized water. This slurry was wet-mixed in a pot mill, dried at 150 ° C., and then primary fired at 700 ° C. for 12 hours in an air atmosphere. A test battery was prepared in the same manner as in Example 1, except that this fired product was used as a positive electrode active material. Comparative Example 2 Lithium hydroxide (LiOH.H 2 O) and electrolytic manganese dioxide were blended so that the molar ratio between Li and Mn was 1: 2, and 20% by weight of the total amount of deionized water was calculated. Was added to prepare a slurry, which was wet-mixed in a pot mill. After drying this slurry at 150 ° C., it was first fired at 470 ° C. for 12 hours in the air atmosphere, and then further fired at 700 ° C. for 12 hours. A test battery was prepared in the same manner as in Example 1, except that this fired product was used as a positive electrode active material. Comparative Example 3 (Technique described in JP-A-6-203834) Lithium acetate and manganese acetate tetrahydrate were blended in a molar ratio of 1: 2, and 220% by weight of the total blend was mixed.
Heating and dissolving in ethylene glycol, acetic acid smell disappeared, heating continued until ethylene glycol was removed,
Allowed to solidify. Next, the obtained mixture was heat-treated at 400 ° C. for 3 hours and fired in air at 700 ° C., and the obtained fired product was made into a paste in the same manner as in Example 1 to produce a test battery. Physical properties test The test battery prepared as above was subjected to a current density of 0.5 mA / c.
Discharge characteristics were evaluated by repeating a charge / discharge cycle in which the battery was charged to 4.3 V with a constant current of m 2 and then discharged to 3.0 V. At that time, the discharge capacity at the first cycle was defined as the initial capacity (mAh / g), and the discharge capacity at the tenth cycle relative to the initial capacity was defined as the capacity retention (%). Table 1 shows the results.

【0016】[0016]

【表1】 表1に示すように、本発明の実施例1〜3の電池は、所
定の充放電条件下で、高い初期容量及び容量保持率が得
られた。
[Table 1] As shown in Table 1, in the batteries of Examples 1 to 3 of the present invention, a high initial capacity and a high capacity retention were obtained under predetermined charge and discharge conditions.

【0017】一方、正極活物質を生成するに際し、70
0℃における一次焼成のみの比較例1、一次焼成後、室
温まで冷却することなしに二次焼成を行なう比較例2、
公知例に従って製造した比較例3では、初期容量、容量
保持率は低く、サイクル特性が悪かった。
On the other hand, when producing the positive electrode active material, 70%
Comparative Example 1, only primary firing at 0 ° C., Comparative Example 2, after primary firing, secondary firing without cooling to room temperature,
In Comparative Example 3 manufactured according to the known example, the initial capacity and the capacity retention were low, and the cycle characteristics were poor.

【0018】[0018]

【発明の効果】本発明の方法によって製造したリチウム
マンガン複合酸化物は、非水リチウム二次電池の正極と
して使用する場合に、サイクル特性に優れた非水リチウ
ムニ次電池を提供する。
The lithium manganese composite oxide produced by the method of the present invention provides a non-aqueous lithium secondary battery having excellent cycle characteristics when used as a positive electrode of a non-aqueous lithium secondary battery.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福安 繁夫 大阪府大阪市大正区三軒家東5−18−6 (72)発明者 寺内 真澄 奈良県奈良市南永井町甲230−4 (72)発明者 塩谷 俊彦 栃木県大田原市城山2−4−18 パークサ イドレジデンス103 (72)発明者 寺崎 正直 京都府京都市南区吉祥院西ノ庄猪之馬場町 1番地日本電池株式会社内 (72)発明者 向井 寛 京都府京都市南区吉祥院西ノ庄猪之馬場町 1番地日本電池株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shigeo Fukuyasu 5-18-6 Sangenya Higashi, Taisho-ku, Osaka-shi, Osaka (72) Inventor Masumi Terauchi 230-4 Minami-Nagai-cho, Nara-shi, Nara (72) Inventor Toshihiko Shioya Parkside Residence 103, 2-4-18 Shiroyama, Otawara-shi, Tochigi Inventor Masanao Terasaki 1st Nippon Shono Inobaba-cho, Kichijo-in, Minami-ku, Kyoto, Kyoto (72) Inside Nihon Battery Co., Ltd. Person Hiroshi Mukai 1st Nishinosho Inonobaba-cho, Minami-ku, Kyoto, Kyoto

