JPH1099878A - Water treatment method - Google Patents
Water treatment methodInfo
- Publication number
- JPH1099878A JPH1099878A JP25480396A JP25480396A JPH1099878A JP H1099878 A JPH1099878 A JP H1099878A JP 25480396 A JP25480396 A JP 25480396A JP 25480396 A JP25480396 A JP 25480396A JP H1099878 A JPH1099878 A JP H1099878A
- Authority
- JP
- Japan
- Prior art keywords
- ozone
- water
- treated
- hydrogen peroxide
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、過酸化水素および
オゾンを利用する水処理方法に関する。さらに詳しく
は、下水またはし尿の二次処理水、産業排水または廃棄
物埋立地浸出水またはこれらの二次処理水などを処理し
て消毒、殺菌、脱色、脱臭、有機物の分解、透明度の改
善、BODやCODを低減などを実施する水処理方法に
関する。なお、本発明において「処理」の語は、水の浄
化の意であり、水を消毒、殺菌、脱色、脱臭、あるいは
水中の有機物の分解、透明度の改善、BOD・CODの
低減を行う操作をいう。TECHNICAL FIELD The present invention relates to a water treatment method using hydrogen peroxide and ozone. More specifically, disinfecting, disinfecting, discoloring, deodorizing, decomposing organic substances, improving the transparency, improving the clarity of sewage or human waste secondary treatment water, industrial effluent or waste landfill leachate or the secondary treatment water etc. The present invention relates to a water treatment method for reducing BOD and COD. In the present invention, the term "treatment" means water purification, and refers to an operation for disinfecting, sterilizing, decolorizing, deodorizing water, or decomposing organic substances in water, improving transparency, and reducing BOD / COD. Say.
【0002】[0002]
【従来の技術】近年、水資源はエネルギーと同じく有限
とされ、廃水の再利用の重要性が認識されつつある。ま
た一方では、水道水源の微量汚染物質による汚染が問題
となり、従来の窒素・りんの除去を目的とした高度処理
に加えて、脱臭、脱色、殺菌、微量汚染物質の除去など
を目的とした処理方法の導入が進められようとしてい
る。このような社会状況において、水の再利用や微量汚
染物質の除去などの方法として活性炭処理、オゾン処
理、膜処理などの実用化が進められている。しかし、活
性炭処理では有機性の汚濁物質の吸着除去は可能である
が殺菌作用はなく、また活性炭の交換も必要になる。オ
ゾン処理は脱色、脱臭、殺菌効果は優れているが、汚濁
物質の分解効果は低い。膜処理は水処理という観点から
は優れているが、廃棄物を発生するという問題点を有し
ている。2. Description of the Related Art In recent years, water resources are limited as well as energy, and the importance of recycling wastewater is being recognized. On the other hand, the contamination of the tap water source by trace contaminants has become a problem. In addition to the conventional advanced treatment for removing nitrogen and phosphorus, treatment for the purpose of deodorization, decolorization, sterilization, removal of trace contaminants, etc. Methods are being introduced. In such a social situation, activated carbon treatment, ozone treatment, membrane treatment, and the like have been put into practical use as methods for reusing water and removing trace pollutants. However, activated carbon treatment can remove organic pollutants by adsorption, but has no bactericidal action, and requires replacement of activated carbon. Ozone treatment has excellent decolorization, deodorization, and sterilization effects, but has a low effect of decomposing pollutants. Membrane treatment is excellent from the viewpoint of water treatment, but has the problem of generating waste.
【0003】前記の処理方法に対し、特公昭60−67
18号公報や特公昭60−41999号公報には、上記
の問題点を総合的に解決可能な処理方法として、オゾン
および過酸化水素を廃水に添加して処理する方法が記載
されている。前記の処理方法は、オゾンおよび過酸化水
素を廃水中に添加することによって非常に酸化力の強い
OHラジカルを生成させ、このOHラジカルをもって廃
水を処理しようとするものである。OHラジカルは、オ
ゾンよりも強力な酸化剤であり、オゾン単独では分解で
きなかった廃水中の汚濁成分をも分解除去することが可
能で、汚濁物質の分解効率も高く、脱臭、脱色、殺菌効
果が優れているうえ二次的な廃棄物も発生しない、効果
的な処理方法である。In contrast to the above processing method, Japanese Patent Publication No. 60-67
No. 18 and Japanese Patent Publication No. 60-41999 disclose a method of treating ozone and hydrogen peroxide by adding ozone and hydrogen peroxide to wastewater as a treatment method capable of comprehensively solving the above problems. In the above-mentioned treatment method, OH radicals having a very strong oxidizing power are generated by adding ozone and hydrogen peroxide to wastewater, and the OH radicals are used to treat wastewater. OH radicals are stronger oxidizing agents than ozone, and can also decompose and remove pollutants in wastewater that could not be decomposed by ozone alone, have high decomposition efficiency of pollutants, and have deodorizing, decolorizing and sterilizing effects. It is an effective treatment method that is excellent and does not generate secondary waste.
【0004】[0004]
【発明が解決しようとする課題】しかし、オゾンと過酸
化水素を併用する方法は、強力な酸化作用を有する半
面、従来高価な酸化剤を必ずしも効率よく利用すること
ができず、コストの高い処理手段であった。本発明者
は、オゾンと過酸化水素とを併用した強力な酸化作用を
活かして汚濁物質を処理すると共に、添加する酸化剤を
余すところなく有効に利用する手段を課題に本発明を完
成したのである。However, the method of using ozone and hydrogen peroxide in combination has a strong oxidizing effect, but it cannot always efficiently use an expensive oxidizing agent, resulting in a high cost treatment. It was a means. The inventor of the present invention completed the present invention with a problem of treating pollutants by utilizing a strong oxidizing action using ozone and hydrogen peroxide in combination, and effectively using an oxidizing agent to be added without exhaustion. is there.
【0005】[0005]
【課題を解決するための手段】本発明者は研究の結果、
被処理水中の汚濁物質の濃度や種類に影響される値では
あるが、被処理水中のオゾン濃度と過酸化水素濃度、な
かでもオゾン濃度が酸化剤の有効利用に大きく影響する
ことを見出だした。すなわち、オゾン添加量を被処理水
の濃度変動に追随して変化させると処理効率が大幅に高
まること、および過酸化水素の最適な添加量は被処理水
の濃度変化に対して変化が小さいことを見出だした。本
発明は、オゾンを被処理水に添加して溶解させ、かつ過
酸化水素を添加する水処理方法であって、被処理水の吸
光度を検出することにより、添加するオゾン量を制御す
ることを特徴とする水処理方法を提供する。Means for Solving the Problems As a result of research, the present inventor has
Although it is a value that is affected by the concentration and type of pollutants in the water to be treated, it has been found that the concentration of ozone and hydrogen peroxide in the water to be treated, especially the ozone concentration, has a great effect on the effective use of oxidizing agents. . That is, if the amount of added ozone is changed following the fluctuation of the concentration of the water to be treated, the treatment efficiency is greatly increased, and the optimum addition amount of hydrogen peroxide has a small change with respect to the concentration change of the water to be treated. Was found. The present invention is a water treatment method of adding and dissolving ozone to water to be treated, and adding hydrogen peroxide, wherein the amount of ozone to be added is controlled by detecting the absorbance of the water to be treated. A featured water treatment method is provided.
【0006】また、本発明は、オゾンを被処理水に添加
して溶解させ、かつ過酸化水素を添加する水処理方法で
あって、被処理水中の溶存オゾン濃度を検出することに
より、添加するオゾン量を制御することを特徴とする水
処理方法を提供する。通常、被処理水中の溶存オゾン濃
度が0.1〜10mg/リットルの範囲内になるよう
に、添加するオゾン量を制御することが好ましい。The present invention also relates to a water treatment method for adding and dissolving ozone to water to be treated and adding hydrogen peroxide, wherein the ozone is added by detecting the concentration of dissolved ozone in the water to be treated. A water treatment method characterized by controlling the amount of ozone is provided. Usually, it is preferable to control the amount of ozone to be added so that the concentration of dissolved ozone in the water to be treated falls within the range of 0.1 to 10 mg / liter.
【0007】さらに、オゾンを被処理水に添加して溶解
させ、かつ過酸化水素を添加する水処理方法であって、
被処理水を処理する過程で発生する排ガス中の余剰オゾ
ン濃度を検出することにより、添加するオゾン量を制御
することを特徴とする水の処理方法を提供する。一般
に、排ガス中の余剰オゾン濃度が初期濃度の1〜10%
の範囲内になるように添加するオゾン量を制御すると、
オゾンの効率のよい利用が期待できる。前記の水処理方
法において、被処理水の吸光度、被処理水中の溶存オゾ
ン濃度および/または排ガス中の余剰オゾン濃度を検出
し、添加する過酸化水素量を制御することにより、一層
効率的な処理を期待できる。Further, there is provided a water treatment method in which ozone is added to and dissolved in water to be treated, and hydrogen peroxide is added,
A water treatment method characterized by controlling the amount of ozone to be added by detecting the concentration of excess ozone in exhaust gas generated in the process of treating water to be treated. Generally, the excess ozone concentration in the exhaust gas is 1 to 10% of the initial concentration.
By controlling the amount of ozone to be added to be within the range of
Efficient use of ozone can be expected. In the above-mentioned water treatment method, by detecting the absorbance of the water to be treated, the concentration of dissolved ozone in the water to be treated and / or the concentration of excess ozone in the exhaust gas, and controlling the amount of hydrogen peroxide to be added, more efficient treatment is achieved. Can be expected.
【0008】[0008]
【発明の実施の形態】本発明を具体的に詳しく説明す
る。本発明においては、被処理水の吸光度、被処理水中
の溶存オゾン濃度や、被処理水を処理する過程で発生す
る排ガス中の余剰オゾン濃度を検出することにより、被
処理水に添加するオゾン量を制御し、汚濁物質を効率的
に酸化分解する。本発明は、オゾンと過酸化水素とが接
触して発生するOHラジカルにより、被処理水中の汚濁
物質の分解を行うものであるが、OHラジカルはオゾン
や過酸化水素と反応してその強い酸化力を消失する。す
なわち、オゾンや過酸化水素の濃度が低すぎるとOHラ
ジカルの発生は少なく、逆にオゾンや過酸化水素の濃度
が高すぎると、発生したOHラジカルが汚濁物質を酸化
することなくオゾンや過酸化水素と反応して消失し、い
ずれの場合にも期待する処理が行われないと考えられ
る。OHラジカルとオゾンとの反応速度は、オゾンが気
相から液相へ移動する速度に比べて非常に早いため、通
常、被処理水中の溶存オゾン濃度は低い状態になってお
り、液相中の溶存オゾンが処理を阻害することは少な
く、むしろ液相中の溶存オゾン濃度が低すぎるために処
理反応が進行しない場合が多いと考えられる。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described in detail. In the present invention, the amount of ozone added to the water to be treated is detected by detecting the absorbance of the water to be treated, the concentration of dissolved ozone in the water to be treated, and the concentration of excess ozone in the exhaust gas generated in the process of treating the water to be treated. And oxidatively decompose pollutants efficiently. The present invention decomposes pollutants in the water to be treated by OH radicals generated by contact between ozone and hydrogen peroxide. The OH radicals react with ozone and hydrogen peroxide to cause strong oxidation. Dissipate power. In other words, if the concentration of ozone or hydrogen peroxide is too low, the generation of OH radicals is small. Conversely, if the concentration of ozone or hydrogen peroxide is too high, the generated OH radicals do not oxidize the pollutants and ozone or peroxide It is thought that it disappears by reacting with hydrogen and the expected treatment is not performed in any case. Since the reaction rate between OH radicals and ozone is much faster than the rate at which ozone moves from the gas phase to the liquid phase, the concentration of dissolved ozone in the water to be treated is usually low, and the It is considered that dissolved ozone rarely hinders the treatment, but rather the treatment reaction often does not proceed because the concentration of dissolved ozone in the liquid phase is too low.
【0009】このため、被処理水に一定量のオゾンガス
を注入する際には次のような事態が発生する。すなわ
ち、被処理水中の汚濁物質濃度が高過ぎる場合には、オ
ゾンは被処理水中で汚濁物質との反応により減少し、溶
存オゾン濃度を高く維持することができなくなり、過酸
化水素と接触してOHラジカルを生成する機会が低くな
る。したがって、オゾン単独による処理とほとんど効果
は変らないか、もしくは過酸化水素による反応の阻害が
発生する。逆に、被処理水中の汚濁物質濃度が低過ぎる
場合は、オゾンの被処理水中の溶存濃度が高く維持され
てオゾンが吸収されにくくなり、注入したオゾンガスが
使用されずに排出される割合が多くなって、オゾンを非
常に低い効率で利用するもしくは無駄に消費することに
なる。For this reason, when a certain amount of ozone gas is injected into the water to be treated, the following situation occurs. That is, if the concentration of pollutants in the water to be treated is too high, ozone is reduced due to the reaction with the pollutants in the water to be treated, and the dissolved ozone concentration cannot be maintained at a high level. The chance of generating OH radicals is reduced. Therefore, the effect is almost the same as that of the treatment using ozone alone, or the reaction is inhibited by hydrogen peroxide. Conversely, if the concentration of pollutants in the water to be treated is too low, the dissolved concentration of ozone in the water to be treated is maintained at a high level, making it difficult for ozone to be absorbed. As a result, ozone is used or wasted at very low efficiency.
【0010】一方、過酸化水素は液状で被処理水に添加
することができるため濃度調整は容易であるが、濃度が
高い場合には汚濁物質の酸化反応を阻害することにな
る。ただし、被処理水中の汚濁物質濃度が変動しても、
汚濁物質に対する過酸化水素の最適な添加量の変化は比
較的小さいので、過酸化水素の添加量を一定としてもそ
の一定値が最適値に近い値であれば、オゾンを十分に供
給さえすれば処理はほぼ適切に行われる。On the other hand, the concentration of hydrogen peroxide can be easily adjusted because it can be added to the water to be treated in a liquid state. However, when the concentration is high, the oxidation reaction of pollutants is inhibited. However, even if the concentration of pollutants in the water to be treated fluctuates,
The change in the optimal amount of hydrogen peroxide added to pollutants is relatively small, so even if the amount of added hydrogen peroxide is constant and the constant value is close to the optimal value, it is sufficient to supply ozone sufficiently. Processing is performed almost appropriately.
【0011】以上の知見から、オゾン添加量を被処理水
中の汚濁物質濃度の変化に追随させることにより効率的
な処理を行うことが可能になる。オゾン添加量の制御方
法としては、被処理水の吸光度を測定する、もしくは溶
存オゾン濃度や排ガス中の余剰オゾン濃度を検出し、汚
濁物質の濃度や種類によって定まる目標値と比較してそ
の濃度差を打ち消すようにオゾンを添加するフィードバ
ック制御が有効である。ただし、汚濁物質の濃度変化に
オゾン添加量を追随させることができる他の制御方法、
例えばフィードフォワード制御を採用することもでき
る。被処理水の吸光度を用いてオゾン添加量の制御を行
う場合は、吸光度を測定する波長が問題になるが、被処
理水の性状や目標とされる処理レベルによって異なった
波長が適するようになる場合も多いので、実際には実験
的に水質汚濁指標と合致する挙動を示す波長を選べばよ
い。From the above findings, it is possible to perform an efficient treatment by making the amount of added ozone follow the change in the concentration of pollutants in the water to be treated. As a method for controlling the amount of ozone added, the absorbance of the water to be treated is measured, or the concentration of dissolved ozone or excess ozone in the exhaust gas is detected, and the concentration difference is compared with a target value determined by the concentration and type of the pollutant. The feedback control of adding ozone so as to cancel out is effective. However, other control methods that can make the amount of added ozone follow the change in the concentration of pollutants,
For example, feedforward control can be adopted. When controlling the amount of added ozone using the absorbance of the water to be treated, the wavelength at which the absorbance is measured is a problem, but different wavelengths are suitable depending on the properties of the water to be treated and the target treatment level. In many cases, in practice, it is sufficient to experimentally select a wavelength that exhibits a behavior that matches the water pollution index.
【0012】吸光度、溶存オゾン濃度および余剰オゾン
濃度の具体的な目標値は、処理対象物質の種類や濃度、
共存物質の種類や濃度、処理装置、気体液体接触状況な
どにより一概に規定することは難しい。例えば、被処理
水の吸光度を用いてオゾン添加量の制御を行う際には、
波長420nmの被処理水の吸光度を測定してその変化
率によりオゾン添加量を変化させたり、また波長260
nmの吸光度を被処理水と処理水との両方で測定して処
理水の方が高くなるようオゾン添加量を変化させたりす
るとよい。また、被処理水中の溶存オゾン濃度は0.1
〜10mg/リットルの範囲内に、あるいは被処理水を
処理する過程で発生する排ガス中の余剰オゾン濃度は初
期濃度の1〜10%の範囲内に設定するとよい。オゾン
添加量を制御することにより、過酸化水素濃度を制御す
るだけでは処理の困難な一定濃度以上の被処理水を処理
でき、また被処理水の濃度の変動範囲をすべてカバーで
きる量のオゾンを一律に添加することによるオゾンの無
駄な消費を防止することができる。Specific target values of the absorbance, the dissolved ozone concentration and the surplus ozone concentration are as follows:
It is difficult to specify all together depending on the type and concentration of coexisting substances, processing equipment, gas-liquid contact status, and the like. For example, when controlling the amount of ozone added using the absorbance of the water to be treated,
The absorbance of the water to be treated having a wavelength of 420 nm is measured, and the amount of ozone added is changed according to the rate of change.
The absorbance in nm may be measured for both the treated water and the treated water, and the amount of ozone added may be changed so that the treated water becomes higher. The concentration of dissolved ozone in the water to be treated is 0.1
The surplus ozone concentration in the exhaust gas generated in the process of treating the water to be treated is preferably set within the range of 1 to 10% of the initial concentration. By controlling the amount of ozone added, it is possible to treat water to be treated at a certain concentration or higher, which is difficult to treat only by controlling the concentration of hydrogen peroxide, and to supply ozone in an amount that can cover the entire fluctuation range of the concentration of treated water. Useless consumption of ozone due to uniform addition can be prevented.
【0013】オゾン添加量の制御は、ガス量を制御する
ことにより行っても、オゾン濃度を制御することにより
行ってもよい。さらに、オゾン発生器自体の制御を行う
ことによって、オゾンの発生量を制御してもよい。ただ
し、現実にはガス流量を制御する方が簡便なことも多
い。被処理水中の溶存オゾン濃度や排ガス中の余剰オゾ
ン濃度は、応答速度を速くするために瞬時に測定できる
ことが望ましく、紫外線吸収式濃度計などを使用するこ
とができる。The control of the amount of added ozone may be performed by controlling the amount of gas or by controlling the concentration of ozone. Further, the amount of generated ozone may be controlled by controlling the ozone generator itself. However, in reality, it is often easier to control the gas flow rate. It is desirable that the dissolved ozone concentration in the water to be treated and the excess ozone concentration in the exhaust gas can be measured instantaneously in order to increase the response speed, and an ultraviolet absorption type densitometer or the like can be used.
【0014】オゾンの添加方式としては散気式、エジェ
クター式などどのような形態でも適用できとくに規定さ
れない。ただし、汚濁物質濃度が高い場合にはオゾンを
気泡塔一基で吸収させるには限界があるため、処理装置
を多段に組むことが好ましい。オゾン溶解槽での被処理
水の滞留時間は、通常1〜60分の範囲内、好ましくは
5〜25分程度である。As a method of adding ozone, any form such as a diffuser type and an ejector type is not particularly limited. However, when the concentration of the pollutant is high, there is a limit to the absorption of ozone by a single bubble column. Therefore, it is preferable to arrange the treatment apparatus in multiple stages. The residence time of the water to be treated in the ozone dissolving tank is usually in the range of 1 to 60 minutes, preferably about 5 to 25 minutes.
【0015】オゾンは、通常、無声放電法など種々の方
式のオゾン発生器を利用して供給するが、供給形式や方
法に制限はない。しかし、気体1リットル中に含まれて
いるオゾンの濃度が高いほど被処理水中へのオゾンの溶
解が促進されるので、気体1リットル中に少なくとも2
0mg、好ましくは50mg以上オゾンを含有させると
よい。100mg以上含まれておればさらに好ましい。
オゾンの媒体になる気体としては空気、酸素富化空気や
その他の気体を用いることができる。また、処理槽から
排出されるオゾン含有の排ガスを、前処理として被処理
水に吹込むこともできる。供給するオゾンガスの気泡の
平均径は、被処理水の性状にもよるが、一般的に、1〜
10000μmまでの範囲が好ましく、とくに10〜1
000μmの範囲が気液接触面積が大きい割に分散エネ
ルギーの消費量が小さく好適である。Ozone is usually supplied using various types of ozone generators such as a silent discharge method, but there is no particular limitation on the type or method of supply. However, the higher the concentration of ozone contained in one liter of gas, the more the dissolution of ozone in the water to be treated is promoted.
0 mg, preferably 50 mg or more of ozone may be contained. It is more preferable that the content is 100 mg or more.
Air, oxygen-enriched air, and other gases can be used as the gas serving as the ozone medium. Further, the ozone-containing exhaust gas discharged from the treatment tank can be blown into the water to be treated as pretreatment. The average diameter of the supplied ozone gas bubbles depends on the properties of the water to be treated.
The range of up to 10,000 μm is preferred, especially 10 to 1 μm.
The range of 000 μm is suitable because the consumption of the dispersion energy is small in spite of the large gas-liquid contact area.
【0016】本発明の水処理方法において、オゾンの添
加量の制御に加えて過酸化水素の添加量を制御すること
により、オゾン添加量のみを制御する場合と比較してよ
り効率的な処理および一層精密な制御が可能になる。被
処理水中に含ませる過酸化水素の濃度は、被処理水中に
含まれる処理対象物質の種類や濃度、共存物質の種類や
濃度、処理装置、使用するオゾン量および気液接触状況
などにより一概に規定できないが、通常、被処理水1リ
ットル当り、0.1〜100mg、好ましくは0.5〜
50mgの範囲内である。一般に、被処理水中の過酸化
水素濃度には最適値が存在するため、実験的に過酸化水
素の最適添加量を求めるとよい。In the water treatment method of the present invention, by controlling the addition amount of hydrogen peroxide in addition to the control of the addition amount of ozone, more efficient treatment and treatment can be achieved as compared with the case where only the addition amount of ozone is controlled. More precise control becomes possible. The concentration of hydrogen peroxide contained in the water to be treated depends on the type and concentration of the substance to be treated contained in the water to be treated, the type and concentration of coexisting substances, the treatment equipment, the amount of ozone used, and the gas-liquid contact conditions. Although not specified, usually 0.1 to 100 mg, preferably 0.5 to 100, per liter of water to be treated
It is in the range of 50 mg. In general, there is an optimum value for the concentration of hydrogen peroxide in the water to be treated. Therefore, the optimum amount of hydrogen peroxide to be added may be determined experimentally.
【0017】また、過酸化水素の添加方式としてはとく
に規定されないが、高濃度ではOHラジカルによる処理
反応が阻害されるため、過酸化水素の注入口を複数に分
割するか、低濃度で複数回に分割して添加するか、連続
的に添加するか、もしくは十分に攪拌される状態で添加
することが好ましい。被処理水とオゾン含有気体との接
触面積は大きい程、たとえばオゾン含有気体の気泡が小
さいほど最適な過酸化水素添加量が大きくなる傾向があ
る。Although the method for adding hydrogen peroxide is not particularly specified, since the treatment reaction by OH radicals is inhibited at a high concentration, the hydrogen peroxide inlet may be divided into a plurality of portions or a plurality of times at a low concentration. It is preferable to add it in divided portions, add it continuously, or add it while stirring sufficiently. The larger the contact area between the water to be treated and the ozone-containing gas, for example, the smaller the bubbles of the ozone-containing gas, the larger the optimum amount of added hydrogen peroxide tends to be.
【0018】添加する過酸化水素は市販の過酸化水素水
を用いても、過酸化水素製造装置から直接供給してもよ
い。水酸化ナトリウム水溶液を電解液として電解製造し
た過酸化水素水溶液を用いることもできる。被処理水に
混合する際に用いる過酸化水素溶液中の過酸化水素濃度
については特に規定はされないが、過酸化水素添加量、
ポンプ性能などによって制御しやすい濃度にすればよ
い。The hydrogen peroxide to be added may be a commercially available aqueous hydrogen peroxide solution or may be directly supplied from a hydrogen peroxide production device. An aqueous solution of hydrogen peroxide electrolytically produced using a sodium hydroxide aqueous solution as an electrolytic solution can also be used. The concentration of hydrogen peroxide in the hydrogen peroxide solution used for mixing with the water to be treated is not particularly limited, but the amount of hydrogen peroxide added,
The concentration may be easily controlled by the pump performance and the like.
【0019】処理を行う際の温度は、被処理水が液相を
保持していればとくに限定されないが、通常は常温で行
う。被処理水の温度が高いほど反応速度が早くなる利点
はあるが、オゾン、過酸化水素の自己分解の比率も大き
くなるため、処理に見合った最適な温度を適宜設定すれ
ばよい。本発明の具体的な実施形態例として、図1に一
槽流通処理例を模式的に、図5に、連続多槽方式を利用
した連続処理例を模式的に示す。The temperature at which the treatment is carried out is not particularly limited as long as the water to be treated retains a liquid phase. The higher the temperature of the water to be treated, the higher the reaction rate, but the rate of self-decomposition of ozone and hydrogen peroxide also increases. Therefore, an optimum temperature suitable for the treatment may be set as appropriate. As a specific embodiment of the present invention, FIG. 1 schematically shows an example of a single-tank circulation process, and FIG. 5 schematically shows an example of a continuous process using a continuous multi-tank method.
【0020】[0020]
【実施例】以下実施例をあげて本発明の各種実施形態を
説明する。実施例および比較例において、処理効率は処
理前後の水質汚濁指標を用いて、次式により求めた。 処理効率=(1−C/C0 )×100 ただし、C: 被処理水の処理後の水質汚濁指標 C0 :被処理水の処理前の水質汚濁指標 なお、水質汚濁指標としては、目的により、COD、B
OD、TOCなど様々なものが用いられる。EXAMPLES Various embodiments of the present invention will be described below with reference to examples. In Examples and Comparative Examples, the treatment efficiency was determined by the following equation using the water pollution index before and after the treatment. Treatment efficiency = (1−C / C 0 ) × 100 where C: Water pollution index after treatment of treated water C 0 : Water pollution index before treatment of treated water The water pollution index depends on the purpose. , COD, B
Various things such as OD and TOC are used.
【0021】実施例1 実際の廃水を用い、実情に合わせて汚濁物質濃度を変化
させて処理した実験である。図1に記載の流通式の実験
装置を用い、排ガス中のオゾン濃度をオゾンガス濃度検
知器6(紫外線吸光度法)により測定し、測定される余
剰オゾンガス濃度が10g/Nm3 (初期濃度の1/1
0)になるように吹き込むオゾンガス流量を変化させ
た。また、被処理水を、廃棄物埋立地浸出水と水とを表
1に示す重量比で混合した液に一定時間ごとに変更し、
処理テストを行った。一定時間ごとにCOD、オゾン添
加量および過酸化水素添加量を測定した。図2に、CO
Dを水質汚濁指標とする処理効率(以下COD処理効率
という)と処理時間との関係を、図3および図4に、そ
れぞれオゾン添加量および過酸化水素添加量と処理時間
との関係を、初期量(オゾン添加量120mg/リット
ル、過酸化水素添加量10mg/リットル)に対する重
量%で示した。Example 1 This is an experiment in which actual wastewater was used and the pollutant concentration was changed according to the actual situation. The ozone concentration in the exhaust gas was measured by the ozone gas concentration detector 6 (ultraviolet absorbance method) using the flow-type experimental apparatus shown in FIG. 1, and the measured excess ozone gas concentration was 10 g / Nm 3 (1/1 of the initial concentration). 1
The flow rate of the ozone gas to be blown was changed so as to be 0). Further, the water to be treated is changed at regular intervals to a liquid obtained by mixing the leachate of waste landfill and water at the weight ratio shown in Table 1,
A processing test was performed. The COD, the amount of added ozone, and the amount of added hydrogen peroxide were measured at regular intervals. FIG.
FIGS. 3 and 4 show the relationship between the treatment efficiency (hereinafter referred to as COD treatment efficiency) and the treatment time using D as the water pollution index, and the relationship between the treatment time and the ozone addition amount and hydrogen peroxide addition amount, respectively. The amount is shown in% by weight based on the amount (the amount of ozone added is 120 mg / liter and the amount of hydrogen peroxide added is 10 mg / liter).
【0022】実施例2 実施例1で用いたものと同様の実験装置を用い、実施例
1と同様にして、ただし、吹き込むオゾンガス流量に加
えて過酸化水素の添加量を変化させて実験を行った。一
定時間ごとにCOD、オゾン添加量および過酸化水素添
加量を測定した。図2に、COD処理効率と処理時間と
の関係を、図3および図4に、それぞれオゾン添加量お
よび過酸化水素添加量と処理時間との関係を、初期量
(オゾン添加量120mg/リットル、過酸化水素添加
量10mg/リットル)に対する重量%で示した。Example 2 An experiment was conducted using the same experimental apparatus as used in Example 1 and in the same manner as in Example 1, except that the amount of hydrogen peroxide added was changed in addition to the flow rate of the ozone gas to be blown. Was. The COD, the amount of added ozone, and the amount of added hydrogen peroxide were measured at regular intervals. FIG. 2 shows the relationship between the COD treatment efficiency and the treatment time, and FIGS. 3 and 4 show the relationship between the ozone addition amount and the hydrogen peroxide addition amount and the treatment time, respectively, as the initial amount (the ozone addition amount 120 mg / liter, (% Of hydrogen peroxide added: 10 mg / liter).
【0023】比較例1 実施例1と同様にして、本発明と比較する実験を行っ
た。ただし、測定される排ガス中の余剰オゾンガス濃度
が10g/Nm3 (初期濃度の1/10)になるよう
に、過酸化水素添加量のみを変化させ、オゾンガスは一
定量を注入した。一定時間ごとにCODおよび過酸化水
素添加量を測定した。図2に、COD処理効率と処理時
間との関係を、図3および図4に、それぞれオゾン添加
量および過酸化水素添加量と処理時間との関係とを、初
期量(オゾン添加量120mg/リットル、過酸化水素
添加量10mg/リットル)に対する重量%で示した。Comparative Example 1 An experiment was conducted in the same manner as in Example 1 to compare with the present invention. However, only a fixed amount of ozone gas was injected while changing only the amount of added hydrogen peroxide so that the concentration of surplus ozone gas in the exhaust gas to be measured was 10 g / Nm 3 (1/10 of the initial concentration). The COD and the amount of hydrogen peroxide added were measured at regular intervals. FIG. 2 shows the relationship between the COD treatment efficiency and the treatment time, and FIGS. 3 and 4 show the relationship between the ozone addition amount and the hydrogen peroxide addition amount and the treatment time, respectively, as the initial amount (ozone addition amount 120 mg / liter). , Hydrogen peroxide added amount of 10 mg / liter).
【0024】実施例3 図5に記載の連続処理装置を用いて実験を行った。ただ
し、初めに吸光度計507aにより、波長420nmに
おける被処理水の吸光度を測定し、その増減により反応
管501aへ添加するオゾンガス量を増減させた。この
際のオゾン添加量の初期値は60mg/リットルとし
た。また、過酸化水素添加量は5mg/リットルで一定
とした。さらに、溶存オゾン濃度計507bにおいて溶
存オゾン濃度を測定し、被処理水中の溶存オゾン濃度が
0.5mg/リットルになるように反応管501bへの
オゾン添加量を制御した。この際の過酸化水素添加量は
3mg/リットルで一定とした。その他の条件は実施例
1と同様とし、一定時間ごとにCODおよびオゾン添加
量を測定した。図6にCOD処理効率と処理時間との関
係を、図7にオゾン添加量と処理時間の関係を、初期量
(オゾン添加量120mg/リットル)に対する重量%
で示した。Example 3 An experiment was conducted using the continuous processing apparatus shown in FIG. However, first, the absorbance of the water to be treated at a wavelength of 420 nm was measured by the absorbance meter 507a, and the amount of ozone gas added to the reaction tube 501a was increased or decreased by the increase or decrease. The initial value of the amount of ozone added at this time was 60 mg / liter. The amount of hydrogen peroxide added was kept constant at 5 mg / liter. Further, the dissolved ozone concentration was measured by a dissolved ozone concentration meter 507b, and the amount of ozone added to the reaction tube 501b was controlled so that the dissolved ozone concentration in the water to be treated was 0.5 mg / liter. The amount of hydrogen peroxide added at this time was kept constant at 3 mg / liter. Other conditions were the same as in Example 1, and the COD and the amount of added ozone were measured at regular intervals. FIG. 6 shows the relationship between the COD treatment efficiency and the treatment time, and FIG. 7 shows the relationship between the ozone addition amount and the treatment time.
Indicated by
【0025】比較例2 オゾン添加量を一定にしたこと以外は実施例3と同様に
して実験を行い、一定時間ごとにCODおよびオゾン添
加量を測定した。図6にCOD処理効率と処理時間との
関係を、図7にオゾン添加量と処理時間の関係を、初期
量(オゾン添加量120mg/リットル)に対する重量
%で示した。Comparative Example 2 An experiment was conducted in the same manner as in Example 3 except that the amount of added ozone was kept constant, and the COD and the amount of added ozone were measured at regular intervals. FIG. 6 shows the relationship between the COD treatment efficiency and the treatment time, and FIG. 7 shows the relationship between the ozone addition amount and the treatment time in terms of% by weight with respect to the initial amount (ozone addition amount 120 mg / liter).
【0026】[0026]
【表1】 [Table 1]
【0027】[0027]
【発明の効果】本発明を利用すれば、被処理水の濃度変
化に対応して、効率的な処理が常時可能になり、添加し
た単位量当りの過酸化水素とオゾンによる処理効率が向
上する。オゾンおよび過酸化水素の添加量を削減するこ
とができ、ランニングコストを低く抑えることができ
る。According to the present invention, efficient treatment can always be carried out in response to a change in the concentration of the water to be treated, and the treatment efficiency with added hydrogen peroxide and ozone per unit amount is improved. . The amount of ozone and hydrogen peroxide added can be reduced, and running costs can be kept low.
【図1】本発明の流通処理形態例の模式図(実施例1,
2、比較例1)。FIG. 1 is a schematic view of a distribution processing mode according to the present invention (Example 1, Embodiment 1).
2, Comparative Example 1).
【図2】COD処理効率と処理時間との関係(実施例
1,2、比較例1)。FIG. 2 shows a relationship between COD processing efficiency and processing time (Examples 1, 2 and Comparative Example 1).
【図3】初期添加量に対するオゾン添加量と処理時間と
の関係(実施例1,2、比較例1)。FIG. 3 shows the relationship between the ozone addition amount and the processing time with respect to the initial addition amount (Examples 1, 2 and Comparative Example 1).
【図4】初期添加量に対する過酸化水素添加量と処理時
間との関係(実施例1,2、比較例1)。FIG. 4 shows the relationship between the amount of hydrogen peroxide added to the initial amount added and the processing time (Examples 1, 2 and Comparative Example 1).
【図5】本発明の連続処理形態例の模式図。FIG. 5 is a schematic diagram of a continuous processing embodiment of the present invention.
【図6】COD処理効率と処理時間との関係(実施例
3、比較例1)。FIG. 6 shows the relationship between COD processing efficiency and processing time (Example 3, Comparative Example 1).
【図7】初期添加量に対するオゾン添加量と処理時間と
の関係(実施例3、比較例1)。FIG. 7 shows the relationship between the ozone addition amount and the processing time with respect to the initial addition amount (Example 3, Comparative Example 1).
1:処理槽 2、502:被処理
水配管 3、503:過酸化水素水配管 4、504:オゾン
含有気体配管 5、505:散気管 6、506:余剰オ
ゾン濃度検知器 7、オゾンガス濃度検知器 8、9、508、5
09:流量調節弁 10、510:処理液排出配管 11、511:排気
管 501a:反応管 501b:処理槽 507a:吸光度計 507b:溶存オゾ
ン濃度計1: treatment tank 2, 502: treated water pipe 3, 503: hydrogen peroxide water pipe 4, 504: ozone-containing gas pipe 5, 505: diffuser pipe 6, 506: surplus ozone concentration detector 7, ozone gas concentration detector 8, 9, 508, 5
09: Flow control valve 10, 510: Processing liquid discharge pipe 11, 511: Exhaust pipe 501a: Reaction tube 501b: Processing tank 507a: Absorbance meter 507b: Dissolved ozone concentration meter
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C02F 1/50 540 C02F 1/50 540A 540B 550 550L 1/72 1/72 Z ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C02F 1/50 540 C02F 1/50 540A 540B 550 550L 1/72 1/72 Z
Claims (4)
つ過酸化水素を添加する水処理方法であって、被処理水
の吸光度を検出することにより、添加するオゾン量を制
御することを特徴とする水処理方法。1. A water treatment method for adding and dissolving ozone to water to be treated and adding hydrogen peroxide, wherein the amount of ozone to be added is controlled by detecting the absorbance of the water to be treated. A water treatment method characterized by the above-mentioned.
つ過酸化水素を添加する水処理方法であって、被処理水
中の溶存オゾン濃度を検出することにより、添加するオ
ゾン量を制御することを特徴とする水処理方法。2. A water treatment method for adding and dissolving ozone to water to be treated and adding hydrogen peroxide, wherein the amount of ozone to be added is controlled by detecting the concentration of dissolved ozone in the water to be treated. A water treatment method, comprising:
つ過酸化水素を添加する水処理方法であって、被処理水
を処理する過程で発生する排ガス中の余剰オゾン濃度を
検出することにより、添加するオゾン量を制御すること
を特徴とする水処理方法。3. A water treatment method for adding and dissolving ozone to water to be treated, and adding hydrogen peroxide, wherein a concentration of excess ozone in exhaust gas generated in the process of treating the water to be treated is detected. Water treatment method characterized by controlling the amount of ozone to be added.
ン濃度および/または排ガス中の余剰オゾン濃度を検出
することにより、さらに、添加する過酸化水素量を制御
することを特徴とする、請求項1,2または3に記載の
水処理方法。4. The amount of hydrogen peroxide to be added is further controlled by detecting the absorbance of the water to be treated, the concentration of dissolved ozone in the water to be treated and / or the concentration of excess ozone in the exhaust gas. The water treatment method according to claim 1, 2, or 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25480396A JP3547573B2 (en) | 1996-09-26 | 1996-09-26 | Water treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25480396A JP3547573B2 (en) | 1996-09-26 | 1996-09-26 | Water treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1099878A true JPH1099878A (en) | 1998-04-21 |
JP3547573B2 JP3547573B2 (en) | 2004-07-28 |
Family
ID=17270115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25480396A Expired - Fee Related JP3547573B2 (en) | 1996-09-26 | 1996-09-26 | Water treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3547573B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000279974A (en) * | 1999-03-31 | 2000-10-10 | Takuma Co Ltd | Waste water treatment using ozone and hydrogen peroxide |
JP2005087814A (en) * | 2003-09-12 | 2005-04-07 | Fuji Electric Systems Co Ltd | Accelerated oxidation treatment method and apparatus |
CN114229990A (en) * | 2021-12-28 | 2022-03-25 | 北京首创生态环保集团股份有限公司 | Ozone adding control system and method for ozone catalytic oxidation process |
-
1996
- 1996-09-26 JP JP25480396A patent/JP3547573B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000279974A (en) * | 1999-03-31 | 2000-10-10 | Takuma Co Ltd | Waste water treatment using ozone and hydrogen peroxide |
JP2005087814A (en) * | 2003-09-12 | 2005-04-07 | Fuji Electric Systems Co Ltd | Accelerated oxidation treatment method and apparatus |
CN114229990A (en) * | 2021-12-28 | 2022-03-25 | 北京首创生态环保集团股份有限公司 | Ozone adding control system and method for ozone catalytic oxidation process |
Also Published As
Publication number | Publication date |
---|---|
JP3547573B2 (en) | 2004-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6991735B2 (en) | Free radical generator and method | |
JP5808663B2 (en) | Method and apparatus for treating 1,4-dioxane in wastewater | |
RU2148032C1 (en) | Method and apparatus for biological destruction of injurious impurities in water | |
JP5259311B2 (en) | Water treatment method and water treatment system used therefor | |
KR100581746B1 (en) | Water treatment device | |
JP3537995B2 (en) | Wastewater treatment method | |
JP3547573B2 (en) | Water treatment method | |
JP2007000767A (en) | Method and apparatus for treating water | |
JP3598022B2 (en) | Water treatment method using ozone and hydrogen peroxide | |
JPH11347576A (en) | Method and apparatus for treating water | |
JPH1157753A (en) | Removing method of toc component and device therefor | |
JP3697933B2 (en) | Water treatment method and apparatus using ozone | |
JP3803590B2 (en) | Hydrogen peroxide residual concentration controller | |
JP3617334B2 (en) | Water treatment method and apparatus | |
JP2000279977A (en) | Fluid treatment method and fluid treatment device | |
JP3556515B2 (en) | Wastewater treatment method using ozone and hydrogen peroxide | |
JP2001017995A (en) | Treatment of volatile organochlorine compound and device therefor | |
JPH08267077A (en) | High degree treating method of waste water | |
US20250091919A1 (en) | Method and system for water treatment using modified advanced oxidizing technology | |
JP3859866B2 (en) | Water treatment method | |
JPH09234474A (en) | Water treatment and device therefor | |
JP4628660B2 (en) | Accelerated oxidation treatment method | |
JPH1133570A (en) | Treatment of sewage containing dioxin | |
JP3558378B2 (en) | Water treatment method | |
CN112062262A (en) | System and method for efficiently treating high-concentration degradation-resistant wastewater by improved ozone catalysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040413 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040414 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090423 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090423 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100423 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100423 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110423 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120423 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130423 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140423 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |