JPH11110114A - Magnetic three-dimensional tracker - Google Patents
Magnetic three-dimensional trackerInfo
- Publication number
- JPH11110114A JPH11110114A JP26557297A JP26557297A JPH11110114A JP H11110114 A JPH11110114 A JP H11110114A JP 26557297 A JP26557297 A JP 26557297A JP 26557297 A JP26557297 A JP 26557297A JP H11110114 A JPH11110114 A JP H11110114A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- eddy current
- movable body
- magnetic
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Position Input By Displaying (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、可動体の時々刻
々の3次元的な位置および姿勢角(向き又は姿勢)をリ
アルタイムで測定する磁気式3次元トラッカーに係り、
可動体の位置および姿勢角の測定精度を向上させるため
の技術に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic three-dimensional tracker for measuring the instantaneous three-dimensional position and posture angle (direction or posture) of a movable body in real time.
The present invention relates to a technique for improving measurement accuracy of a position and a posture angle of a movable body.
【0002】[0002]
【従来の技術】磁気式3次元トラッカーは、例えば、操
縦中のパイロットの頭部の動きを、時々刻々捕捉するの
に用いられている。HMD(ヘッドマウントディスプレ
イ)を装着した戦闘機パイロットは、半透明バイザーを
通して見える外界情報と、半透明バイザーに映し出され
る各種情報を同時に確認しながら操縦を行う。パイロッ
トが被っているヘルメットには3次元トラッカーの受信
アンテナ(磁気センサ)が取り付けられていて、この受
信アンテナから出力される磁界検出信号に基づきパイロ
ットの頭部の動きが時々刻々捕捉されるとともに、3次
元トラッカーによる捕捉結果に基づき、ミサイルを敵機
の方に向ける自動制御が行われる。2. Description of the Related Art A magnetic three-dimensional tracker is used, for example, to constantly capture the movement of a pilot's head while maneuvering. A fighter pilot equipped with an HMD (head-mounted display) controls the aircraft while simultaneously checking external information visible through the translucent visor and various information projected on the translucent visor. A receiving antenna (magnetic sensor) of a three-dimensional tracker is attached to the helmet worn by the pilot, and the movement of the pilot's head is constantly captured based on a magnetic field detection signal output from the receiving antenna. Automatic control for directing the missile toward the enemy aircraft is performed based on the results captured by the three-dimensional tracker.
【0003】磁気式3次元トラッカーの場合、パイロッ
トからは離れて定位置に固定されているとともに10k
Hz程度の周波数の交流磁界を放射す放射アンテナと、
パイロットのヘルメットに取り付けられているとともに
放射アンテナからの交流磁界を受信する受信アンテナと
を備え、受信アンテナから出力される磁界検出信号を解
析処理することにより、パイロットの頭の位置・姿勢角
を時々刻々求出する構成となっている。[0003] In the case of a magnetic three-dimensional tracker, it is fixed at a fixed position away from the pilot and 10 k
A radiating antenna that radiates an alternating magnetic field at a frequency of about Hz,
A receiving antenna attached to the pilot's helmet and receiving an alternating magnetic field from the radiating antenna is provided. By analyzing the magnetic field detection signal output from the receiving antenna, the position and attitude angle of the pilot's head are sometimes determined. It is configured to find every moment.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、従来の
磁気式3次元トラッカーは、位置・姿勢角の測定精度が
十分でないという問題がある。まわりにある金属物体に
生じる渦電流が測定誤差を引き起こすからである。まわ
りに金属物体がある場合、放射アンテナから放射される
10kHz程度の交流磁界によって、金属物体に放射ア
ンテナの交流磁界と同じ周波数の渦電流が生じると同時
に、渦電流による2次的交流磁界が金属物体から放出さ
れる。一方、受信アンテナの方では、放射アンテナの交
流磁界と一緒に2次的交流磁界も同時に検出されるの
で、受信アンテナの磁界検出信号は放射アンテナの交流
磁界成分に同じ周波数で2次的交流磁界成分が重畳する
ことになる。つまり、受信アンテナの磁界検出信号に
は、パイロットの頭部の動きとは無関係な金属物体の渦
電流による2次的交流磁界成分が含まれることになり、
これが位置・姿勢角の測定結果に誤差を生じさせて測定
精度を低下させる。However, the conventional magnetic three-dimensional tracker has a problem that the measurement accuracy of the position / posture angle is not sufficient. This is because an eddy current generated in a surrounding metal object causes a measurement error. When there is a metallic object around, an eddy current of the same frequency as the alternating magnetic field of the radiating antenna is generated in the metallic object by an alternating magnetic field of about 10 kHz radiated from the radiating antenna, and a secondary alternating magnetic field due to the eddy current is generated by the metallic object. Released from objects. On the other hand, in the receiving antenna, since the secondary AC magnetic field is detected simultaneously with the AC magnetic field of the radiation antenna, the magnetic field detection signal of the reception antenna has the secondary AC magnetic field at the same frequency as the AC magnetic field component of the radiation antenna. The components will overlap. In other words, the magnetic field detection signal of the receiving antenna includes a secondary AC magnetic field component due to the eddy current of the metal object that is unrelated to the movement of the pilot's head.
This causes an error in the measurement result of the position / orientation angle and lowers the measurement accuracy.
【0005】この発明は、上記の事情に鑑み、位置・姿
勢角の測定対象である可動体まわりの金属物体に生じる
渦電流に起因する測定誤差を解消することができる磁気
式3次元トラッカーを提供することを課題とする。The present invention has been made in view of the above circumstances, and provides a magnetic three-dimensional tracker that can eliminate a measurement error caused by an eddy current generated in a metal object around a movable body whose position and attitude are to be measured. The task is to
【0006】[0006]
【課題を解決するための手段】上記課題を達成するた
め、この発明の磁気式3次元トラッカーは、可動体の時
々刻々の3次元的な位置および姿勢角(向き)をリアル
タイムで測定するトラッカーであって、測定対象である
可動体からは離れて定位置に固定されているとともに交
流磁界を放射する交流磁界放射手段と、可動体に一体的
に取り付けられているとともに交流磁界を受信する交流
磁界受信手段と、交流磁界受信手段から出力される磁界
検出信号を解析処理することにより、測定対象の可動体
の位置・姿勢角を求出する位置・姿勢角求出手段とを備
えている磁気式3次元トラッカーにおいて、交流磁界放
射手段に周波数の異なる交流磁界を放射させる励振駆動
手段と、交流磁界放射手段から放射される周波数の異な
る交流磁界に伴って交流磁界受信手段で検出される異な
る周波数の磁界検出信号に基づき、前記可動体のまわり
で発生する渦電流磁界による検出磁界分を求出する渦電
流磁界求出手段と、交流磁界受信手段から出力される磁
界検出信号から渦電流による検出磁界分を差し引いて補
正磁界信号を得て位置・姿勢角求出手段へ出力する渦電
流磁界除去手段とを備えている。In order to achieve the above object, a magnetic three-dimensional tracker according to the present invention is a tracker for measuring a three-dimensional position and posture angle (direction) of a movable body in real time. An AC magnetic field radiating means fixed at a fixed position away from the movable body to be measured and emitting an AC magnetic field, and an AC magnetic field integrally attached to the movable body and receiving the AC magnetic field A magnetic type including a receiving unit and a position / posture angle calculating unit that calculates a position / posture angle of a movable body to be measured by analyzing a magnetic field detection signal output from the AC magnetic field receiving unit. In a three-dimensional tracker, an excitation driving means for causing an AC magnetic field radiating means to emit AC magnetic fields having different frequencies, and an AC magnetic field having a different frequency radiated from the AC magnetic field radiating means An eddy current magnetic field obtaining means for obtaining a detection magnetic field component based on an eddy current magnetic field generated around the movable body based on magnetic field detection signals of different frequencies detected by the stray magnetic field receiving means; And an eddy current magnetic field removing means for obtaining a corrected magnetic field signal by subtracting the detected magnetic field due to the eddy current from the detected magnetic field detection signal and outputting the corrected magnetic field signal to the position / posture angle calculating means.