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水酸化リチウムと、二酸化マンガン及び
炭酸マンガンから選ばれるマンガン化合物とを混合し、
350〜500℃で一次焼成し、100℃以下に冷却
し、解砕した後、600〜800℃で二次焼成した後、
更に水酸化リチウムを加えて、均一混合し、600〜8
00℃で焼成することを特徴とする非水リチウム二次電
池用のリチウムマンガン複合酸化物の製造方法。
1. A method of mixing lithium hydroxide with a manganese compound selected from manganese dioxide and manganese carbonate,
After first firing at 350 to 500 ° C., cooling to 100 ° C. or less, and crushing, after second firing at 600 to 800 ° C.,
Further, lithium hydroxide is added and uniformly mixed, and 600 to 8
A method for producing a lithium manganese composite oxide for a nonaqueous lithium secondary battery, characterized by firing at 00 ° C.
【請求項2】 負極に金属リチウム若しくはその合金、
又はリチウム及び/又はリチウムイオンを吸蔵放出する
物質を用いるリチウム二次電池において、請求項1に記
載のリチウムマンガン複合酸化物を正極として用いるこ
とを特徴とする非水リチウム二次電池。
2. A negative electrode comprising metallic lithium or an alloy thereof,
A non-aqueous lithium secondary battery comprising a lithium manganese composite oxide according to claim 1 or a lithium secondary battery using a substance capable of inserting and extracting lithium and / or lithium ions.
JP26884497A 1997-10-01 1997-10-01 Method for producing lithium manganese composite oxide for non-aqueous lithium secondary battery Expired - Fee Related JP3818753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26884497A JP3818753B2 (en) 1997-10-01 1997-10-01 Method for producing lithium manganese composite oxide for non-aqueous lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26884497A JP3818753B2 (en) 1997-10-01 1997-10-01 Method for producing lithium manganese composite oxide for non-aqueous lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH11111288A true JPH11111288A (en) 1999-04-23
JP3818753B2 JP3818753B2 (en) 2006-09-06

Family

ID=17464063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26884497A Expired - Fee Related JP3818753B2 (en) 1997-10-01 1997-10-01 Method for producing lithium manganese composite oxide for non-aqueous lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3818753B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292542A (en) * 1998-02-12 1999-10-26 Mitsui Mining & Smelting Co Ltd Production of li-mn double oxide
JP2002124258A (en) * 2000-10-13 2002-04-26 Toda Kogyo Corp Lithium manganate particle powder and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292542A (en) * 1998-02-12 1999-10-26 Mitsui Mining & Smelting Co Ltd Production of li-mn double oxide
JP2002124258A (en) * 2000-10-13 2002-04-26 Toda Kogyo Corp Lithium manganate particle powder and its manufacturing method

Also Published As

Publication number Publication date
JP3818753B2 (en) 2006-09-06

Similar Documents

Publication Publication Date Title
JP4768901B2 (en) Lithium titanium composite oxide, method for producing the same, and use thereof
JP2000306584A (en) Positive electrode active material for lithium secondary battery and method for producing the same
US6929788B2 (en) Method for preparing lithium manganese spinel oxide having improved electrochemical performance
KR100687672B1 (en) Non-aqueous electrolyte secondary battery
JP3695366B2 (en) Positive electrode active material for lithium ion secondary battery and method for producing the same
JP2001243949A (en) Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
KR100639060B1 (en) Method for preparing spinel type lithium manganate
JP4558229B2 (en) Lithium titanate, method for producing the same, and use thereof
JP2001146426A (en) Method for producing lithium manganese compound oxide and lithium ion secondary battery using the same
JP2004155631A (en) Lithium manganese-based double oxide particles for non-aqueous lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery
JP3086297B2 (en) Non-aqueous solvent secondary battery
JP2001328814A (en) Lithium manganese-based composite oxide, its production method and secondary battery
JP3818753B2 (en) Method for producing lithium manganese composite oxide for non-aqueous lithium secondary battery
JP2002343356A (en) Lithium manganese double oxide particles, method for producing the same, and secondary battery
JPH11317225A (en) Positive active material for lithium secondary battery and its manufacture
JP2003045425A (en) Nonaqueous electrolyte secondary battery
JP3590496B2 (en) Method for producing lithium manganese composite oxide for non-aqueous lithium secondary battery and use thereof
JP2003146662A (en) Lithium-nickel-manganese complex oxide, method for manufacturing the same and use of the same
JP4519959B2 (en) Positive electrode material for lithium secondary battery
JPH11339805A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP3274993B2 (en) Cathode materials for lithium secondary batteries
JP3590503B2 (en) Method for producing lithium manganese composite oxide for non-aqueous lithium secondary battery and use thereof
JPH1173960A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and the nonaquoues electrolyte secondary battery
JP3774303B2 (en) Method for producing lithium manganese composite oxide for non-aqueous lithium secondary battery and use thereof
JP2002338247A (en) Lithium manganese double oxide particles, method for producing the same, and secondary battery

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20031225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051104

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060406

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060406

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees