JPH11106535A - Polyolefin porous membrane and its manufacture and battery separator therefrom - Google Patents
Polyolefin porous membrane and its manufacture and battery separator therefromInfo
- Publication number
- JPH11106535A JPH11106535A JP9276000A JP27600097A JPH11106535A JP H11106535 A JPH11106535 A JP H11106535A JP 9276000 A JP9276000 A JP 9276000A JP 27600097 A JP27600097 A JP 27600097A JP H11106535 A JPH11106535 A JP H11106535A
- Authority
- JP
- Japan
- Prior art keywords
- polyolefin
- weight
- component
- molecular weight
- average molecular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920000098 polyolefin Polymers 0.000 title claims abstract description 134
- 239000012528 membrane Substances 0.000 title claims abstract description 75
- 238000004519 manufacturing process Methods 0.000 title claims description 43
- 239000000203 mixture Substances 0.000 claims abstract description 58
- 239000002904 solvent Substances 0.000 claims abstract description 42
- 230000010220 ion permeability Effects 0.000 claims abstract description 16
- 238000001816 cooling Methods 0.000 claims abstract description 9
- -1 polyethylene Polymers 0.000 claims description 38
- 239000004698 Polyethylene Substances 0.000 claims description 34
- 229920000573 polyethylene Polymers 0.000 claims description 34
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 claims description 12
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 claims description 12
- 230000035699 permeability Effects 0.000 claims description 11
- 229920000642 polymer Polymers 0.000 claims description 11
- 238000002844 melting Methods 0.000 claims description 10
- 230000008018 melting Effects 0.000 claims description 10
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 8
- 239000005977 Ethylene Substances 0.000 claims description 8
- 239000000155 melt Substances 0.000 claims description 6
- 230000002159 abnormal effect Effects 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 28
- 239000000243 solution Substances 0.000 description 24
- 239000001993 wax Substances 0.000 description 22
- 239000010408 film Substances 0.000 description 16
- 238000005406 washing Methods 0.000 description 7
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 229940057995 liquid paraffin Drugs 0.000 description 6
- 239000003963 antioxidant agent Substances 0.000 description 5
- 230000003078 antioxidant effect Effects 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000000108 ultra-filtration Methods 0.000 description 3
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- 239000005662 Paraffin oil Substances 0.000 description 2
- BGYHLZZASRKEJE-UHFFFAOYSA-N [3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]-2,2-bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxymethyl]propyl] 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCC(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BGYHLZZASRKEJE-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000001471 micro-filtration Methods 0.000 description 2
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000013557 residual solvent Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000001223 reverse osmosis Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- RSJKGSCJYJTIGS-UHFFFAOYSA-N undecane Chemical compound CCCCCCCCCCC RSJKGSCJYJTIGS-UHFFFAOYSA-N 0.000 description 2
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- ROHFBIREHKPELA-UHFFFAOYSA-N 2-[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]prop-2-enoic acid;methane Chemical compound C.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O ROHFBIREHKPELA-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ポリオレフィン製
多孔質膜およびその製造方法並びにそれを用いた電池用
セパレータに関する。The present invention relates to a polyolefin porous membrane, a method for producing the same, and a battery separator using the same.
【0002】[0002]
【従来の技術】プラスチック製多孔質膜は、電子部品の
セパレータ、各種フィルター、透湿防水衣料、逆浸透濾
過膜、限外濾過膜、精密濾過膜等の各種用途に用いら
れ、特に、ポリオレフィン製多孔質膜は、電池用セパレ
ータとして使用されている。2. Description of the Related Art Porous plastic membranes are used for various applications such as separators for electronic parts, various filters, moisture-permeable waterproof clothing, reverse osmosis filtration membranes, ultrafiltration membranes, and microfiltration membranes. The porous membrane is used as a battery separator.
【0003】従来、ポリオレフィン製多孔質膜は、例え
ば、異種ポリマー等の微粉体からなる孔形成剤をポリオ
レフィンに混合してミクロ分散させた後、孔形成剤を抽
出する混合抽出法、ポリオレフィン相を溶媒でミクロ相
分離することにより多孔構造とする相分離法、異種固形
がミクロ分散しているポリオレフィン成形体に延伸など
の歪みを与えることにより異種固体間を界面破壊して空
孔を生じさせて多孔化する延伸法等により製造されてい
た。しかし、従来では、通常、分子量が50万未満程度
のポリオレフィンが用いられていたため、延伸による薄
膜化および高強度化には限界があった。Conventionally, a porous film made of polyolefin has been prepared by, for example, mixing a pore-forming agent composed of fine powder of a different polymer or the like into a polyolefin, micro-dispersing the mixture, and extracting the pore-forming agent by a mixed extraction method. A phase separation method that forms a porous structure by microphase separation with a solvent, and interfacial fracture between heterogeneous solids is caused by giving strain such as stretching to a polyolefin molded body in which heterogeneous solids are micro-dispersed, and voids are generated. It was manufactured by a stretching method or the like for making it porous. However, conventionally, a polyolefin having a molecular weight of less than about 500,000 is usually used, so that there is a limit to a thin film and high strength by stretching.
【0004】この問題に対し、高強度および高引張弾性
のフィルムに成形可能な超高分子量ポリオレフィンが開
発され、これを用いた高強度の多孔質膜の製造方法が種
々提案されている。To solve this problem, ultrahigh molecular weight polyolefins that can be formed into films having high strength and high tensile elasticity have been developed, and various methods for producing high-strength porous films using the same have been proposed.
【0005】例えば、特開昭58−5228号公報に
は、超高分子量ポリオレフィンを不揮発性溶媒に溶解
し、この溶液から繊維状またはフィルム状などのゲルを
成形し、このゲルから不揮発性溶剤を揮発性溶剤で抽出
処理した後、加熱延伸する技術が開示されている。しか
しながら、この技術には種々の問題がある。まず、不揮
発性溶媒で高度に膨潤した多孔質繊維を有するゲルを2
方向に延伸しようとしても、高配向の延伸ができず、延
伸に伴う網状組織の拡大により破断しやすく、得られる
フィルムの強度も小さく、さらに形成される孔径も大き
い。また、不揮発性溶媒を揮発性溶媒で抽出した後にゲ
ルを乾燥した場合、このゲルは、網状組織が収縮緻密化
しているが、揮発性溶媒の不均一な蒸発によりフィルム
原反にそりが発生しやすく、また収縮緻密化により高倍
率の延伸ができないという問題がある。For example, JP-A-58-5228 discloses that an ultrahigh molecular weight polyolefin is dissolved in a non-volatile solvent, a fibrous or film-like gel is formed from this solution, and the non-volatile solvent is removed from the gel. There is disclosed a technique of performing heat-drawing after performing an extraction treatment with a volatile solvent. However, this technique has various problems. First, a gel having porous fibers highly swollen with a non-volatile solvent was used as a gel.
Even if the film is stretched in the direction, the film cannot be stretched in a high orientation, is easily broken due to the expansion of the network structure accompanying the stretching, the strength of the obtained film is small, and the pore size to be formed is large. In addition, when the gel is dried after extracting the non-volatile solvent with the volatile solvent, the gel has a network structure that shrinks and densifies, but the unevenness of the volatile solvent causes warpage of the raw film. However, there is a problem that stretching at a high magnification cannot be performed due to shrinkage and densification.
【0006】また、特開昭63−273651号公報に
は、重量平均分子量が5×105 以上の超高分子量ポリ
オレフィンの溶液を調製し、この溶液をゲル化温度以下
に急冷しながらダイスから押出してゲル状成形物中の前
記超高分子量ポリオレフィンの含有量を10〜90重量
%にし、前記超高分子量の融点+10℃以下の温度で延
伸し、しかる後残存溶媒を除去するという技術が開示さ
れている。しかし、この技術では、超高分子量ポリオレ
フィンを2軸延伸するため、ポリオレフィンの希薄溶液
を調製する必要があり、この稀薄溶液をシート状に成形
することは困難であり、さらにシート中には溶媒が過剰
に含まれており、そのまま延伸しても目的の多孔質膜は
得られないため、延伸処理前に、脱溶媒処理してシート
中の溶媒量を調製する必要があり、このため、生産性に
おいて問題があった。In Japanese Patent Application Laid-Open No. 63-273652, a solution of an ultrahigh molecular weight polyolefin having a weight average molecular weight of 5 × 10 5 or more is prepared, and this solution is extruded from a die while being rapidly cooled to a gelling temperature or lower. A technique is disclosed in which the content of the ultrahigh molecular weight polyolefin in the gel-like molded product is adjusted to 10 to 90% by weight, the film is stretched at a temperature not higher than the melting point of the ultrahigh molecular weight + 10 ° C, and then the residual solvent is removed. ing. However, in this technique, since the ultrahigh molecular weight polyolefin is biaxially stretched, it is necessary to prepare a dilute solution of the polyolefin, and it is difficult to form the dilute solution into a sheet, and furthermore, a solvent is contained in the sheet. Since it is contained in excess and the desired porous membrane cannot be obtained even if it is stretched as it is, it is necessary to remove the solvent and adjust the amount of solvent in the sheet before the stretching treatment. Had problems.
【0007】特開平3−64334号には、超高分子量
ポリオレフィンを含有し、(重量平均分子量/数平均分
子量)の値が特定の範囲にあるポリオレフィン製多孔質
膜の製造方法が開示されている。この方法によれば、ポ
リオレフィン溶液を高濃度溶液とすることができ、シー
トの延伸性が良好であるため、前記生産効率の問題が一
部解決される。しかし、この製造方法において、ゲル状
シートの引張弾性率が低いため、製造工程中でシートの
厚み変化が起こりやすく、得られる多孔質膜の厚みが不
均一となるおそれがある。また、ポリオレフィン溶液の
濃度が高いとはいえ、ゲル状シート中に50重量%以上
の溶剤が存在しており、溶媒抽出工程を省略することは
できない。JP-A-3-64334 discloses a method for producing a polyolefin porous membrane containing an ultrahigh molecular weight polyolefin and having a value of (weight average molecular weight / number average molecular weight) in a specific range. . According to this method, the polyolefin solution can be made a high-concentration solution, and the stretchability of the sheet is good, so that the problem of the production efficiency is partially solved. However, in this production method, since the tensile modulus of the gel-like sheet is low, the thickness of the sheet tends to change during the production process, and the thickness of the obtained porous membrane may be non-uniform. Further, although the concentration of the polyolefin solution is high, 50% by weight or more of the solvent is present in the gel-like sheet, and the solvent extraction step cannot be omitted.
【0008】したがって、従来の製造方法では、製造効
率の面および製品の品質の面で問題があった。Therefore, the conventional manufacturing method has problems in terms of manufacturing efficiency and product quality.
【0009】さらに、ポリオレフィン製多孔質膜を、電
池用セパレータとして用いた場合、電池の短絡に伴う温
度上昇を防止する機能が必要とされる場合がある。例え
ば、リチウム電池用の電池用セパレータとしてポリオレ
フィン製多孔質膜を使用する場合、リチウムの発火温度
未満の温度で、ポリオレフィンが溶融して膜の孔が閉塞
し、イオン透過性を喪失する必要がある。イオンの透過
性が喪失すれば電池反応を停止させることができ、それ
以上の温度上昇は起こらない。このような機能は、通
常、シャットダウン機能(SD機能)といわれている。
SD機能は、低い温度で起こることが好ましいため、従
来のポリオレフィン製多孔質膜のSD機能発現温度より
もさらに低い温度でSD機能を発現する電池用セパレー
タの開発が望まれている。Furthermore, when a polyolefin porous membrane is used as a battery separator, a function of preventing a rise in temperature due to a short circuit of the battery may be required. For example, when a polyolefin porous membrane is used as a battery separator for a lithium battery, at a temperature lower than the ignition temperature of lithium, the polyolefin is melted and pores of the membrane are closed, and it is necessary to lose ion permeability. . If the ion permeability is lost, the battery reaction can be stopped and no further temperature rise occurs. Such a function is usually called a shutdown function (SD function).
Since the SD function preferably occurs at a low temperature, it is desired to develop a battery separator that exhibits the SD function at a temperature lower than that of the conventional polyolefin porous membrane.
【0010】[0010]
【発明が解決しようとする課題】したがって、本発明の
目的は、通常の温度におけるイオン透過性および機械的
強度が優れるとともに、異常温度域ではなるべく低い温
度でイオン透過性を喪失する電池用セパレータとして最
適なポリオレフィン製多孔質膜の提供を第1の目的と
し、製造効率が高くかつ製品の品質が均一となるポリオ
レフィン製多孔質膜の製造方法を第2の目的とする。SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a battery separator having excellent ion permeability and mechanical strength at ordinary temperatures and losing ion permeability at a temperature as low as possible in an abnormal temperature range. A first object is to provide an optimal polyolefin porous membrane, and a second object is a method for producing a polyolefin porous membrane having high production efficiency and uniform product quality.
【0011】[0011]
【課題を解決する手段】前記目的を達成するために、本
発明のポリオレフィン製多孔質膜は、重量平均分子量が
1×106 以上の超高分子量ポリオレフィン(A成分)
および重量平均分子量が700〜10000のポリオレ
フィンワックス(B成分)を含有し、前記A成分の含有
割合が1重量%以上であり前記B成分の含有割合が20
重量%以上であるポリオレフィン組成物から形成され、
厚さが1〜50μm、空孔率が10〜90%、ガーレ式
通気度が1〜10000秒/100cc、破断強度が1
00kg/cm2 以上、イオン透過性喪失温度が135
℃以下であるという構成を有する。In order to achieve the above object, a polyolefin porous membrane of the present invention comprises an ultrahigh molecular weight polyolefin having a weight average molecular weight of 1 × 10 6 or more (component A).
And a polyolefin wax having a weight average molecular weight of 700 to 10000 (component B), wherein the content of the component A is 1% by weight or more and the content of the component B is 20% or more.
Formed from a polyolefin composition that is at least
The thickness is 1 to 50 μm, the porosity is 10 to 90%, the Gurley type air permeability is 1 to 10000 sec / 100 cc, and the breaking strength is 1
00 kg / cm 2 or more, ion permeation loss temperature of 135
It has a configuration that is not more than ° C.
【0012】このように、本発明のポリオレフィン製多
孔質膜では、ポレオレフィン組成物の組成が前記組成に
特定され、かつ前記諸物性値が前記特定の範囲に設定さ
れていることにより、通常の温度におけるイオン透過性
および機械的強度が優れるとともに、異常温度域ではな
るべく低い温度でイオン透過性を喪失し、電池用セパレ
ータとして最適である。したがって、本発明の電池用セ
パレータは、前記本発明のポリオレフィン製多孔質膜か
らなり、本発明の電池は、前記本発明の電池用セパレー
タを用いたものである。As described above, in the polyolefin porous membrane of the present invention, the composition of the polyolefin composition is specified to the above-mentioned composition, and the physical properties are set to the above-mentioned specific ranges, so that the ordinary It is excellent in ion permeability and mechanical strength at temperature, and loses ion permeability at as low a temperature as possible in an abnormal temperature range, and is optimal as a battery separator. Therefore, the battery separator of the present invention comprises the polyolefin porous membrane of the present invention, and the battery of the present invention uses the battery separator of the present invention.
【0013】本発明のポリオレフィン製多孔質膜におい
て、超高分子量ポリオレフィン(A成分)が超高分子量
ポリエチレンであり、ポリオレフィンワックス(B成
分)がポリエチレンワックスであり、ポリオレフィン組
成物が、前記A成分およびB成分に加え、エチレンを主
体とする重量平均分子量1×104 以上1×106 未満
の重合体(C成分)を含有することが好ましい。ここ
で、本発明において、前記C成分における「エチレンを
主体とする」とは、重合体中に含まれるエチレンユニッ
トの割合が50mol%以上の意味である。In the polyolefin porous membrane of the present invention, the ultrahigh molecular weight polyolefin (component A) is ultrahigh molecular weight polyethylene, the polyolefin wax (component B) is polyethylene wax, and the polyolefin composition comprises In addition to the component B, it is preferable to contain a polymer having a weight average molecular weight of 1 × 10 4 or more and less than 1 × 10 6 (component C), mainly composed of ethylene. Here, in the present invention, “mainly composed of ethylene” in the component C means that the proportion of ethylene units contained in the polymer is 50 mol% or more.
【0014】つぎに、本発明のポリオレフィン製多孔質
膜の製造方法は、下記に示すように、第1の製造方法と
第2の製造方法がある。Next, the method for producing a polyolefin porous membrane of the present invention includes a first production method and a second production method as described below.
【0015】まず、本発明の第1の製造方法は、重量平
均分子量が1×106 以上の超高分子量ポリオレフィン
(A成分)、重量平均分子量700〜10000のポリ
オレフィンワックス(B成分)および重量平均分子量1
×106 未満のポリオレフィン(C成分)を含有し、前
記A成分の含有割合が1重量%以上であり、前記B成分
の含有割合が20重量%以上であるポリオレフィン組成
物を準備し、この組成物50〜90重量部と、溶媒10
〜50重量部とを混合し、この混合物をダイスから押出
してシート状に成形し、冷却後、前記超高分子量ポリオ
レフィンの融点より10℃高い温度以下の条件で前記シ
ートを延伸して多孔質膜化し、その後、溶媒を除去する
方法である。First, the first production method of the present invention comprises an ultrahigh molecular weight polyolefin having a weight average molecular weight of 1 × 10 6 or more (component A), a polyolefin wax having a weight average molecular weight of 700 to 10,000 (component B), and a weight average molecular weight. Molecular weight 1
A polyolefin composition containing less than 10 6 polyolefin (component C), wherein the content of the component A is 1% by weight or more and the content of the component B is 20% by weight or more, is prepared. 50 to 90 parts by weight of a product and a solvent 10
-50 parts by weight, extruding this mixture from a die to form a sheet, cooling, and then stretching the sheet under a temperature not higher than 10 ° C. higher than the melting point of the ultrahigh molecular weight polyolefin to form a porous membrane. Then, the solvent is removed.
【0016】また、本発明の第2の製造方法は、重量平
均分子量が1×106 以上の超高分子量ポリオレフィン
(A成分)、重量平均分子量700〜10000のポリ
オレフィンワックス(B成分)および重量平均分子量1
×106 未満のポリオレフィン(C成分)を含有し、前
記A成分の含有割合が1重量%以上であり、前記B成分
の含有割合が40重量%以上であるポリオレフィン組成
物を準備し、この組成物を溶融し、この溶融物をダイス
から押出してシート状に成形し、冷却後、前記超高分子
量ポリオレフィンの融点より10℃高い温度以下の条件
で前記シートを延伸して多孔質膜化する方法である。The second production method of the present invention comprises the steps of: providing an ultrahigh molecular weight polyolefin having a weight average molecular weight of 1 × 10 6 or more (component A), a polyolefin wax having a weight average molecular weight of 700 to 10,000 (component B), Molecular weight 1
A polyolefin composition containing less than × 10 6 polyolefin (component C), wherein the content of the component A is 1% by weight or more and the content of the component B is 40% by weight or more, is prepared. A method of extruding the melt, extruding the melt from a die to form a sheet, cooling, and then stretching the sheet under a condition not higher than the melting point of the ultrahigh molecular weight polyolefin by 10 ° C. or less to form a porous film. It is.
【0017】これら第1の製造方法および第2の製造方
法では、シート延伸性に優れ、シート厚の安定性もよ
く、また延伸前に溶媒の除去工程が必要ない。したがっ
て、本発明の第1の製造方法および第2の製造方法によ
れば、高性能の前記本発明のポリオレフィン製多孔質膜
を、効率良くかつ均一膜厚で製造することが可能とな
る。The first and second production methods are excellent in sheet stretchability, good in sheet thickness stability, and do not require a solvent removal step before stretching. Therefore, according to the first production method and the second production method of the present invention, it is possible to efficiently produce the high-performance porous polyolefin membrane of the present invention with a uniform film thickness.
【0018】本発明の製造方法において、ポリオレフィ
ンワックス(B成分)がポリエチレンワックスであり、
ポリオレフィン(C成分)がエチレンを主体とする重量
平均分子量1×104 以上1×106 未満の重合体であ
ることが好ましい。In the production method of the present invention, the polyolefin wax (component B) is a polyethylene wax,
The polyolefin (component C) is preferably a polymer mainly composed of ethylene and having a weight average molecular weight of 1 × 10 4 or more and less than 1 × 10 6 .
【0019】[0019]
【0020】本発明のポリオレフィン製多孔質膜は、前
記A成分の超高分子量ポリオレフィンおよび前記B成分
のポリオレフィンワックスを含有し、前記A成分の含有
割合が1重量%以上であり前記B成分の含有割合が20
重量%以上であるポリオレフィン組成物から形成されて
いる。The polyolefin porous membrane of the present invention contains the ultra high molecular weight polyolefin of the component A and the polyolefin wax of the component B, wherein the content of the component A is 1% by weight or more and the content of the component B is not less than 1% by weight. 20%
% Or more by weight of the polyolefin composition.
【0021】前記A成分の超高分子量ポリオレフィン
は、重量平均分子量が1×106 以上である必要があ
り、好ましく1×106 〜15×106 のものである。
重量平均分子量が1×106 未満では、製造において、
最大延伸倍率が低くなり、目的の多孔質膜が得られな
い。一方、重量平均分子量の上限は、特に限定されない
が、15×106 を超えるものは、製造におけるシート
状成形物の成形において、成形性に劣るおそれがある。The ultrahigh molecular weight polyolefin of the component A must have a weight average molecular weight of 1 × 10 6 or more, preferably 1 × 10 6 to 15 × 10 6 .
When the weight average molecular weight is less than 1 × 10 6 ,
The maximum draw ratio is low, and the desired porous film cannot be obtained. On the other hand, the upper limit of the weight average molecular weight is not particularly limited, but those having a weight average molecular weight exceeding 15 × 10 6 may be inferior in moldability in molding a sheet-like molded product in production.
【0022】このような超高分子量ポリオレフィン(A
成分)としては、エチレン、プロピレン、1−ブテン、
4−メチル−1−ペンテン、1−ヘキセンなどを重合し
た結晶性の単独重合体または共重合体があげられる。こ
れらのうち、超高分子量ポリエチレンが好ましく、特に
好ましくは高密度の超高分子量ポリエチレンである。Such an ultrahigh molecular weight polyolefin (A)
Component) as ethylene, propylene, 1-butene,
Crystalline homopolymers or copolymers obtained by polymerizing 4-methyl-1-pentene, 1-hexene and the like can be mentioned. Of these, ultrahigh molecular weight polyethylene is preferable, and particularly preferably high density ultrahigh molecular weight polyethylene.
【0023】前記A成分のポリオレフィン組成物中の含
有割合は、ポリオレフィン組成物全体に対し1重量%以
上である必要がある。前記A成分の含有割合が1重量%
未満では、製造時において、延伸性の向上に寄与する超
高分子量ポリオレフィンの分子鎖の絡み合いがほとんど
形成されず、高強度の多孔質膜を得ることができない。
一方、含有割合の上限は、特に制限されないが、90重
量%を超えると、製造時に調製されるポリオレフィン溶
液の高濃度化の達成が困難となるおそれがある。The content ratio of the component A in the polyolefin composition must be 1% by weight or more based on the whole polyolefin composition. The content ratio of the component A is 1% by weight.
If it is less than 10, entanglement of the molecular chain of the ultra-high molecular weight polyolefin that contributes to improvement in stretchability is hardly formed at the time of production, and a high-strength porous membrane cannot be obtained.
On the other hand, the upper limit of the content ratio is not particularly limited, but if it exceeds 90% by weight, it may be difficult to achieve a high concentration of the polyolefin solution prepared at the time of production.
【0024】つぎに、前記B成分であるポリオレフィン
ワックスは、重量平均分子量が700〜10000であ
る必要があり、好ましくは1000〜8000の範囲で
ある。重量平均分子量が700未満では、製造時におい
て、常温におけるポリオレフィン組成物の性状がロウ状
個体となってしまうため、押出しシートの引張弾性率が
向上せず、また延伸後の抽出の際には、ポリオレフィン
ワックスが溶媒と共に抽出されてしまい、抽出廃分の増
加を招くため経済的でない。一方、重量平均分子量が1
0000を超えると、製造時において、高倍率での延伸
性に問題が生じ、均一な延伸が行えない上、得られた多
孔質膜の低温(135℃以下)でのイオン透過性喪失が
達成されない。また、ポリオレフィンワックスの添加量
が20重量%未満の場合も、製造時において、延伸の均
一性が悪く、また得られる多孔質膜での十分なイオン透
過性喪失が達成できない。Next, the polyolefin wax as the component B must have a weight-average molecular weight of 700 to 10,000, and preferably in the range of 1,000 to 8,000. If the weight-average molecular weight is less than 700, the properties of the polyolefin composition at room temperature become waxy solids at the time of production, so that the tensile modulus of the extruded sheet does not improve, and upon extraction after stretching, The polyolefin wax is extracted together with the solvent, which leads to an increase in extraction waste, which is not economical. On the other hand, when the weight average molecular weight is 1
If it exceeds 0000, a problem arises in stretchability at a high magnification during production, uniform stretching cannot be performed, and loss of ion permeability of the obtained porous membrane at low temperature (135 ° C. or lower) cannot be achieved. . Also, when the addition amount of the polyolefin wax is less than 20% by weight, the uniformity of stretching is poor at the time of production, and sufficient loss of ion permeability in the obtained porous membrane cannot be achieved.
【0025】このようなポリオレフィンワックスとして
は、前述の超高分子量ポリオレフィンと同種のものがあ
げられるが、エチレンを主体とする重合体であるポリエ
チレンワックスが好ましい。Examples of such a polyolefin wax include those of the same kind as the above-mentioned ultrahigh molecular weight polyolefin, and a polyethylene wax which is a polymer mainly composed of ethylene is preferred.
【0026】また、ポリオレフィン組成物には、前記A
成分およびB成分に加え、重量平均分子量が1×106
未満のポリオレフィン(C成分)を含有することが好ま
しい。このC成分の分子量の下限は、1×104 以上が
好ましい。重量平均分子量が1×104 未満のポリオレ
フィンを用いると、製造時において、延伸時に破断が起
こりやすくなるおそれがあるからである。なお、このC
成分の特に好ましい重量平均分子量は1×104 〜1×
105 の範囲である。このC成分の配合割合は、ポリオ
レフィン組成物全体に対し、通常、0〜80重量%、好
ましくは、20〜70重量%、特に好ましくは、40〜
60重量%の範囲である。The polyolefin composition further comprises the above-mentioned A
In addition to the component and the component B, the weight average molecular weight is 1 × 10 6
It is preferable to contain less than the polyolefin (component C). The lower limit of the molecular weight of the component C is preferably 1 × 10 4 or more. This is because if a polyolefin having a weight average molecular weight of less than 1 × 10 4 is used, there is a possibility that breakage is likely to occur during stretching during production. Note that this C
Particularly preferred weight average molecular weights of the components are from 1 × 10 4 to 1 ×.
The range is 10 5 . The compounding ratio of the component C is generally 0 to 80% by weight, preferably 20 to 70% by weight, particularly preferably 40 to 70% by weight, based on the whole polyolefin composition.
It is in the range of 60% by weight.
【0027】このようなポリオレフィンとしては、前述
の超高分子量ポリオレフィンと同種のものがあげられる
が、特にエチレンを主体とする重合体である高密度ポリ
エチレンが好ましい。Examples of such a polyolefin include those of the same type as the above-mentioned ultrahigh molecular weight polyolefin, and high density polyethylene which is a polymer mainly composed of ethylene is particularly preferable.
【0028】なお、本発明にかかるポリオレフィン組成
物には、前記A、BおよびC成分以外に他の成分が配合
されていてもよく、例えば、必要に応じて、酸化防止
剤、紫外線吸収剤、アンチブロッキング剤、顔料、染
料、無機充填剤などの各種添加剤を本発明の目的を損な
わない範囲で添加することができる。The polyolefin composition according to the present invention may contain other components in addition to the components A, B and C. For example, if necessary, an antioxidant, an ultraviolet absorber, Various additives such as an anti-blocking agent, a pigment, a dye, and an inorganic filler can be added as long as the object of the present invention is not impaired.
【0029】つぎに、本発明の製造方法は、第1の製造
方法および第2の製造方法の2種類がある。これらの製
造方法の例について以下に説明する。Next, there are two types of manufacturing methods of the present invention, a first manufacturing method and a second manufacturing method. Examples of these manufacturing methods will be described below.
【0030】まず、前記A成分、B成分およびC成分を
前記所定の割合で配合し(必要に応じ前記各種添加剤を
配合してもよい)、ポリオレフィン組成物を調製する。
そして、第1の製造方法では、このポリオレフィン組成
物50〜90重量部と、溶媒50〜10重量部とを混合
し、加熱溶融してポリオレフィン組成物溶液を調製す
る。また第2の製造方法では、B成分がポリオレフィン
組成物全体に対し、40重量%以上配合されているた
め、溶媒を用いないでポリオレフィン組成物を加熱溶融
する。First, the component A, the component B and the component C are blended in the above-mentioned predetermined ratio (the above-mentioned various additives may be blended if necessary) to prepare a polyolefin composition.
Then, in the first production method, 50 to 90 parts by weight of the polyolefin composition and 50 to 10 parts by weight of the solvent are mixed and heated and melted to prepare a polyolefin composition solution. Further, in the second production method, the B component is blended by 40% by weight or more based on the whole polyolefin composition. Therefore, the polyolefin composition is heated and melted without using a solvent.
【0031】前記溶媒としては、ポリオレフィン組成物
を十分に溶解できるものであれば特に限定されない。例
えば、ノナン、デカン、ウンデカン、ドデカン、パラフ
ィン油などの脂肪族または環式の炭化水素、あるいは沸
点がこれらに対応する鉱油留分などがあげられるが、溶
媒含有量が安定なシート状成形物を得るためにはパラフ
ィン油のような不揮発性溶媒が好ましい。The solvent is not particularly limited as long as it can sufficiently dissolve the polyolefin composition. For example, nonane, decane, undecane, dodecane, aliphatic or cyclic hydrocarbons such as paraffin oil, or a mineral oil fraction having a boiling point corresponding thereto, and the like. To obtain, a non-volatile solvent such as paraffin oil is preferred.
【0032】前記第1の製造方法における加熱溶解は、
ポリオレフィン組成物が溶媒中で完全に溶解する温度で
攪拌しながら行う。その温度は使用する重合体および溶
媒により異なるが、例えばポリエチレン組成物の場合に
は、通常、140℃〜250℃の範囲である。また、ポ
リオレフィン組成物溶液の濃度は50〜90重量%であ
り、好ましくは50〜75重量%である。濃度が50重
量%未満では使用する溶媒量が多く経済的でないばかり
か、成形シートの引張弾性率が低くなってしまい、搬送
する過程においてシート厚みが変化してしまい厚み精度
の良好な多孔質膜を得ることができない。一方、濃度が
90%を超えると溶媒量が少なすぎるため、溶媒の分散
に問題が生じ、均一な溶液の調製が困難となる。なお、
加熱溶解にあたってはポリオレフィンの酸化を防止する
目的で酸化防止剤を添加するのが好ましい。The heat dissolution in the first production method is as follows:
The stirring is performed at a temperature at which the polyolefin composition is completely dissolved in the solvent. The temperature varies depending on the polymer and the solvent used. For example, in the case of a polyethylene composition, the temperature is usually in the range of 140 ° C to 250 ° C. The concentration of the polyolefin composition solution is 50 to 90% by weight, preferably 50 to 75% by weight. When the concentration is less than 50% by weight, not only is the amount of solvent used too large to be economical, but also the tensile elastic modulus of the molded sheet becomes low, and the thickness of the sheet changes during the course of conveyance, resulting in a porous film having good thickness accuracy. Can not get. On the other hand, if the concentration exceeds 90%, the amount of the solvent is too small, so that a problem occurs in dispersion of the solvent, and it becomes difficult to prepare a uniform solution. In addition,
Upon heating and dissolving, it is preferable to add an antioxidant for the purpose of preventing oxidation of the polyolefin.
【0033】また、第2の製造方法における加熱溶解
は、ポリオレフィン組成物がポリオレフィンワックスと
均一に溶融する温度で攪拌しながら行うことが好まし
い。その温度は使用する重合体により異なるが、例えば
ポリエチレン組成物の場合には、通常、140℃〜25
0℃の範囲である。ポリオレフィン組成物中のポリオレ
フィンワックス量は、ポリオレフィン組成物全体に対
し、40重量%以上、好ましくは40〜70重量%の範
囲である。前記ポリオレフィンワックス量が40重量部
未満では、融液粘度が高くなるため、シート成形および
均一延伸が困難となる。なお、加熱融解にあたっては、
ポリオレフィンの酸化を防止する為に酸化防止剤を添加
するのが好ましい。The heating and dissolving in the second production method is preferably carried out with stirring at a temperature at which the polyolefin composition uniformly melts with the polyolefin wax. The temperature varies depending on the polymer used. For example, in the case of a polyethylene composition, the temperature is usually 140 ° C to 25 ° C.
It is in the range of 0 ° C. The amount of the polyolefin wax in the polyolefin composition is at least 40% by weight, preferably in the range of 40 to 70% by weight, based on the entire polyolefin composition. When the amount of the polyolefin wax is less than 40 parts by weight, the viscosity of the melt becomes high, so that sheet forming and uniform stretching become difficult. When heating and melting,
It is preferable to add an antioxidant to prevent oxidation of the polyolefin.
【0034】つぎに、前記ポリオレフィン組成物の加熱
溶液または加熱融液をダイスから押出して成形する。ダ
イスは、通常の長方形の口金形状をしたシートダイスが
用いられるが、2重円筒状の中空系ダイス、インフーシ
ョンダイス等も用いることができ、特に制限されない。
シートダイスを用いた場合のダイスギャップは、通常、
0.1〜5mmであり、押出成形時には、通常、140
〜250℃に加熱される。この際の押出速度は、通常
0.2〜5m/分である。Next, a heated solution or melt of the polyolefin composition is extruded from a die and molded. As the die, a sheet die having a normal rectangular base shape is used, but a double cylindrical hollow die, an infection die, and the like can also be used, and there is no particular limitation.
The die gap when using a sheet die is usually
0.1 to 5 mm.
Heated to ~ 250 ° C. The extrusion speed at this time is usually 0.2 to 5 m / min.
【0035】このようにしてダイスから押出された溶液
または融液は、冷却され、シート状に成形される。冷却
は、シート状組成物がポリオレフィン組成物の軟化点温
度未満になるまで行う。冷却方法としては、冷風、冷却
水、その他の冷却媒体に直接接触させる方法、冷媒で冷
却したロールに接触させる方法等を用いることができ
る。なお、ダイスから押出された溶液または融液は、冷
却前あるいは冷却中に、1〜10好ましくは1〜5の引
取比で引き取ってもよい。引取比が10以上になるとネ
ックインが大きくなり、また延伸時に破断を起こしやす
くなり好ましくない。The solution or melt extruded from the die is cooled and formed into a sheet. Cooling is performed until the sheet-shaped composition becomes lower than the softening point temperature of the polyolefin composition. As a cooling method, a method of directly contacting with cold air, cooling water, or another cooling medium, a method of contacting with a roll cooled by a refrigerant, or the like can be used. The solution or the melt extruded from the die may be taken at a take-up ratio of 1 to 10, preferably 1 to 5, before or during cooling. When the take-up ratio is 10 or more, neck-in becomes large, and breakage tends to occur during stretching, which is not preferable.
【0036】つぎに、このシート状組成物を、延伸す
る。延伸は、シート状成形物を加熱し、通常のテンター
法、ロール法、インフレーション法、圧延法もしくはこ
れらの組合せによって所定の倍率で行なうことができ
る。また、延伸は、2軸延伸が好ましく、縦横同時延伸
または逐次延伸のいずれでもよいが、特に同時2軸延伸
が好ましい。Next, the sheet composition is stretched. Stretching can be performed at a predetermined magnification by heating a sheet-like molded product and using a usual tenter method, a roll method, an inflation method, a rolling method, or a combination thereof. The stretching is preferably biaxial stretching, and may be any of simultaneous longitudinal and transverse stretching or sequential stretching, and particularly preferably simultaneous biaxial stretching.
【0037】延伸温度は、超高分子量ポリオレフィンの
融点(Tm℃)より10℃高い温度以下(Tm+10℃
以下)であり、好ましくは超高分子量ポリオレフィンの
融点から軟化点の温度の範囲である。例えば、超高分子
量ポリオレフィンが超高分子量ポリエチレンの場合の延
伸温度は、通常、90℃〜140℃の範囲であり、好ま
しくは100℃〜130℃の範囲である。延伸温度が、
Tm+10℃の温度を超える場合は、樹脂の溶融により
延伸による分子鎖の配向ができない。また、延伸温度が
軟化点温度以下では、樹脂の軟化が不十分で、延伸にお
いてシート状組成物が破膜しやすく、高倍率の延伸がで
きない。The stretching temperature is 10 ° C. or higher (Tm + 10 ° C.) higher than the melting point (Tm ° C.) of the ultrahigh molecular weight polyolefin.
Below), preferably in the range from the melting point to the softening point of the ultrahigh molecular weight polyolefin. For example, when the ultrahigh molecular weight polyolefin is ultrahigh molecular weight polyethylene, the stretching temperature is usually in the range of 90 ° C to 140 ° C, and preferably in the range of 100 ° C to 130 ° C. The stretching temperature is
When the temperature exceeds Tm + 10 ° C., the molecular chains cannot be oriented by stretching due to melting of the resin. When the stretching temperature is lower than the softening point temperature, the softening of the resin is insufficient, so that the sheet-like composition is liable to break in the stretching, and high-magnification stretching cannot be performed.
【0038】また、延伸倍率は、原反(シート状組成
物)の厚さによって異なるが、1軸方向で少なくとも2
倍以上、好ましくは3〜20倍、面倍率で10倍以上、
好ましくは20〜400倍である。面倍率が10倍未満
では延伸が不十分で高引張弾性、高強度の多孔質膜が得
られないおそれがある。一方、面倍率が400倍を超え
ると、延伸装置、延伸操作などの点で制約が生じるおそ
れがある。この延伸操作により、第2の製造方法では、
目的とするポリオレフィン多孔質膜が得られるが、第1
の製造方法では、さらに延伸成形物から溶媒の除去をお
こなう。The stretching ratio varies depending on the thickness of the raw material (sheet-like composition), but is at least 2 in the uniaxial direction.
Times or more, preferably 3 to 20 times, 10 times or more in area magnification,
Preferably it is 20 to 400 times. If the areal magnification is less than 10 times, stretching may be insufficient and a high tensile elasticity and high strength porous membrane may not be obtained. On the other hand, when the area magnification exceeds 400 times, there is a possibility that restrictions may be caused in a stretching apparatus, a stretching operation, and the like. By this stretching operation, in the second manufacturing method,
The desired polyolefin porous membrane can be obtained.
In the production method described above, the solvent is further removed from the stretch-formed product.
【0039】前記溶媒の除去の方法としては、例えば、
延伸成形物を溶剤で洗浄する方法があげられる。洗浄の
ための溶剤は、ポリオレフィン組成物を溶解することな
く、溶媒を溶解するもので、揮発性の高いものを適宜選
択し、用いる。このような洗浄溶剤としては、例えば、
ヘプタン、ヘキサン等の炭化水素、1−ブタノール、1
−プロパノール等のアルコール、メチルエチルケトン、
メチルイソブチルケトン等のケトン、ジクロロエタン、
四塩化炭素等の塩素化炭化水素、酢酸エチル、酢酸ブチ
ル等のエステルなどがあげられる。これらの洗浄溶剤
は、必要に応じて2種類以上混合して用いてもよい。洗
浄方法は、溶剤に浸漬し抽出する方法、溶剤をシャワー
する方法、またはこれらの組合せによる方法などにより
行うことができる。As a method for removing the solvent, for example,
A method of washing the stretch molded product with a solvent can be used. As a solvent for washing, a solvent which dissolves the solvent without dissolving the polyolefin composition and which has high volatility is appropriately selected and used. As such a cleaning solvent, for example,
Hydrocarbons such as heptane and hexane, 1-butanol, 1
Alcohols such as propanol, methyl ethyl ketone,
Ketones such as methyl isobutyl ketone, dichloroethane,
Examples include chlorinated hydrocarbons such as carbon tetrachloride, and esters such as ethyl acetate and butyl acetate. These washing solvents may be used as a mixture of two or more as necessary. The washing method can be performed by a method of immersing in a solvent for extraction, a method of showering the solvent, a method of a combination thereof, or the like.
【0040】この洗浄は、延伸成形物中の残留溶媒が1
重量%未満になるまで行うことが好ましい。この洗浄
後、洗浄溶剤を乾燥して除去するが、乾燥方法として
は、例えば、加熱乾燥、風乾、真空乾燥などがある。乾
燥した延伸成形物は、軟化点温度〜融点の温度範囲で熱
固定することが望ましい。このようにして、第1の製造
方法により、目的とするポリオレフィン多孔質膜が得ら
れる。In this washing, the residual solvent in the stretch molded product is reduced to 1
It is preferable to carry out until the amount becomes less than% by weight. After this washing, the washing solvent is removed by drying. Examples of the drying method include heat drying, air drying, and vacuum drying. It is preferable that the dried stretch-formed product is heat-set at a temperature in the range from the softening point to the melting point. Thus, the target polyolefin porous membrane is obtained by the first production method.
【0041】なお、得られたポリオレフィン多孔質膜
は、必要に応じて、さらに、プラズマ照射、界面活性剤
含浸処理、表面グラフト処理等で親水化処理することが
好ましい。The obtained polyolefin porous membrane is preferably subjected to a hydrophilization treatment by plasma irradiation, a surfactant impregnation treatment, a surface graft treatment or the like, if necessary.
【0042】このようにして得られる本発明のポリオレ
フィン性多孔質膜は、厚さが1〜50μm、空孔率が1
0〜90%、ガーレ式通気度が1〜10000秒/10
0cc、破断強度が100kg/cm2 以上、イオン透
過性喪失温度が135℃以下である。なお、前記諸物性
値の好ましい範囲は、厚さが10〜30μm、空孔率が
30〜70%、ガーレ式通気度が1〜2000秒/10
0cc、破断強度が200kg/cm2 以上、イオン透
過性喪失温度が90〜130℃である。The thus obtained polyolefin porous membrane of the present invention has a thickness of 1 to 50 μm and a porosity of 1
0 to 90%, Gurley type air permeability is 1 to 10000 sec / 10
0 cc, breaking strength of 100 kg / cm 2 or more, and ion permeability loss temperature of 135 ° C. or less. In addition, the preferable range of the various physical property values is a thickness of 10 to 30 μm, a porosity of 30 to 70%, and a Gurley-type air permeability of 1 to 2000 sec / 10.
0 cc, breaking strength of 200 kg / cm 2 or more, and ion permeability loss temperature of 90 to 130 ° C.
【0043】本発明のポリオレフィン製多孔質膜は、電
池用セパレータとしての用途に最適であるが、この他
に、例えば、電解コンデンサー用隔膜、各種フィルタ
ー、透湿防水衣料、逆浸透濾過膜、限外濾過膜、精密濾
過膜等の用途がある。The polyolefin porous membrane of the present invention is most suitable for use as a battery separator. In addition, for example, a membrane for an electrolytic capacitor, various filters, a moisture-permeable waterproof clothing, a reverse osmosis filtration membrane, Applications include ultrafiltration membranes and microfiltration membranes.
【0044】[0044]
【実施例】つぎに、実施例について比較例と併せて説明
する。なお、実施例および比較例における各試験法は以
下に示すとおりである。Next, examples will be described together with comparative examples. In addition, each test method in an Example and a comparative example is as showing below.
【0045】(1)重量平均分子量 ウォーターズ社製のGPC装置を用い、カラムには東ソ
ー社製GMH−6を使用し、溶媒にはo−ジクロロベン
ゼンを使用し、温度135℃、流量1.0ml/分に
て、ゲルパーミエーションクロマトグラフィー(GP
C)法により測定した。(1) Weight-average molecular weight A GPC apparatus manufactured by Waters Corporation was used, GMH-6 manufactured by Tosoh Corporation was used for the column, o-dichlorobenzene was used for the solvent, the temperature was 135 ° C., and the flow rate was 1.0 ml. / Min, gel permeation chromatography (GP
It measured by the C) method.
【0046】(2)フィルムの厚さ 1/10000リニアゲージにより測定した。(2) Film thickness The thickness was measured with a 1/10000 linear gauge.
【0047】(3)引張弾性率 ASTM D882準拠して測定した。(3) Tensile modulus Measured according to ASTM D882.
【0048】(4)引張破断強度 ポリオレフィン製多孔質膜を幅10mmの短冊状試験片
に成形し、この破断強度をASTM D882に準拠し
て測定した。(4) Tensile Rupture Strength A polyolefin porous membrane was formed into a 10 mm-wide strip-shaped test piece, and this fracture strength was measured in accordance with ASTM D882.
【0049】(5)通気度 ガーレ式通気度計により測定した。(5) Air permeability Measured by a Gurley-type air permeability meter.
【0050】(6)空孔率 水銀ポロシメーターにより測定した。(6) Porosity Measured by a mercury porosimeter.
【0051】(7)膜抵抗 プロピオンカーボネートと1,2−ジメトキシエタンの
重量比1:1の混合溶媒にLiClO4 を1mol/リ
ットルになるように溶解した電解液を調製した。つぎに
セパレータ(ポリエチレン製多孔質膜)を十分に前記電
解液に漬した。その後、前記セパレータの両側に直径2
cmの円形の白金電極を接触させ、電圧をかけた時の抵
抗を測定し、この値を膜抵抗とした。(7) Membrane Resistance An electrolyte was prepared by dissolving LiClO 4 in a mixed solvent of propion carbonate and 1,2-dimethoxyethane at a weight ratio of 1: 1 to a concentration of 1 mol / l. Next, a separator (polyethylene porous membrane) was sufficiently immersed in the electrolytic solution. Then, a diameter of 2 on both sides of the separator
cm of a platinum electrode was contacted and the resistance was measured when a voltage was applied, and this value was defined as the film resistance.
【0052】(8)イオン透過性喪失温度 セパレータ(ポリエチレン製多孔質膜)を、所定温度に
熱した鉄製の板に0.5秒接触させ、前記(5)の膜抵
抗が∞になった時の温度をイオン透過性喪失温度とし
た。(8) Temperature at which ion permeability is lost When a separator (porous polyethylene membrane) is brought into contact with an iron plate heated to a predetermined temperature for 0.5 seconds, and when the membrane resistance of (5) becomes ∞, This temperature was defined as the temperature at which the ion permeability was lost.
【0053】(実施例1)重量平均分子量が2.0×1
06 の超高分子量ポリエチレン3重量部と、重量平均分
子量が4.9×105 のポリエチレン14重量部と重量
平均分子量が1000のポリエチレンワックス43重量
部とを混合し、この混合物60重量部と、流動パラフィ
ン(重量平均分子量450)40重量部とを混合し、ポ
リエチレン組成物の溶液を調製した。つぎに、このポリ
エチレン組成物の溶液100重量部に、テトラキス[メ
チレン−3−(3,5−ジ−t−ブチル−4−ヒドロキ
シルフェニル)−プロピオネート]メタン(イルガノッ
クス 1010、チバガイギー社製)0.3重量部を酸
化防止剤として加えて混合した。この混合液を加熱攪拌
溶解装置にて温度200℃で加熱攪拌しながら溶解し、
均一な溶液を得た。(Example 1) Weight average molecular weight was 2.0 × 1
0 and ultra high molecular weight polyethylene 3 parts by weight of 6, a weight-average polyethylene 14 parts by weight and weight-average molecular weight having a molecular weight of 4.9 × 10 5 is mixed with polyethylene wax 43 parts by weight of 1000, and this mixture 60 parts by weight And 40 parts by weight of liquid paraffin (weight average molecular weight: 450) to prepare a solution of the polyethylene composition. Next, tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxylphenyl) -propionate] methane (Irganox 1010, manufactured by Ciba Geigy) was added to 100 parts by weight of the solution of the polyethylene composition. 0.3 parts by weight as an antioxidant were added and mixed. Dissolve the mixed liquid while heating and stirring at a temperature of 200 ° C. with a heating and stirring dissolution apparatus,
A homogeneous solution was obtained.
【0054】この溶液を直径45mmの押出機により、
Tダイから押出し、冷却ロールで引き取りながらシート
状成形物を作製した。得られたシート状成形物を二軸延
伸機にセットして、温度115℃、延伸速度5mm/秒
で5×5倍に同時二軸延伸を行った。得られた延伸膜を
酢酸エチルで洗浄して残留する流動パラフィンを抽出除
去した後、乾燥して厚さ25μmのポリエチレン製多孔
質膜を得た。この多孔質膜について、前記方法で各種試
験を行い特性を調べた。その結果を、下記の表1に示
す。This solution was extruded by an extruder having a diameter of 45 mm.
A sheet-like molded product was produced while extruding from a T-die and taking up with a cooling roll. The obtained sheet-like molded product was set in a biaxial stretching machine, and was simultaneously biaxially stretched 5 × 5 times at a temperature of 115 ° C. and a stretching speed of 5 mm / sec. The obtained stretched membrane was washed with ethyl acetate to extract and remove the remaining liquid paraffin, and then dried to obtain a 25 μm-thick polyethylene porous membrane. Various tests were performed on the porous membrane by the above-described method to examine the characteristics. The results are shown in Table 1 below.
【0055】(実施例2)重量平均分子量が2.0×1
06 の超高分子量ポリエチレン3重量部と、重量平均分
子量が4.9×105 のポリエチレン14重量部と、重
量平均分子量が1000のポリエチレンワックス63重
量部とを混合し、この混合物80重量部と、流動パラフ
ィン20重量部とを混合してポリエチレン組成物の溶液
を調製した。この溶液を用い、延伸倍率を6×6倍とし
た以外は、実施例1と同一の条件および操作で、厚さ2
5μmのポリエチレン製多孔質膜を得た。この多孔質膜
について、前記方法で各種試験を行い特性を調べた。そ
の結果を、下記の表1に示す。(Example 2) Weight average molecular weight was 2.0 × 1
0 and ultra high molecular weight polyethylene 3 parts by weight of 6, was mixed with polyethylene 14 parts by weight of the weight average molecular weight of 4.9 × 10 5, a polyethylene wax 63 parts by weight of the weight average molecular weight of 1,000, the mixture 80 parts by weight And 20 parts by weight of liquid paraffin were mixed to prepare a solution of the polyethylene composition. This solution was used, and a thickness of 2 mm was obtained under the same conditions and operation as in Example 1 except that the draw ratio was 6 × 6 times.
A 5 μm polyethylene porous membrane was obtained. Various tests were performed on the porous membrane by the above-described method to examine the characteristics. The results are shown in Table 1 below.
【0056】(実施例3)重量平均分子量が2.0×1
06 の超高分子量ポリエチレン3重量部と、重量平均分
子量が4.9×105 のポリエチレン14重量部と、重
量平均分子量が1000のポリエチレンワックス83重
量部とを混合し原料とした。つぎに、この原料100重
量部にテトラキス[メチレン−3−(3,5−ジ−t−
ブチル−4−ヒドロキシルフェニル)−プロピオネー
ト]メタン(イルガノックス 1010、チバガイギー
社製)0.3重量部を酸化防止剤として加えて混合し
た。この混合物を、加熱攪拌溶解装置にて温度200℃
で攪拌しながら溶解し、均一な溶液を得た。この溶液を
直径45mmの押出機により、Tダイから押出し、冷却
ロールで引き取りながらシート状成形物を成形した。得
られたシート状成形物を二軸延伸機にセットして、温度
115℃、延伸速度5mm/秒で7×7倍に同時二軸延
伸を行い、厚さ25μmのポリエチレン製多孔質膜を得
た。この多孔質膜について、前記方法で各種試験を行い
特性を調べた。その結果を、下記の表1に示す。Example 3 The weight average molecular weight was 2.0 × 1
0 and ultra high molecular weight polyethylene 3 parts by weight of 6, and a polyethylene 14 parts by weight of the weight average molecular weight of 4.9 × 10 5, were mixed and a polyethylene wax 83 parts by weight of the weight average molecular weight of 1,000 as a raw material. Next, tetrakis [methylene-3- (3,5-di-t-) was added to 100 parts by weight of this raw material.
Butyl-4-hydroxyphenyl) -propionate] methane (Irganox 1010, manufactured by Ciba Geigy) was added and mixed as an antioxidant. This mixture is heated at a temperature of 200 ° C.
The mixture was dissolved with stirring to obtain a uniform solution. This solution was extruded from a T-die by an extruder having a diameter of 45 mm, and a sheet-like molded product was formed while being taken up by a cooling roll. The obtained sheet-like molded product was set on a biaxial stretching machine, and simultaneously biaxially stretched 7 × 7 times at a temperature of 115 ° C. and a stretching speed of 5 mm / sec to obtain a 25 μm thick polyethylene porous membrane. Was. Various tests were performed on the porous membrane by the above-described method to examine the characteristics. The results are shown in Table 1 below.
【0057】(実施例4)重量平均分子量が2.0×1
06 の超高分子量ポリエチレン3重量部と、重量平均分
子量が4.9×105 のポリエチレン14重量部と、重
量平均分子量が4000のポリエチレンワックス43重
量部とを混合し、この混合物60重量部と、流動パラフ
ィン40重量部とを混合してポリエチレン組成物の溶液
とした以外は、実施例1と同一の条件および操作で、厚
さ25μmのポリエチレン多孔質膜を得た。この多孔質
膜について、前記方法で各種試験を行い特性を調べた。
その結果を、下記の表1に示す。Example 4 Weight Average Molecular Weight was 2.0 × 1
0 and ultra high molecular weight polyethylene 3 parts by weight of 6, was mixed with polyethylene 14 parts by weight of the weight average molecular weight of 4.9 × 10 5, a polyethylene wax 43 parts by weight of the weight average molecular weight of 4000, the mixture 60 parts by weight And 40 parts by weight of liquid paraffin were mixed to obtain a polyethylene composition solution, and a 25-μm-thick polyethylene porous membrane was obtained under the same conditions and operations as in Example 1. Various tests were performed on the porous membrane by the above-described method to examine the characteristics.
The results are shown in Table 1 below.
【0058】(実施例5)重量平均分子量が2.0×1
06 の超高分子量ポリエチレン3重量部と、重量平均分
子量が4.9×105 のポリエチレン14重量部と、重
量平均分子量が7000のポリエチレンワックス43重
量部とを混合し、この混合物60重量部と、流動パラフ
ィン40重量部とを混合してポリエチレン組成物の溶液
とした以外は、実施例1と同一の条件および操作で、厚
さ25μmのポリエチレン製多孔質膜を得た。この多孔
質膜について、前記方法で各種試験を行い特性を調べ
た。その結果を、下記の表1に示す。(Example 5) The weight average molecular weight was 2.0 × 1
0 and ultra high molecular weight polyethylene 3 parts by weight of 6, was mixed with polyethylene 14 parts by weight of the weight average molecular weight of 4.9 × 10 5, a polyethylene wax 43 parts by weight of the weight average molecular weight of 7000, the mixture 60 parts by weight And 40 parts by weight of liquid paraffin were mixed to obtain a polyethylene composition solution, and a 25-μm-thick polyethylene porous membrane was obtained under the same conditions and operations as in Example 1. Various tests were performed on the porous membrane by the above-described method to examine the characteristics. The results are shown in Table 1 below.
【0059】(比較例1)重量平均分子量が2.0×1
06 の超高分子量ポリエチレン3重量部と、重量平均分
子量が4.9×105 のポリエチレン14重量部とを混
合し、この混合物17重量部と、流動パラフィン83重
量部とを混合しポリエチレン組成物の溶液とした以外
は、実施例1と同一の条件および操作で、厚さ25μm
のポリエチレン製多孔質膜を得た。この多孔質膜につい
て、前記方法で各種試験を行い特性を調べた。その結果
を、下記の表1に示す。(Comparative Example 1) The weight average molecular weight was 2.0 × 1
0 and ultra high molecular weight polyethylene 3 parts by weight of 6, was mixed with polyethylene 14 parts by weight of the weight average molecular weight of 4.9 × 10 5, and this mixture 17 parts by weight, the polyethylene composition was mixed with liquid paraffin 83 parts by weight 25 μm thick under the same conditions and operation as in Example 1 except that
Was obtained. Various tests were performed on the porous membrane by the above-described method to examine the characteristics. The results are shown in Table 1 below.
【0060】[0060]
【表1】 [Table 1]
【0061】前記表1に示すように、所定の材料を所定
の割合で配合したポリオレフィン組成物により作製した
実施例のポリエチレン製多孔質膜は、シート状成形物の
引っ張り弾性、膜厚、破断強度、通気度、空孔率、膜抵
抗、透過性喪失温度のいずれもが適性な範囲であった。
これに対し、ポリエチレンワックスを用いなかった比較
例のポリエチレン製多孔質膜では、シート状成形物の引
っ張り弾性、通気度、膜抵抗が悪く、透過性喪失温度が
高かった。As shown in Table 1 above, the polyethylene porous membrane of the example produced from the polyolefin composition in which the prescribed materials were blended in the prescribed proportions showed the tensile elasticity, film thickness and breaking strength of the sheet-like molded product. , Air permeability, porosity, membrane resistance, and permeability loss temperature were all in the appropriate ranges.
On the other hand, in the polyethylene porous membrane of the comparative example in which the polyethylene wax was not used, the tensile elasticity, the air permeability, and the membrane resistance of the sheet-like molded product were poor, and the permeability loss temperature was high.
【0062】[0062]
【発明の効果】以上のように、本発明のポリオレフィン
製多孔質膜は、高強度であり、取扱いや加工性に優れ、
さらに通気性にも優れるとともに、低温でイオン透過性
が喪失する。したがって、本発明のポリオレフィン製多
孔質膜は、電池用セパレータとして最適である。また、
この他に、本発明のポリオレフィン製多孔質膜は、電解
コンデンサー用隔膜、超精密濾過膜、限外濾過膜、各種
フィルター、透湿防水衣料用多孔質膜等の各種用途に好
適である。As described above, the polyolefin porous membrane of the present invention has high strength, excellent handling and processability,
Furthermore, it has excellent air permeability and loses ion permeability at low temperatures. Therefore, the polyolefin porous membrane of the present invention is most suitable as a battery separator. Also,
In addition, the polyolefin porous membrane of the present invention is suitable for various uses such as a diaphragm for an electrolytic capacitor, an ultrafine filtration membrane, an ultrafiltration membrane, various filters, and a porous membrane for moisture-permeable waterproof clothing.
【0063】また、本発明のポリオレフィン製多孔質膜
の製造方法は、製造効率に優れ、かつ得られる多孔質膜
の膜厚のばらつきが少ない方法である。すなわち、本発
明の製造方法では、原料となるポリオレフィン組成物の
成形の際に、溶媒を使用しないか、使用したとしても少
量であるため、効率良くポリオレフィン製多孔質膜を得
ることができる。また、製造時において得られるシート
状物の引張弾性率も高いため、得られる多孔質膜の厚み
精度も良好となり、製品の品質が均一となる。Further, the method for producing a polyolefin porous membrane of the present invention is a method which is excellent in production efficiency and has a small variation in the thickness of the obtained porous membrane. That is, in the production method of the present invention, a solvent is not used or a small amount is used even when a polyolefin composition as a raw material is molded, so that a polyolefin porous membrane can be efficiently obtained. Further, since the tensile modulus of the sheet-like material obtained at the time of manufacture is high, the accuracy of the thickness of the obtained porous film is also good, and the quality of the product is uniform.
Claims (7)
分子量ポリオレフィン(A成分)および重量平均分子量
が700〜10000のポリオレフィンワックス(B成
分)を含有し、前記A成分の含有割合が1重量%以上で
あり、前記B成分の含有割合が20重量%以上であるポ
リオレフィン組成物から形成され、厚さが1〜50μ
m、空孔率が10〜90%、ガーレ式通気度が1〜10
000秒/100cc、破断強度が100kg/cm2
以上、イオン透過性喪失温度が135℃以下であるポリ
オレフィン製多孔質膜。An ultrahigh molecular weight polyolefin having a weight average molecular weight of 1 × 10 6 or more (component A) and a polyolefin wax having a weight average molecular weight of 700 to 10,000 (component B), wherein the content of the component A is 1 % By weight, and the content of the component B is 20% by weight or more.
m, porosity is 10 to 90%, Gurley type air permeability is 1 to 10
000 sec / 100cc, breaking strength 100kg / cm 2
As described above, a polyolefin porous membrane having a loss of ion permeability of 135 ° C. or less.
超高分子量ポリエチレンであり、ポリオレフィンワック
ス(B成分)がポリエチレンワックスであり、ポリオレ
フィン組成物が、前記A成分およびB成分に加え、エチ
レンを主体とする重量平均分子量1×104 以上1×1
06 未満の重合体(C成分)を含有する請求項1記載の
ポリオレフィン製多孔質膜。2. The ultra-high-molecular-weight polyolefin (component A) is ultra-high-molecular-weight polyethylene, the polyolefin wax (component B) is a polyethylene wax, and the polyolefin composition is mainly composed of ethylene in addition to the components A and B. Weight average molecular weight 1 × 10 4 or more 1 × 1
0 6 less polymer polyolefin porous membrane according to claim 1, further comprising a component (C).
製多孔質膜からなる電池用セパレータ。3. A battery separator comprising the polyolefin porous membrane according to claim 1.
た電池。4. A battery using the battery separator according to claim 3.
分子量ポリオレフィン(A成分)、重量平均分子量70
0〜10000のポリオレフィンワックス(B成分)お
よび重量平均分子量1×106 未満のポリオレフィン
(C成分)を含有し、前記A成分の含有割合が1重量%
以上であり、前記B成分の含有割合が20重量%以上で
あるポリオレフィン組成物を準備し、この組成物50〜
90重量部と、溶媒10〜50重量部とを混合し、この
混合物をダイスから押出してシート状に成形し、冷却
後、前記超高分子量ポリオレフィンの融点より10℃高
い温度以下の条件で前記シートを延伸して多孔質膜化
し、その後、溶媒を除去するポリオレフィン製多孔質膜
の製造方法。5. An ultrahigh molecular weight polyolefin having a weight average molecular weight of 1 × 10 6 or more (component A), and a weight average molecular weight of 70
It contains a polyolefin wax (component B) of 0 to 10,000 and a polyolefin (component C) having a weight average molecular weight of less than 1 × 10 6, and the content of the component A is 1% by weight.
As described above, a polyolefin composition having a content ratio of the component B of 20% by weight or more is prepared.
90 parts by weight and 10 to 50 parts by weight of a solvent are mixed, and the mixture is extruded from a die to form a sheet. After cooling, the sheet is heated at a temperature not higher than 10 ° C. higher than the melting point of the ultrahigh molecular weight polyolefin. To form a porous membrane by stretching the polyolefin membrane, and then removing the solvent.
分子量ポリオレフィン(A成分)、重量平均分子量70
0〜10000のポリオレフィンワックス(B成分)お
よび重量平均分子量1×106 未満のポリオレフィン
(C成分)を含有し、前記A成分の含有割合が1重量%
以上であり、前記B成分の含有割合が40重量%以上で
あるポリオレフィン組成物を準備し、この組成物を溶融
し、この溶融物をダイスから押出してシート状に成形
し、冷却後、前記超高分子量ポリオレフィンの融点より
10℃高い温度以下の条件で前記シートを延伸して多孔
質膜化するポリオレフィン製多孔質膜の製造方法。 6. An ultrahigh molecular weight polyolefin having a weight average molecular weight of 1 × 10 6 or more (component A), and a weight average molecular weight of 70.
It contains a polyolefin wax (component B) of 0 to 10,000 and a polyolefin (component C) having a weight average molecular weight of less than 1 × 10 6, and the content of the component A is 1% by weight.
As described above, a polyolefin composition having a content ratio of the component B of 40% by weight or more is prepared, the composition is melted, and the melt is extruded from a die to form a sheet. A method for producing a porous film made of polyolefin, comprising stretching the sheet under a condition of not more than 10 ° C. higher than the melting point of the high molecular weight polyolefin to form a porous film.
超高分子量ポリエチレンであり、ポリオレフィンワック
ス(B成分)がポリエチレンワックスであり、ポリオレ
フィン(C成分)がエチレンを主体とする重量平均分子
量1×104 以上1×106 未満の重合体である請求項
5または6記載のポリオレフィン製多孔質膜の製造方
法。7. The ultra-high-molecular-weight polyolefin (component A) is ultra-high-molecular-weight polyethylene, the polyolefin wax (component B) is a polyethylene wax, and the polyolefin (component C) has a weight-average molecular weight of 1 × 10 mainly composed of ethylene. The method for producing a polyolefin porous membrane according to claim 5 or 6, wherein the polymer is a polymer having 4 to less than 1 x 10 6 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9276000A JPH11106535A (en) | 1997-10-08 | 1997-10-08 | Polyolefin porous membrane and its manufacture and battery separator therefrom |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9276000A JPH11106535A (en) | 1997-10-08 | 1997-10-08 | Polyolefin porous membrane and its manufacture and battery separator therefrom |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11106535A true JPH11106535A (en) | 1999-04-20 |
Family
ID=17563387
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9276000A Pending JPH11106535A (en) | 1997-10-08 | 1997-10-08 | Polyolefin porous membrane and its manufacture and battery separator therefrom |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11106535A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002069221A (en) * | 2000-06-14 | 2002-03-08 | Sumitomo Chem Co Ltd | Porous film and battery separator using the same |
EP2463331A4 (en) * | 2009-08-06 | 2013-08-21 | Sumitomo Chemical Co | POROUS FILM, SEPARATOR FOR BATTERIES AND BATTERY |
KR101660208B1 (en) * | 2015-11-30 | 2016-09-26 | 스미또모 가가꾸 가부시키가이샤 | Nonaqueous electrolyte secondary battery separator, laminated separator for nonaqueous electrolyte secondary battery, member for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery |
-
1997
- 1997-10-08 JP JP9276000A patent/JPH11106535A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002069221A (en) * | 2000-06-14 | 2002-03-08 | Sumitomo Chem Co Ltd | Porous film and battery separator using the same |
EP2463331A4 (en) * | 2009-08-06 | 2013-08-21 | Sumitomo Chemical Co | POROUS FILM, SEPARATOR FOR BATTERIES AND BATTERY |
KR101660208B1 (en) * | 2015-11-30 | 2016-09-26 | 스미또모 가가꾸 가부시키가이샤 | Nonaqueous electrolyte secondary battery separator, laminated separator for nonaqueous electrolyte secondary battery, member for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100667052B1 (en) | Polyolefin Microporous Membrane and Manufacturing Method Thereof | |
EP0355214B1 (en) | Process for producing microporous ultra-high molecular weight polyolefin membrane | |
JP2657434B2 (en) | Polyethylene microporous membrane, method for producing the same, and battery separator using the same | |
JP3347854B2 (en) | Polyolefin microporous membrane, method for producing the same, battery separator and filter using the same | |
EP1873193B1 (en) | Process for producing microporous polyolefin film and microporous polyolefin film | |
KR100676080B1 (en) | Polyolefin Microporous Membrane and Manufacturing Method Thereof | |
JP2657430B2 (en) | Polyolefin microporous membrane and method for producing the same | |
JP3347835B2 (en) | Method for producing microporous polyolefin membrane | |
JP3917721B2 (en) | Method for producing microporous membrane | |
JPH0364334A (en) | Polyolefin microporous membrane | |
JPH0987413A (en) | Production of finely porous membrane of polyolefin | |
JPS60242035A (en) | Microporous polyethylene film and production thereof | |
JPWO2006137535A1 (en) | Method for producing polyolefin microporous membrane | |
JP2002284918A (en) | Polyolefin microporous membrane, its production method and use | |
JP3549290B2 (en) | Polyolefin microporous membrane and method for producing the same | |
JP5171012B2 (en) | Method for producing polyolefin microporous membrane | |
JPH0594812A (en) | Polyolefine microporous membrane and its manufacture, and separator using such membrane | |
JP3638401B2 (en) | Method for producing polyolefin microporous membrane | |
JPH0471416B2 (en) | ||
JP3009495B2 (en) | Polyolefin microporous membrane and method for producing the same | |
JPH11106535A (en) | Polyolefin porous membrane and its manufacture and battery separator therefrom | |
JPH093228A (en) | Production of polyolefin finely porous membrane | |
JP3967421B2 (en) | Method for producing polyolefin microporous membrane | |
JPH11106533A (en) | Polyolefin porous membrane | |
JPH09259858A (en) | Polyethylene micro-porous film for separator, and manufacture thereof |