【0007】〔作用〕次に、この発明の磁気式3次元ト
ラッカーにおいて、3次元的な位置および姿勢角の測定
対象である可動体のまわりの金属物体に生じる渦電流が
引き起こす測定誤差を解消させる際の作用について説明
する。この発明の磁気式3次元トラッカーでは、励起駆
動手段により、定位置に固定されている交流磁界放射手
段から周波数の異なる交流磁界を放射させるとともに、
可動体に一体的に取り付けられている交流磁界受信手段
により、各周波数の交流磁界を受信し、それぞれ磁界検
出信号を得た後、これらの磁界検出信号に基づき、渦電
流磁界求出手段により、可動体のまわりで発生する渦電
流による検出磁界分を求出する。そして、渦電流磁界除
去手段により、交流磁界受信手段で得られた磁界検出信
号から渦電流による検出磁界分を差し引いた補正磁界信
号を得て、これを位置・姿勢角求出手段へ送る。位置・
姿勢角求出手段では、補正磁界信号に基づく解析処理が
行われ、測定対象の可動体の位置・姿勢角が求出され
る。[Operation] Next, in the magnetic three-dimensional tracker of the present invention, a measurement error caused by an eddy current generated in a metal object around a movable body whose three-dimensional position and attitude angle is to be measured is eliminated. The operation at that time will be described. In the magnetic type three-dimensional tracker according to the present invention, the excitation driving means radiates AC magnetic fields having different frequencies from the AC magnetic field radiating means fixed at a fixed position,
After receiving the alternating magnetic field of each frequency by the alternating magnetic field receiving means integrally attached to the movable body and obtaining the respective magnetic field detection signals, based on these magnetic field detection signals, by the eddy current magnetic field determining means, The detection magnetic field component due to the eddy current generated around the movable body is obtained. Then, the eddy current magnetic field removing means obtains a corrected magnetic field signal obtained by subtracting the detected magnetic field due to the eddy current from the magnetic field detection signal obtained by the AC magnetic field receiving means, and sends this to the position / posture angle calculating means. position·
In the attitude angle calculating means, an analysis process based on the corrected magnetic field signal is performed, and the position and the attitude angle of the movable body to be measured are calculated.
【0008】上の渦電流磁界求出ならびに渦電流磁界除
去の理解容易のために、より具体的な説明を重ねて行
う。金属物体が、例えば、半径a,厚さb,電気抵抗率
ρの金属板の場合、金属板から放出される渦電流磁界
は、2π2 μ0 Ba4 bf /(8ρ)で示される磁気
モーメントに比例する。μ0 は磁気透磁率,Bは交流磁
界の振幅であり,fは交流磁界の周波数である。したが
って、渦電流磁界は周波数fに比例するものとなる。金
属物体の形状が変わっても事情は同様である。交流磁界
の周波数f1の時の交流磁界受信手段の磁界検出信号S
1とし、交流磁界の周波数f2の時の交流磁界受信手段
の磁界検出信号S2とする(f1>f2)とする。又、
ΔS=S2−S1、Δf=f2−f1である。そして、
金属物体が無い状態で磁界検出信号S1=磁界検出信号
S2となるようセットしておく。For easier understanding of the above-described eddy current magnetic field determination and eddy current magnetic field removal, more specific explanations will be repeated. When the metal object is, for example, a metal plate having a radius a, a thickness b, and an electric resistivity ρ, an eddy current magnetic field emitted from the metal plate has a magnetic moment represented by 2π 2 μ 0 Ba 4 bf / (8ρ). Is proportional to μ 0 is the magnetic permeability, B is the amplitude of the AC magnetic field, and f is the frequency of the AC magnetic field. Therefore, the eddy current magnetic field is proportional to the frequency f. The situation is the same even if the shape of the metal object changes. The magnetic field detection signal S of the AC magnetic field receiving means at the frequency f1 of the AC magnetic field
1, and the magnetic field detection signal S2 of the AC magnetic field receiving means at the frequency f2 of the AC magnetic field (f1> f2). or,
ΔS = S2-S1, and Δf = f2-f1. And
The magnetic field detection signal S1 is set so that the magnetic field detection signal S2 becomes equal to the magnetic field detection signal S2 in the absence of a metal object.
【0009】こうしておくと、測定対象の可動体のまわ
りに金属物体がある場合は、渦電流磁界によって磁界検
出信号S1,S2の間に周波数差に比例する差が生じ、
磁界検出信号S1,S2は1Hzあたり、ΔS/Δfの
渦電流による検出磁界分を含むものとなる。したがっ
て、磁界検出信号S1について言えば、渦電流磁界求出
手段により(ΔS/Δf)・f1の渦電流による検出磁
界分を求出しておいて、渦電流磁界除去手段により〔S
1−(ΔS/Δf)・f1〕なる演算を行えば、渦電流
による検出磁界分が除去された補正磁界信号が得られ
る。この補正磁界信号に基づき、位置・姿勢角求出手段
で位置・姿勢角の求出が行われる。位置・姿勢角求出の
もととなった補正磁界信号は渦電流による検出磁界分が
除かれていることから、得られた位置・姿勢角の求出結
果は、渦電流に起因する誤差を含まず、精度が十分なも
のとなる。In this way, when there is a metal object around the movable body to be measured, a difference proportional to the frequency difference occurs between the magnetic field detection signals S1 and S2 due to the eddy current magnetic field.
The magnetic field detection signals S1 and S2 include a detection magnetic field component due to an eddy current of ΔS / Δf per Hz. Therefore, with respect to the magnetic field detection signal S1, the eddy current magnetic field determining means determines the detected magnetic field component due to the eddy current of (ΔS / Δf) · f1, and the eddy current magnetic field removing means determines [S
1− (ΔS / Δf) · f1], a corrected magnetic field signal from which the detected magnetic field component due to the eddy current is removed is obtained. Based on the corrected magnetic field signal, the position / posture angle calculation means calculates the position / posture angle. The corrected magnetic field signal that was the source of the position / posture angle calculation excludes the detected magnetic field component due to the eddy current, so the obtained position / posture angle calculation result shows the error due to the eddy current. Not included, accuracy is sufficient.
【0010】[0010]
【発明の実施の形態】以下、この発明の一実施例を図面
を参照しながら説明する。図1は実施例に係る磁気式3
次元トラッカーの全体構成を示すブロック図、放射アン
テナから出る交流磁界の周波数変化の1サイクル分の説
明図である。An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a magnetic type 3 according to the embodiment.
FIG. 2 is a block diagram showing the entire configuration of the dimension tracker, and is an explanatory diagram of one cycle of a frequency change of an AC magnetic field emitted from a radiation antenna.
【0011】実施例の磁気式3次元トラッカーは、図1
に示すように、位置および姿勢角(向き)の測定対象で
あるパイロットの頭部HDからは離れて定位置に固定さ
れているとともに交流磁界を放射するループ状の放射ア
ンテナ(交流磁界放射手段)1と、パイロットの頭部H
Dに被せられているヘルメットHMへ一体的に取り付け
られているとともに交流磁界を受信するループ状の受信
アンテナ(交流磁界受信手段)2とを備えている。放射
アンテナ1は互いに直交する3つのコイル1a〜1cで
構成され、受信アンテナ(磁気センサ)2も互いに直交
する3つのコイル2a〜2cで構成されており、最終的
には、放射アンテナ1を基準として受信アンテナ2の位
置(α,β,γ)および姿勢角(Ψ,θ,φ)の6つの
パラメータを求めることで、頭部HDの時々刻々の動き
を把握することになる。なお、実施例の場合、位置
(α,β,γ)は球面座標表示であり、姿勢角(Ψ,
θ,φ)はオイラ角表示である。The magnetic three-dimensional tracker of the embodiment is shown in FIG.
As shown in the figure, a loop-shaped radiating antenna (AC magnetic field radiating means) that is fixed at a fixed position away from the head HD of the pilot whose position and attitude angle (direction) is to be measured and radiates an AC magnetic field 1 and pilot's head H
And a loop-shaped receiving antenna (AC magnetic field receiving means) 2 which is integrally attached to the helmet HM over D and receives an AC magnetic field. The radiating antenna 1 is composed of three coils 1a to 1c orthogonal to each other, and the receiving antenna (magnetic sensor) 2 is also composed of three coils 2a to 2c orthogonal to each other. By calculating six parameters of the position (α, β, γ) and attitude angle (Ψ, θ, φ) of the receiving antenna 2, the momentary movement of the head HD can be grasped. In the case of the embodiment, the position (α, β, γ) is represented by spherical coordinates, and the posture angle (Ψ, β)
θ, φ) are Euler angles.
【0012】放射アンテナ1には、マルチプレクサ3を
介して励起駆動部(励起駆動手段)4が接続されてい
る。マルチプレクサ3は放射アンテナ1の各コイル1a
〜1cを順に励起駆動部4に切替え接続する機能を果た
す。励起駆動部4は、高周波発信部5と交流増幅部6と
からなり、コントローラ7からの指令信号に基づいて高
周波発信部5から出力される周波数f1または周波数f
2の高周波信号が、交流増幅部6で増幅された後、マル
チプレクサ3で選ばれたコイル1a〜1cのひとつに励
振用の交流電力として供給される。勿論、順に交流電力
を受けたコイル1a〜1cからは交流磁界が次々に放射
される。An excitation driving section (excitation driving means) 4 is connected to the radiation antenna 1 via a multiplexer 3. Multiplexer 3 is provided for each coil 1a of radiation antenna 1.
1c to the excitation drive unit 4 in order. The excitation driving unit 4 includes a high-frequency transmitting unit 5 and an AC amplifying unit 6, and outputs a frequency f1 or a frequency f1 output from the high-frequency transmitting unit 5 based on a command signal from the controller 7.
After the high-frequency signal of the second is amplified by the AC amplifying section 6, it is supplied to one of the coils 1a to 1c selected by the multiplexer 3 as AC power for excitation. Of course, AC magnetic fields are radiated one after another from the coils 1a to 1c which receive AC power in order.
【0013】高周波発信部5は、図2(a)に示すよう
に、各コイル1a〜1cから周波数f1の交流磁界が順
に放射されたあと周波数f2の交流磁界が順に放射され
るよう高周波信号の周波数を変化させるか、あるいは、
図2(b)に示すように、ひとつのコイルから周波数f
1の交流磁界が放射されたあと続いて、そのコイルから
直ぐに周波数f2の交流磁界が放射されてから、次のコ
イルに切り換えられて同様に交流磁界が放射されるよう
高周波信号の周波数を変化させるかのいずれかの構成と
される。交流磁界の周波数f1,f2の具体的数値とし
ては、周波数f1=10kHz、周波数f2=20kH
zが例示されるが、受信アンテナ2がフェライトを用い
たものであれば、感度の良好な範囲である10kHz〜
100kHzの間から周波数f1,f2を選ぶのがよ
い。また、交流磁界の放射期間は、時々刻々の頭部HD
の動きを捉える場合、100mSEC前後で計測すれば
よいから、例えば、図2に示すように、周波数f1,f
2の各交流磁界の放射期間TUを10mSEC程度と
し、1放射サイクルTSを60mSECとする。As shown in FIG. 2 (a), the high-frequency transmitting section 5 transmits the high-frequency signal so that the alternating magnetic field of the frequency f1 is sequentially emitted from each of the coils 1a to 1c and then the alternating magnetic field of the frequency f2 is emitted. Change the frequency, or
As shown in FIG. 2 (b), the frequency f
After one AC magnetic field is radiated, the coil immediately radiates an AC magnetic field of frequency f2, and then is switched to the next coil to change the frequency of the high-frequency signal so that the AC magnetic field is radiated similarly. Any of the above configurations. Specific values of the frequencies f1 and f2 of the AC magnetic field include a frequency f1 = 10 kHz and a frequency f2 = 20 kHz.
z is exemplified, but if the receiving antenna 2 uses ferrite, the sensitivity is in a good range of 10 kHz to 10 kHz.
It is preferable to select the frequencies f1 and f2 from between 100 kHz. In addition, the radiation period of the AC magnetic field is changed every moment.
In order to capture the movement of, it is sufficient to measure around 100 mSEC. For example, as shown in FIG.
2, the emission period TU of each AC magnetic field is about 10 mSEC, and one emission cycle TS is 60 mSEC.
【0014】一方、受信アンテナ2には、マルチプレク
サ8を介して検波増幅部9が接続されている。マルチプ
レクサ8は、コントローラ7の指令に従って、交流磁界
の各放射期間TU毎に受信アンテナ2の各コイル2a〜
2cを検波増幅部9に順に切替え接続する。したがっ
て、放射アンテナ1のコイル1aから放射された交流磁
界は、受信アンテナ2の全コイル2a〜2cで受信され
るとともに、マルチプレクサ8の働きにより、各コイル
2a〜2c毎の磁気検出信号が検波増幅部9に順に送り
込まれる。On the other hand, a detection amplifier 9 is connected to the receiving antenna 2 via a multiplexer 8. The multiplexer 8 controls the coils 2a to 2c of the receiving antenna 2 for each radiation period TU of the AC magnetic field in accordance with a command from the controller 7.
2c is sequentially switched and connected to the detection amplification unit 9. Therefore, the AC magnetic field radiated from the coil 1a of the radiation antenna 1 is received by all the coils 2a to 2c of the receiving antenna 2, and the operation of the multiplexer 8 detects and amplifies the magnetic detection signal of each coil 2a to 2c. It is sequentially sent to the unit 9.
【0015】なお、実施例の場合、励起駆動部4から供
給される交流電力の振幅が、受信アンテナ2のまわりに
金属物体が無い状態では、周波数f1の交流磁界による
磁界検出信号と、周波数f2の交流磁界による磁界検出
信号が等しくなるように、調整される。In the case of the embodiment, when the amplitude of the AC power supplied from the excitation driver 4 is such that there is no metal object around the receiving antenna 2, the magnetic field detection signal by the AC magnetic field of the frequency f1 and the frequency f2 Are adjusted so that the magnetic field detection signals due to the AC magnetic field are equal.
【0016】さらに、実施例の磁気式3次元トラッカー
では、図1に示すように、検波増幅部9の後に、AD変
換部(図示省略)を介して、検波増幅部9から送出され
てくる周波数f1および周波数f2の磁界検出信号に基
づき、渦電流磁界による検出磁界分を求出する渦電流磁
界求出部10と、渦電流磁界求出部10の後段に、磁界
検出信号から渦電流による検出磁界分を差し引いて補正
磁界信号を得る渦電流磁界除去部11が順に接続されて
いる。そして、渦電流磁界除去部11を後には、渦電流
磁界除去部11からの補正磁界信号を解析することによ
り頭部HDの位置・姿勢角を求出する位置・姿勢角求出
部12を備えている。なお、渦電流磁界求出部10や渦
電流磁界除去部11および位置・姿勢角求出部12は、
渦電流磁界による検出磁界分や位置・姿勢角などを求出
するのに必要な演算を実行する機能を備えるものであ
り、コンピュータ(CPU)およびその制御プログラム
を中心に構成されているものである。Further, in the magnetic three-dimensional tracker of the embodiment, as shown in FIG. 1, the frequency transmitted from the detection amplification unit 9 via the AD conversion unit (not shown) after the detection amplification unit 9 is used. An eddy current magnetic field determination unit 10 for determining a detection magnetic field component based on an eddy current magnetic field based on the magnetic field detection signals of f1 and frequency f2, and a eddy current detection based on the magnetic field detection signal at a stage subsequent to the eddy current magnetic field determination unit 10. An eddy current magnetic field removing unit 11 for obtaining a correction magnetic field signal by subtracting a magnetic field component is connected in order. After the eddy current magnetic field removing unit 11, a position / posture angle calculating unit 12 for calculating the position / posture angle of the head HD by analyzing the correction magnetic field signal from the eddy current magnetic field removing unit 11 is provided. ing. The eddy current magnetic field calculating unit 10, the eddy current magnetic field removing unit 11, and the position / posture angle calculating unit 12
It is provided with a function of executing a calculation necessary for obtaining a detected magnetic field component and a position / posture angle based on an eddy current magnetic field, and is mainly configured by a computer (CPU) and a control program thereof. .
【0017】続いて、上述の構成を有する実施例のトラ
ッカーによる頭部HDの時々刻々の位置・姿勢角の求出
動作を具体的に説明する。頭部HDの位置・姿勢角を求
めることは、実質的に放射アンテナ1を原点として受信
アンテナ2の時々刻々の位置と姿勢角を求めることであ
る。以下、放射アンテナ1を原点とするX,Y,Z直交
座標系を想定し、受信アンテナ2の位置は球面座標
(α,β,γ)で求め、また姿勢角はオイラー角度
(Ψ,θ,φ)で求めるようにする。Next, the operation for finding the instantaneous position and posture angle of the head HD by the tracker of the embodiment having the above-described configuration will be specifically described. Determining the position / posture angle of the head HD substantially means finding the instantaneous position and posture angle of the receiving antenna 2 with the radiation antenna 1 as the origin. Hereinafter, assuming an X, Y, Z orthogonal coordinate system with the radiation antenna 1 as the origin, the position of the receiving antenna 2 is obtained by spherical coordinates (α, β, γ), and the attitude angle is Euler angles (Ψ, θ, φ).
【0018】まず、渦電流による検出磁界分の求出につ
いて説明する。交流磁界の発生形態は、図2(b)に示
すとおり、放射アンテナ1のひとつのコイルから周波数
f1(=10kHz)の交流磁界を放射したあと続い
て、そのコイルから直ぐに周波数f2(=20kHz)
の交流磁界を放射してから、次のコイルに切り換えて同
様に交流磁界を放射する。放射アンテナ1から交流磁界
が放射されるに伴って、受信アンテナ2で受信された信
号は検波・増幅部9を経てAD変換部(図示省略)でA
D変換されてから渦電流磁界求出部10へ送り込まれ
る。First, how to detect the detected magnetic field by the eddy current will be described. As shown in FIG. 2B, the AC magnetic field is generated by radiating an AC magnetic field having a frequency f1 (= 10 kHz) from one coil of the radiating antenna 1 and immediately following the frequency f2 (= 20 kHz) from the coil.
After the AC magnetic field is radiated, the next coil is switched and the AC magnetic field is similarly radiated. As the AC magnetic field is radiated from the radiating antenna 1, the signal received by the receiving antenna 2 passes through a detection / amplification unit 9 and is converted into an A / D signal by an AD conversion unit (not shown).
After being D-converted, it is sent to the eddy current magnetic field determination unit 10.
【0019】放射アンテナ1から交流磁界を放射して得
られる磁界検出信号は、周波数f1(=10kHz)の
放射による磁界検出信号S1=(S1X,S1Y,S1Z)
と、周波数f2(=20kHz)の放射による磁界検出
信号S2=(S2X,S2Y,S2Z)である。但し、S1Xは
X軸用コイル1aから周波数f1の交流磁界を放射した
時に各コイル2a〜2cからそれぞれ得られる3つの信
号であり、S1YはY軸用コイル1bから周波数f1の交
流磁界を放射した時に各コイル2a〜2cからそれぞれ
得られる3つの信号であり、S1ZはZ軸用コイル1cか
ら周波数f1の交流磁界を放射した時に各コイル2a〜
2cからそれぞれ得られる3つの信号であって、各々、
S1X=(S1XX,S1XY,S1XZ)…(1),S1Y=(S1YX,S
1YY,S1YZ)…(2),S1Z=(S1ZX,S1ZY,S1ZZ)…
(3)と示される。又、S2Xはコイル1aから周波数f
2の交流磁界を放射した時に各コイル2a〜2cからそ
れぞれ得られる3つの信号であり、S2Yはコイル1bか
ら周波数f2の交流磁界を放射した時に各コイル2a〜
2cからそれぞれ得られる3つの信号であり、S2Zはコ
イル1cから周波数f2の交流磁界を放射した時に各コ
イル2a〜2cからそれぞれ得られる3つの信号であっ
て、S2X=(S2XX,S2XY,S2XZ)…(4),S2Y=
(S2YX,S2YY,S2YZ)…(5),S2Z=(S2ZX,S
2ZY,S2ZZ)…(6)と示される。A magnetic field detection signal obtained by radiating an AC magnetic field from the radiation antenna 1 is a magnetic field detection signal S1 = (S 1X , S 1Y , S 1Z ) due to radiation at a frequency f1 (= 10 kHz).
And the magnetic field detection signal S2 = ( S2X , S2Y , S2Z ) due to radiation at the frequency f2 (= 20 kHz). Here, S 1X is three signals obtained from each of the coils 2a to 2c when an AC magnetic field of frequency f1 is emitted from the X-axis coil 1a, and S 1Y is an AC magnetic field of frequency f1 from the Y-axis coil 1b. Three signals are obtained from each of the coils 2a to 2c when radiated, and S 1Z is a signal when an AC magnetic field having a frequency f1 is radiated from the Z-axis coil 1c.
2c, respectively, three signals each obtained from
S 1X = (S 1XX, S 1XY, S 1XZ) ... (1), S 1Y = (S 1YX, S
1YY, S 1YZ) ... (2 ), S 1Z = (S 1ZX, S 1ZY, S 1ZZ) ...
(3) is indicated. S 2X is the frequency f from the coil 1a.
A three signals obtained from each coil 2a~2c when emit second alternating magnetic field, the coils 2a~ when S 2Y is radiated alternating magnetic field of a frequency f2 from the coil 1b
2c is a three signals respectively obtained from, S 2Z is a three signals obtained from each coil 2a~2c when emitting the AC magnetic field of frequency f2 from the coil 1c, S 2X = (S 2XX , S 2XY, S 2XZ )… (4), S 2Y =
(S 2YX , S 2YY, S 2YZ ) ... (5), S 2Z = (S 2ZX , S
2ZY, S 2ZZ )... (6).
【0020】そして、渦電流磁界求出部10は、渦電流
による検出磁界分Hnを得るために、 H
n=(ΔS/Δf)・f1 …(7)という演算を
実行する。上の式(7)中、ΔSは磁界検出信号S1,
S2の差(=S2−S1)であって、下の式(8)のマ
トリックスで示すとおりであり、Δfは周波数f1,f
2の差(=f2−f1)である。検出磁界分Hnは、次
の渦電流磁界除去部11に送出される。なお、放射アン
テナ1のまわりに金属物体のない場合には、S2=S1
であり、ΔS=0となるので、Hn=0である。Then, the eddy current magnetic field calculating unit 10 obtains the detected magnetic field Hn by the eddy current by using H
The operation of n = (ΔS / Δf) · f1 (7) is executed. In the above equation (7), ΔS is the magnetic field detection signal S1,
The difference of S2 (= S2-S1), as shown in the matrix of the following equation (8), and Δf is the frequency f1, f
2 (= f2−f1). The detected magnetic field component Hn is sent to the next eddy current magnetic field removing unit 11. When there is no metal object around the radiation antenna 1, S2 = S1
And ΔS = 0, so that Hn = 0.
【0021】[0021]
【数1】 (Equation 1)
【0022】そして、渦電流磁界除去部11では、補正
磁界信号Hを得るために、 H=S1−Hn=S1−(ΔS/Δf)・f1 …(9) を得る。なお、式(9)の補正磁界信号Hは、下の式
(10)で示すマトリックスで示されるものである。こ
れで、測定対象まわりの金属物体に生じる渦電流による
検出磁界分を除去できたことになり、補正磁界信号Hは
次段の位置・姿勢角求出部12に送られる。Then, the eddy current magnetic field elimination unit 11 obtains H = S1−Hn = S1− (ΔS / Δf) · f1 (9) in order to obtain the correction magnetic field signal H. The correction magnetic field signal H in Expression (9) is represented by a matrix represented by Expression (10) below. Thus, the detection magnetic field component due to the eddy current generated in the metal object around the measurement target has been removed, and the correction magnetic field signal H is sent to the next-stage position / posture angle calculation unit 12.
【0023】[0023]
【数2】 (Equation 2)
【0024】実施例のトラッカーの渦電流磁界求出部1
0および渦電流磁界除去部11の場合、具体的には、次
のようにして処理が進行することになる。X軸用コイル
1aからの周波数f1の交流磁界の放射によりS1X=
(S1XX,S1X Y,S1XZ)を得るとともに、X軸用コイル1a
からの周波数f2の交流磁界の放射によりS2X=
(S2XX,S2XY,S2XZ)を得て、渦電流磁界求出部10で
は、(7)式に従って、 HnXX=〔(S2XX−S1XX)/Δf〕・f1 HnXY=〔(S2XY−S1XY)/Δf〕・f1 HnXZ=〔(S2XZ−S1XZ)/Δf〕・f1 が求められ、ついで渦電流磁界除去部11では、(9)
式に従って、 HXX=S1XX−HnXX HXY=S1XY−HnXY HXZ=S1YZ−HnXY が求められる。The eddy current magnetic field determination unit 1 of the tracker of the embodiment
Specifically, in the case of 0 and the eddy current magnetic field removing unit 11, the processing proceeds as follows. The radiation of the AC magnetic field of frequency f1 from the X-axis coil 1a causes S 1X =
(S 1XX, S 1X Y, S 1XZ) with obtaining, X-axis coil 1a
S 2X =
After obtaining (S 2XX , S 2XY, S 2XZ ), the eddy current magnetic field calculation unit 10 calculates Hn XX = [(S 2XX −S 1XX ) / Δf] · f1 Hn XY = [( In S 2XY -S 1XY) / Δf] · f1 Hn XZ = [(S 2XZ -S 1XZ) / Δf] · f1 is determined, then the eddy current magnetic field removal section 11, (9)
According to the equation, it is H XX = S 1XX -Hn XX H XY = S 1XY -Hn XY H XZ = S 1YZ -Hn XY obtained.
【0025】次に、Y軸用コイル1bからの周波数f1
の交流磁界と周波数f2の交流磁界の放射が行われて、
S1Y=(S1YX,S1YY,S1YZ)およびS2Y=(S2YX,S2YY,S
2YZ)が得られ、上と同様、HYX, HYY, HYZが求めら
れた後、さらに、Z軸用コイル1cからの周波数f1の
交流磁界と周波数f2の交流磁界の放射が行われて、S
1Z=(S1ZX,S1ZY,S1ZZ)およびS2Z=(S2ZX,S
2ZY,S2ZZ)が得られ、上と同様、HZX, HZY, HZZが求
められる。これで、補正磁界信号Hが求められたことに
なるのである。上の補正磁界信号の求出過程の流れを図
3のフローチャートに纏めて示す。Next, the frequency f1 from the Y-axis coil 1b
And an AC magnetic field of frequency f2 are radiated,
S1Y= (S1YX, S1YY,S1YZ) And S2Y= (S2YX, S2YY,S
2YZ) Is obtained and, as above, HYX,HYY,HYZSought
After that, the frequency f1 from the Z-axis coil 1c is further reduced.
An AC magnetic field and an AC magnetic field of frequency f2 are radiated, and S
1Z= (S1ZX, S1ZY,S1ZZ) And S2Z= (S2ZX, S
2ZY,S2ZZ) Is obtained and, as above, HZX,HZY,HZZSought
Can be Now that the corrected magnetic field signal H has been determined
It becomes. The figure shows the flow of the process of finding the correction magnetic field signal above
3 are shown together.
【0026】次に、補正磁界信号Hに基づく位置・姿勢
角求出を説明する。原則的には下記の手順に従って、位
置・姿勢角を求出することになる。一般に放射アンテナ
1が発生する伝達ベクトルH1と受信アンテナ2により
得られる検出ベクトルH2とは、伝達関数Tを媒介とし
て下の式(11)に示すとおりに結び付けられる。 H2=T・H1 …(11) 受信アンテナ2の位置と方位が正確に知られている場合
は、それらのデータを伝達関数に代入して、伝達関数を
逆変換した逆伝達関数T-1を得る。逆伝達関数T-1と検
出ベクトルH2の積は、下の式(12)に示すように、
伝達ベクトルH1に一致する。 H1=T-1・H2 …(12) そして、受信アンテナ2の位置と姿勢角が正確に知られ
ていない場合は、誤差信号を発生させて、伝達関数に代
入する値を改善し、これを反復継続しよい一致を示す時
のデータを正確な位置および姿勢角とするのであるが、
以下、伝達関数Tに関し、具体的に説明する。Next, the calculation of the position / posture angle based on the correction magnetic field signal H will be described. In principle, the position / posture angle is calculated according to the following procedure. In general, a transfer vector H1 generated by the radiation antenna 1 and a detection vector H2 obtained by the reception antenna 2 are linked via a transfer function T as shown in the following equation (11). H2 = T · H1 (11) When the position and orientation of the receiving antenna 2 are accurately known, the data is substituted for the transfer function, and the inverse transfer function T −1 obtained by inversely transforming the transfer function is obtained. obtain. The product of the inverse transfer function T -1 and the detection vector H2 is, as shown in the following equation (12),
It matches the transfer vector H1. H1 = T -1 · H2 (12) If the position and the attitude angle of the receiving antenna 2 are not known accurately, an error signal is generated, and the value substituted into the transfer function is improved. The data at the time of showing a good match that repeats repeatedly is taken as the exact position and attitude angle,
Hereinafter, the transfer function T will be specifically described.
【0027】伝達関数Tは、下の式(13)に示すよう
に、受信アンテナ2の姿勢角に関する姿勢伝達関数TA
と受信アンテナ2の位置に関する磁界伝達関数TB の積
で表される。 T=TA ・TB …(13) さらに、姿勢伝達関数TA は、下の式(14)に示すよ
うに、受信アンテナ2の方位角Ψ,ピッチング角θ,ロ
ーリング角φのそれぞれのマトリックスの積からなる。 TA =TA1・TA2・TA3 …(14) 方位角ΨのマトリックスTA3は下の式(15)で示すと
おりであり、ピッチング角θのマトリックスTA2は下の
式(16)で示すとおりであり,ローリング角φのマト
リックス下TA1は下の式(17)で示すとおりである。The transfer function T is, as shown in the following equation (13), an attitude transfer function T A relating to the attitude angle of the receiving antenna 2.
And the magnetic field transfer function T B relating to the position of the receiving antenna 2. T = T A · T B (13) Further, as shown in the following equation (14), the attitude transfer function T A is a matrix of the azimuth angle Ψ, the pitching angle θ, and the rolling angle φ of the receiving antenna 2. The product of T A = T A1 · T A2 · T A3 (14) The matrix T A3 of the azimuth angle Ψ is as shown in the following equation (15), and the matrix T A2 of the pitching angle θ is given by the following equation (16). The lower T A1 of the matrix of the rolling angle φ is as shown in the following equation (17).
【0028】[0028]
【数3】 (Equation 3)
【0029】又、磁界伝達関数TB は、下の式(18)
でもって示される。 TB =(C/γ3 )Tp -1・J・Tp …(18) Cは放射アンテナ1のコイル特性で決まる定数であり、
γは勿論、放射アンテナ1と受信アンテナ2との距離
(球面座標のγ)、Tp は下の式(19)で示されるマ
トリックであって、式中のα,βは球面座標のα,βで
ある。また、Jは下の式(20)で示されるマトリック
である。[0029] Further, the magnetic field transfer function T B is below formula (18)
Shown with T B = (C / γ 3 ) T p -1 · J · T p (18) C is a constant determined by the coil characteristics of the radiation antenna 1,
γ is, of course, the distance between the radiating antenna 1 and the receiving antenna 2 (γ in spherical coordinates), and T p is a matrix expressed by the following equation (19), where α and β are α, β in spherical coordinates. β. J is a matrix represented by the following equation (20).
【0030】[0030]
【数4】 (Equation 4)
【0031】そして、位置・姿勢角求出部12では、以
下のように解析処理が進行し位置・姿勢角が求出される
ことになる。先ず、式(9)の補正磁界信号Hに基づ
き、H2X =(HXX, HXY, HXZ),H2Y =(HYX,
HYY, HYZ),H2Z =(HZX, HZY, HZZ)を得る。
次に、受信センサ2の位置(α,β,γ)および姿勢角
(Ψ,θ,φ)の適当な仮データを選定する。Then, the position / posture angle calculating section 12 proceeds with the analysis processing as described below to calculate the position / posture angle. First, based on the corrected magnetic field signal H of the equation (9), H2 X = (H XX , H XY , H XZ ), H 2 Y = (H YX ,
H YY, obtaining H YZ), H2 Z = ( H ZX, H ZY, the H ZZ).
Next, appropriate temporary data of the position (α, β, γ) and attitude angle (Ψ, θ, φ) of the receiving sensor 2 are selected.
【0032】続いて、姿勢角(Ψ,θ,φ)の仮データ
を式(15)〜(17)に代入するとともに、式(1
4)の演算を実行し、姿勢伝達関数TA を得る。又、位
置(α,β,γ)の仮データを、式(19)に代入する
とともに、式(18)の演算を実行し、磁界伝達関数T
B を得る。ついで、伝達関数Tおよび逆伝達関数T-1を
算出する。Subsequently, the tentative data of the attitude angles (θ, θ, φ) are substituted into the equations (15) to (17), and the equation (1)
It performs an operation of 4), to obtain a posture transfer function T A. Further, the tentative data of the position (α, β, γ) is substituted into Expression (19), and the operation of Expression (18) is executed to obtain the magnetic field transfer function T
Get B. Next, the transfer function T and the inverse transfer function T -1 are calculated.
【0033】さらに、式(12)に従って、H1calc,X
=T-1・H2X ,H1calc,Y=T-1・H2Y ,H1
calc,Z=T-1・H2Z を算出する。Further, according to equation (12), H1 calc, X
= T -1 · H2 X , H1 calc, Y = T -1 · H2 Y , H1
Calc, Z = T −1 · H2 Z is calculated.
【0034】そして、算出したH1calc,X,H
1calc,Y,H1calc,Zと、放射コイル1から発信した実
際のH1X ,H2Y ,H2Z を比較し、一致(同一ない
し差が一定以内)すれば、先の仮のデータを求める位置
および姿勢角と認定し、一致しないのであれば、仮のデ
ータを変更し上記の過程を繰り返す。上の位置・姿勢角
求出過程の流れを図4のフローチャートに纏めて示す。Then, the calculated H1 calc, X , H
1 Calc, Y , H1 calc, Z is compared with the actual H1 X , H2 Y , H2 Z transmitted from the radiating coil 1, and if they match (the same or the difference is within a certain range), the temporary data is obtained. The position and posture angle are recognized, and if they do not match, the temporary data is changed and the above process is repeated. The flow of the above-described position / posture angle calculation process is summarized in the flowchart of FIG.
【0035】このように、実施例の磁気式3次元トラッ
カーでは、渦電流による検出磁界分が除かれた補正磁界
信号Hに基づいて位置・姿勢角が求められるので、求出
結果には渦電流に起因する誤差が含まれなくなることか
ら、測定精度が十分なものとなる。As described above, in the magnetic type three-dimensional tracker of the embodiment, the position and the posture angle are obtained based on the correction magnetic field signal H from which the magnetic field detected by the eddy current is removed. Since the error caused by the measurement is not included, the measurement accuracy is sufficient.
【0036】この発明は上記実施の形態に限られること
はなく、下記のように変形実施することができる。 (1)上記実施例では、放射アンテナ1から出力される
異なる周波数の交流磁界が周波数f1,f2の2個であ
ったが、異なる周波数の交流磁界が3個以上であっても
よい。The present invention is not limited to the above embodiment, but can be modified as follows. (1) In the above-described embodiment, the AC magnetic fields of different frequencies output from the radiation antenna 1 are two of the frequencies f1 and f2. However, the AC magnetic fields of different frequencies may be three or more.
【0037】(2)実施例のトラッカーは、パイロット
の頭部の動きを捕捉するものであったが、この発明の磁
気式3次元トラッカーは、特定の用途に限定されるもの
ではない。(2) Although the tracker of the embodiment captures the movement of the pilot's head, the magnetic three-dimensional tracker of the present invention is not limited to a specific use.
【0038】(3)実施例は仮のデータを代入して演算
結果の一致を調べる解析方式であったが、補正磁界信号
Hにおける9個の方程式を解く解析方式の構成のもの
も、変形例として挙げられる。(3) Although the embodiment is an analysis method for substituting tentative data and examining the coincidence of the operation results, the analysis method for solving nine equations in the corrected magnetic field signal H may be modified. It is listed as.
【0039】(4)実施例では、渦電流磁界除去部によ
り、H=S1−(ΔS/Δf)・f1なる演算を行った
が、H=S2−(ΔS/Δf)・f2なる演算を行うよ
うにしてもよい。(4) In the embodiment, the calculation of H = S1− (ΔS / Δf) · f1 was performed by the eddy current magnetic field removing unit, but the calculation of H = S2− (ΔS / Δf) · f2 is performed. You may do so.
【0040】[0040]
【発明の効果】この発明の磁気式3次元トラッカーによ
れば、測定対象である可動体のまわりに測定誤差を引き
起こす渦電流を生じる邪魔な金属物体がある場合でも、
渦電流磁界求出手段により渦電流による検出磁界分が求
出されるとともに、渦電流磁界除去手段により磁界検出
信号から渦電流による検出磁界分が差し引かれた適切な
補正磁界信号に基づき、可動体の位置および姿勢角が求
出される構成であるので、求出された位置・姿勢角は渦
電流に起因する誤差は含まれず、測定結果の精度が十分
なものとなる。According to the magnetic three-dimensional tracker of the present invention, even if there is a disturbing metal object that generates an eddy current that causes a measurement error around the movable object to be measured,
Based on an appropriate correction magnetic field signal obtained by subtracting the detection magnetic field component due to the eddy current from the magnetic field detection signal by the eddy current magnetic field removal device while the eddy current magnetic field determination unit determines the detection magnetic field component by the eddy current magnetic field determination unit. Since the position and the posture angle are obtained, the obtained position and posture angle do not include an error caused by the eddy current, and the accuracy of the measurement result is sufficient.
【図1】実施例に係る磁気式3次元トラッカーの全体構
成を示すブロック図である。FIG. 1 is a block diagram showing an overall configuration of a magnetic three-dimensional tracker according to an embodiment.
【図2】放射アンテナから出る交流磁界の周波数変化の
1サイクル分の説明図である。FIG. 2 is an explanatory diagram for one cycle of a frequency change of an AC magnetic field emitted from a radiation antenna.
【図3】補正磁界信号の求出過程の流れを示すフローチ
ャートである。FIG. 3 is a flowchart showing a flow of a process of obtaining a correction magnetic field signal.
【図4】位置・姿勢角求出過程の流れを示すフローチャ
ートである。FIG. 4 is a flowchart showing a flow of a position / posture angle finding process.
【符号の説明】 1 …放射アンテナ 2 …受信アンテナ 4 …励起駆動部 10 …渦電流磁界求出部 11 …渦電流磁界除去部 12 …位置・姿勢角求出部[Description of Signs] 1 ... Emission antenna 2 ... Reception antenna 4 ... Excitation drive unit 10 ... Eddy current magnetic field calculation unit 11 ... Eddy current magnetic field removal unit 12 ... Position / posture angle calculation unit
Claims (1)
び姿勢角(向き)をリアルタイムで測定するトラッカー
であって、測定対象である可動体からは離れて定位置に
固定されているとともに交流磁界を放射する交流磁界放
射手段と、可動体に一体的に取り付けられているととも
に交流磁界を受信する交流磁界受信手段と、交流磁界受
信手段から出力される磁界検出信号を解析処理すること
により、測定対象の可動体の位置・姿勢角を求出する位
置・姿勢角求出手段とを備えている磁気式3次元トラッ
カーにおいて、交流磁界放射手段に周波数の異なる交流
磁界を放射させる励振駆動手段と、交流磁界放射手段か
ら放射される周波数の異なる交流磁界に伴って交流磁界
受信手段で検出される異なる周波数の磁界検出信号に基
づき、前記可動体のまわりで発生する渦電流磁界による
検出磁界分を求出する渦電流磁界求出手段と、交流磁界
受信手段から出力される磁界検出信号から渦電流による
検出磁界分を差し引いて補正磁界信号を得て位置・姿勢
角求出手段へ出力する渦電流磁界除去手段とを備えてい
ることを特徴とする磁気式3次元トラッカー。1. A tracker for measuring a three-dimensional position and a posture angle (direction) of a movable body in real time, wherein the tracker is fixed at a fixed position away from the movable body to be measured. AC magnetic field radiating means for radiating an AC magnetic field, AC magnetic field receiving means integrally attached to a movable body and receiving an AC magnetic field, and analyzing and processing a magnetic field detection signal output from the AC magnetic field receiving means. Excitation driving means for radiating AC magnetic fields having different frequencies to AC magnetic field radiating means in a magnetic type three-dimensional tracker comprising: a position / posture angle calculating means for calculating a position / posture angle of a movable body to be measured. And, based on a magnetic field detection signal of a different frequency detected by the AC magnetic field receiving means with an AC magnetic field of a different frequency radiated from the AC magnetic field radiating means, An eddy current magnetic field deriving means for deriving a detected magnetic field component due to an eddy current magnetic field generated around the device, and a corrected magnetic field signal obtained by subtracting the detected magnetic field component due to the eddy current from the magnetic field detection signal output from the alternating magnetic field receiving means A magnetic three-dimensional tracker comprising: an eddy current magnetic field removing unit that outputs to a position / posture angle calculating unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26557297A JP3849250B2 (en) | 1997-09-30 | 1997-09-30 | Magnetic 3D tracker |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26557297A JP3849250B2 (en) | 1997-09-30 | 1997-09-30 | Magnetic 3D tracker |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11110114A true JPH11110114A (en) | 1999-04-23 |
JP3849250B2 JP3849250B2 (en) | 2006-11-22 |
Family
ID=17418986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26557297A Expired - Fee Related JP3849250B2 (en) | 1997-09-30 | 1997-09-30 | Magnetic 3D tracker |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3849250B2 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002107107A (en) * | 2000-07-20 | 2002-04-10 | Biosense Inc | Calibration method with stationary metal compensation for medical system |
JP2002236010A (en) * | 2000-10-31 | 2002-08-23 | Biosense Inc | Metal immune system |
JP2003513260A (en) * | 1999-10-29 | 2003-04-08 | アセンション テクノロジー コーポレイション | AC magnetic position measurement system with reduced error due to eddy current |
JP2003520062A (en) * | 1999-05-18 | 2003-07-02 | メディガイド リミテッド | Medical positioning system |
JP2003530557A (en) * | 2000-04-07 | 2003-10-14 | ノーザン・デジタル・インコーポレイテッド | Error detection method in determining magnetic position or orientation |
JP2006523473A (en) * | 2003-04-17 | 2006-10-19 | ノーザン・デジタル・インコーポレイテッド | Method for detection and correction of eddy currents |
JP2006317327A (en) * | 2005-05-13 | 2006-11-24 | Shimadzu Corp | Position angle detection device and head motion tracker using it |
JP2008026265A (en) * | 2006-07-25 | 2008-02-07 | Shimadzu Corp | Head motion tracker system |
JP2008058307A (en) * | 2006-08-21 | 2008-03-13 | Biosense Webster Inc | Distortion-immune position tracking method and system using frequency extrapolation |
JP2008058102A (en) * | 2006-08-30 | 2008-03-13 | Shimadzu Corp | Head motion tracker device |
JP2009229443A (en) * | 2008-02-29 | 2009-10-08 | Shimadzu Corp | Target survey system |
US8332013B2 (en) | 1999-05-18 | 2012-12-11 | MediGuide, Ltd. | System and method for delivering a stent to a selected position within a lumen |
US9572519B2 (en) | 1999-05-18 | 2017-02-21 | Mediguide Ltd. | Method and apparatus for invasive device tracking using organ timing signal generated from MPS sensors |
US9833167B2 (en) | 1999-05-18 | 2017-12-05 | Mediguide Ltd. | Method and system for superimposing virtual anatomical landmarks on an image |
JP2019522832A (en) * | 2016-04-26 | 2019-08-15 | マジック リープ, インコーポレイテッドMagic Leap,Inc. | Electromagnetic tracking using augmented reality system |
CN112858961A (en) * | 2021-03-01 | 2021-05-28 | 哈尔滨工业大学 | Compensation method for multisource magnetic interference of aviation platform |
US11244485B2 (en) | 2016-01-19 | 2022-02-08 | Magic Leap, Inc. | Augmented reality systems and methods utilizing reflections |
CN114184988A (en) * | 2021-11-11 | 2022-03-15 | 北京大学 | Aeromagnetic compensation method and device containing compensation platform current magnetic interference |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS589005A (en) * | 1981-02-12 | 1983-01-19 | ハネウエル・インコ−ポレ−テツド | Electromagnetic device utilizing electromagnetic field vector for determining direction of helmet |
JPH01500931A (en) * | 1986-10-09 | 1989-03-30 | ジーイーシー マーコニ リミテッド | Position and direction measuring device using direct current |
JPH04502515A (en) * | 1989-04-11 | 1992-05-07 | アセンション テクノロジー コーポレーション | DC position measuring device |
-
1997
- 1997-09-30 JP JP26557297A patent/JP3849250B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS589005A (en) * | 1981-02-12 | 1983-01-19 | ハネウエル・インコ−ポレ−テツド | Electromagnetic device utilizing electromagnetic field vector for determining direction of helmet |
JPH01500931A (en) * | 1986-10-09 | 1989-03-30 | ジーイーシー マーコニ リミテッド | Position and direction measuring device using direct current |
JPH04502515A (en) * | 1989-04-11 | 1992-05-07 | アセンション テクノロジー コーポレーション | DC position measuring device |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10251712B2 (en) | 1999-05-18 | 2019-04-09 | Mediguide Ltd. | Method and apparatus for invasive device tracking using organ timing signal generated from MPS sensors |
JP5005128B2 (en) * | 1999-05-18 | 2012-08-22 | メディガイド リミテッド | Medical positioning system |
JP2003520062A (en) * | 1999-05-18 | 2003-07-02 | メディガイド リミテッド | Medical positioning system |
US9572519B2 (en) | 1999-05-18 | 2017-02-21 | Mediguide Ltd. | Method and apparatus for invasive device tracking using organ timing signal generated from MPS sensors |
US8332013B2 (en) | 1999-05-18 | 2012-12-11 | MediGuide, Ltd. | System and method for delivering a stent to a selected position within a lumen |
US10856769B2 (en) | 1999-05-18 | 2020-12-08 | St. Jude Medical International Holding S.àr.l. | Method and system for superimposing virtual anatomical landmarks on an image |
US9956049B2 (en) | 1999-05-18 | 2018-05-01 | Mediguide Ltd. | Method and apparatus for invasive device tracking using organ timing signal generated from MPS sensors |
US9833167B2 (en) | 1999-05-18 | 2017-12-05 | Mediguide Ltd. | Method and system for superimposing virtual anatomical landmarks on an image |
JP2003513260A (en) * | 1999-10-29 | 2003-04-08 | アセンション テクノロジー コーポレイション | AC magnetic position measurement system with reduced error due to eddy current |
JP2003530557A (en) * | 2000-04-07 | 2003-10-14 | ノーザン・デジタル・インコーポレイテッド | Error detection method in determining magnetic position or orientation |
JP2002107107A (en) * | 2000-07-20 | 2002-04-10 | Biosense Inc | Calibration method with stationary metal compensation for medical system |
JP2002236010A (en) * | 2000-10-31 | 2002-08-23 | Biosense Inc | Metal immune system |
US10363017B2 (en) | 2001-09-07 | 2019-07-30 | St. Jude Medical International Holding S.À R.L. | System and method for delivering a stent to a selected position within a lumen |
JP2006523473A (en) * | 2003-04-17 | 2006-10-19 | ノーザン・デジタル・インコーポレイテッド | Method for detection and correction of eddy currents |
JP2006317327A (en) * | 2005-05-13 | 2006-11-24 | Shimadzu Corp | Position angle detection device and head motion tracker using it |
JP2008026265A (en) * | 2006-07-25 | 2008-02-07 | Shimadzu Corp | Head motion tracker system |
JP2008058307A (en) * | 2006-08-21 | 2008-03-13 | Biosense Webster Inc | Distortion-immune position tracking method and system using frequency extrapolation |
JP2008058102A (en) * | 2006-08-30 | 2008-03-13 | Shimadzu Corp | Head motion tracker device |
JP2009229443A (en) * | 2008-02-29 | 2009-10-08 | Shimadzu Corp | Target survey system |
US11244485B2 (en) | 2016-01-19 | 2022-02-08 | Magic Leap, Inc. | Augmented reality systems and methods utilizing reflections |
JP2019522832A (en) * | 2016-04-26 | 2019-08-15 | マジック リープ, インコーポレイテッドMagic Leap,Inc. | Electromagnetic tracking using augmented reality system |
US11460698B2 (en) | 2016-04-26 | 2022-10-04 | Magic Leap, Inc. | Electromagnetic tracking with augmented reality systems |
CN112858961A (en) * | 2021-03-01 | 2021-05-28 | 哈尔滨工业大学 | Compensation method for multisource magnetic interference of aviation platform |
CN114184988A (en) * | 2021-11-11 | 2022-03-15 | 北京大学 | Aeromagnetic compensation method and device containing compensation platform current magnetic interference |
Also Published As
Publication number | Publication date |
---|---|
JP3849250B2 (en) | 2006-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11110114A (en) | Magnetic three-dimensional tracker | |
US8611986B2 (en) | System and method for electromagnetic navigation in the vicinity of a metal object | |
US6147480A (en) | Detection of metal disturbance | |
US6789043B1 (en) | Magnetic sensor system for fast-response, high resolution, high accuracy, three-dimensional position measurements | |
US9459087B2 (en) | Magnetic position detection system | |
US6762600B2 (en) | Method and apparatus for electromagnetic position and orientation tracking with distortion compensation employing a modulated signal | |
JPH08512125A (en) | Method and apparatus for measuring the position and orientation of an object in the presence of interfering metals | |
JPH06221805A (en) | Device and method for determining position and direction of separated body | |
JP2000508067A (en) | Mutual guidance correction | |
EP2594967B1 (en) | Smart electromagnetic sensor array | |
CN105380645A (en) | Detection method and device for magnetopneumogram | |
JPH0429080A (en) | Bistatic radar equipment | |
CN103852746A (en) | Gunshot positioning and orienting device | |
US10640085B2 (en) | Authorizing the use of a motor vehicle | |
JPH0990027A (en) | Device for discriminating sinuously advancing target | |
US10942267B2 (en) | Video object processing | |
WO2020240787A1 (en) | Electromagnetic field intensity estimation device and method for estimating intensity of electromagnetic field | |
EP1131597A1 (en) | Magnetic sensor system for fast-response, high resolution, high accuracy, three-dimensional position measurements | |
US20210100621A1 (en) | Surgical Navigation System For Registering Coordinates of Patient-Customized Tool | |
US12072185B2 (en) | Magnetic tracking systems and methods of determining position and orientation | |
JP2009014508A (en) | Secondary monitoring radar device and control method | |
JP2000002761A (en) | Target correlation integrating device | |
JP2004354192A (en) | Distance measuring equipment | |
JP6336834B2 (en) | Electric field measuring device | |
JP5728342B2 (en) | Guidance system and guidance method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040428 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060803 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060808 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060821 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090908 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100908 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110908 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110908 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120908 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |