[go: up one dir, main page]

JPH1099948A - Method for continuously casting steetl - Google Patents

Method for continuously casting steetl

Info

Publication number
JPH1099948A
JPH1099948A JP25932296A JP25932296A JPH1099948A JP H1099948 A JPH1099948 A JP H1099948A JP 25932296 A JP25932296 A JP 25932296A JP 25932296 A JP25932296 A JP 25932296A JP H1099948 A JPH1099948 A JP H1099948A
Authority
JP
Japan
Prior art keywords
magnetic field
alternating magnetic
continuous casting
mold
meniscus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25932296A
Other languages
Japanese (ja)
Inventor
Masakatsu Nara
正功 奈良
Nagayasu Bessho
永康 別所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP25932296A priority Critical patent/JPH1099948A/en
Publication of JPH1099948A publication Critical patent/JPH1099948A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To drastically reduce the defect on the surface layer part of a slab caused by oscillation mark by simultaneously impressing static magnetic field with superconducting coils in the case of continuously casting by supplying molten steel into a mold impressing an alternating magnetic field. SOLUTION: At the time of executing the continuous casting by supplying the molten steel 3 into the mold 1 through a nozzle 2 while impressing the alternating magnetic field by using the alternating magnetic field generating coils 5' to the mold 1 for continuous casting, the static magnetic field is impressed by using the supperconducting coils 6 at the same time of using the alternating magnetic field. At the time of impressing the static magnetic field so as to overlap with the alternating magnetic field, the oscillation mark is reduced in proportion to the intensities of the static magnetic field and the alternating magnetic field. Then, the depth of the oscillation mark can be reduced to almost zero and the reduction of the cost accompanied with the cleaning of the slab and the high productivity can be obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋼の連続鋳造方法
に関し、特に高速鋳造操業下で鋳片を高品質に保つこと
ができる鋼の連続鋳造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting method of steel, and more particularly to a continuous casting method of steel capable of maintaining high quality of a slab under a high speed casting operation.

【0002】[0002]

【従来の技術】従来、連続鋳造においては、鋳型内の溶
鋼の上に溶融フラックスを入れることによりメニスカス
(鋳型内溶鋼自由表面)を酸化から防止するとともにメ
ニスカス形状を保持していた。また、メニスカス部で冷
却が大きい場合、初期凝固シェルが発達し表面欠陥の原
因の一つとなる。その対策として、緩冷却パウダの使用
によるメニスカス部での温度の確保と浸漬ノズルからの
溶鋼流動の確保などがなされてきた。
2. Description of the Related Art Conventionally, in continuous casting, a meniscus (free surface of molten steel in a mold) is prevented from being oxidized by introducing a molten flux onto molten steel in a mold, and the meniscus shape is maintained. In addition, when cooling is large in the meniscus portion, an initially solidified shell develops, which is one of the causes of surface defects. As countermeasures, the use of mild cooling powder has ensured the temperature at the meniscus portion and the flow of molten steel from the immersion nozzle.

【0003】しかし近年、さらなる高品質無欠陥スラブ
の要求に応えるために、連続鋳造に際し鋳型内に電磁場
を印加して溶鋼流動の制御を行うことにより、メニスカ
ス温度の確保とメニスカス部の流動を確保する方法が提
示され、一部実用化されている。例えば静磁場を鋳型に
印加することによりモールド内の溶鋼流速を制御し、同
時にメニスカス温度(湯面温度)を上昇させる方法(例
えば、石井ら:CAMP-ISIJ Vol.9(1996)-206等参照)が実
用化されている。また、鋳型内に移動磁場を印加しメニ
スカス部に流動を与え、温度を均一にし、初期凝固を均
一にする方法(例えば、藤崎ら:CAPM-ISIJ Vol.8(1995)
-217, 岡沢ら: CAPM-ISIJ Vol.8(1995)-218 等参照)も
既に実用化されている。このため、近年は高生産性と高
品質とが両立しつつある。
However, in recent years, in order to respond to the demand for even higher quality defect-free slabs, the flow of molten steel is controlled by applying an electromagnetic field to the mold during continuous casting, thereby ensuring the meniscus temperature and the flow of the meniscus portion. Have been proposed and some have been put to practical use. For example, a method in which the flow rate of molten steel in a mold is controlled by applying a static magnetic field to the mold, and at the same time, the meniscus temperature (the surface temperature) is raised (see, for example, Ishii et al .: CAMP-ISIJ Vol.9 (1996) -206) ) Has been put to practical use. Also, a method in which a moving magnetic field is applied to the inside of the mold to give a flow to the meniscus to make the temperature uniform and to make the initial solidification uniform (for example, Fujisaki et al .: CAPM-ISIJ Vol.8 (1995)
-217, Okazawa et al .: See CAPM-ISIJ Vol.8 (1995) -218)). For this reason, in recent years, high productivity and high quality have been compatible.

【0004】しかし、それでも多少の表層部の欠陥(特
にオシレーションマーク起因の欠陥)は存在し、また鋳
型内溶鋼流動についても完全に制御できているわけでは
ない。そのため、メニスカス温度およびメニスカス部の
流動を同時によりよく制御できる方法が求められおり、
これに応じて、メニスカスに交番磁界を印加し、表皮効
果でメニスカス部にのみ流れる電流と磁場により、メニ
スカス部に溶鋼撹拌力を付与しかつジュール熱を発生さ
せる方法(例えば、藤ら:CAPM-ISIJ Vol.8(1995)-215等
参照)が開発されつつある。しかしこの方法にも、常に
一定の交番磁界を印加し続けた場合、メニスカス部で溶
鋼に揺らぎが発生し、メニスカス部が不安定になり突然
オシレーションマークが深くなるという問題があり、こ
の不安定性を解消する必要があった。
However, there are still some surface layer defects (particularly defects caused by oscillation marks), and the flow of molten steel in the mold cannot be completely controlled. Therefore, a method that can better control the meniscus temperature and the flow of the meniscus portion at the same time is required,
In response to this, a method of applying an alternating magnetic field to the meniscus, applying a stir force to molten steel in the meniscus portion and generating Joule heat by a current and a magnetic field flowing only to the meniscus portion by a skin effect (for example, Fuji et al .: CAPM- ISIJ Vol.8 (1995) -215 etc.) is being developed. However, this method also has a problem that when a constant alternating magnetic field is continuously applied, the molten steel fluctuates in the meniscus portion, the meniscus portion becomes unstable, and the oscillation mark suddenly becomes deeper. Had to be eliminated.

【0005】この不安定性を解消するため、例えば特許
国際公開WO9605926 号公報には、メニスカスに交番磁界
を印加する場合、振幅あるいは周波数を一定周期で変更
し、さらに該交番磁界を方形波(矩形波)あるいは正弦
波等の規則的波形で付与することにより、オシレーショ
ンマークが突然不安定になる前にある程度メニスカスの
形状を崩して従来連鋳スラブのオシレーションマークよ
り軽度のオシレーションマークを一定間隔で与え続ける
という方法が提案されている。しかし、従来連鋳スラブ
より軽度ではあるがやはりオシレーションマークが残存
することは否めず、さらに新しい方法が求められてい
た。
In order to eliminate this instability, for example, Japanese Patent Application Publication No. WO9605926 discloses that when an alternating magnetic field is applied to a meniscus, the amplitude or frequency is changed at a constant period, and the alternating magnetic field is further changed to a square wave (rectangular wave). ) Or by applying a regular waveform such as a sine wave, the oscillation mark will be broken to some extent before the oscillation mark suddenly becomes unstable, and the oscillation mark that is lighter than the oscillation mark of the conventional continuous cast slab will be spaced at regular intervals. It has been proposed that the method be continued to be given. However, although it is lighter than the conventional continuous casting slab, it is still undeniable that the oscillation mark remains, and a further new method has been required.

【0006】これに応じて、例えば特開平8-155608号公
報にはメニスカスに磁場を二重に印加する方法が提案さ
れている。これは、交直双方の磁場を印加できるように
しておき、さらに直流においてはパルス的に印加できる
ようにしておくもので、これによりオシレーションマー
ク深さが相当程度まで低減する。しかし、これでもまだ
かなりの深さのオシレーションマークが残存するため完
全ではない。
In response to this, for example, Japanese Patent Application Laid-Open No. 8-155608 proposes a method of applying a double magnetic field to the meniscus. In this method, both the alternating magnetic field and the perpendicular magnetic field can be applied, and further, the direct current can be applied in a pulsed manner, so that the oscillation mark depth is reduced to a considerable extent. However, this is still not complete because oscillation marks of considerable depth still remain.

【0007】また、メニスカス制御と鋳型内部流動制御
とを組み合わせた方法も検討されており、例えば特開平
7-148555号公報には、浸漬ノズル吐出口下端に静磁場
を、メニスカスに交番磁界をそれぞれ印加する方法が開
示されている。これにより鋳型内部流動とメニスカス温
度・流動との両面制御が可能となっている。しかしこの
方法では前述したオシレーションマークの低減が完全で
はない。
[0007] A method combining meniscus control and mold internal flow control has also been studied.
Japanese Patent Application Laid-Open No. 7-148555 discloses a method in which a static magnetic field is applied to the lower end of an immersion nozzle discharge port, and an alternating magnetic field is applied to a meniscus. Thereby, both sides of the flow inside the mold and the meniscus temperature / flow can be controlled. However, in this method, the reduction of the oscillation mark described above is not complete.

【0008】このように、従来の鋳造方法では鋳片表層
部にオシレーションマークに伴う欠陥が含まれてしまう
ために、かかる製鋼起因の表層欠陥が熱延製品品質を大
きく左右していた。この欠陥をなくすためにはスラブ段
階でスラブの表面をホットスカーフィング等により数ミ
リ削り取るよりほかには対策がなく、製品の歩留まりお
よび手入れ費用の点から非常に大きな問題となってい
た。この問題に対し、前記のように種々の対策が提案さ
れているが抜本的解決には至らず、そのため鋳片表層部
を高品質に保持しながら高速鋳造するという目標には未
達である。
[0008] As described above, in the conventional casting method, a defect accompanying an oscillation mark is included in the surface layer portion of the slab, and thus the surface layer defect caused by steelmaking greatly affects the quality of the hot-rolled product. There are no other measures than eliminating a few millimeters of the surface of the slab by hot scarfing or the like in the slab stage at the slab stage, which has been a very serious problem in terms of product yield and maintenance costs. Although various measures have been proposed to solve this problem as described above, they have not been able to achieve a drastic solution. Therefore, the goal of high-speed casting while maintaining the surface layer of the slab at a high quality has not been reached.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、オシ
レーションマークの最大深さを殆どゼロにまで低減でき
る新規な手段を講じることにより上記従来技術の問題を
解決し、従来連鋳スラブに発生していたオシレーション
マーク起因の表層部欠陥が大幅に低減してスラブ手入れ
等に伴うコストの削減と高い生産性が達成される鋼の連
続鋳造方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems of the prior art by taking a new measure capable of reducing the maximum depth of the oscillation mark to almost zero. It is an object of the present invention to provide a continuous casting method of steel in which surface defects caused by oscillation marks which have been generated are greatly reduced, and cost reduction and high productivity achieved by slab care and the like are achieved.

【0010】[0010]

【課題を解決するための手段】本発明は、連続鋳造用の
鋳型に交番磁界発生コイルを用いて交番磁界を印加しつ
つノズルを通して該鋳型内に溶鋼を供給して連続鋳造を
行うにあたり、交番磁界と同時に超電導コイルを用いて
静磁場を印加することを特徴とする鋼の連続鋳造方法で
ある。
SUMMARY OF THE INVENTION The present invention relates to a continuous casting mold for supplying molten steel through a nozzle while applying an alternating magnetic field to the casting mold by using an alternating magnetic field generating coil. A continuous casting method for steel, wherein a static magnetic field is applied using a superconducting coil simultaneously with the magnetic field.

【0011】前記静磁場は前記交番磁界発生コイルの外
側から印加することが好ましく、また、メニスカスを含
んで印加することが一段と好ましい。また、本発明にお
いては、前記交番磁界が前記超電導コイルに入り込むの
を防止する遮蔽体を用いることが好ましい。この遮蔽体
は、交番磁界の周波数が高い場合には導電率の高い材料
であることが望ましく、また、交番磁界の周波数が低い
場合には透磁率の高い材料であることが望ましい。
It is preferable that the static magnetic field is applied from outside the alternating magnetic field generating coil, and it is more preferable that the static magnetic field is applied including a meniscus. Further, in the present invention, it is preferable to use a shield that prevents the alternating magnetic field from entering the superconducting coil. The shield is preferably made of a material having a high conductivity when the frequency of the alternating magnetic field is high, and a material having a high magnetic permeability when the frequency of the alternating magnetic field is low.

【0012】[0012]

【発明の実施の形態】本発明者らは、メニスカス部にお
ける溶鋼温度・流動の状態を計算・実験により鋭意解析
した結果、メニスカス部では温度と流動とが複雑に絡み
合っており、そこに交番磁界が印加されると状態がさら
に複雑化するという基礎的知見を得た。
BEST MODE FOR CARRYING OUT THE INVENTION The inventors of the present invention have conducted intensive calculations and experiments on the state of molten steel temperature and flow at the meniscus, and as a result, the temperature and the flow are intricately entangled in the meniscus. The basic knowledge that the state is further complicated when is applied.

【0013】特に、交番磁界の印加は、誘導電流による
ジュール熱が鋳型内部に向かう初期凝固シェル長さを短
くする意味では好ましい方向であるが、反面、ピンチ力
により鋳型内溶鋼に加わる力が鋳型内部に向かい、メニ
スカスが絞り込まれると同時にメニスカス部の溶鋼にも
流動が生じ、これらが複雑に作用しあってある時点であ
る部分に不安定状態が発生すると、磁場と電流の関係か
らこの不安定状態がさらに増幅され、より大きな不安定
部分を生じるという弊害を生むのである。
In particular, the application of an alternating magnetic field is a preferable direction in the sense that the Joule heat due to the induced current shortens the length of the initial solidified shell toward the inside of the mold. Inward, the meniscus is narrowed down, and at the same time, the molten steel in the meniscus also flows.If these parts work in an intricate manner and an unstable state occurs at a certain point, this unstable state occurs due to the relationship between the magnetic field and current. The situation is further amplified, creating the disadvantage of creating larger unstable parts.

【0014】この不安定増幅現象は、従来実験的に試み
られていた交番磁界の断続的印加(所謂パルス印加)に
よる方法では十分抑制できない。この不安定増幅機構を
さらに詳細に検討した結果、メニスカス表層部を流れる
電流とメニスカス部の撹拌による溶鋼流動に問題がある
ことがわかった。しかし、これらをすべてなくせば従来
の鋳造状態に戻ってしまうため、よいところだけ残して
不安定増幅機構のみを解消すべくさらに考察を重ねた結
果、メニスカス流動を従来よりも格段に低減させること
が有効であること、さらに、そのためには、従来の交番
磁界印加だけでは十分でなく、これに静磁場を重畳印加
することが極めて有効であるという重要な知見を得た。
This unstable amplification phenomenon cannot be sufficiently suppressed by a method of intermittent application of an alternating magnetic field (so-called pulse application) which has been conventionally experimentally attempted. As a result of examining the unstable amplification mechanism in more detail, it was found that there was a problem in the current flowing through the surface layer of the meniscus and the flow of molten steel due to the stirring of the meniscus. However, if all these are eliminated, the state of the casting will return to the conventional state, and as a result of further study to eliminate only the unstable amplification mechanism while leaving only good points, it is possible to significantly reduce the meniscus flow more than before. It has been found that it is effective, and for that purpose, it is not enough to apply the conventional alternating magnetic field alone, and it is extremely effective to superimpose and apply a static magnetic field thereon.

【0015】具体例を挙げると、モールド内寸法が0.4m
(幅)×0.11m (厚み)の試験連鋳機鋳型に2孔ノズル
を通して溶鋼を供給し、鋳込み速度2.5m/minで連続鋳造
するとき、実験的に鋳型に2kHz(2000A),磁束密度0.4T
(T:テスラ)の交番磁界(この場合高周波磁場)と0.8T
の静磁場とを同時に印加したところ、磁場を印加しない
場合に比較して、オシレーションマーク深さの最大値が
800μm から 200μm に、また、爪深さ(スラブ表層面
より初期凝固シェル先端までの深さ)の最大値が2600μ
m から 400μm に低減した。
[0015] To give a specific example, the size in the mold is 0.4m.
(W) x 0.11m (Thickness) Test continuous casting machine Molten steel is supplied through a two-hole nozzle to the mold and cast continuously at a casting speed of 2.5m / min. T
(T: Tesla) alternating magnetic field (in this case, high frequency magnetic field) and 0.8T
When the static magnetic field is applied simultaneously, the maximum value of the oscillation mark depth is larger than when no magnetic field is applied.
From 800μm to 200μm, and maximum nail depth (depth from the slab surface to the tip of the initial solidified shell) is 2600μ
m to 400 μm.

【0016】ただし、通常レベル(0.3T程度)の静磁場
印加ではメニスカス流動を消すことはできず、通常レベ
ルを超える強力な磁場を外部から付与する必要がある
が、現今では技術の発達によりかかる強力な磁場を発生
できしかも工業的使用に十分耐えうる超電導磁場発生器
が商用化されつつある。本発明は、前記の新知見と現今
の超電導技術とを有機的に結合して完成されたものであ
る。
However, when a static magnetic field of a normal level (about 0.3 T) is applied, the meniscus flow cannot be eliminated, and it is necessary to apply a strong magnetic field exceeding the normal level from the outside. Superconducting magnetic field generators capable of generating a strong magnetic field and sufficiently withstanding industrial use are being commercialized. The present invention has been completed by organically combining the above-mentioned new knowledge with the current superconducting technology.

【0017】図1は、本発明の実施に好適な連続鋳造設
備の要部半断面図であり、同図において、1はモールド
(鋳型)、2はノズル(浸漬ノズル)、3は溶鋼、3aは
凝固シェル、4はモールドパウダ、5は交番磁界発生コ
イル、6は静磁場発生器(超電導コイル)である。図示
のように、本発明に係る鋼の連続鋳造方法は、連続鋳造
用の鋳型1に交番磁界発生コイル5を用いて交番磁界を
印加しつつノズル2を通して該鋳型1内に溶鋼3を供給
して連続鋳造を行うにあたり、交番磁界と同時に超電導
コイル6を用いて静磁場を印加すること要旨とする。
FIG. 1 is a partial cross-sectional view of a main part of a continuous casting facility suitable for carrying out the present invention. In FIG. 1, 1 is a mold (mold), 2 is a nozzle (immersion nozzle), 3 is molten steel, and 3a Is a solidified shell, 4 is a mold powder, 5 is an alternating magnetic field generating coil, and 6 is a static magnetic field generator (superconducting coil). As shown in the drawing, the continuous casting method for steel according to the present invention supplies molten steel 3 into the casting mold 1 for continuous casting through the nozzle 2 while applying an alternating magnetic field to the casting mold 1 using the alternating magnetic field generating coil 5. In performing the continuous casting, the gist is that a static magnetic field is applied using the superconducting coil 6 simultaneously with the alternating magnetic field.

【0018】このように交番磁界に静磁場を重畳させて
印加すると、オシレーションマークは静磁場と交番磁界
の強度に比例して低減し、オシレーションマーク深さを
従来達しえなかった究極のレベルにまで低減することが
可能となる。また、本発明においては、静磁場発生器に
交番磁界を浸透させないため、およびモールド周囲の空
間を効率よく使用するために、図1に示したように静磁
場を交番磁界発生コイル5の外側から印加することが好
ましい。
When the static magnetic field is superimposed on the alternating magnetic field and applied as described above, the oscillation mark is reduced in proportion to the strength of the static magnetic field and the alternating magnetic field, and the oscillation mark depth reaches the ultimate level which could not be achieved conventionally. Can be reduced to In the present invention, in order to prevent the alternating magnetic field from penetrating into the static magnetic field generator and to efficiently use the space around the mold, a static magnetic field is applied from outside the alternating magnetic field generating coil 5 as shown in FIG. It is preferable to apply.

【0019】さらに、図2に示すように、この静磁場は
メニスカスを含んで印加するのがより効果的である。ま
た、同図に示すように、本発明においては、交番磁界が
超電導コイル6に入り込むのを防止する遮蔽体7を用い
ることが好ましい。この遮蔽体7は、磁気浸透深さの観
点から、交番磁界が高周波の場合には導電率(電気伝導
度)の高い材料で、また交番磁界が低周波の場合には透
磁率が高い材料で構成することがより好ましい。具体的
には、高周波の場合、例えばCu,Al,C等あるいはそれら
の複合物が好適である。また、低周波の場合、浸透深さ
が大きいため、フェライト,珪素鋼,純鉄等が良い。ま
た同時に遮蔽体7としては鋳型1からの熱遮蔽も兼ねる
ものがよく、これを用いることにより、高品質の鋳片を
より安定的に高速鋳造することができ、また、経済的に
も有利である。
Further, as shown in FIG. 2, it is more effective to apply the static magnetic field including the meniscus. Further, as shown in the figure, in the present invention, it is preferable to use a shield 7 for preventing an alternating magnetic field from entering the superconducting coil 6. The shield 7 is made of a material having a high electrical conductivity (electrical conductivity) when the alternating magnetic field is at a high frequency, and a material having a high magnetic permeability when the alternating magnetic field is at a low frequency, from the viewpoint of the magnetic penetration depth. It is more preferable to configure. Specifically, in the case of a high frequency, for example, Cu, Al, C or the like or a composite thereof is suitable. In the case of a low frequency, ferrite, silicon steel, pure iron, etc. are preferable because the penetration depth is large. At the same time, it is preferable that the shield 7 also serves as a heat shield from the mold 1. By using the shield 7, a high-quality slab can be cast more stably at a high speed, and it is economically advantageous. is there.

【0020】[0020]

【実施例】【Example】

<ケースA>C:10〜16wtppm ,Mn:0.15〜0.20wt% ,
P:0.025wt%以下,S:0.015wt%以下,Al:0.025 〜0.
038wt%,全O:25〜35wtppm なる組成を有しTt (タン
ディッシュ溶鋼温度)が1556〜1565℃の溶鋼を、垂直部
3m の垂直曲げ連鋳機を用い、内寸法 260mmt×1600mm
Wの鋳型に、ノズル径70mmφ,吐出孔径70mm×80mm□,
吐出孔下向き角度20°の2孔浸漬ノズルを通して1チャ
ージ当たり260ton/chで鋳込む際に、鋳型に対し外部か
ら、磁場印加なし(従来例A1)、メニスカス近傍で1.
5 〜2.0kHz(800A),0.1T の交番磁界(本実施例において
は高周波磁場。以下同じ)を印加(従来例A2)、メニ
スカス近傍で1.5 〜2.0kHz(800A),0.1Tの高周波磁場を
印加すると共にその外側から1.0Tの静磁場を印加(実施
例A)、の三条件で磁場を印加し、得られた鋳片につい
て熱延後の製鋼起因の表面欠陥発生率を調査した結果を
表1に示す。
<Case A> C: 10 to 16 wtppm, Mn: 0.15 to 0.20 wt%,
P: 0.025 wt% or less, S: 0.015 wt% or less, Al: 0.025 to 0.
038wt%, Total O: 25-35wtppm, Tt (Tundish molten steel temperature) 1556-1565 ° C, using a vertical bending continuous caster with a vertical section of 3m, internal dimensions 260mmt x 1600mm
Nozzle diameter 70mmφ, discharge hole diameter 70mm × 80mm □, W mold
When casting at a rate of 260 tons / ch per charge through a two-hole immersion nozzle with a discharge hole downward angle of 20 °, no magnetic field is applied from outside to the mold (conventional example A1).
An alternating magnetic field of 5 to 2.0 kHz (800 A), 0.1 T (high-frequency magnetic field in this embodiment; the same applies hereinafter) is applied (conventional example A2), and a high-frequency magnetic field of 1.5 to 2.0 kHz (800 A), 0.1 T is applied near the meniscus. A magnetic field was applied under the three conditions of applying a static magnetic field of 1.0 T from the outside (Example A), and the rate of occurrence of surface defects caused by steelmaking after hot rolling of the obtained slab was determined. It is shown in Table 1.

【0021】なお、静磁場印加用の超電導コイルとして
は、Nb3Sn 線を用いた超電導コイルを用いた(以下同
じ)。
As a superconducting coil for applying a static magnetic field, a superconducting coil using Nb 3 Sn wire was used (the same applies hereinafter).

【0022】[0022]

【表1】 [Table 1]

【0023】表1より実施例Aは従来例A1,A2に比
較して表面欠陥発生率が低いことが明らかであり、本発
明によれば品質を上げつつコストを削減できることがわ
かる。 <ケースB>C:20〜25wtppm ,Mn:0.15〜0.20wt% ,
P:0.025wt%以下,S:0.015wt%以下,Al:0.025 〜0.
038wt%,全O:35wtppm 以下、なる組成を有しTt が15
56〜1565℃の溶鋼を、垂直部3m の垂直曲げ連鋳機を用
い、内寸法 260mmt×1600mmWの鋳型に、ノズル径70mm
φ,吐出孔径70mm×80mm□,吐出孔下向き角度20°の2
孔浸漬ノズルを通して1チャージ当たり260ton/ch で鋳
込む際に、鋳型に対し外部から、メニスカス近傍で2.0
〜5.0kHz(1200A),0.2Tの高周波磁場を印加(従来例
B)、メニスカス近傍で2.0 〜5.0kHz(1200A),0.2Tの高
周波磁場を印加すると共にその外側から1.0Tの静磁場を
印加(実施例B1)、メニスカス近傍で2.0〜5.0kHz(0.
2T)の高周波磁場を印加すると共にその外側からメニス
カスを含んで1.0Tの静磁場を印加(実施例B2)、の三
条件で磁場を印加し、得られた鋳片について熱延後の製
鋼起因の表面欠陥発生率を調査した結果を表2に示す。
From Table 1, it is clear that Example A has a lower surface defect occurrence rate than Conventional Examples A1 and A2, and it can be seen that according to the present invention, the cost can be reduced while improving the quality. <Case B> C: 20 to 25 wtppm, Mn: 0.15 to 0.20 wt%,
P: 0.025 wt% or less, S: 0.015 wt% or less, Al: 0.025 to 0.
038 wt%, total O: 35 wtppm or less, having a composition of Tt of 15
Using a vertical bending continuous caster with a vertical section of 3m, a molten steel of 56 to 1565 ° C is cast into a mold of 260mmt x 1600mmW and the nozzle diameter is 70mm.
φ, discharge hole diameter 70mm × 80mm □, discharge hole downward angle 20 ° 2
When casting at 260 tons / ch per charge through a hole immersion nozzle, 2.0 mm is injected from the outside to the mold near the meniscus.
Apply a high-frequency magnetic field of ~ 5.0kHz (1200A), 0.2T (conventional example B), apply a high-frequency magnetic field of 2.0 ~ 5.0kHz (1200A), 0.2T near the meniscus and apply a static magnetic field of 1.0T from outside. (Example B1), 2.0 to 5.0 kHz (0.
A high-frequency magnetic field of 2T) was applied, and a static magnetic field of 1.0T including a meniscus was applied from the outside (Example B2). Table 2 shows the results of investigation of the incidence of surface defects.

【0024】[0024]

【表2】 [Table 2]

【0025】表2より実施例B1は従来例Bに比較して
表面欠陥発生率が低いこと、また、実施例B2は実施例
B1に比較して表面欠陥発生率がさらに低いことが明ら
かであり、本発明のより好適な形態であるメニスカスを
含んでの静磁場印加によれば、さらに品質を上げつつコ
ストを削減できることがわかる。 <ケースC>低炭素鋼および極低炭素鋼相当の組成を有
しTt が1553〜1565℃の溶鋼を、垂直部3m の垂直曲げ
連鋳機を用い、内寸法 260mmt×1600mmWの鋳型に、ノ
ズル径70mmφ,吐出孔径70mm×80mm□,吐出孔下向き角
度20°の2孔浸漬ノズルを通して1チャージ当たり260t
on/ch で鋳込む際に、鋳型に対し外部から、メニスカス
近傍で1.5 〜5.0kHz(1200A),0.2Tの高周波磁場を印加す
ると共にその外側からメニスカスを含んで0.8 〜1.2Tの
静磁場を、図2に示した遮蔽体7(Cu製(内部水冷))
の「設置なし」(実施例C1)と「設置あり」(実施例
C2)の二条件で印加し、双方のクエンチ発生率を調査
した結果を表3に示す。なお、クエンチ発生率とは、鋳
込みチャージ数当たりのクエンチ回数(クエンチとは、
超電導コイル内で何らかの理由により超電導状態が破れ
る現象をいう)であり、ここでは連続鋳造の操業安定性
の指標とした。
From Table 2, it is clear that Example B1 has a lower incidence of surface defects than Conventional Example B, and that Example B2 has a lower incidence of surface defects than Example B1. It can be seen that, according to the application of the static magnetic field including the meniscus, which is a more preferable embodiment of the present invention, the cost can be reduced while further improving the quality. <Case C> A molten steel having a composition equivalent to low-carbon steel and ultra-low-carbon steel and having a Tt of 1553 to 1565 ° C., and a vertical bending continuous caster with a vertical portion of 3 m, and a nozzle having an inner dimension of 260 mmt × 1600 mmW. 260t per charge through a 2-hole immersion nozzle with a diameter of 70mmφ, discharge hole diameter 70mm × 80mm □, discharge hole downward angle of 20 °
When casting at on / ch, a high frequency magnetic field of 1.5 to 5.0 kHz (1200 A) and 0.2 T is applied to the mold from the outside near the meniscus, and a static magnetic field of 0.8 to 1.2 T including the meniscus is applied from outside. , Shield 7 shown in FIG. 2 (made of Cu (internal water cooling))
Table 3 shows the results obtained by applying the test under two conditions of “without installation” (Example C1) and “with installation” (Example C2). The quench rate is the number of quench cycles per cast charge (quench is
This is a phenomenon in which the superconducting state is broken for some reason in the superconducting coil), and here, it is used as an index of the operational stability of continuous casting.

【0026】[0026]

【表3】 [Table 3]

【0027】表3より、クエンチ発生率は、実施例C1
では0.3%であるのに対し、実施例C2ではクエンチ発生
が皆無であり、本発明のさらなる好適形態である遮蔽体
設置によって、連続鋳造における高品質化・低コスト化
がより安定して実現できることが明らかである。なお、
本実施例では、交番磁界が高周波の場合の具体例を開示
したが、低周波の場合でも遮蔽体に透磁率の高い材料を
用いれば上記と同様の効果が得られることを確認済であ
る。
From Table 3, it can be seen that the rate of occurrence of quench was determined in Example C1.
However, in Example C2, no quenching occurred, and the shield installation, which is a further preferred embodiment of the present invention, can more stably realize high quality and low cost in continuous casting. Is evident. In addition,
In the present embodiment, a specific example in the case where the alternating magnetic field has a high frequency is disclosed. However, it has been confirmed that the same effect as described above can be obtained by using a material having a high magnetic permeability for the shield even when the alternating magnetic field is at a low frequency.

【0028】[0028]

【発明の効果】本発明によれば、従来連鋳スラブに発生
していたオシレーションマーク起因の表層部欠陥が大幅
に低減してスラブ手入れ等に伴うコストの削減と高い生
産性が達成されるという格段の効果を奏する。
According to the present invention, surface layer defects caused by oscillation marks, which have conventionally occurred in continuous cast slabs, are greatly reduced, and cost reduction and high productivity due to slab maintenance and the like are achieved. It has a remarkable effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施に好適な連続鋳造設備の要部半断
面図である。
FIG. 1 is a half sectional view of a main part of a continuous casting facility suitable for carrying out the present invention.

【図2】本発明の実施にさらに好適な連続鋳造設備の要
部半断面図である。
FIG. 2 is a half cross-sectional view of a main part of a continuous casting facility more suitable for carrying out the present invention.

【符号の説明】[Explanation of symbols]

1 モールド(鋳型) 2 ノズル(浸漬ノズル) 3 溶鋼 3a 凝固シェル 4 モールドパウダ 5 交番磁界発生コイル 6 静磁場発生器(超電導コイル) 7 遮蔽体 DESCRIPTION OF SYMBOLS 1 Mold (mold) 2 Nozzle (immersion nozzle) 3 Molten steel 3a Solidified shell 4 Mold powder 5 Alternating magnetic field generating coil 6 Static magnetic field generator (superconducting coil) 7 Shield

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 連続鋳造用の鋳型に交番磁界発生コイル
を用いて交番磁界を印加しつつノズルを通して該鋳型内
に溶鋼を供給して連続鋳造を行うにあたり、交番磁界と
同時に超電導コイルを用いて静磁場を印加することを特
徴とする鋼の連続鋳造方法。
1. A method for continuous casting by supplying molten steel through a nozzle while applying an alternating magnetic field to a mold for continuous casting while using an alternating magnetic field generating coil to perform continuous casting, using a superconducting coil simultaneously with the alternating magnetic field. A continuous casting method for steel, comprising applying a static magnetic field.
【請求項2】 静磁場を交番磁界発生コイルの外側から
印加する請求項1記載の連続鋳造方法。
2. The continuous casting method according to claim 1, wherein the static magnetic field is applied from outside the alternating magnetic field generating coil.
【請求項3】 静磁場をメニスカスを含んで印加する請
求項2記載の連続鋳造方法。
3. The continuous casting method according to claim 2, wherein a static magnetic field is applied including the meniscus.
【請求項4】 交番磁界が超電導コイルに入り込むのを
防止する遮蔽体を用いる請求項1〜3のいずれかに記載
の連続鋳造方法。
4. The continuous casting method according to claim 1, wherein a shield is used to prevent an alternating magnetic field from entering the superconducting coil.
【請求項5】 遮蔽体が導電率の高い材料である請求項
4記載の連続鋳造方法。
5. The continuous casting method according to claim 4, wherein the shield is made of a material having high conductivity.
【請求項6】 遮蔽体が透磁率の高い材料である請求項
4記載の連続鋳造方法。
6. The continuous casting method according to claim 4, wherein the shield is made of a material having a high magnetic permeability.
JP25932296A 1996-09-30 1996-09-30 Method for continuously casting steetl Pending JPH1099948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25932296A JPH1099948A (en) 1996-09-30 1996-09-30 Method for continuously casting steetl

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25932296A JPH1099948A (en) 1996-09-30 1996-09-30 Method for continuously casting steetl

Publications (1)

Publication Number Publication Date
JPH1099948A true JPH1099948A (en) 1998-04-21

Family

ID=17332482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25932296A Pending JPH1099948A (en) 1996-09-30 1996-09-30 Method for continuously casting steetl

Country Status (1)

Country Link
JP (1) JPH1099948A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002531269A (en) * 1998-12-01 2002-09-24 アーべーべー・アクチボラゲット Metal continuous casting method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002531269A (en) * 1998-12-01 2002-09-24 アーべーべー・アクチボラゲット Metal continuous casting method and apparatus
JP4719360B2 (en) * 1998-12-01 2011-07-06 アーべーべー・アクチボラゲット Metal continuous casting method and apparatus

Similar Documents

Publication Publication Date Title
KR101094568B1 (en) Cast steel strip with low surface roughness and low porosity
JP4824502B2 (en) Metal vertical continuous casting method using electromagnetic field and casting equipment for its implementation
JP3063518B2 (en) Continuous casting device and continuous casting system
JP4495455B2 (en) Steel strip casting
JP2011047054A (en) Thin strip comprising trip steel
US7485196B2 (en) Steel product with a high austenite grain coarsening temperature
US20050098298A1 (en) Treating molten metals by moving electric arc
JPH1099948A (en) Method for continuously casting steetl
JPH0215856A (en) Method of cooling continuous casting metallic product
US6883584B2 (en) Method for continuously casting a steel beam blank
JP2004509770A (en) Steel strip manufacturing method
JP3236422B2 (en) Continuous casting method of steel using magnetic field
JP2008261036A (en) Cooling method for bloom slab
JP4591156B2 (en) Steel continuous casting method
JP3139317B2 (en) Continuous casting mold and continuous casting method using electromagnetic force
JPH10211564A (en) Continuous casting method for high speed tool steel billet, and device therefor
JP7283633B2 (en) Steel continuous casting method
KR100419884B1 (en) Cooling system of mold and cast in the electromagnetic casting
JPH0515949A (en) Continuous metal casting apparatus and casting method
KR101957594B1 (en) Continuous casting method using electromagnetic stirring
JP2979986B2 (en) Metal continuous casting apparatus and continuous casting method
JP3491099B2 (en) Continuous casting method of steel using static magnetic field
Li et al. The electromagnetic effect on microscopic features of Co-6 coatings on U71Mn by pulse current-assisted laser cladding
JPS6253569B2 (en)
JPH10193057A (en) Method for continuously casting steel slag