JPH11108844A - Light source device for inspection of mirror surface materials and transmission materials - Google Patents
Light source device for inspection of mirror surface materials and transmission materialsInfo
- Publication number
- JPH11108844A JPH11108844A JP26887197A JP26887197A JPH11108844A JP H11108844 A JPH11108844 A JP H11108844A JP 26887197 A JP26887197 A JP 26887197A JP 26887197 A JP26887197 A JP 26887197A JP H11108844 A JPH11108844 A JP H11108844A
- Authority
- JP
- Japan
- Prior art keywords
- light source
- light
- light emitting
- transmission
- inspection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Image Input (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
(57)【要約】
【課題】最適な検査画像を得るように、検査用光源の点
灯位置を任意に制御可能にし、最適な点灯パターンを自
動的に決定する。
【解決手段】光源に点灯パターンを任意に制御できるL
EDアレイ光源14を用いる。1つの検査領域に対して
LEDを1列毎に順次点灯させて、最適な点灯列範囲を
求め点灯位置の最適化を自動で行う。
(57) [Summary] A lighting position of an inspection light source can be arbitrarily controlled so as to obtain an optimum inspection image, and an optimum lighting pattern is automatically determined. The light source can control a lighting pattern arbitrarily.
An ED array light source 14 is used. The LEDs are sequentially turned on for each inspection area for each row, an optimum lighting row range is obtained, and the lighting position is automatically optimized.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、鏡面材料並びに透
過材料の検査用光源装置に係り、特に、鏡面材料及び透
過材料の欠点検査、材料上の刻印・印字等の読み取りの
為の画像を取得する光学系に用いられる鏡面材料並びに
透過材料の検査用光源装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light source device for inspecting a specular material and a transmissive material, and in particular, to obtain an image for inspecting a defect of the specular material and the transmissive material and reading a mark or a print on the material. The present invention relates to a light source device for inspection of a specular material and a transmission material used in an optical system to be used.
【0002】[0002]
【従来の技術】材料の検査・計測で検出対象の良質な画
像を得るには光学系が重要であり、中でも光透過性材料
(透過材料)や鏡面材料は、材料中を光が透過、屈折、
反射及び散乱する為、光源と被検出物との位置関係が特
に重要である。通常、この種の材料の検査・計測では、
検出感度を向上させるため光源に明暗を持たせた暗視野
光学系又は明視野光学系が用いられ、両光学系には、そ
れぞれ反射タイプと透過タイプの2つのタイプがある。2. Description of the Related Art An optical system is important for obtaining a high-quality image of an object to be detected in a material inspection / measurement. In particular, a light-transmitting material (transmitting material) and a mirror surface material transmit and refract light through the material. ,
Due to reflection and scattering, the positional relationship between the light source and the object is particularly important. Usually, in the inspection and measurement of this kind of material,
In order to improve the detection sensitivity, a dark field optical system or a bright field optical system in which the light source has light and dark is used, and each of the two optical systems has a reflection type and a transmission type.
【0003】図8には透過タイプの暗視野光学系が示さ
れ、図9には透過タイプの明視野光学系が示されてい
る。図中符号1は平面状の光源、2は遮光マスク、4は
被検出物、5は欠点や文字等の検出対象、6は検出対象
の透過像を撮影するカメラである。各図に示した従来の
光学系は、平面状の光源1の前面に遮光マスク2が配置
され、この遮光マスク2によって光源に明暗を与えて被
検出物4を照明し、被検出物4上の検出対象5による光
の屈折及び反射角度の変化を透過像としてカメラ6で捕
らえ、検出対象を検出するようになっている。FIG. 8 shows a transmission type dark field optical system, and FIG. 9 shows a transmission type bright field optical system. In the figure, reference numeral 1 denotes a planar light source, 2 denotes a light-shielding mask, 4 denotes an object to be detected, 5 denotes an object to be detected such as a defect or a character, and 6 denotes a camera for photographing a transmission image of the object to be detected. In the conventional optical system shown in each figure, a light-shielding mask 2 is arranged in front of a planar light source 1, and the light-shielding mask 2 gives light and dark to the light source to illuminate the detection object 4, and The change of the refraction and reflection angle of light by the detection target 5 is captured as a transmission image by the camera 6 and the detection target is detected.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上述の
ように光の屈折及び反射角度の変化を利用して検出対象
を検出する光学系においては、検出対象に対する光源の
見込角θがS/N等の検出感度に影響するという問題が
ある。また、検出対象に方向性がある場合、検出対象の
方向性に合わせて光源にも方向性を持たせて検出感度を
向上させる必要もある。かかる理由から、従来は、被検
出物の品種、及び検出対象である欠点の種類や文字種類
に応じて、光源の高さ(図8のZ)の調整、マスク幅W
の調整を機械的に行わなければならず煩雑であった。However, in the optical system for detecting a detection target by utilizing the change in the refraction and reflection angle of light as described above, the expected angle θ of the light source with respect to the detection target is S / N or the like. There is a problem that the detection sensitivity is affected. When the detection target has directionality, it is necessary to improve the detection sensitivity by giving the light source directionality in accordance with the directionality of the detection target. For this reason, conventionally, the height (Z in FIG. 8) of the light source and the mask width W
Must be adjusted mechanically, which is complicated.
【0005】更に、被検査物が曲面状を有する場合、被
検査物の各点で被検査物と光源との距離が変化し見込角
θが変わるため、被検査物上で検出感度に差を持たせる
には被検出物の品種に合わせて各品種毎に水平方向又は
垂直方向に適切な曲率を持たせた遮光マスクを用意しな
ければならず煩雑であった。また、エリアカメラ等を用
いて一定の面積内の検査を行う態様においても、一度に
検査できる最適な検出エリアが光源との関係で狭い領域
に限定され、広い領域を検査するには、被検査物又は光
学系を機械的に移動操作しなければならず、位置変更機
構が複雑で位置設定作業も煩雑であるという欠点があ
る。Further, when the inspection object has a curved surface, the distance between the inspection object and the light source changes at each point of the inspection object, and the expected angle θ changes, so that there is a difference in the detection sensitivity on the inspection object. To do so, a light-shielding mask having an appropriate curvature in the horizontal or vertical direction must be prepared for each type according to the type of the object to be detected, which is troublesome. Further, even in a mode in which inspection within a certain area is performed using an area camera or the like, an optimum detection area that can be inspected at a time is limited to a narrow area in relation to a light source. There is a disadvantage that the object or the optical system must be moved mechanically, the position changing mechanism is complicated, and the position setting operation is complicated.
【0006】本発明はこのような事情に鑑みて成された
もので、光学系の煩雑な位置設定等が不要で常に最適な
検出条件で検出でき、且つ、検出エリアの拡大を図るこ
とができる鏡面材料並びに透過材料の検査用光源装置を
提供することを目的とする。The present invention has been made in view of the above circumstances, and does not require complicated position setting of the optical system, and can always perform detection under optimum detection conditions, and can enlarge a detection area. An object of the present invention is to provide a light source device for inspection of a mirror surface material and a transmission material.
【0007】[0007]
【課題を解決するための手段】本発明は、前記目的を達
成するために、鏡面材料及び透過材料に照明光を照射
し、前記鏡面材料及び透過材料上に形成された検出対象
の像を撮像手段を介して観察する検査用光学系に用いら
れる鏡面材料並びに透過材料の検査用光源装置におい
て、独立して点灯/消灯可能な複数の発光源が平面的に
配列されて成る発光部と、前記各発光源の点灯/消灯を
制御し、前記発光部の点灯位置を変更させる制御手段
と、を備えたことを特徴としている。SUMMARY OF THE INVENTION In order to achieve the above object, the present invention irradiates a mirror material and a transmission material with illumination light to capture an image of a detection object formed on the mirror material and the transmission material. A light-emitting unit in which a plurality of light-emitting sources which can be turned on / off independently are arranged in a plane, in a light source device for inspection of a mirror material and a transmissive material used for an inspection optical system observed through means; Control means for controlling lighting / extinguishing of each light emitting source and changing a lighting position of the light emitting unit.
【0008】本発明によれば、独立して点灯/消灯制御
できる複数の発光源を平面的に配列した発光部を光源に
採用したので、発光部の点灯位置を容易に変更制御する
ことができる。これにより、多様な点灯パターンを形成
することができ、検出対象のS/Nを簡易に向上させる
ことができる。従って、常に検出に最適な点灯パターン
で点灯させることにより、常に最適な検出条件で検出を
行うことが可能になる。[0010] According to the present invention, since a light emitting unit in which a plurality of light emitting sources which can be independently turned on / off controlled is arranged in a plane is employed as the light source, the lighting position of the light emitting unit can be easily changed and controlled. . Thereby, various lighting patterns can be formed, and the S / N of the detection target can be easily improved. Therefore, it is possible to always perform the detection under the optimum detection condition by always lighting in the optimum lighting pattern for the detection.
【0009】また、本発明は、前記目的を達成するため
に、鏡面材料及び透過材料に照明光を照射し、前記鏡面
材料及び透過材料上に形成された検出対象の像を撮像手
段を介して観察する検査用光学系に用いられる鏡面材料
並びに透過材料の検査用光源装置において、平面状に形
成された発光部と、前記発光部の前面に平面的に配列さ
れ、それぞれ独立して透過/遮光の切換が可能な複数の
シャッター手段と、前記各シャッター手段の透過/遮光
を制御し、前記発光部の点灯位置を変更させる制御手段
と、を備えたことを特徴としている。Further, in order to achieve the above object, the present invention irradiates a mirror material and a transmission material with illumination light, and captures an image of a detection object formed on the mirror material and the transmission material via an imaging means. In a light source device for inspecting a specular material and a transmissive material used for an inspection optical system to be observed, a light emitting unit formed in a planar shape and a light emitting unit arranged in a plane on a front surface of the light emitting unit and independently transmitting / shielding light. And a control means for controlling the transmission / shielding of each of the shutter means and changing the lighting position of the light emitting section.
【0010】本発明によれば、平面状の発光部とシャッ
ター手段を組み合わせ、シャッター手段の透過/遮光を
制御することによって、発光部の点灯位置を変更させて
いる。かかる構成によっても、多様な点灯パターンを形
成することができ、検出に最適な点灯パターンで検出を
行うことが可能になる。更に、本発明に係る鏡面材料並
びに透過材料の検査用光源装置においては、発光部の点
灯位置を変更しながら撮像手段を介して検出対象の像を
順次撮影し、取得した撮影画像に基づいて検査に最適な
点灯パターンを自動的に決定することも可能となる。According to the present invention, the lighting position of the light emitting section is changed by combining the planar light emitting section and the shutter means and controlling the transmission / shielding of the shutter means. Even with such a configuration, various lighting patterns can be formed, and detection can be performed with a lighting pattern that is optimal for detection. Further, in the light source device for inspection of the mirror material and the transmission material according to the present invention, the image of the detection target is sequentially photographed via the imaging means while changing the lighting position of the light emitting unit, and the inspection is performed based on the acquired photographed image. It is also possible to automatically determine the most suitable lighting pattern.
【0011】[0011]
【発明の実施の形態】以下添付図面に従って本発明に係
る鏡面材料並びに透過材料の検査用光源装置の好ましい
実施の形態について詳説する。図1、図2には、本発明
に係る鏡面材料並びに透過材料の検査用光源装置をブラ
ウン管用ファンネルガラスの文字読取装置に適用した例
が示されている。尚、図1は平面図、図2はその側面図
である。ブラウン管用ファンネルガラス10は、3次元
曲面形状を有しており、製品全面にはフロストと呼ばれ
る高さ数μmのランダムな凹凸がある。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a light source device for inspecting a specular material and a transmissive material according to the present invention will be described below in detail with reference to the accompanying drawings. FIGS. 1 and 2 show an example in which the light source device for inspecting a mirror material and a transmission material according to the present invention is applied to a character reading device of a funnel glass for a cathode ray tube. FIG. 1 is a plan view, and FIG. 2 is a side view thereof. The funnel glass 10 for a cathode ray tube has a three-dimensional curved surface shape, and has random irregularities of several μm in height called frost on the entire surface of the product.
【0012】そして、このブラウン管用ファンネルガラ
ス10面上には、高さ数十μmの凸状文字12がプレス
成型される。かかる凸状文字12は、例えば金型の番号
を示し、図3に示すように、一文字の大きさが縦8m
m、横5mm程度、文字間隔約2mmで数文字横に並ん
で形成される。図1に示された文字読取装置は、前記凸
状文字12の読取を行うものであり、主として、LED
アレイ光源14及び該LEDアレイ光源14の点灯/消
灯を制御する光源制御手段(不図示)から成る検査用光
源装置と、前記LEDアレイ光源14で照明された前記
凸状文字12部の透過像を撮影するエリアカメラ16
と、から構成される。前記エリアカメラ16は、図3に
示した3つの文字列を一度に撮影できる画角を有し、カ
メラ支持部材18を介して所定の位置に固定されてい
る。A convex character 12 having a height of several tens μm is press-molded on the surface of the funnel glass 10 for a cathode ray tube. Such a convex character 12 indicates, for example, a mold number, and as shown in FIG.
m, about 5 mm in width, with a character spacing of about 2 mm, formed side by side with several characters. The character reading device shown in FIG. 1 reads the convex character 12 and mainly includes an LED.
An inspection light source device including an array light source 14 and light source control means (not shown) for controlling turning on / off of the LED array light source 14, and a transmission image of the convex character 12 illuminated by the LED array light source 14. Area camera 16 for shooting
And The area camera 16 has an angle of view that can photograph the three character strings shown in FIG. 3 at a time, and is fixed at a predetermined position via a camera support member 18.
【0013】この文字読取装置は、ブラウン管用ファン
ネルガラス10面に形成された文字のエッジ部分の凸形
状を明点として検出する暗視野光学系が採用されてお
り、LEDアレイ光源14で照明された文字部の画像を
エリアカメラ16で撮像し、取得した画像に基づいてそ
の文字を判読する。尚、読み取った情報は、不良品排除
のフィードバックデータ等に利用される。This character reading device employs a dark-field optical system for detecting, as a bright point, a convex shape of an edge portion of a character formed on the surface of the funnel glass 10 for a CRT, and is illuminated by an LED array light source 14. An image of the character portion is captured by the area camera 16, and the character is read based on the acquired image. The read information is used as feedback data for eliminating defective products.
【0014】図4はLEDアレイ光源の平面図であり、
図5はその側面図である。この光源は、発光ダイオード
(LED)20、20…が基板22上に12×18個
(計216個)配列されて成り、発光部は全体で約50
mm×72mm程度の大きさを有している。尚、符号2
4は前記基板22を収納するケーシングであり、発光部
の前面には拡散板26が設けられている。FIG. 4 is a plan view of the LED array light source.
FIG. 5 is a side view thereof. This light source is composed of 12 × 18 (216 in total) light emitting diodes (LEDs) 20, 20... Arranged on a substrate 22.
It has a size of about mm × 72 mm. Note that reference numeral 2
Reference numeral 4 denotes a casing for accommodating the substrate 22, and a diffusion plate 26 is provided on a front surface of the light emitting unit.
【0015】各発光ダイオード20、20…は独立に点
灯/消灯が可能であり、各発光ダイオード20、20…
は図示せぬ光源制御手段によって点灯/消灯が制御され
る。光源制御手段は任意に点灯位置(点灯パターン)を
変更することができ、点灯位置を制御することによって
面状の発光部に暗部分と明部分とを任意に形成すること
ができる。Each of the light emitting diodes 20, 20,... Can be turned on / off independently, and each of the light emitting diodes 20, 20,.
Lighting / extinguishing is controlled by light source control means (not shown). The light source control means can arbitrarily change the lighting position (lighting pattern), and by controlling the lighting position, a dark portion and a bright portion can be arbitrarily formed in the planar light emitting portion.
【0016】次に、上記の如く構成された検査用光源装
置が適用された文字読取装置の作用について説明する。
図1に示した文字読取装置を用いてブラウン管用ファン
ネルガラス10に形成された凸状文字12を読み取る場
合には、文字の凸形状を周辺の凹凸形状(フロスト)と
区別することが最も重要な課題の一つである。Next, the operation of the character reading apparatus to which the inspection light source device configured as described above is applied will be described.
When reading the convex character 12 formed on the funnel glass 10 for a cathode ray tube using the character reading device shown in FIG. 1, it is most important to distinguish the convex shape of the character from the peripheral uneven shape (frost). This is one of the issues.
【0017】特定の文字エッジに着目した場合、エリア
カメラ16と該文字エッジを結ぶ線が平面状のLEDア
レイ光源14と交差する点Pは暗部分であり、且つその
周辺は明部分であることが必要となる。そこで、文字エ
ッジの凹凸とフロスト部分の凹凸とでは光の屈折角に差
があることを利用し、両者を区別すべく光源の暗部分の
幅Wを設定する。When attention is paid to a specific character edge, the point P at which the line connecting the area camera 16 and the character edge intersects the planar LED array light source 14 is a dark portion, and the periphery thereof is a bright portion. Is required. Therefore, utilizing the difference in the angle of refraction of light between the irregularities of the character edge and the irregularities of the frost part, the width W of the dark part of the light source is set to distinguish between the two.
【0018】図6には、平面状の光源の暗部分の幅Wに
相当する見込角θとエリアカメラ16で検出した画像の
相対検出強度の関係が示されている。本実施の形態で
は、文字エッジの凹凸部分での屈折角の方がフロスト部
分の凹凸での屈折角よりも大きいので、図6に示すよう
に見込角θが小さいとフロストの凹凸による検出強度が
大きく、文字エッジを検出することは困難である。FIG. 6 shows the relationship between the projection angle θ corresponding to the width W of the dark portion of the planar light source and the relative detection intensity of the image detected by the area camera 16. In the present embodiment, the angle of refraction at the uneven portion of the character edge is larger than the angle of refraction at the uneven portion of the frost portion. Therefore, as shown in FIG. It is large and it is difficult to detect character edges.
【0019】しかし、見込角θを次第に大きくするにつ
れて、フロストの凹凸による検出強度が低下し、代わり
に文字エッジによる検出強度が高まる。そして、見込角
がある値θ0 を超えると、文字エッジの検出強度がフロ
ストの検出強度を上回り、文字エッジの検出が可能にな
る。従って、平面状の光源の暗部分の幅を見込角θ0 に
相当する値W0 以上に設定することにより、文字エッジ
部分のみ明部として検出できる。However, as the expected angle θ gradually increases, the detection intensity due to the frost unevenness decreases, and instead, the detection intensity due to the character edge increases. When the expected angle exceeds a certain value θ0, the detected intensity of the character edge exceeds the detected intensity of the frost, and the character edge can be detected. Therefore, by setting the width of the dark portion of the planar light source to a value W0 or more corresponding to the expected angle .theta.0, only the character edge portion can be detected as a bright portion.
【0020】図3に示した3文字列を読み取る場合に
は、この3文字の検査領域枠を例えば、横方向に6分
割、縦方向に3分割して計9通りの検出領域に分割し、
各検出領域のそれぞれに最適なパターンで光源を点灯さ
せ画像を取り込む。そして、9回の画像の「OR」を取
り、1つの画像につなぎ合わせることにより、3つの文
字列を検出することができる。尚、文字の縦エッジを検
出する際には、エッジに平行に暗領域を形成するように
している。When reading the three-character string shown in FIG. 3, the three-character inspection area frame is divided into, for example, six in the horizontal direction and three in the vertical direction to be divided into a total of nine detection areas.
The light source is turned on in an optimal pattern for each of the detection areas to capture an image. Then, three character strings can be detected by taking the "OR" of the images nine times and connecting them to one image. When detecting a vertical edge of a character, a dark area is formed in parallel with the edge.
【0021】次に、分割された各検出領域について最適
な点灯パターンを決定する手順について説明する。図7
には、検査領域枠を横方向に3分割した場合の例が示さ
れ、LEDアレイ光源14は列点灯光源として簡略化し
て示されている。図中符号30は、検出対象たる文字列
の検査領域枠を示している。Next, a procedure for determining an optimum lighting pattern for each of the divided detection areas will be described. FIG.
3 shows an example in which the inspection area frame is divided into three in the horizontal direction, and the LED array light source 14 is simply shown as a column lighting light source. Reference numeral 30 in the drawing indicates an inspection area frame of a character string to be detected.
【0022】分割された3つの検出領域A1 、A2 、A
3 のうち、1つの検出領域(例えば、同図において真ん
中の領域)A2 に対して、最適な点灯パターンは以下の
手順で決定される。先ず、この検出領域A2 に対して、
LEDアレイ光源14を縦1列毎に図中左側の第1列目
(N1 )から最終列(Nend )まで、順次点灯させてい
く。このとき、フロスト部分が検出されるとエリアカメ
ラ16が捕らえた画像上にはランダムな斑点模様が検出
される。The three divided detection areas A 1, A 2, A
3, the optimum lighting pattern for one detection area (for example, the middle area in the figure) A2 is determined by the following procedure. First, for this detection area A2,
The LED array light sources 14 are sequentially turned on for each vertical column from the first column (N1) on the left side in the figure to the last column (Nend). At this time, when the frost portion is detected, a random spot pattern is detected on the image captured by the area camera 16.
【0023】画像上のランダムな斑点模様は、即ち、画
像中のノイズとして把握することができるので、ノイズ
の許容最大数Kを予め設定しておき、これを超えるノイ
ズ(斑点)が検出された場合にそのとき点灯させている
LED列の位置(列位置)を記憶する。こうして、検出
領域の両側に光源が平面的に広がる場合には、ノイズ数
が前記許容最大数Kを超える範囲Na〜Nbが求まる。
上述の工程によって求められたNa〜Nb列を消灯し、
その他の列を点灯させることによって、検査領域A2 に
対する最適な点灯パターンを得ることができる。Since a random speckle pattern on an image can be grasped as noise in the image, the allowable maximum number K of noise is set in advance, and noise (speckle) exceeding this is detected. In this case, the position (row position) of the currently lit LED row is stored. In this way, when the light source spreads on both sides of the detection area in a planar manner, a range of Na to Nb where the number of noises exceeds the allowable maximum number K is obtained.
Turn off the columns Na to Nb determined by the above-described steps,
By illuminating the other rows, an optimal illumination pattern for the inspection area A2 can be obtained.
【0024】他の検査領域についても同様に点灯パター
ンの最適化を図ることができる。また、検査領域枠30
を縦方向に分割した場合にはLEDアレイ光源14を横
1行毎に順次点灯させることで、上述と同様の手法によ
って点灯行に対して最適化を図ることができる。図1の
文字読取装置では、3つの文字列に対して、図7で説明
した方法を用いて、横方向に6分割、縦方向に3分割さ
れた計9通りの検出領域について、それぞれ最適な点灯
パターンを自動的に決定し、時間的にLEDアレイ光源
14の点灯パターンを切り換えながら、9通りの画面を
撮影する。そして、9回の画像を重ねて1つの画像につ
なぎ合わせることにより、3つの文字列を判読すること
ができる。これにより、被検査物や光学系を機械的に移
動させることなく、比較的広い検査エリアを一度に検査
することができる。In the other inspection areas, the lighting pattern can be similarly optimized. In addition, the inspection area frame 30
In the case where is divided in the vertical direction, the LED array light sources 14 are sequentially turned on for each horizontal row, so that the lighting row can be optimized by the same method as described above. In the character reading apparatus of FIG. 1, the three character strings are divided into six in the horizontal direction and three in the vertical direction using the method described with reference to FIG. The lighting pattern is automatically determined, and nine kinds of screens are photographed while the lighting pattern of the LED array light source 14 is temporally switched. Then, the three character strings can be read by superimposing the nine images and connecting them to one image. Thus, a relatively large inspection area can be inspected at a time without mechanically moving the inspection object or the optical system.
【0025】上記実施の形態では、LEDアレイ光源を
用いた場合を例に説明したが、光源の態様はこれに限ら
れない。即ち、光源をマトリックス状にセル分けし、任
意の点灯パターンで点灯/消灯の制御が可能な構成であ
ればよく、面状光源と液晶シャッターとの組み合わせ等
でもよい。例えば、平面状の単一の光源の前面に液晶シ
ャッターを配置し、液晶シャッターの透過/遮光を制御
することによって、点灯パターンを変えることができ
る。In the above embodiment, the case where the LED array light source is used has been described as an example, but the form of the light source is not limited to this. That is, the light source may be divided into cells in a matrix, and lighting / extinguishing may be controlled in an arbitrary lighting pattern, and a combination of a planar light source and a liquid crystal shutter may be used. For example, a lighting pattern can be changed by disposing a liquid crystal shutter in front of a single planar light source and controlling transmission / shielding of the liquid crystal shutter.
【0026】また、上記実施の形態では、ブラウン管用
ファンネルガラスの凸状文字を読み取る文字読取装置を
例に説明したが、本発明は、暗視野光学系、明視野光学
系を問わず、鏡面材料並びに透光性材料を被検査物とす
る欠点検査、刻印・印字の読み取り等の種々の検査用光
学系に広く適用することができる。Further, in the above-described embodiment, the character reading apparatus for reading the convex characters of the funnel glass for a cathode ray tube has been described as an example. However, the present invention is not limited to a dark-field optical system or a bright-field optical system. Further, the present invention can be widely applied to various inspection optical systems such as defect inspection using a translucent material as an object to be inspected, and reading of engraving and printing.
【0027】[0027]
【発明の効果】以上説明したように本発明に係る鏡面材
料並びに透過材料の検査用光源装置によれば、独立して
点灯/消灯制御できる複数の発光源を平面的に配列した
発光部を光源に採用し、或いは、平面状の発光部とシャ
ッター手段を組み合わせて発光部の点灯位置を変更制御
可能にしたので、多様な点灯パターンを容易に形成する
ことができ、検出に最適な点灯パターンで検出を行うこ
とが可能になる。As described above, according to the light source device for inspecting a mirror material and a transmissive material according to the present invention, a light emitting portion in which a plurality of light emitting sources that can be turned on / off independently can be arranged in a plane. Or a combination of a planar light emitting unit and a shutter means to change and control the lighting position of the light emitting unit, so that various lighting patterns can be easily formed, and the optimal lighting pattern for detection can be obtained. Detection can be performed.
【0028】また、本発明によれば、発光部の点灯位置
を変更しながら撮像手段を介して検出対象の像を順次撮
影することにより、その取得した撮影画像に基づいて検
査に最適な点灯パターンを自動的に決定することも可能
となる。更に、点灯パターンを変化させながら検出を行
うことができるので、撮像手段で観察される検査領域を
分割して各検査領域毎に最適な点灯パターンで照明する
という態様が可能となり、被検査物や光学系を機械的に
移動させることなく、比較的広い検査エリアを一度に検
査することができるという利点がある。According to the present invention, an image of a detection target is sequentially photographed through an image pickup means while changing a lighting position of a light emitting section, so that an optimal lighting pattern for inspection is obtained based on the acquired photographed image. Can be automatically determined. Further, since the detection can be performed while changing the lighting pattern, it is possible to divide the inspection area observed by the imaging unit and illuminate the inspection area with the optimal lighting pattern for each inspection area, and it is possible to perform inspection and inspection. There is an advantage that a relatively large inspection area can be inspected at a time without mechanically moving the optical system.
【図1】本発明が適用された文字読取装置の構成を示す
平面図FIG. 1 is a plan view showing a configuration of a character reading apparatus to which the present invention is applied.
【図2】図1に示した文字読取装置の側面図FIG. 2 is a side view of the character reading device shown in FIG. 1;
【図3】図1に示したブラウン管用ファンネルガラス面
上に形成される凸状文字の一例を示す平面図FIG. 3 is a plan view showing an example of a convex character formed on the surface of the funnel glass for a cathode ray tube shown in FIG. 1;
【図4】図1に示したLEDアレイ光源の平面図FIG. 4 is a plan view of the LED array light source shown in FIG. 1;
【図5】図4に示したLEDアレイ光源の側面図5 is a side view of the LED array light source shown in FIG.
【図6】光源の暗部分の幅に対応する見込角と相対検出
強度の関係を示すグラフFIG. 6 is a graph showing a relationship between an expected angle corresponding to a width of a dark portion of a light source and a relative detection intensity.
【図7】点灯位置の自動最適化方法を説明するために用
いた概念図FIG. 7 is a conceptual diagram used for explaining a method of automatically optimizing a lighting position.
【図8】従来の透過タイプの暗視野光学系の構成を示す
平面図FIG. 8 is a plan view showing the configuration of a conventional transmission type dark field optical system.
【図9】従来の透過タイプの明視野光学系の構成を示す
平面図FIG. 9 is a plan view showing a configuration of a conventional transmission type bright field optical system.
10…ブラウン管用ファンネルガラス(透過材料) 12…凸状文字(検出対象) 14…LEDアレイ光源 16…エリアカメラ 20…発光ダイオード(発光源) 26…拡散板 DESCRIPTION OF SYMBOLS 10 ... Funnel glass for cathode-ray tubes (transmissive material) 12 ... Convex character (detection object) 14 ... LED array light source 16 ... Area camera 20 ... Light emitting diode (light emitting source) 26 ... Diffusion plate
Claims (4)
し、前記鏡面材料及び透過材料上に形成された検出対象
の像を撮像手段を介して観察する検査用光学系に用いら
れる鏡面材料並びに透過材料の検査用光源装置におい
て、 独立して点灯/消灯可能な複数の発光源が平面的に配列
されて成る発光部と、 前記各発光源の点灯/消灯を制御し、前記発光部の点灯
位置を変更させる制御手段と、 を備えたことを特徴とする鏡面材料並びに透過材料の検
査用光源装置。A mirror material used in an inspection optical system for irradiating the mirror material and the transmission material with illumination light, and observing an image of a detection target formed on the mirror material and the transmission material via an imaging unit; In the light source device for inspecting a transmissive material, a light emitting unit in which a plurality of light emitting sources that can be turned on / off independently is arranged in a plane, and turning on / off of each of the light emitting sources is controlled to turn on the light emitting unit. A light source device for inspecting a specular material and a transmissive material, comprising: control means for changing a position.
が2次元的に配列されて構成されることを特徴とする請
求項1の鏡面材料並びに透過材料の検査用光源装置。2. The light source device according to claim 1, wherein the light emitting unit is configured by two-dimensionally arranging light emitting diodes as light emitting sources.
し、前記鏡面材料及び透過材料上に形成された検出対象
の像を撮像手段を介して観察する検査用光学系に用いら
れる鏡面材料並びに透過材料の検査用光源装置におい
て、 平面状に形成された発光部と、 前記発光部の前面に平面的に配列され、それぞれ独立し
て透過/遮光の切換が可能な複数のシャッター手段と、 前記各シャッター手段の透過/遮光を制御し、前記発光
部の点灯位置を変更させる制御手段と、 を備えたことを特徴とする鏡面材料並びに透過材料の検
査用光源装置。3. A mirror material used in an inspection optical system for irradiating the mirror material and the transmission material with illumination light, and observing an image of a detection target formed on the mirror material and the transmission material via an imaging means; A light-emitting device for inspecting a transmissive material, comprising: a light-emitting portion formed in a planar shape; and a plurality of shutter means arranged in a plane on a front surface of the light-emitting portion and capable of independently switching between transmission and light-shielding; Control means for controlling transmission / shielding of each shutter means to change a lighting position of the light emitting section, and a light source device for inspecting a mirror material and a transmission material.
びに透過材料の検査用光源装置を有し、前記制御手段に
よって前記発光部の点灯位置を変更しながら撮像手段を
介して検出対象の像を順次撮影し、取得した撮影画像に
基づいて検査に最適な点灯パターンを決定する点灯パタ
ーン自動決定手段を備えたことを特徴とする検査装置。4. A light source device for inspecting a mirror material and a transmissive material according to claim 1, 2 or 3, wherein the control unit changes a lighting position of the light emitting unit and detects an object to be detected via an imaging unit. An automatic lighting pattern determination means for sequentially photographing the images and determining an optimal lighting pattern for the inspection based on the acquired captured image.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26887197A JPH11108844A (en) | 1997-10-01 | 1997-10-01 | Light source device for inspection of mirror surface materials and transmission materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26887197A JPH11108844A (en) | 1997-10-01 | 1997-10-01 | Light source device for inspection of mirror surface materials and transmission materials |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11108844A true JPH11108844A (en) | 1999-04-23 |
Family
ID=17464427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26887197A Pending JPH11108844A (en) | 1997-10-01 | 1997-10-01 | Light source device for inspection of mirror surface materials and transmission materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11108844A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2794242A1 (en) * | 1999-05-25 | 2000-12-01 | Emhart Glass Sa | CONTAINER INSPECTION MACHINE |
EP1199576A1 (en) * | 2000-10-17 | 2002-04-24 | Drei Solar AG | Device for testing solar cells |
WO2002033430A1 (en) * | 2000-10-17 | 2002-04-25 | Acr Automation In Cleanroom Gmbh | Device for testing solar cells |
JP2007530934A (en) * | 2004-03-23 | 2007-11-01 | ケーニッヒ ウント バウエル アクチエンゲゼルシャフト | Optical system for producing illumination formations |
JP2007333731A (en) * | 2006-05-18 | 2007-12-27 | Nippon Steel Corp | Surface inspection system and diagnostic method for inspection performance of surface inspection system |
FR2907553A1 (en) * | 2006-10-24 | 2008-04-25 | Tiama Sa | Transparent or translucent object e.g. glass bottle, inspecting method for detecting e.g. air bubble, involves analyzing image captured with two types of light to respectively detect high contrast defects and low contrast defects |
JP2008249568A (en) * | 2007-03-30 | 2008-10-16 | Fujifilm Corp | Appearance inspection device |
JP2020016506A (en) * | 2018-07-24 | 2020-01-30 | Ckd株式会社 | Inspection device, ptp packaging machine, and ptp sheet manufacturing method |
JP2020148664A (en) * | 2019-03-14 | 2020-09-17 | オムロン株式会社 | Image inspection device and image inspection method |
-
1997
- 1997-10-01 JP JP26887197A patent/JPH11108844A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7781723B1 (en) | 1998-02-19 | 2010-08-24 | Emhart Glass S.A. | Container inspection machine using light source having spatially cyclically continuously varying intensity |
FR2794242A1 (en) * | 1999-05-25 | 2000-12-01 | Emhart Glass Sa | CONTAINER INSPECTION MACHINE |
JP2004511918A (en) * | 2000-10-17 | 2004-04-15 | エーシーアール オートメーション イン クリーンルーム ゲセルシャフト ミット ベシュレンクテル ハフツング | Equipment for testing solar cells |
WO2002033430A1 (en) * | 2000-10-17 | 2002-04-25 | Acr Automation In Cleanroom Gmbh | Device for testing solar cells |
EP1199576A1 (en) * | 2000-10-17 | 2002-04-24 | Drei Solar AG | Device for testing solar cells |
JP2007530934A (en) * | 2004-03-23 | 2007-11-01 | ケーニッヒ ウント バウエル アクチエンゲゼルシャフト | Optical system for producing illumination formations |
JP2007333731A (en) * | 2006-05-18 | 2007-12-27 | Nippon Steel Corp | Surface inspection system and diagnostic method for inspection performance of surface inspection system |
FR2907553A1 (en) * | 2006-10-24 | 2008-04-25 | Tiama Sa | Transparent or translucent object e.g. glass bottle, inspecting method for detecting e.g. air bubble, involves analyzing image captured with two types of light to respectively detect high contrast defects and low contrast defects |
WO2008050066A3 (en) * | 2006-10-24 | 2008-06-19 | Tiama | Method and device for detecting low-contrast and high-contrast defects in transparent or translucent objects |
JP2008249568A (en) * | 2007-03-30 | 2008-10-16 | Fujifilm Corp | Appearance inspection device |
JP2020016506A (en) * | 2018-07-24 | 2020-01-30 | Ckd株式会社 | Inspection device, ptp packaging machine, and ptp sheet manufacturing method |
JP2020148664A (en) * | 2019-03-14 | 2020-09-17 | オムロン株式会社 | Image inspection device and image inspection method |
WO2020184567A1 (en) * | 2019-03-14 | 2020-09-17 | オムロン株式会社 | Image inspection device and image inspection method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7382457B2 (en) | Illumination system for material inspection | |
TWI442016B (en) | A light source for illumination and a pattern inspection device using it | |
US7227648B2 (en) | Method and apparatus for a touch-free examination of objects, particularly regarding the surface character of the same | |
CN109804238B (en) | Optical inspection device | |
JP2003098093A (en) | Lighting system for examination | |
JP3472750B2 (en) | Surface inspection equipment | |
JP2010112941A (en) | Surface inspection apparatus | |
JP2008513742A (en) | Optical inspection of planar media using direct image techniques. | |
JP2009042089A (en) | Visual examination device of board | |
CN113686879A (en) | Optical film defect visual detection system and method | |
TW200842347A (en) | Pattern checking device and pattern checking mehtod | |
JPH11337504A (en) | Inspection method and apparatus for discriminating defects in glass sheet | |
US20090237653A1 (en) | Device for recording a number of images of disk-shaped objects | |
US20100245560A1 (en) | Method and device for imaging a fragmentation pattern formed in a ply of toughened glass | |
US7602483B2 (en) | Device for dark field illumination and method for optically scanning of object | |
KR102082204B1 (en) | Apparatus for inspecting curved surface of cover glass | |
JPH11108844A (en) | Light source device for inspection of mirror surface materials and transmission materials | |
JP6956004B2 (en) | Defect inspection equipment and manufacturing method of defect inspection equipment | |
KR101520636B1 (en) | Optical Method and Apparatus of Image Acquisition and Illumination on Irregular Surface | |
CN113203708A (en) | Optical device | |
JP2011106912A (en) | Imaging illumination means and pattern inspection device | |
WO1999064845A1 (en) | Defect detecting unit | |
JP2004212353A (en) | Optical inspection apparatus | |
JP2000232564A (en) | Optical system for compensating uneven illumination to object | |
JP2005241370A (en) | Appearance inspection method |