[go: up one dir, main page]

JPH11107966A - Air conditioning device - Google Patents

Air conditioning device

Info

Publication number
JPH11107966A
JPH11107966A JP27233697A JP27233697A JPH11107966A JP H11107966 A JPH11107966 A JP H11107966A JP 27233697 A JP27233697 A JP 27233697A JP 27233697 A JP27233697 A JP 27233697A JP H11107966 A JPH11107966 A JP H11107966A
Authority
JP
Japan
Prior art keywords
oil
refrigerant
temperature
pressure
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27233697A
Other languages
Japanese (ja)
Inventor
Hiroyuki Morimoto
裕之 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP27233697A priority Critical patent/JPH11107966A/en
Publication of JPH11107966A publication Critical patent/JPH11107966A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2105Oil temperatures

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect the state where oil is transitionally collected in an oil separator and to improve the reliability by detecting the temperature and pressure on a coolant on a pressure reducing device downstream side of an oil returning circuit for connecting the oil separator to the low pressure side of a refrigerator cycle, and then returning the oil. SOLUTION: The pressure and temperature of a medium on a pressure reducing device 8 downstream side of an oil returning circuit 13 for connecting an oil separator 2 to the low pressure side of a refrigerating cycle are detected by a pressure sensor 9 and a temperature sensor 10. A control means 11 calculates the temperature difference between the saturated temperature of the coolant at the detected pressure and the detected temperature, and performs an oil returning operation when the temperature difference is a set temperature difference or less. Since the state where the oil is transitionally collected in the oil separator 2 because of the starting in the state where the coolant is stayed in a compressor 1 or a liquid backing can be detected, the reliability can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、空気調和装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner.

【0002】[0002]

【従来の技術】図17は、従来例の空気調和装置を示す
系統図である。図において、1は圧縮機、2は油分離
器、3は凝縮器、4は第1開閉弁、5は絞り装置、6は
蒸発器、7はアキュムレータ、8は第1返油回路13に
設けられた第1減圧装置、13は第1返油回路、12は
第1返油回路13に設けられた第2開閉弁、19は前記
配管を流通する冷媒および冷凍機油からなる媒体の流通
方向を示す矢印であり、配管にて接続され空気調和装置
を形成している。
2. Description of the Related Art FIG. 17 is a system diagram showing a conventional air conditioner. In the figure, 1 is a compressor, 2 is an oil separator, 3 is a condenser, 4 is a first opening / closing valve, 5 is a throttle device, 6 is an evaporator, 7 is an accumulator, and 8 is provided in a first oil return circuit 13. 13 is a first oil return circuit, 12 is a second on-off valve provided in the first oil return circuit 13, and 19 is a flow direction of a medium made of refrigerant and refrigerating machine oil flowing through the pipe. Arrows shown are connected by pipes to form an air conditioner.

【0003】圧縮機1で圧縮され高温,高圧になったガ
ス冷媒は、油分離器2でガス冷媒と冷凍機油が分離され
る。ガス冷媒は凝縮器3へ流れ込み、一方、冷凍機油は
第1返油回路13に設けられた第2開閉弁12,第1減
圧装置8を通ってアキュムレータ7の入口側の冷媒配管
に戻され、アキュムレータ7を通り、圧縮機1に返油さ
れる。
The gas refrigerant which has been compressed by the compressor 1 and has become high temperature and high pressure is separated by the oil separator 2 into the gas refrigerant and the refrigerating machine oil. The gas refrigerant flows into the condenser 3, while the refrigerating machine oil is returned to the refrigerant pipe on the inlet side of the accumulator 7 through the second on-off valve 12 and the first pressure reducing device 8 provided in the first oil return circuit 13, The oil is returned to the compressor 1 through the accumulator 7.

【0004】ガスの冷媒は凝縮器3で凝縮され、液冷媒
となり、第1開閉弁4を通り、絞り装置5にて低圧の気
液二相冷媒となる。この気液二相冷媒は蒸発器6に送り
込まれ、そこで熱を吸収してガス冷媒となり、このガス
冷媒はアキュムレータ7を経て、圧縮機1に戻り、冷凍
サイクルが完結する。
The gaseous refrigerant is condensed in the condenser 3 to become a liquid refrigerant, passes through the first on-off valve 4, and becomes a low-pressure gas-liquid two-phase refrigerant in the expansion device 5. The gas-liquid two-phase refrigerant is sent to the evaporator 6, where it absorbs heat to become a gas refrigerant. The gas refrigerant returns to the compressor 1 via the accumulator 7, and the refrigeration cycle is completed.

【0005】[0005]

【発明が解決しようとする課題】上記のような空気調和
装置では、油分離器に溜まった冷凍機油の量に関係な
く、返油回路の仕様,返油回路を流れる冷凍機油と冷媒
の状態および圧力条件で返油量は決定されていた。この
ため、液バックや、圧縮機1に冷媒が寝込んでいる状態
での起動あるいは、フォーミングなどが原因で過渡的に
圧縮機1の冷凍機油が多量に油分離器2に持ち出された
場合は、圧縮機1では油不足状態となることがあった。
In the above-described air conditioner, the specifications of the oil return circuit, the state of the refrigerant oil and the refrigerant flowing through the oil return circuit, and the condition of the refrigerant, regardless of the amount of the oil stored in the oil separator. The amount of oil returned was determined under pressure conditions. For this reason, when a large amount of refrigerating machine oil of the compressor 1 is transiently taken out to the oil separator 2 due to a liquid back, a start-up in a state where the refrigerant is laid in the compressor 1, or a forming, etc. In the compressor 1, the oil shortage sometimes occurred.

【0006】この発明は、かかる問題点を解決するため
になされたものであり、返油回路の出口の圧力と温度を
検知し、圧力から飽和温度に換算し、温度差から、油分
離器2に過渡的に多量の油が存在していると判断し、返
油量を調節あるいは空気調和装置を停止させるなど、空
気調和装置の信頼性を向上することを目的としている。
The present invention has been made to solve such a problem, and detects the pressure and temperature at the outlet of the oil return circuit, converts the pressure into a saturation temperature, and uses the temperature difference to determine the oil separator 2. It is intended to improve the reliability of the air conditioner by judging that a large amount of oil is transiently present in the air conditioner and adjusting the oil return amount or stopping the air conditioner.

【0007】また、冷媒と溶け合わない冷凍機油を用い
た場合は、配管中で油の滞留が発生しやすいため、配管
中の油の量を検知して返油し、圧縮機内の油量を確保
し、空気調和装置の信頼性を向上することを目的として
いる。
[0007] Further, when refrigeration oil that does not dissolve in the refrigerant is used, the oil is likely to stay in the piping. Therefore, the amount of oil in the piping is detected and the oil is returned to reduce the amount of oil in the compressor. The purpose is to secure and improve the reliability of the air conditioner.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、第1の発明に係る空気調和装置においては、圧縮
機,油分離器,凝縮器,絞り装置,蒸発器を順次配管接
続した冷凍サイクルを備えた空気調和装置において、前
記油分離器と前記冷凍サイクルの低圧側とを接続する返
油回路と、前記返油回路に設けた減圧装置と、前記減圧
装置より下流側で、前記返油回路に設けられ、前記返油
回路の温度を検知する温度検知手段および前記返油回路
の冷媒の圧力を検知する圧力検知手段と、前記圧力検知
手段が検知した圧力における冷媒の飽和温度を演算し、
前記飽和温度と前記温度検知手段が検知した温度との温
度差を演算し、前記温度差が設定温度差以下の場合、返
油指令を出す制御手段と、前記制御手段の指令により前
記油分離器の冷凍機油を圧縮機側に返油する返油手段と
を備える。
In order to achieve the above object, an air conditioner according to a first aspect of the present invention provides a refrigeration system in which a compressor, an oil separator, a condenser, a throttle device, and an evaporator are sequentially connected by piping. An air conditioner equipped with a cycle, a recirculation circuit connecting the oil separator and a low pressure side of the refrigerating cycle, a decompression device provided in the recirculation circuit, and A temperature detecting means provided in the oil circuit, for detecting the temperature of the oil return circuit, a pressure detecting means for detecting the pressure of the refrigerant in the oil return circuit, and calculating a saturation temperature of the refrigerant at the pressure detected by the pressure detecting means. And
Calculating a temperature difference between the saturation temperature and the temperature detected by the temperature detection means, and when the temperature difference is equal to or less than a set temperature difference, a control means for issuing an oil return command; and the oil separator according to a command from the control means. Oil returning means for returning the refrigerating machine oil to the compressor side.

【0009】第2の発明の空気調和装置においては、前
記返油手段は、制御手段が圧縮機を止め、また、冷凍サ
イクルの高圧側と低圧側とを遮断する開閉装置を閉とし
た時の前記返油回路により構成される。
In the air conditioner of the second invention, the oil return means is provided when the control means stops the compressor and closes an opening / closing device for shutting off the high pressure side and the low pressure side of the refrigeration cycle. It is constituted by the oil return circuit.

【0010】第3の発明の空気調和装置においては、前
記返油手段は、前記返油回路の減圧装置より流量抵抗の
小さい減圧装置を備え、前記返油回路の減圧装置に並列
に設けたバイパス配管により構成される。
[0010] In the air conditioner of the third invention, the oil return means includes a pressure reducing device having a smaller flow resistance than the pressure reducing device of the oil return circuit, and a bypass provided in parallel with the pressure reducing device of the oil return circuit. It is composed of piping.

【0011】第4の発明の空気調和装置においては、第
1の発明の空気調和装置において、前記温度検知手段お
よび前記圧力検知手段より下流の冷媒と凝縮器を出た冷
媒とを熱交換させる熱交換手段を備える。
The air conditioner according to a fourth aspect of the present invention is the air conditioner according to the first aspect of the present invention, wherein heat is exchanged between the refrigerant downstream of the temperature detecting means and the pressure detecting means and the refrigerant flowing out of the condenser. It has exchange means.

【0012】圧縮機,油分離器,凝縮器,第1開閉弁,
絞り装置,蒸発器を順次配管接続した冷凍サイクルを備
え、冷媒と溶け合わない冷凍機油を用いた空気調和装置
において、第1開閉弁からの冷媒を導出する配管の水平
箇所における上部とアキュムレータと蒸発器を接続して
いる配管との間に設けられた第1バイパス回路と、第1
バイパス回路に設けられた第1減圧装置と、前記第1減
圧装置をバイパスする第2バイパス回路と、前記第2バ
イパス回路に設けられた第2開閉弁および第2減圧装置
とを備え、前記第1バイパス回路の出口に、冷媒の圧力
を検知する圧力検知手段と、冷媒の温度を検知する温度
検知手段と、検知された圧力から飽和温度に換算し、冷
媒温度との温度差を演算し、演算された温度差が設定温
度差以上になった時は、一定時間の間、第2開閉弁を開
にする制御を行う制御手段とを設ける。
A compressor, an oil separator, a condenser, a first on-off valve,
An air conditioner using a refrigerating machine oil that does not mix with a refrigerant is provided with a refrigeration cycle in which a throttle device and an evaporator are sequentially connected to a pipe. A first bypass circuit provided between a pipe connecting the
A first decompression device provided in a bypass circuit, a second bypass circuit for bypassing the first decompression device, a second on-off valve and a second decompression device provided in the second bypass circuit, At the outlet of the 1 bypass circuit, a pressure detecting means for detecting the pressure of the refrigerant, a temperature detecting means for detecting the temperature of the refrigerant, and converting the detected pressure into a saturation temperature, and calculating a temperature difference from the refrigerant temperature, When the calculated temperature difference becomes equal to or larger than the set temperature difference, a control means for performing control for opening the second on-off valve for a predetermined time is provided.

【0013】第6の発明の空気調和装置においては、圧
縮機,油分離器,凝縮器,第1開閉弁,絞り装置,蒸発
器が順次配管接続した冷凍サイクルを備え、冷媒と溶け
合わない冷凍機油を用いた空気調和装置において、第1
開閉弁からの冷媒を導出する配管の水平箇所における前
記配管内の上部と絞り装置と蒸発器を接続している配管
との間に設けられた第1バイパス回路と、前記バイパス
回路に設けられた第1減圧装置と、前記第1減圧装置を
バイパスし、蒸発器出口に接続された第2バイパス回路
と、前記第2バイパス回路に設けられた第2開閉弁およ
び第2減圧装置とを備え、前記第1バイパス回路の出口
に、冷媒の圧力を検知する圧力検知手段と、冷媒の温度
を検知する温度検知手段と、検知された圧力からその圧
力における冷媒の飽和温度に換算し、飽和温度と前記温
度検知手段が検知した温度との温度差を演算し、演算さ
れた温度差が設定温度差以上になった時は、一定時間の
間、第2開閉弁を開にする制御を行う制御手段とを設け
る。
The air conditioner according to a sixth aspect of the present invention is provided with a refrigeration cycle in which a compressor, an oil separator, a condenser, a first on-off valve, a throttle device, and an evaporator are sequentially connected to a pipe. In air conditioners using machine oil, the first
A first bypass circuit provided between an upper portion of the pipe at a horizontal location of the pipe for leading the refrigerant from the on-off valve and the pipe connecting the expansion device and the evaporator; and a first bypass circuit provided in the bypass circuit. A first decompression device, a second bypass circuit bypassing the first decompression device and connected to an evaporator outlet, a second on-off valve and a second decompression device provided in the second bypass circuit, At the outlet of the first bypass circuit, pressure detecting means for detecting the pressure of the refrigerant, temperature detecting means for detecting the temperature of the refrigerant, and converting the detected pressure to the saturation temperature of the refrigerant at that pressure, the saturation temperature and Control means for calculating a temperature difference from the temperature detected by the temperature detection means, and when the calculated temperature difference is equal to or more than a set temperature difference, controlling to open the second on-off valve for a predetermined time; Are provided.

【0014】第7の発明の空気調和装置においては、第
5または第6の発明の空気調和装置において、温度検知
手段と圧力検知手段より下流の冷媒と凝縮器を出た冷媒
を熱交換させる熱交換手段とを備える。
In the air conditioner according to a seventh aspect of the present invention, in the air conditioner according to the fifth or sixth aspect, the heat exchange between the refrigerant flowing out of the condenser and the refrigerant downstream of the temperature detecting means and the pressure detecting means is performed. Exchange means.

【0015】[0015]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.図1は、この発明の実施の形態1を示す
空気調和装置の構成図である。図において、1は圧縮
機、2は油分離器、3は凝縮器、4は第1開閉弁、5は
絞り装置、6は蒸発器、7はアキュムレータ、13は第
1返油回路で、配管にて接続され空気調和装置を形成し
ている。19は前記配管を流通する冷媒および冷凍機油
からなる媒体の流通方向を示す矢印である。23は液だ
めである。
Embodiment 1 FIG. FIG. 1 is a configuration diagram of an air-conditioning apparatus according to Embodiment 1 of the present invention. In the figure, 1 is a compressor, 2 is an oil separator, 3 is a condenser, 4 is a first on-off valve, 5 is a throttle device, 6 is an evaporator, 7 is an accumulator, 13 is a first oil return circuit, and piping To form an air conditioner. Reference numeral 19 denotes an arrow indicating a flowing direction of a medium composed of a refrigerant and refrigerating machine oil flowing through the pipe. 23 is a reservoir.

【0016】圧縮機1,油分離器2,凝縮器3,液だめ
23,第1開閉弁4,絞り装置5,蒸発器6,アキュム
レータ7等が順次配管にて接続され、さらに、油分離器
2の底部からは、アキュムレータ7と蒸発器6を連結し
ている配管間に、油分離器2に溜まった冷凍機油を戻す
ため第1返油回路13が接続されている。
A compressor 1, an oil separator 2, a condenser 3, a reservoir 23, a first opening / closing valve 4, a throttle device 5, an evaporator 6, an accumulator 7, and the like are sequentially connected by pipes. A first oil return circuit 13 is connected to a pipe connecting the accumulator 7 and the evaporator 6 to return the refrigerating machine oil accumulated in the oil separator 2 from the bottom of the second oil return line 2.

【0017】この第1返油回路13には、第2開閉弁1
2および第1減圧装置8が設けられている。第2開閉弁
12には例えば電磁弁が用いられる。第1返油回路13
を流通する冷媒を減圧するための第1減圧装置8は抵抗
を有するものであり、この第1減圧装置8として例えば
キャピラリが用いられる。第1減圧装置8には膨張弁や
電子膨張弁を用いても良い。
The first oil return circuit 13 includes a second on-off valve 1
2 and a first pressure reducing device 8 are provided. As the second on-off valve 12, for example, an electromagnetic valve is used. First oil return circuit 13
The first depressurizing device 8 for decompressing the refrigerant flowing through the device has a resistance. For example, a capillary is used as the first depressurizing device 8. As the first pressure reducing device 8, an expansion valve or an electronic expansion valve may be used.

【0018】第1返油回路13においては、この第1キ
ャピラリ8の下流に、第1返油回路13を流通する媒体
の圧力を検知する圧力検知手段9として例えば圧力セン
サ9を備えている。また、同じく、第1キャピラリ8の
下流に、第1返油回路13を流通する媒体の温度を検知
する温度検知手段10として、例えば温度センサ10を
備えている。さらに、温度センサ10,圧力センサ9に
より検知された結果を基にして演算を行う制御手段11
を備えている。そして、第1開閉弁4として電磁弁を用
いることにする。
In the first oil return circuit 13, for example, a pressure sensor 9 is provided downstream of the first capillary 8 as pressure detection means 9 for detecting the pressure of the medium flowing through the first oil return circuit 13. Similarly, downstream of the first capillary 8, for example, a temperature sensor 10 is provided as temperature detecting means 10 for detecting the temperature of the medium flowing through the first oil return circuit 13. Further, control means 11 for performing calculations based on the results detected by the temperature sensor 10 and the pressure sensor 9
It has. Then, an electromagnetic valve is used as the first on-off valve 4.

【0019】冷凍機油は冷媒と溶け合うものを用いる。
圧縮機1に冷媒が寝込んでいる状態で空気調和装置を運
転させた場合や、液バックが発生したことが原因となっ
て、圧縮機1の冷凍機油が多量に冷凍サイクル内に持ち
出され、油分離器2に冷媒を多く含んだ冷凍機油が溜ま
ってしまう。油分離器2に溜まった冷凍機油が第1返油
回路13を介して、低圧ガス側に戻る時に、第1キャピ
ラリ8のように抵抗の大きなものが備えてあるために、
返油過程には、かなり時間を必要とする。このため圧縮
機への返油量が少なくなり圧縮機1は冷凍機油不足の状
態で運転することになり、冷凍機油不足のため本来の性
能を発揮できない場合が発生して、圧縮機1の信頼性を
損なうおそれがあった。
As the refrigerating machine oil, one that dissolves in the refrigerant is used.
When the air conditioner is operated in a state where the refrigerant is laid down in the compressor 1 or a liquid back occurs, a large amount of the refrigerating machine oil of the compressor 1 is taken out into the refrigerating cycle, and Refrigerator oil containing a large amount of refrigerant accumulates in the separator 2. When the refrigerating machine oil collected in the oil separator 2 returns to the low-pressure gas side via the first oil return circuit 13, there is provided a material having a large resistance such as the first capillary 8.
The oil return process takes a considerable amount of time. For this reason, the amount of oil returned to the compressor is reduced, and the compressor 1 is operated in a state where the refrigerating machine oil is insufficient. In some cases, the original performance cannot be exhibited due to the lack of the refrigerating machine oil. There was a risk of impairing the properties.

【0020】このような状態下で油分離器2に溜まった
冷凍機油には、冷媒もかなりの量が溶け込んでおり、圧
力センサ9で検知された圧力Pを、制御手段11で圧力
Pにおける飽和温度Tsatに換算する。
In such a state, a considerable amount of refrigerant is dissolved in the refrigerating machine oil stored in the oil separator 2, and the pressure P detected by the pressure sensor 9 is saturated by the control means 11 at the pressure P. Convert to temperature Tsat.

【0021】次に、温度センサ10により検知された温
度Tを用いて、温度差T−Tsatを制御手段11によ
り演算する。もし、冷凍機油に多量な冷媒が溶け込んで
いるならば、温度Tは飽和温度Tsatに近い値を示
す。逆に、定常運転時などは冷凍機油に解けている冷媒
はごく僅かで、冷凍機油の温度が支配的であるため、あ
るいは返油回路13には冷媒ガスが流れるため、温度T
と飽和温度Tsatには大きな差がある。
Next, the temperature difference T-Tsat is calculated by the control means 11 using the temperature T detected by the temperature sensor 10. If a large amount of refrigerant is dissolved in the refrigerating machine oil, the temperature T indicates a value close to the saturation temperature Tsat. Conversely, during normal operation or the like, the amount of the refrigerant dissolved in the refrigerating machine oil is very small, and the temperature of the refrigerating machine oil is dominant, or the refrigerant gas flows through the oil return circuit 13, so that the temperature T
And the saturation temperature Tsat.

【0022】そこで、圧縮機1に冷媒が寝込んでいる状
態での起動や、液バックなどが原因で過渡的に油分離器
2に油が溜まっている状態を、温度差T−Tsatの演
算結果から判断することができる。
Therefore, the start-up in a state in which the refrigerant is stagnation in the compressor 1 and the state in which the oil is temporarily accumulated in the oil separator 2 due to the liquid back and the like are calculated by calculating the temperature difference T-Tsat. Can be determined from

【0023】次に、具体的な制御方法について説明す
る。温度差T−Tsatが設定温度差以下の場合は、過
渡的な現象により油分離器2に冷凍機油が存在している
と制御手段11が判断し、空気調和装置を停止させ、同
時に電磁弁4を閉じる。この制御で、電磁弁4により、
高圧側と低圧側が遮断されているため、高圧側と低圧側
で圧力差が発生し、この圧力差を利用して高圧側の圧力
により油分離器2に溜まった冷凍機油を低圧側に送り込
む。そして、前述の空気調和装置の停止に際しては所定
の時間設定がなされるものであって、停止時間が設定時
間以上になると、空気調和装置を自動的に再起動させ
る。低圧側に油が存在する状態で再運転するため、油不
足で圧縮機を運転している時間を短縮することができ
る。
Next, a specific control method will be described. When the temperature difference T-Tsat is equal to or smaller than the set temperature difference, the control means 11 determines that the refrigerating machine oil is present in the oil separator 2 due to a transient phenomenon, and stops the air conditioner, and at the same time, the electromagnetic valve 4 Close. With this control, the solenoid valve 4
Since the high-pressure side and the low-pressure side are shut off, a pressure difference is generated between the high-pressure side and the low-pressure side, and the refrigerating machine oil stored in the oil separator 2 is sent to the low-pressure side by using the pressure difference. When the air conditioner is stopped, a predetermined time is set. When the stop time exceeds the set time, the air conditioner is automatically restarted. Since the operation is restarted in a state where oil is present on the low pressure side, the time during which the compressor is operated due to lack of oil can be reduced.

【0024】この実施の形態1によれば、油分離器2と
冷凍サイクルの低圧側を接続する返油回路13の減圧装
置8の下流側における圧力と温度とを検知し、前記検知
圧力における冷媒の飽和温度と検知温度との温度差を演
算して、この温度差が設定温度差以下の場合、返油動作
を行わせるようにしたので、圧縮機に冷媒が寝込んでい
る状態での起動や、液バックなどが原因で過渡的に油分
離器で油が溜っている状態を検知することができるた
め、信頼性を向上させた空気調和装置を提供することが
できる。
According to the first embodiment, the pressure and temperature on the downstream side of the pressure reducing device 8 of the oil return circuit 13 connecting the oil separator 2 and the low pressure side of the refrigeration cycle are detected, and the refrigerant at the detected pressure is detected. The temperature difference between the saturation temperature and the detected temperature is calculated, and if the temperature difference is equal to or less than the set temperature difference, the oil return operation is performed. Since the state in which oil is accumulated in the oil separator due to liquid back or the like can be detected transiently, an air conditioner with improved reliability can be provided.

【0025】実施の形態2.図2は、この発明の実施の
形態2を示す空気調和装置の構成図であり、冷房と暖房
を切り換えるための切り換え弁として、例えば四方弁4
を冷凍装置を組み込むことで、冷房,暖房に対応できる
冷凍装置を提供することができる。
Embodiment 2 FIG. 2 is a configuration diagram of an air conditioner according to Embodiment 2 of the present invention. As a switching valve for switching between cooling and heating, for example, a four-way valve 4 is provided.
By incorporating a refrigerating device, a refrigerating device capable of coping with cooling and heating can be provided.

【0026】冷房時に凝縮器3として作用していた熱交
換器は暖房時には蒸発器(6)となる。逆に冷房時は蒸
発器6として作用していた熱交換器は、暖房時において
は凝縮器(3)として作用する。制御方法は前述と同じ
であるが、電磁弁4をこの回路では用いていないので、
絞り装置5を全閉にすることで、高圧と低圧を遮断す
る。
The heat exchanger acting as the condenser 3 during cooling becomes an evaporator (6) during heating. Conversely, the heat exchanger acting as the evaporator 6 during cooling acts as the condenser (3) during heating. The control method is the same as described above, but since the solenoid valve 4 is not used in this circuit,
By fully closing the expansion device 5, high pressure and low pressure are shut off.

【0027】この実施の形態2によれば、制御手段11
が圧縮機を止め、また、冷凍サイクルの高圧側と低圧側
とを遮断する絞り装置5からなる開閉装置を閉とした時
に、返油回路13により返油動作を行うようにしたの
で、圧縮機1に冷媒が寝込んでいる状態での起動や、液
バックなどが原因で過渡的に油分離器2で油が溜ってい
る状態を検知することができて、冷凍機油不足で圧縮機
1を運転している時間を低減することができ、信頼性を
向上させた空気調和装置を提供することができる。
According to the second embodiment, the control means 11
When the opening / closing device including the expansion device 5 for shutting off the high-pressure side and the low-pressure side of the refrigeration cycle is closed when the compressor is stopped, the oil return operation is performed by the oil return circuit 13. It is possible to detect a state where oil is accumulated in the oil separator 2 due to a start-up in a state where the refrigerant is laid in the refrigerant 1 or a liquid back, etc., and to operate the compressor 1 due to a shortage of refrigeration oil. It is possible to provide an air conditioner with reduced reliability and improved reliability.

【0028】実施の形態3.図3は、この発明の実施の
形態3を示す空気調和装置の構成図であり、実施の形態
1の第1返油回路13に加え、電磁弁12と第1キャピ
ラリ8をバイパスする第2返油回路14を備えている。
第2返油回路14には、第3開閉弁15として電磁弁を
設けるとともに、第1キャピラリ8よりは抵抗の小さい
第2キャピラリ16を備えている。
Embodiment 3 FIG. 3 is a configuration diagram of an air-conditioning apparatus according to Embodiment 3 of the present invention. In addition to the first oil return circuit 13 of Embodiment 1, a second return line that bypasses the solenoid valve 12 and the first capillary 8 is used. An oil circuit 14 is provided.
The second oil return circuit 14 is provided with an electromagnetic valve as the third on-off valve 15, and is provided with a second capillary 16 having a smaller resistance than the first capillary 8.

【0029】第1返油回路13と第2返油回路14の合
流点より下流に、その合流回路を流通する媒体の圧力を
検知する圧力検知手段9として例えば圧力センサ9を備
えている。また、前記合流回路を流通する媒体の温度を
検知する温度検知手段10として例えば温度センサ10
を備えている。さらに、温度センサ10,圧力センサ9
により検知された結果を基にして演算を行う制御手段1
1を備えている。
Downstream from the junction of the first oil return circuit 13 and the second oil return circuit 14, for example, a pressure sensor 9 is provided as pressure detection means 9 for detecting the pressure of the medium flowing through the junction circuit. Further, as a temperature detecting means 10 for detecting the temperature of the medium flowing through the merging circuit, for example, a temperature sensor 10
It has. Further, a temperature sensor 10, a pressure sensor 9
Control means 1 for performing calculations based on the results detected by
1 is provided.

【0030】実施の形態1と同様な原因で油分離器2に
溜まった冷凍機油を、温度差T−Tsatを制御手段1
1によって演算する。温度差T−Tsatが設定温度差
以上の場合は、油分離器2に油がほとんど溜まっていな
いと判断できるため、早急に返油する必要もない。その
結果、高圧と低圧のバイパス量を低減することを目的と
して、抵抗の大きい方の第1返油回路13のみを利用す
るため、制御手段11は電磁弁12は開、電磁弁12は
閉にしておき、第1返油回路13を用いて油分離器2に
溜まった冷凍機油を返油する。
The refrigerating machine oil accumulated in the oil separator 2 for the same reason as in the first embodiment is used to control the temperature difference T-Tsat by the control means 1.
Calculate by 1. If the temperature difference T-Tsat is equal to or larger than the set temperature difference, it can be determined that almost no oil is accumulated in the oil separator 2, and it is not necessary to return the oil immediately. As a result, since only the first oil return circuit 13 having the larger resistance is used for the purpose of reducing the high and low pressure bypass amounts, the control means 11 opens the solenoid valve 12 and closes the solenoid valve 12. The refrigeration oil collected in the oil separator 2 is returned using the first oil return circuit 13.

【0031】温度差T−Tsatが設定温度差以下の場
合は、圧縮機1に冷媒が寝込んでいる状態での起動など
原因で過渡的に油分離器2で油が溜まっている状態と制
御手段11が判断し、空気調和装置を運転させながら、
早急に低圧側に冷凍機油を戻すために、抵抗の小さな第
2返油回路14の電磁弁15を開にする。第1返油回路
13の電磁弁12は開あるいは閉のどちらでも良い。そ
して、温度差T−Tsatが設定温度差以上になったら
第2返油回路14の電磁弁14は閉じ、第1返油回路1
3の電磁弁12は開にする。
When the temperature difference T-Tsat is equal to or less than the set temperature difference, the state where the oil is transiently accumulated in the oil separator 2 due to the start-up of the compressor 1 in a state where the refrigerant is laid down and the control means 11 judges, while operating the air conditioner,
In order to quickly return the refrigerating machine oil to the low pressure side, the solenoid valve 15 of the second oil return circuit 14 having a small resistance is opened. The solenoid valve 12 of the first oil return circuit 13 may be either open or closed. When the temperature difference T-Tsat becomes equal to or greater than the set temperature difference, the solenoid valve 14 of the second oil return circuit 14 is closed, and the first oil return circuit 1
The third solenoid valve 12 is opened.

【0032】この結果、冷凍機油不足で圧縮機を運転し
ている時間を短くすることができ、空気調和装置の信頼
性が向上する。
As a result, the time during which the compressor is operated due to lack of refrigerating machine oil can be shortened, and the reliability of the air conditioner is improved.

【0033】また、第2返油回路14の電磁弁15は
開、第1返油回路13の電磁弁12開あるいは閉、電磁
弁4は閉の状態で一定時間空気調和装置を停止させる制
御をしてもよい。
The electromagnetic valve 15 of the second oil return circuit 14 is opened, the electromagnetic valve 12 of the first oil return circuit 13 is opened or closed, and the electromagnetic valve 4 is closed. May be.

【0034】この実施の形態3によれば、前記返油回路
13の第1キャピラリ8からなる減圧装置より流量抵抗
の小さい第2キャピラリ16からなる減圧装置を備え、
前記返油回路13の第1キャピラリからなる減圧装置に
並列に設けたバイパス配管からなる第2返油回路14に
より返油動作を行うようにしたので、圧縮機1に冷媒が
寝込んでいる状態での起動や、フォーミングなどが原因
で過渡的に油分離器2で油が溜っている状態を検知する
ことができるため、空気調和装置を停止させることなく
冷凍機油不足で圧縮機を運転している時間を低減するこ
とができ、信頼性を向上させた空気調和装置を提供する
ことができる。
According to the third embodiment, the pressure reducing device including the second capillary 16 having a smaller flow resistance than the pressure reducing device including the first capillary 8 of the oil return circuit 13 is provided.
Since the oil return operation is performed by the second oil return circuit 14 composed of a bypass pipe provided in parallel with the pressure reducing device composed of the first capillary of the oil return circuit 13, the refrigerant is laid down in the compressor 1. Since the state where oil is accumulated in the oil separator 2 can be detected transiently due to the start-up and forming of the compressor, the compressor is operated due to lack of refrigerating machine oil without stopping the air conditioner. The time can be reduced, and an air conditioner with improved reliability can be provided.

【0035】実施の形態4.図4は、この発明の実施の
形態4を示す空気調和装置の構成図であり、冷房と暖房
を切り換えるための切り換え弁として、例えば四方弁2
4を冷凍装置を組み込むことで、冷房,暖房に対応でき
る冷凍装置を提供することができる。
Embodiment 4 FIG. FIG. 4 is a configuration diagram of an air-conditioning apparatus according to Embodiment 4 of the present invention. As a switching valve for switching between cooling and heating, for example, a four-way valve 2
By incorporating a refrigerating device in No. 4, a refrigerating device capable of coping with cooling and heating can be provided.

【0036】冷房時に凝縮器3として作用していた熱交
換器は暖房時には蒸発器(6)となる。逆に冷房時は蒸
発器6として作用していた熱交換器は、暖房時において
は凝縮器(3)として作用する。制御方法としては前述
と同じであるが、電磁弁4をこの回路では用いていない
ので、絞り装置5を全閉する。
The heat exchanger acting as the condenser 3 during cooling becomes an evaporator (6) during heating. Conversely, the heat exchanger acting as the evaporator 6 during cooling acts as the condenser (3) during heating. The control method is the same as described above, but since the solenoid valve 4 is not used in this circuit, the expansion device 5 is fully closed.

【0037】この実施の形態4によれば、前記返油回路
13の第1キャピラリ8からなる減圧装置より流量抵抗
の小さい第2キャピラリ16からなる減圧装置を備え、
前記返油回路13の第1キャピラリからなる減圧装置に
並列に設けたバイパス配管からなる第2返油回路14に
より返油手段を構成するとともに、圧力センサ9からな
る圧力検知手段および温度センサ10からなる温度検知
手段の検知結果を受ける制御手段11が圧縮機を止め、
また、冷凍サイクルの高圧側と低圧側とを遮断する絞り
装置5からなる開閉装置を閉とした時に、返油回路13
および返油回路14により返油動作を行うようにしたの
で、圧縮機1に冷媒が寝込んでいる状態での起動や、液
バックなどが原因で過渡的に油分離器2で油が溜ってい
る状態を検知することができて、冷凍機油不足で圧縮機
1を運転している時間を低減することができ、信頼性を
向上させた空気調和装置を提供することができる。
According to the fourth embodiment, a pressure reducing device comprising the second capillary 16 having a smaller flow resistance than the pressure reducing device comprising the first capillary 8 of the oil return circuit 13 is provided.
The oil return means is constituted by a second oil return circuit 14 comprising a bypass pipe provided in parallel with a pressure reducing device comprising a first capillary of the oil return circuit 13 and a pressure detecting means comprising a pressure sensor 9 and a temperature sensor 10 The control means 11 receiving the detection result of the temperature detection means stops the compressor,
Further, when the switching device including the expansion device 5 for shutting off the high pressure side and the low pressure side of the refrigeration cycle is closed, the oil return circuit 13
In addition, since the oil return operation is performed by the oil return circuit 14, the oil is transiently accumulated in the oil separator 2 due to the start-up in a state where the refrigerant is laid in the compressor 1 or the liquid back. It is possible to detect the state, reduce the time during which the compressor 1 is operated due to lack of refrigerating machine oil, and provide an air conditioner with improved reliability.

【0038】実施の形態5.図5は、この発明の実施の
形態5を示す空気調和装置の構成図である。油分離器2
の底部と絞り装置5と蒸発器6を連結している配管との
間に返油回路13および返油回路14は設けられてい
る。前記実施の形態3と同様な制御方法を行う。
Embodiment 5 FIG. 5 is a configuration diagram of an air-conditioning apparatus according to Embodiment 5 of the present invention. Oil separator 2
An oil return circuit 13 and an oil return circuit 14 are provided between the bottom portion of the pump and a pipe connecting the expansion device 5 and the evaporator 6. A control method similar to that of the third embodiment is performed.

【0039】制御手段11によって演算された温度差T
−Tsatが設定温度差以下の場合は、冷凍機油には、
多量の冷媒が溶け込んでいる。
The temperature difference T calculated by the control means 11
When -Tsat is equal to or less than the set temperature difference,
A large amount of refrigerant is dissolved.

【0040】この実施の形態5によれば、冷凍機油と混
合状態にある多量の冷媒を蒸発器6で蒸発させること
で、冷凍機油中の冷媒量を低減させた状態、すなわち液
バックを防止することができ、その結果として、圧縮機
の信頼性が向上する。
According to the fifth embodiment, a large amount of refrigerant mixed with the refrigerating machine oil is evaporated by the evaporator 6, so that the amount of the refrigerant in the refrigerating machine oil is reduced, that is, liquid back is prevented. As a result, the reliability of the compressor is improved.

【0041】実施の形態6.図6は、この発明の実施の
形態6を示す空気調和装置の構成図であり、切り換え弁
として、例えば四方弁24を備え、絞り装置を2個設置
するなどして、冷房,暖房に対応できる空気調和装置
に、この発明を適用することができる。
Embodiment 6 FIG. FIG. 6 is a configuration diagram of an air-conditioning apparatus according to Embodiment 6 of the present invention. The air-conditioning apparatus includes, for example, a four-way valve 24 as a switching valve, and is capable of coping with cooling and heating by installing two throttle devices. The present invention can be applied to an air conditioner.

【0042】冷房時に凝縮器3と作用していた熱交換器
は暖房時には蒸発器(6)となる。逆に冷房時は蒸発器
6として作用していた熱交換器は、暖房時においては凝
縮器(3)として作用する。冷房時は、絞り装置5aは
全開にし、絞り装置5bで冷媒を減圧,流量調節をす
る。暖房時は絞り装置5bは全開にし、絞り装置5aで
冷媒を減圧,流量調整をする。
The heat exchanger that has worked with the condenser 3 during cooling becomes an evaporator (6) during heating. Conversely, the heat exchanger acting as the evaporator 6 during cooling acts as the condenser (3) during heating. During cooling, the expansion device 5a is fully opened, and the expansion device 5b depressurizes the refrigerant and adjusts the flow rate. During heating, the expansion device 5b is fully opened, and the expansion device 5a depressurizes the refrigerant and adjusts the flow rate.

【0043】実施の形態6によれば、冷凍機油と混合状
態にある多量の冷媒を蒸発器6で蒸発させることで、冷
凍機油中の冷媒量を低減させた状態、すなわち液バック
を防止することができ、その結果として、圧縮機の信頼
性を向上できる空気調和装置を、冷房,暖房に対応でき
るものとすることができる。
According to the sixth embodiment, a large amount of refrigerant mixed with refrigeration oil is evaporated by evaporator 6 to reduce the amount of refrigerant in refrigeration oil, that is, to prevent liquid back. As a result, the air conditioner that can improve the reliability of the compressor can be adapted to cooling and heating.

【0044】実施の形態7.図7は、この発明の実施の
形態7を示す空気調和装置の構成図である。前記実施の
形態3の返油回路13と返油回路14との合流回路に設
けた圧力センサ9,温度センサ10より下流の冷媒と凝
縮器3を出た冷媒を熱交換させる熱交換手段17とし
て、例えば、図8のように返油配管と高圧液配管を接触
させる熱交換器17を用いている。熱交換手段17は二
重管式熱交換器でも良い。また、実施の形態1で示した
返油回路13で、熱交換手段17を備えたものでも良
い。
Embodiment 7 FIG. FIG. 7 is a configuration diagram of an air-conditioning apparatus according to Embodiment 7 of the present invention. The heat exchange means 17 for exchanging heat between the refrigerant flowing out of the condenser 3 and the refrigerant downstream of the pressure sensor 9 and the temperature sensor 10 provided in the merging circuit of the oil return circuit 13 and the oil return circuit 14 of the third embodiment. For example, as shown in FIG. 8, a heat exchanger 17 for contacting an oil return pipe with a high-pressure liquid pipe is used. The heat exchange means 17 may be a double tube heat exchanger. Further, the oil return circuit 13 shown in the first embodiment may be provided with the heat exchange means 17.

【0045】制御方法は、前記実施の形態3と同じであ
る。制御手段11によって演算された温度差T−Tsa
tが設定温度差以下の場合は、冷凍機油に多量の冷媒が
溶け込んでいるため、返油回路の温度は液だめを出た高
圧の液より低い。返油回路を流れる冷媒と高圧の液を熱
交換させることで、バイバスによる冷媒流量のロスを熱
回収することができるとともに、冷凍機油に溶け込んで
いる冷媒を蒸発させることも可能となる。
The control method is the same as in the third embodiment. Temperature difference T-Tsa calculated by control means 11
If t is equal to or less than the set temperature difference, a large amount of refrigerant is dissolved in the refrigerating machine oil, and the temperature of the oil return circuit is lower than that of the high-pressure liquid discharged from the reservoir. By exchanging heat between the refrigerant flowing in the oil return circuit and the high-pressure liquid, it is possible to recover the heat loss of the refrigerant flow by the bypass and to evaporate the refrigerant dissolved in the refrigerating machine oil.

【0046】その結果、この実施の形態7によれば、絞
り装置5よりも上流において冷媒の過冷却度を大きくす
ることができるため、冷凍性能低下を防止でき、さらに
圧縮機の信頼性も向上させることが可能となる。
As a result, according to the seventh embodiment, the degree of supercooling of the refrigerant can be increased upstream of the expansion device 5, so that a decrease in refrigeration performance can be prevented and the reliability of the compressor can be improved. It is possible to do.

【0047】実施の形態8.図9は、この発明の実施の
形態8を示す空気調和装置の構成図であり、切り換え弁
として、例えば四方弁24を備え、絞り装置を2個設置
するなどして、冷房,暖房に対応できる空気調和装置
に、この発明を適用することができる。
Embodiment 8 FIG. FIG. 9 is a configuration diagram of an air-conditioning apparatus according to Embodiment 8 of the present invention. The air-conditioning apparatus includes, for example, a four-way valve 24 as a switching valve, and is capable of coping with cooling and heating by installing two throttle devices. The present invention can be applied to an air conditioner.

【0048】冷房時に凝縮器3と作用していた熱交換器
は、暖房時には蒸発器6となる。逆に冷房時は蒸発器6
として作用していた熱交換器は、暖房時においては凝縮
器3として作用する。冷房時は絞り装置5bは全開に
し、絞り装置5aで冷媒を減圧,流量調節をする。暖房
時は絞り装置5aは全開にし、絞り装置5bで冷媒を減
圧,流量調整をする。
The heat exchanger that has been working with the condenser 3 during cooling becomes an evaporator 6 during heating. Conversely, during cooling, the evaporator 6
Acts as the condenser 3 during heating. During cooling, the expansion device 5b is fully opened, and the expansion device 5a depressurizes the refrigerant and adjusts the flow rate. During heating, the expansion device 5a is fully opened, and the expansion device 5b depressurizes the refrigerant and adjusts the flow rate.

【0049】実施の形態8によれば、絞り装置5a,5
bよりも上流において冷媒の過冷却度を大きくすること
ができるため、冷凍性能低下を防止でき、さらに圧縮機
の信頼性も向上できる空気調和装置を、冷房,暖房に対
応できるものとすることができる。
According to the eighth embodiment, the aperture devices 5a and 5
It is possible to increase the degree of supercooling of the refrigerant upstream of b, so that the refrigeration performance can be prevented from deteriorating, and the air conditioner that can improve the reliability of the compressor can be adapted to cooling and heating. it can.

【0050】実施の形態9.図10は、この発明の実施
の形態9を示す空気調和装置の構成図であり、圧縮機
1,油分離器2,凝縮器3,液だめ23,第1開閉弁
4,絞り装置5,蒸発器6,アキュムレータ7等が順次
配管にて接続され、さらに、凝縮器を出た水平な配管の
上部と、アキュムレータ7と蒸発器6を連結している配
管間に、油滞留量を検知するための第1バイパス回路1
8が備えてある。
Embodiment 9 FIG. FIG. 10 is a configuration diagram of an air conditioner showing a ninth embodiment of the present invention, in which a compressor 1, an oil separator 2, a condenser 3, a reservoir 23, a first on-off valve 4, a throttle device 5, and an evaporator. In order to detect the amount of accumulated oil between the upper part of the horizontal pipe that has exited the condenser and the pipe connecting the accumulator 7 and the evaporator 6, the vessel 6, the accumulator 7 and the like are sequentially connected by pipes. First bypass circuit 1
8 are provided.

【0051】第1バイパス回路18の入口側は必ず上部
から抜き取る構造にする。出口側の接続の向きは関係な
く、高圧と低圧との圧力差で油を流す方式である。この
第1バイパス回路18には、第1減圧装置8を備えてお
り、この第1減圧装置8は抵抗を有しているものであ
り、例えば第1キャピラリ8を用いている(膨張弁や電
子膨張弁でも良い)。
The inlet side of the first bypass circuit 18 must be so constructed as to be drawn from above. Regardless of the direction of the connection on the outlet side, oil flows with a pressure difference between high pressure and low pressure. The first bypass circuit 18 includes a first pressure reducing device 8. The first pressure reducing device 8 has a resistance and uses, for example, the first capillary 8 (expansion valve, electronic valve, etc.). An expansion valve may be used).

【0052】また、第1キャピラリ8をバイパスする第
2バイパス回路22を設け、前記第2バイパス回路22
には第2開閉弁12として例えば第2電磁弁12、さら
に第2減圧装置16として例えば第2キャピラリ16を
設け、この第2キャピラリ16は第1キャピラリ8より
は抵抗の小さいものである。
A second bypass circuit 22 for bypassing the first capillary 8 is provided.
For example, a second solenoid valve 12 is provided as the second on-off valve 12, and a second capillary 16 is provided as the second decompression device 16, and the second capillary 16 has a smaller resistance than the first capillary 8.

【0053】第1バイパス回路18の出口には圧力を検
知する手段9として例えば圧力センサ9、温度を検知す
る手段10として例えば温度センサ10を備え、さらに
温度センサ10、圧力センサ9より検知された結果を基
にして演算を行う制御手段20を備えている。
At the outlet of the first bypass circuit 18, for example, a pressure sensor 9 is provided as a means 9 for detecting pressure, and a temperature sensor 10 is provided as a means 10 for detecting temperature, and the temperature is detected by the temperature sensor 10 and the pressure sensor 9. Control means 20 for performing an operation based on the result is provided.

【0054】冷凍機油としては、冷媒と溶け合わない冷
凍機油を用いている。例えば、R404Aとハードアル
キルベンゼンや、R407Cとハードアルキルベンゼン
などの組み合わせである。このような組み合わせで冷凍
サイクルを運転すると、冷媒と冷凍機油が溶け合わない
ために、冷媒が液状態になるところ、例えば液だめ23
を出たあとの高圧液部などでは、液の相と冷媒の相に分
かれ、液一液の二相状態となる。また、この組み合わせ
では、冷凍機油の方が冷媒液に比べて、比重が小さいた
めに油の相が上方、冷媒液の相が下方になる。
As the refrigerating machine oil, a refrigerating machine oil that does not dissolve in the refrigerant is used. For example, a combination of R404A and hard alkyl benzene, or a combination of R407C and hard alkyl benzene. When the refrigeration cycle is operated in such a combination, the refrigerant and the refrigerating machine oil do not dissolve, so that the refrigerant is in a liquid state, for example, a reservoir 23.
In the high-pressure liquid section after exiting, the liquid phase and the refrigerant phase are divided into a liquid-liquid two-phase state. In this combination, the refrigerating machine oil has a lower specific gravity than the refrigerant liquid, so that the oil phase is upper and the refrigerant liquid phase is lower.

【0055】この性質を用いて、高圧の液部になる水平
配管の上方から油を取り出すバイパス回路18を図11
のように設置する。このように、第1開閉弁21からの
媒体を導出する配管の水平箇所における前記配管内の上
部と蒸発器6とアキュムレータ7を接続する配管との間
に、バイパス回路18を設置することで、冷凍機油を低
圧側に返油することができる。
By using this property, a bypass circuit 18 for taking out oil from above a horizontal pipe which becomes a high-pressure liquid part is constructed as shown in FIG.
Install as follows. As described above, by installing the bypass circuit 18 between the upper part of the pipe at the horizontal location of the pipe for leading the medium from the first on-off valve 21 and the pipe connecting the evaporator 6 and the accumulator 7, Refrigeration oil can be returned to the low pressure side.

【0056】圧力センサ9から検知された圧力Pから、
制御手段20により飽和温度Tsatに換算し、温度セ
ンサ10から検知された温度Tを用いて、温度差T−T
satを演算する。圧縮機から何らかの原因により、冷
凍機油が持ち出され、配管内での冷凍機油の滞留量が増
加すると、水平配管部での油の相の厚さが増大するため
に、返油回路18に流れ込む冷凍機油は多くなり、その
結果として温度差は、冷凍機油の温度が支配的になるた
めに、大きくなる。逆に、液管中の冷凍機油の滞留量が
小さい時は、水平管中の冷凍機油の層の厚さは薄く、そ
の結果として、返油回路18に冷媒が流れる割合が増加
するために、温度差が小さくなる。
From the pressure P detected by the pressure sensor 9,
The temperature is converted into the saturation temperature Tsat by the control means 20 and the temperature difference T−T is calculated using the temperature T detected by the temperature sensor 10.
Calculate sat. When the refrigerating machine oil is taken out of the compressor for some reason and the amount of the refrigerating machine oil retained in the piping increases, the thickness of the oil phase in the horizontal piping increases, so that the refrigerating oil flows into the oil return circuit 18. The amount of the machine oil increases, and as a result, the temperature difference increases because the temperature of the refrigerating machine oil becomes dominant. Conversely, when the amount of the refrigerating machine oil retained in the liquid pipe is small, the thickness of the refrigerating machine oil layer in the horizontal pipe is small, and as a result, the ratio of the refrigerant flowing to the oil return circuit 18 increases, The temperature difference becomes smaller.

【0057】この原理を利用して、温度差が基準温度差
より大きい時は、液管中の油の滞留量が基準以上の油滞
留量であると判断し、基準以上の油滞留量を検知するこ
とが可能となる。すなわち、温度差が設定以上の時は、
液管中に油が存在している量が多いと判断でき、第2電
磁弁12を制御手段20によって一定時間、開の状態に
する。
By utilizing this principle, when the temperature difference is larger than the reference temperature difference, it is determined that the amount of retained oil in the liquid pipe is above the reference amount, and the amount of retained oil above the reference value is detected. It is possible to do. In other words, when the temperature difference is greater than or equal to the setting,
Since it can be determined that the amount of oil present in the liquid pipe is large, the second solenoid valve 12 is opened by the control means 20 for a certain time.

【0058】これにより、一定時間だけ冷媒のバイパス
量を増加させ、高圧液に存在している油を低圧側に戻す
時間を低減させることができ、圧縮機の信頼性を向上さ
せることが可能となる。
As a result, it is possible to increase the bypass amount of the refrigerant for a fixed time and reduce the time for returning the oil present in the high pressure liquid to the low pressure side, thereby improving the reliability of the compressor. Become.

【0059】このような冷媒と冷凍機油系の冷凍サイク
ルでは、返油限界速度は立ち上がりガス配管だけではな
く、下降の液配管においても存在する。冷凍機油の比重
が冷媒液の比重より小さいために冷凍機油に浮力が発生
するため、下降配管部においても返油限界速度が存在す
る。バイパス回路18を備えた水平の液配管を他の液配
管より位置的に一番高いところに設置することで、返油
限界速度以下の時、下降することのできない冷凍機油が
水平液配管に冷凍機油が溜り、冷凍機油の相の厚みが大
きくなるため、温度差T−Tsatから液管は返油限界
速度以下であると判断することもできる。
In such a refrigeration cycle of a refrigerant and a refrigerating machine oil system, the limit oil return speed exists not only in the rising gas pipe but also in the descending liquid pipe. Since the specific gravity of the refrigerating machine oil is smaller than the specific gravity of the refrigerant liquid, buoyancy is generated in the refrigerating machine oil. By installing the horizontal liquid pipe provided with the bypass circuit 18 at the highest position relative to the other liquid pipes, the refrigerating machine oil which cannot be lowered at the speed lower than the oil return limit speed is frozen to the horizontal liquid pipe. Since the machine oil accumulates and the thickness of the phase of the refrigerating machine oil increases, it can be determined from the temperature difference T-Tsat that the liquid pipe is at or below the oil return limit speed.

【0060】このように、この実施の形態9によれば、
油滞留量が基準以上あるいは返油限界速度以下を検知し
て、空気調和装置を停止させたり、冷媒流量を大きくす
ることで冷凍機油を戻すことができ、空気調和装置の信
頼性が向上する。冷媒流量を大きくするには、絞り装置
の開度を大きくする、あるいは凝縮器3、蒸発器6の風
量(水量)を大きくするなどの手段で実現できる。
As described above, according to the ninth embodiment,
Refrigeration oil can be returned by stopping the air conditioner or increasing the refrigerant flow rate by detecting the amount of retained oil above the reference or below the oil return limit speed, thereby improving the reliability of the air conditioner. The flow rate of the refrigerant can be increased by increasing the opening of the expansion device, or by increasing the air volume (water volume) of the condenser 3 and the evaporator 6.

【0061】実施の形態10.図12は、この発明の実
施の形態10を示す空気調和装置の構成図である。切り
換え弁として、例えば四方弁24を備え、絞り装置を2
個設置するなどして、冷房,暖房に対応できる冷凍装置
に、この発明を適用することができる。
Embodiment 10 FIG. FIG. 12 is a configuration diagram of an air-conditioning apparatus according to Embodiment 10 of the present invention. For example, a four-way valve 24 is provided as a switching valve, and
The present invention can be applied to a refrigerating apparatus that can cope with cooling and heating, for example, by installing individual components.

【0062】冷房時に凝縮器3として作用していた熱交
換器は暖房時には蒸発器(6)となる。逆に冷房時は蒸
発器6として作用していた熱交換器は、暖房時において
は凝縮器(3)として作用する。冷房時は絞り装置5b
は全開にし、絞り装置5aで冷媒を減圧,流量調節をす
る。暖房時は絞り装置5aは全開にし、絞り装置5bで
冷媒を減圧,流量調整をする。
The heat exchanger functioning as the condenser 3 during cooling becomes the evaporator (6) during heating. Conversely, the heat exchanger acting as the evaporator 6 during cooling acts as the condenser (3) during heating. Squeezing device 5b during cooling
Is fully opened, and the pressure of the refrigerant is reduced and the flow rate is adjusted by the expansion device 5a. During heating, the expansion device 5a is fully opened, and the expansion device 5b depressurizes the refrigerant and adjusts the flow rate.

【0063】実施の形態10によれば、油滞留量が基準
以上あるいは返油限界速度以下を検知して、空気調和装
置を停止させたり、冷媒流量を大きくすることで冷凍機
油を戻すことができ、空気調和装置の信頼性を向上でき
る空気調和装置を、冷房,暖房に対応できるようにする
ことができる。
According to the tenth embodiment, the refrigerating machine oil can be returned by stopping the air conditioner or increasing the refrigerant flow rate by detecting the amount of retained oil above the reference or below the oil return limit speed. The air conditioner that can improve the reliability of the air conditioner can be adapted to cooling and heating.

【0064】実施の形態11.図13は、この発明の実
施の形態11を示す空気調和装置の構成図である。バイ
パス回路からなる返油回路18は、第1開閉弁21から
の媒体を導出する配管の水平箇所における前記配管内の
上部と蒸発器6とアキュムレータ7を接続する配管との
間に、接続されている。
Embodiment 11 FIG. FIG. 13 is a configuration diagram of an air-conditioning apparatus according to Embodiment 11 of the present invention. The oil return circuit 18 composed of a bypass circuit is connected between the upper part of the pipe at a horizontal location of the pipe for leading the medium from the first on-off valve 21 and the pipe connecting the evaporator 6 and the accumulator 7. I have.

【0065】油滞留量検知方法,原理,制御方法などは
前記実施の形態5と同じである。図8に示すように、バ
イパス回路18を蒸発器6入口に接続することで、冷媒
流量のロスを低減でき、最終的には冷凍性能の低下を低
減することができる。
The oil retention amount detection method, principle, control method, and the like are the same as those in the fifth embodiment. As shown in FIG. 8, by connecting the bypass circuit 18 to the inlet of the evaporator 6, the loss of the refrigerant flow rate can be reduced, and finally, the deterioration of the refrigeration performance can be reduced.

【0066】実施の形態11によれば、バイパス回路か
らなる返油回路18は、第1開閉弁21からの媒体を導
出する配管の水平箇所における前記配管内の上部と蒸発
器6とアキュムレータ7を接続する配管との間に、接続
されているので、冷媒流量のロスを低減でき、最終的に
は冷凍性能の低下を低減することができる。
According to the eleventh embodiment, the oil return circuit 18 composed of a bypass circuit connects the upper part of the pipe, the evaporator 6 and the accumulator 7 at the horizontal position of the pipe for leading the medium from the first on-off valve 21. Since it is connected between the pipes to be connected, the loss of the refrigerant flow rate can be reduced, and finally, the deterioration of the refrigeration performance can be reduced.

【0067】実施の形態12.図14は、この発明の実
施の形態12を示す空気調和装置の構成図である。開閉
弁27a,27bに電磁弁27a,27bを用い、また
バイパス回路18を2カ所の位置から取り出し、さらに
二つの絞り装置5a,5bを設け、冷房と暖房を切り換
えるための、切り換え弁として、たとえば四方弁24を
冷凍装置に組み込むことで、冷房,暖房に対応できる冷
凍装置を提供することができる。
Embodiment 12 FIG. FIG. 14 is a configuration diagram of an air-conditioning apparatus according to Embodiment 12 of the present invention. Electromagnetic valves 27a and 27b are used as opening / closing valves 27a and 27b, a bypass circuit 18 is taken out from two positions, and two expansion devices 5a and 5b are further provided. As switching valves for switching between cooling and heating, for example, By incorporating the four-way valve 24 into the refrigerating device, a refrigerating device capable of coping with cooling and heating can be provided.

【0068】冷房時に凝縮器3として作用していた熱交
換器は暖房時には蒸発器(6)となる。逆に冷房時には
蒸発器6として作用していた熱交換器は、暖房時におい
ては凝縮器(3)として作用する。冷房時は絞り装置5
aは全開にし、絞り装置5bで冷媒を減圧,流量調整
し、電磁弁27bは開、電磁弁27aは閉に、制御手段
20により行う。暖房時には絞り装置5bは全開にし、
絞り装置5aで冷媒を減圧、流量調整し、電磁弁27a
は開、電磁弁27bは閉にするよう、制御手段20によ
ってそれらの制御を行う。
The heat exchanger acting as the condenser 3 during cooling becomes an evaporator (6) during heating. Conversely, the heat exchanger acting as the evaporator 6 during cooling acts as the condenser (3) during heating. Squeezing device 5 for cooling
a is fully opened, the refrigerant is depressurized and the flow rate is adjusted by the expansion device 5b. The solenoid valve 27b is opened and the solenoid valve 27a is closed by the control means 20. During heating, the expansion device 5b is fully opened,
The pressure of the refrigerant is reduced and the flow rate is adjusted by the expansion device 5a.
Are controlled by the control means 20 so as to open and the electromagnetic valve 27b to be closed.

【0069】実施の形態12によれば、バイパス回路か
らなる返油回路18を、第1開閉弁27a,27bから
の媒体を導出する配管の水平箇所における前記配管内の
上部と絞り装置5a,5bと蒸発器6を接続する配管と
の間に、接続することで、冷媒流量のロスを低減でき、
最終的には冷凍性能の低下を低減できる空気調和装置に
ついて、これを冷房,暖房に対応できるようにすること
ができる。
According to the twelfth embodiment, the oil return circuit 18 composed of a bypass circuit is connected to the upper part of the pipe at a horizontal position of the pipe for leading the medium from the first on-off valves 27a and 27b and the expansion devices 5a and 5b. By connecting between the pipe and the pipe connecting the evaporator 6, the loss of the refrigerant flow rate can be reduced,
Eventually, an air conditioner that can reduce a decrease in refrigeration performance can be adapted for cooling and heating.

【0070】実施の形態13.図15は、この発明の実
施の形態13を示す空気調和装置の構成図である。前記
実施の形態9のバイパス回路18の圧力センサ9,温度
センサ10より下流の冷媒と凝縮器3を出た冷媒を熱交
換させる手段17として、図8のようにバイパス回路1
8と高圧液配管を接触させる熱交換17を用いている。
熱交換させる手段17は二重管式熱交換器でも良い。油
滞留量検知方法,原理,制御方法などは前記実施の形態
9と同じである。
Embodiment 13 FIG. FIG. 15 is a configuration diagram of an air conditioner showing a thirteenth embodiment of the present invention. As means 17 for exchanging heat between the refrigerant flowing out of the condenser 3 and the refrigerant downstream of the pressure sensor 9 and the temperature sensor 10 of the bypass circuit 18 of the ninth embodiment, as shown in FIG.
A heat exchange 17 for bringing the high pressure liquid pipe 8 into contact with the high pressure liquid pipe 8 is used.
The means 17 for exchanging heat may be a double tube heat exchanger. The oil retention amount detection method, principle, control method, and the like are the same as those in the ninth embodiment.

【0071】実施の形態13によれば、バイパス回路1
8を流れる冷媒と高圧の液を熱交換させることで、絞り
装置入口の過冷却度が大きくなるために、バイパスによ
る冷媒流量のロスを熱回収することができ、その結果と
して、冷凍性能低下を防止できる。
According to the thirteenth embodiment, bypass circuit 1
By exchanging heat between the refrigerant flowing through 8 and the high-pressure liquid, the degree of supercooling at the inlet of the expansion device can be increased, so that the loss of the refrigerant flow rate due to the bypass can be recovered as heat. Can be prevented.

【0072】実施の形態14.図16は、この発明の実
施の形態13を示す空気調和装置の構成図である。切換
弁として、例えば四方弁24を備え、絞り装置を2個設
置するなどして、冷房,暖房に対応できる冷凍装置に、
この発明を提供することができる。
Embodiment 14 FIG. FIG. 16 is a configuration diagram of an air-conditioning apparatus according to Embodiment 13 of the present invention. As a switching valve, for example, a four-way valve 24 and two squeezing devices are installed to provide a refrigerating device capable of coping with cooling and heating.
The present invention can be provided.

【0073】冷房時に凝縮器3として作用していた熱交
換器は暖房時には蒸発器(6)となる。逆に冷房時は蒸
発器6として作用していた熱交換器は、暖房時において
は凝縮器(3)として作用する。冷房時は絞り装置5b
は全開にし、絞り装置5aで冷媒を減圧,流量調節をす
る。暖房時は絞り装置5aは全開にし、絞り装置5bで
冷媒を減圧,流量調整をする。制御方法,検知方法は前
述と同じである。
The heat exchanger functioning as the condenser 3 during cooling becomes the evaporator (6) during heating. Conversely, the heat exchanger acting as the evaporator 6 during cooling acts as the condenser (3) during heating. Squeezing device 5b during cooling
Is fully opened, and the pressure of the refrigerant is reduced and the flow rate is adjusted by the expansion device 5a. During heating, the expansion device 5a is fully opened, and the expansion device 5b depressurizes the refrigerant and adjusts the flow rate. The control method and the detection method are the same as described above.

【0074】実施の形態14によれば、バイパス回路1
8を流れる冷媒と高圧の液を熱交換させることで、絞り
装置入口の過冷却度が大きくなるために、バイパスによ
る冷媒流量のロスを熱回収することができ、その結果と
して、冷凍性能低下を防止できる空気調和装置を、冷
房,暖房に対応できるものとすることができる。
According to the fourteenth embodiment, bypass circuit 1
By exchanging heat between the refrigerant flowing through 8 and the high-pressure liquid, the degree of supercooling at the inlet of the expansion device can be increased, so that the loss of the refrigerant flow rate due to the bypass can be recovered as heat. The air conditioner that can be prevented can be adapted to cooling and heating.

【0075】[0075]

【発明の効果】第1の発明に係る空気調和装置によれ
ば、油分離器と冷凍サイクルの低圧側を接続する返油回
路の減圧装置の下流側における圧力と温度とを検知し、
前記検知圧力における冷媒の飽和温度と前記検知温度と
の温度差を演算して、前記温度差が設定温度差以下の場
合、返油動作を行うようにしたので、圧縮機に冷媒が寝
込んでいる状態での起動や、液バックなどが原因で過渡
的に油分離器出油が溜っている状態を検知することがで
きるため、信頼性を向上させた空気調和装置を提供する
ことができる。
According to the air conditioner of the first invention, the pressure and the temperature on the downstream side of the pressure reducing device of the oil return circuit connecting the oil separator and the low pressure side of the refrigeration cycle are detected,
The difference between the saturation temperature of the refrigerant at the detection pressure and the detection temperature is calculated, and when the temperature difference is equal to or less than the set temperature difference, the oil return operation is performed, so the refrigerant is stagnant in the compressor. Since it is possible to detect a state where the oil separator has accumulated oil transiently due to startup in the state or due to liquid back, it is possible to provide an air conditioner with improved reliability.

【0076】第2の発明に係る空気調和装置によれば、
制御手段が圧縮機を止め、また、冷凍サイクルの高圧側
と低圧側とを遮断する絞り装置からなる開閉装置を閉と
した時に、返油回路により返油動作を行うようにしたの
で、圧縮機に冷媒が寝込んでいる状態での起動や、液バ
ックなどが原因で過渡的に油分離器で油が溜っている状
態を検知することができ冷凍機油不足で圧縮機を運転し
ている時間を低減することができ、信頼性を向上させた
空気調和装置を提供することができる。
According to the air conditioner of the second invention,
When the control means stops the compressor and closes an opening / closing device including a throttle device that shuts off the high pressure side and the low pressure side of the refrigeration cycle, the oil return operation is performed by the oil return circuit. It is possible to detect the state where oil is accumulated in the oil separator transiently due to the start-up in the state where the refrigerant is laid down in the refrigerant, the liquid back, etc. It is possible to provide an air conditioner that can be reduced and has improved reliability.

【0077】第3の発明に係る空気調和装置によれば、
前記返油回路の減圧装置より流量抵抗の小さい減圧装置
を備え、前記返油回路の減圧装置に並列に設けたバイパ
ス配管により返油動作を行うようにしたため、圧縮機に
冷媒が寝込んでいる状態での起動や、フォーミングなど
が原因で過渡的に油分離器で油が溜っている状態を検知
することができるため、空気調和装置を停止させること
なく冷凍機油不足で圧縮機を運転している時間を低減す
ることができ、信頼性を向上させた空気調和装置を提供
することができる。
According to the air conditioner of the third invention,
A state in which the refrigerant is stagnated in the compressor because a pressure reducing device having a smaller flow resistance than the pressure reducing device in the oil return circuit is provided, and the oil return operation is performed by a bypass pipe provided in parallel with the pressure reducer in the oil return circuit. The compressor can be operated with a shortage of refrigerating machine oil without stopping the air conditioner, because it is possible to detect the state of oil accumulation in the oil separator transiently due to start-up or forming, etc. The time can be reduced, and an air conditioner with improved reliability can be provided.

【0078】第4の発明に係る空気調和装置によれば、
第1の発明の空気調和装置において、圧力検知手段と温
度検知手段より下流の冷媒と凝縮器を出た冷媒とを熱交
換させるようにしたので、圧縮機に冷媒が寝込んでいる
状態での起動や、液バックなどが原因で過渡的に油分離
器で油が溜っている状態を検知することができ冷凍機油
不足で圧縮機を運転している時間を低減することがで
き、信頼性を向上させた空気調和装置を提供できるとと
もに、熱交換させることで、凝縮器出口の過冷却度を大
きくし、冷凍性能の低下を低減させた空気調和装置を提
供することができる。
According to the air conditioner of the fourth invention,
In the air conditioner according to the first aspect of the present invention, since the refrigerant downstream of the pressure detecting means and the temperature detecting means and the refrigerant flowing out of the condenser are heat-exchanged, the compressor is started in a state where the refrigerant is laid down. Oil can be detected transiently in the oil separator due to liquid back, etc., reducing the time the compressor is running due to lack of refrigerating machine oil, improving reliability It is possible to provide an air conditioner in which a supercooling degree at a condenser outlet is increased by performing heat exchange and a decrease in refrigeration performance is reduced.

【0079】第5の発明に係る空気調和装置によれば、
凝縮器からの媒体が流通する第1開閉弁からの媒体を導
出する配管の水平箇所における前記配管内の上部とアキ
ュムレータと蒸発器を接続している配管との間に設けら
れたバイパス回路を介して返油動作を行うようにしたの
で、液配管の基準油滞流量を検知し、冷凍機油不足で圧
縮機を運転している時間を低減することができ、信頼性
を向上させた空気調和装置を提供することができる。
According to the air conditioner of the fifth invention,
Through a bypass circuit provided between the upper part of the pipe at a horizontal position of the pipe for drawing out the medium from the first on-off valve through which the medium flows from the condenser and the pipe connecting the accumulator and the evaporator. An air conditioner that has improved reliability by detecting the reference oil stagnant flow rate in the liquid piping and reducing the time that the compressor is running due to lack of refrigerating machine oil. Can be provided.

【0080】第6の発明に係る空気調和装置によれば、
凝縮器からの媒体が流通する第1開閉弁からの媒体を導
出する配管の水平箇所における前記配管内の上部と絞り
装置と蒸発器を接続している配管との間に設けられたバ
イパス回路を介して返油動作を行うようにしたので、液
配管の基準油滞流量を検知し、冷凍機油不足で圧縮機を
運転している時間を低減することができ、さらに冷凍機
油と混合状態にある冷媒液を蒸発器で蒸発させること
で、液バック防止になり、信頼性を向上させた空気調和
装置を提供することができる。
According to the air conditioner of the sixth aspect,
A bypass circuit provided between the upper part of the pipe at a horizontal position of the pipe for drawing out the medium from the first on-off valve through which the medium flows from the condenser and the pipe connecting the expansion device and the evaporator is provided. Since the oil return operation is performed via the refrigeration oil, the reference oil stagnation flow rate of the liquid pipe can be detected, the time during which the compressor is operated due to lack of refrigeration oil can be reduced, and the oil is mixed with the refrigeration oil. By evaporating the refrigerant liquid by the evaporator, the liquid back can be prevented, and an air conditioner with improved reliability can be provided.

【0081】第7の発明に係わる空気調和装置によれ
ば、第5または第6の発明において、圧力検知手段と温
度検知手段より下流の冷媒と凝縮器を出た冷媒とを熱交
換させるようにしたので、液管中の基準油滞流量を検知
し、また、冷凍機油不足で圧縮機を運転している時間を
低減することができ、空気調和装置の信頼性を向上さ
せ、さらに、熱交換させることで、凝縮器出口の過冷却
度を大きくし、冷凍性能の低下を低減させた空気調和装
置を提供することができる。
According to the air conditioner pertaining to the seventh aspect, in the fifth or sixth aspect, heat exchange is performed between the refrigerant downstream of the pressure detecting means and the temperature detecting means and the refrigerant flowing out of the condenser. As a result, the reference oil stagnation flow rate in the liquid pipe can be detected, the time during which the compressor is operating due to lack of refrigerating machine oil can be reduced, the reliability of the air conditioner can be improved, and heat exchange can be further improved. By doing so, it is possible to provide an air conditioner in which the degree of supercooling at the outlet of the condenser is increased and the decrease in refrigeration performance is reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1を示す空気調和装置
の構成図。
FIG. 1 is a configuration diagram of an air-conditioning apparatus according to Embodiment 1 of the present invention.

【図2】 この発明の実施の形態2を示す空気調和装置
の構成図。
FIG. 2 is a configuration diagram of an air-conditioning apparatus according to Embodiment 2 of the present invention.

【図3】 この発明の実施の形態3を示す空気調和装置
の構成図。
FIG. 3 is a configuration diagram of an air-conditioning apparatus according to Embodiment 3 of the present invention.

【図4】 この発明の実施の形態4を示す空気調和装置
の構成図。
FIG. 4 is a configuration diagram of an air conditioner showing a fourth embodiment of the present invention.

【図5】 この発明の実施の形態5を示す空気調和装置
の構成図。
FIG. 5 is a configuration diagram of an air-conditioning apparatus according to Embodiment 5 of the present invention.

【図6】 この発明の実施の形態6を示す空気調和装置
の構成図。
FIG. 6 is a configuration diagram of an air-conditioning apparatus according to Embodiment 6 of the present invention.

【図7】 この発明の実施の形態7を示す空気調和装置
の構成図。
FIG. 7 is a configuration diagram of an air-conditioning apparatus according to Embodiment 7 of the present invention.

【図8】 この発明の実施の形態7において返油配管と
高圧液管を接触させる熱交換器を示す断面図。
FIG. 8 is a cross-sectional view showing a heat exchanger that brings an oil return pipe and a high-pressure liquid pipe into contact with each other in a seventh embodiment of the present invention.

【図9】 この発明の実施の形態9を示す空気調和装置
の構成図。
FIG. 9 is a configuration diagram of an air conditioner showing a ninth embodiment of the present invention.

【図10】 この発明の実施の形態9を示す空気調和装
置の構成図。
FIG. 10 is a configuration diagram of an air conditioner showing a ninth embodiment of the present invention.

【図11】 この発明の実施の形態9におけるバイパス
回路19の取付状態を示す図。
FIG. 11 is a diagram showing an attached state of a bypass circuit 19 according to a ninth embodiment of the present invention.

【図12】 この発明の実施の形態10を示す空気調和
装置の構成図。
FIG. 12 is a configuration diagram of an air conditioner showing a tenth embodiment of the present invention.

【図13】 この発明の実施の形態11を示す空気調和
装置の構成図。
FIG. 13 is a configuration diagram of an air-conditioning apparatus according to Embodiment 11 of the present invention.

【図14】 この発明の実施の形態12を示す空気調和
装置の構成図。
FIG. 14 is a configuration diagram of an air conditioner showing a twelfth embodiment of the present invention.

【図15】 この発明の実施の形態13を示す空気調和
装置の構成図。
FIG. 15 is a configuration diagram of an air conditioner showing a thirteenth embodiment of the present invention.

【図16】 この発明の実施の形態14を示す空気調和
装置の構成図。
FIG. 16 is a configuration diagram of an air conditioner showing a fourteenth embodiment of the present invention.

【図17】 従来の空気調和装置を示す構成図である。FIG. 17 is a configuration diagram showing a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1 圧縮機、2 油分離器、3 凝縮器、4 第1開閉
弁、5,5a,5b絞り装置、6 蒸発器、7 アキュ
ムレータ、8 減圧装置あるいは第1減圧装置、9 圧
力センサ、10 温度センサ、11 制御手段、12
第2開閉弁、13 第1返油回路、14 第2返油回
路、15 第3開閉弁、16 第2キャピラリ、17
熱交換手段、18 バイパス回路、19 冷媒の流れ、
20 制御手段、21 第1開閉弁、22 第2バイパ
ス回路、23 液だめ、24 切り換え弁、25 開閉
弁、26 キャピラリ、27a,27b 第1開閉弁。
REFERENCE SIGNS LIST 1 compressor, 2 oil separator, 3 condenser, 4 first on-off valve, 5, 5a, 5b expansion device, 6 evaporator, 7 accumulator, 8 decompression device or first decompression device, 9 pressure sensor, 10 temperature sensor , 11 control means, 12
2nd on-off valve, 13 1st oil return circuit, 14 2nd oil return circuit, 15 3rd on-off valve, 16 2nd capillary, 17
Heat exchange means, 18 bypass circuit, 19 refrigerant flow,
20 control means, 21 first on-off valve, 22 second bypass circuit, 23 liquid reservoir, 24 switching valve, 25 on-off valve, 26 capillary, 27a, 27b first on-off valve.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機,油分離器,凝縮器,絞り装置,
蒸発器を順次配管接続した冷凍サイクルを備えた空気調
和装置において、 前記油分離器と前記冷凍サイクルの低圧側とを接続する
返油回路と、 前記返油回路に設けた減圧装置と、 前記減圧装置より下流側で、前記返油回路に設けられ、
前記返油回路の温度を検知する温度検知手段および前記
返油回路の冷媒の圧力を検知する圧力検知手段と、 前記圧力検知手段が検知した圧力における冷媒の飽和温
度を演算し、前記飽和温度と前記温度検知手段が検知し
た温度との温度差を演算し、前記温度差が設定温度差以
下の場合、返油指令を出す制御手段と、 前記制御手段の指令により前記油分離器の冷凍機油を圧
縮機側に返油する返油手段とを備えたことを特徴とする
空気調和装置。
1. A compressor, an oil separator, a condenser, a throttle device,
An air conditioner including a refrigerating cycle in which evaporators are sequentially connected to a pipe, a recirculation circuit connecting the oil separator and a low pressure side of the refrigerating cycle, a decompression device provided in the recirculation circuit, and the decompression. Downstream of the device, provided in the oil return circuit,
Temperature detection means for detecting the temperature of the oil return circuit and pressure detection means for detecting the pressure of the refrigerant in the oil return circuit; and calculating the saturation temperature of the refrigerant at the pressure detected by the pressure detection means, and calculating the saturation temperature and Calculating a temperature difference from the temperature detected by the temperature detecting means, and when the temperature difference is equal to or less than a set temperature difference, a control means for issuing an oil return command; and a refrigerating machine oil of the oil separator according to a command of the control means. An air conditioner comprising: oil return means for returning oil to a compressor side.
【請求項2】 前記返油手段は、制御手段が圧縮機を止
め、また、冷凍サイクルの高圧側と低圧側とを遮断する
開閉装置を閉とした時の前記返油回路であることを特徴
とする請求項1に記載の空気調和装置。
2. The oil return circuit according to claim 1, wherein the oil return circuit is provided when the control means stops the compressor and closes an opening / closing device that shuts off a high pressure side and a low pressure side of the refrigeration cycle. The air conditioner according to claim 1, wherein
【請求項3】 前記返油手段は、前記返油回路の減圧装
置より流量抵抗の小さい減圧装置を備え、前記返油回路
の減圧装置に並列に設けたバイパス配管であることを特
徴とする請求項1に記載の空気調和装置。
3. The oil return means includes a pressure reducing device having a smaller flow resistance than the pressure reducing device of the oil return circuit, and is a bypass pipe provided in parallel with the pressure reducing device of the oil return circuit. Item 7. The air conditioner according to Item 1.
【請求項4】 前記温度検知手段および前記圧力検知手
段より下流の冷媒と凝縮器を出た冷媒とを熱交換させる
熱交換手段を備えたことを特徴とする請求項1に記載の
空気調和装置。
4. The air conditioner according to claim 1, further comprising a heat exchange unit that exchanges heat between a refrigerant downstream of the temperature detection unit and the pressure detection unit and a refrigerant that has exited a condenser. .
【請求項5】 圧縮機,油分離器,凝縮器,第1開閉
弁,絞り装置,蒸発器を順次配管接続した冷凍サイクル
を備え、冷媒と溶け合わない冷凍機油を用いた空気調和
装置において、第1開閉弁からの冷媒を導出する配管の
水平箇所における前記配管内の上部とアキュムレータと
蒸発器を接続している配管との間に設けられた第1バイ
パス回路と、第1バイパス回路に設けられた第1減圧装
置と、前記第1減圧装置をバイパスする第2バイパス回
路と、前記第2バイパス回路に設けられた第2開閉弁お
よび第2減圧装置とを備え、前記第1バイパス回路の出
口に、冷媒の圧力を検知する圧力検知手段と、冷媒の温
度を検知する温度検知手段と、検知された圧力から飽和
温度に換算し、冷媒の温度との温度差を演算し、演算さ
れた温度差が設定温度差以上になった時は、一定時間の
間、第2開閉弁を開にする制御を行う制御手段とを設け
たことを特徴とする空気調和装置。
5. An air conditioner comprising a refrigeration cycle in which a compressor, an oil separator, a condenser, a first opening / closing valve, a throttle device, and an evaporator are sequentially connected to each other, and using refrigeration oil that does not mix with the refrigerant. A first bypass circuit provided between an upper portion of the pipe at a horizontal location of the pipe for leading the refrigerant from the first on-off valve and the pipe connecting the accumulator and the evaporator; and a first bypass circuit provided in the first bypass circuit. A first decompression device, a second bypass circuit that bypasses the first decompression device, and a second on-off valve and a second decompression device provided in the second bypass circuit. At the outlet, pressure detecting means for detecting the pressure of the refrigerant, temperature detecting means for detecting the temperature of the refrigerant, and converting the detected pressure into a saturation temperature, calculating the temperature difference with the temperature of the refrigerant, and calculating Temperature difference is set temperature An air conditioner, further comprising: control means for performing control to open the second on-off valve for a predetermined time when the difference becomes equal to or greater than the difference.
【請求項6】 圧縮機,油分離器,凝縮器,第1開閉
弁,絞り装置,蒸発器が順次配管接続した冷凍サイクル
を備え、冷媒と溶け合わない冷凍機油を用いた空気調和
装置において、第1開閉弁からの冷媒を導出する配管の
水平箇所における前記配管内の上部と絞り装置と蒸発器
を接続している配管との間に設けられた第1バイパス回
路と、前記バイパス回路に設けられた第1減圧装置と、
前記第1減圧装置をバイパスし、蒸発器出口に接続され
た第2バイパス回路と、前記第2バイパス回路に設けら
れた第2開閉弁および第2減圧装置とを備え、前記第1
バイパス回路の出口に、冷媒の圧力を検知する圧力検知
手段と、冷媒の温度を検知する温度検知手段と、検知さ
れた圧力からその圧力における冷媒の飽和温度に換算
し、飽和温度と前記温度検知手段が検知した温度Tとの
温度差を演算し、演算された温度差が設定温度差以上に
なった時は、一定時間の間、第2開閉弁を開にする制御
を行う制御手段とを設けたことを特徴とする空気調和装
置。
6. An air conditioner comprising a refrigeration cycle in which a compressor, an oil separator, a condenser, a first on-off valve, a throttle device, and an evaporator are sequentially connected to a pipe, and using refrigeration oil that does not mix with the refrigerant. A first bypass circuit provided between the upper part of the pipe at a horizontal location of the pipe for leading the refrigerant from the first on-off valve and the pipe connecting the expansion device and the evaporator; and a first bypass circuit provided in the bypass circuit. A first decompression device,
A second bypass circuit bypassing the first pressure reducing device and connected to an evaporator outlet; a second on-off valve and a second pressure reducing device provided in the second bypass circuit;
At the outlet of the bypass circuit, a pressure detecting means for detecting the pressure of the refrigerant, a temperature detecting means for detecting the temperature of the refrigerant, and converting the detected pressure into a saturation temperature of the refrigerant at the pressure, the saturation temperature and the temperature detection. Control means for calculating a temperature difference from the temperature T detected by the means, and controlling to open the second on-off valve for a predetermined time when the calculated temperature difference is equal to or more than the set temperature difference. An air conditioner characterized by being provided.
【請求項7】 前記温度検知手段および前記圧力検知手
段より下流の冷媒と凝縮器を出た冷媒とを熱交換させる
熱交換手段を備えたことを特徴とする請求項5または請
求項6に記載の空気調和装置。
7. A heat exchange means for exchanging heat between a refrigerant downstream of the temperature detection means and the pressure detection means and a refrigerant flowing out of a condenser. Air conditioner.
JP27233697A 1997-10-06 1997-10-06 Air conditioning device Pending JPH11107966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27233697A JPH11107966A (en) 1997-10-06 1997-10-06 Air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27233697A JPH11107966A (en) 1997-10-06 1997-10-06 Air conditioning device

Publications (1)

Publication Number Publication Date
JPH11107966A true JPH11107966A (en) 1999-04-20

Family

ID=17512482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27233697A Pending JPH11107966A (en) 1997-10-06 1997-10-06 Air conditioning device

Country Status (1)

Country Link
JP (1) JPH11107966A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1367259A1 (en) * 2001-02-15 2003-12-03 Toshiba Carrier Corporation Freezer
JP2006242392A (en) * 2005-02-28 2006-09-14 Mitsubishi Heavy Ind Ltd Flow controller and air conditioner
JP2009228976A (en) * 2008-03-24 2009-10-08 Hitachi Appliances Inc Refrigerating cycle device
JP2013221661A (en) * 2012-04-16 2013-10-28 Mitsubishi Heavy Ind Ltd Air conditioner and control device thereof
CN103673398A (en) * 2012-09-07 2014-03-26 珠海格力电器股份有限公司 Compressor oil return system and oil return state detection method of compressor
CN104654667A (en) * 2013-11-25 2015-05-27 珠海格力电器股份有限公司 Outdoor unit module of multi-split system and multi-split system with outdoor unit module
CN104748427A (en) * 2015-03-31 2015-07-01 广东美的暖通设备有限公司 Unloading component for multi-split system and multi-split system with same
JP2017089988A (en) * 2015-11-12 2017-05-25 三菱重工業株式会社 Refrigerant circuit of air conditioner, and air conditioner
US20180051704A1 (en) * 2015-03-17 2018-02-22 Yanmar Co., Ltd. Heat pump
CN109236626A (en) * 2018-08-13 2019-01-18 珠海格力电器股份有限公司 System and method for detecting dirty blockage of oil return pipeline of compressor and electric appliance product
CN117387253A (en) * 2023-12-08 2024-01-12 珠海格力电器股份有限公司 Unit oil return control method and device and water chilling unit
DE102022125945A1 (en) * 2022-10-07 2024-04-18 TEKO Gesellschaft für Kältetechnik mbH Method for controlling the filling level of an oil separator for a refrigeration circuit
WO2024111097A1 (en) * 2022-11-24 2024-05-30 三菱電機株式会社 Refrigeration cycle device
WO2024122029A1 (en) * 2022-12-08 2024-06-13 三菱電機株式会社 Refrigeration cycle apparatus

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1367259A1 (en) * 2001-02-15 2003-12-03 Toshiba Carrier Corporation Freezer
EP1367259A4 (en) * 2001-02-15 2009-10-28 Toshiba Carrier Corp FREEZING DEVICE
JP2006242392A (en) * 2005-02-28 2006-09-14 Mitsubishi Heavy Ind Ltd Flow controller and air conditioner
JP4599190B2 (en) * 2005-02-28 2010-12-15 三菱重工業株式会社 Flow rate adjusting device and air conditioner
JP2009228976A (en) * 2008-03-24 2009-10-08 Hitachi Appliances Inc Refrigerating cycle device
JP2013221661A (en) * 2012-04-16 2013-10-28 Mitsubishi Heavy Ind Ltd Air conditioner and control device thereof
CN103673398A (en) * 2012-09-07 2014-03-26 珠海格力电器股份有限公司 Compressor oil return system and oil return state detection method of compressor
CN104654667A (en) * 2013-11-25 2015-05-27 珠海格力电器股份有限公司 Outdoor unit module of multi-split system and multi-split system with outdoor unit module
US20180051704A1 (en) * 2015-03-17 2018-02-22 Yanmar Co., Ltd. Heat pump
CN108027175A (en) * 2015-03-17 2018-05-11 洋马株式会社 Heat pump
US10641530B2 (en) * 2015-03-17 2020-05-05 Yanmar Co., Ltd. Heat pump
CN104748427A (en) * 2015-03-31 2015-07-01 广东美的暖通设备有限公司 Unloading component for multi-split system and multi-split system with same
JP2017089988A (en) * 2015-11-12 2017-05-25 三菱重工業株式会社 Refrigerant circuit of air conditioner, and air conditioner
CN109236626A (en) * 2018-08-13 2019-01-18 珠海格力电器股份有限公司 System and method for detecting dirty blockage of oil return pipeline of compressor and electric appliance product
CN109236626B (en) * 2018-08-13 2020-03-24 珠海格力电器股份有限公司 System and method for detecting dirty blockage of oil return pipeline of compressor and electric appliance product
DE102022125945A1 (en) * 2022-10-07 2024-04-18 TEKO Gesellschaft für Kältetechnik mbH Method for controlling the filling level of an oil separator for a refrigeration circuit
WO2024111097A1 (en) * 2022-11-24 2024-05-30 三菱電機株式会社 Refrigeration cycle device
WO2024122029A1 (en) * 2022-12-08 2024-06-13 三菱電機株式会社 Refrigeration cycle apparatus
CN117387253A (en) * 2023-12-08 2024-01-12 珠海格力电器股份有限公司 Unit oil return control method and device and water chilling unit
CN117387253B (en) * 2023-12-08 2024-03-08 珠海格力电器股份有限公司 Unit oil return control method and device and water chilling unit

Similar Documents

Publication Publication Date Title
EP3734167B1 (en) Air conditioner system
EP2933588B1 (en) Air conditioning hot water supply composite system
EP2557377B1 (en) Air conditioning and hot-water supply composite system
JPH0232546B2 (en)
JP3440910B2 (en) Refrigeration equipment
JPH11107966A (en) Air conditioning device
JP2013257121A (en) Refrigerating device
JP5418253B2 (en) Refrigeration cycle equipment
US20040261447A1 (en) Refrigeration equipment
JP2007225141A (en) Gas heat pump type air conditioner and its starting method
JP4082435B2 (en) Refrigeration equipment
US7451615B2 (en) Refrigeration device
JP2022528256A (en) Air conditioner
JP2002061992A (en) Air conditioner
EP3734192B1 (en) Air conditioner system
JP4274250B2 (en) Refrigeration equipment
JP2004003717A (en) Air conditioner
JP3855667B2 (en) Air conditioner for vehicles
KR100821729B1 (en) Air conditioning system
JP2008032391A (en) Refrigerating unit
JP2007107860A (en) Air conditioner
JP4111241B2 (en) Refrigeration equipment
JP2007032857A (en) Refrigerating device
JPH01302072A (en) Heat pump type air conditioner
JP4179602B2 (en) Thermal storage air conditioner