JPH1096800A - Melting processing method for low level radioactive waste - Google Patents
Melting processing method for low level radioactive wasteInfo
- Publication number
- JPH1096800A JPH1096800A JP25165896A JP25165896A JPH1096800A JP H1096800 A JPH1096800 A JP H1096800A JP 25165896 A JP25165896 A JP 25165896A JP 25165896 A JP25165896 A JP 25165896A JP H1096800 A JPH1096800 A JP H1096800A
- Authority
- JP
- Japan
- Prior art keywords
- coal ash
- cesium
- level radioactive
- radioactive waste
- waste
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002844 melting Methods 0.000 title claims abstract description 32
- 230000008018 melting Effects 0.000 title claims abstract description 32
- 239000002925 low-level radioactive waste Substances 0.000 title claims abstract description 22
- 238000003672 processing method Methods 0.000 title 1
- 239000010883 coal ash Substances 0.000 claims abstract description 37
- 238000000034 method Methods 0.000 claims description 19
- 229910052792 caesium Inorganic materials 0.000 abstract description 31
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 abstract description 31
- 239000002893 slag Substances 0.000 abstract description 21
- 239000002699 waste material Substances 0.000 abstract description 11
- 239000000654 additive Substances 0.000 abstract description 3
- 230000005855 radiation Effects 0.000 abstract description 3
- 230000000996 additive effect Effects 0.000 abstract description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 4
- 229910052681 coesite Inorganic materials 0.000 abstract 2
- 229910052906 cristobalite Inorganic materials 0.000 abstract 2
- 239000000377 silicon dioxide Substances 0.000 abstract 2
- 235000012239 silicon dioxide Nutrition 0.000 abstract 2
- 229910052682 stishovite Inorganic materials 0.000 abstract 2
- 229910052905 tridymite Inorganic materials 0.000 abstract 2
- 229910018404 Al2 O3 Inorganic materials 0.000 abstract 1
- 230000002285 radioactive effect Effects 0.000 description 12
- 239000000155 melt Substances 0.000 description 11
- 239000002910 solid waste Substances 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- 238000004064 recycling Methods 0.000 description 7
- 239000002901 radioactive waste Substances 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 5
- 238000010309 melting process Methods 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- 239000002956 ash Substances 0.000 description 4
- 239000003245 coal Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000009835 boiling Methods 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000010881 fly ash Substances 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010128 melt processing Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Gasification And Melting Of Waste (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、低レベル放射性廃
棄物の減容化のための溶融固化処理方法に関する。更に
詳述すると、本発明は、原子力発電所で発生する放射性
廃棄物の溶融処理と火力発電所で発生する石炭灰の再利
用率の向上を同時に実現可能とする低レベル放射性廃棄
物の溶融処理方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for melting and solidifying low-level radioactive waste to reduce its volume. More specifically, the present invention provides a method for melting low-level radioactive waste that can simultaneously realize the melting of radioactive waste generated in a nuclear power plant and the improvement of the recycling rate of coal ash generated in a thermal power plant. About the method.
【0002】[0002]
【従来の技術】電気事業においてはエネルギーの電力変
換に際して発生する廃棄物の処分が大きな問題となって
いる。例えば原子力発電所で発生する放射性廃棄物や、
火力発電所で発生する石炭灰(主にフライアッシュであ
るが、残留灰を含む)である。2. Description of the Related Art In the electric power business, disposal of waste generated during the conversion of energy into electric power is a major problem. For example, radioactive waste from nuclear power plants,
Coal ash (mainly fly ash, but including residual ash) generated by thermal power plants.
【0003】放射性廃棄物は、その汚染レベルに応じて
さまざまな廃棄処理方法が開発されており、比較的低レ
ベルの放射性固体廃棄物の場合には、減容処理された後
に隔離して貯蔵されることが考えられている。この低レ
ベル放射性固体廃棄物の減容処理方法としては、プラズ
マ加熱や高周波誘導加熱等による溶融処理が研究されて
いる。Various disposal methods have been developed for radioactive waste in accordance with the level of contamination. In the case of relatively low-level radioactive solid waste, the radioactive waste is separated and stored after being reduced in volume. It is thought that. As a method of reducing the volume of the low-level radioactive solid waste, a melting treatment by plasma heating, high-frequency induction heating, or the like has been studied.
【0004】また、石炭灰の場合にはリサイクル法によ
って再資源化の促進が義務づけられており、例えばセメ
ント混和材としたりスラグ化して建築材などとして利用
されている。[0004] In the case of coal ash, promotion of recycling is obligated by the Recycling Law. For example, it is used as a cement admixture or slag and used as a building material.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、低レベ
ル放射性廃棄物の溶融処理技術を確立するためには、放
射性廃棄物中のセシウム(Cs)の揮発を抑えて溶融体
中に安定的に捕捉しておく技術の開発が必要である。特
に、セシウムは揮発し易い放射性核種であり、溶融体中
にセシウムを捕捉させておくことは放射線防護の観点か
ら有効であると共に貯蔵処分前に廃棄物の残留放射能を
確認する際の指標としても役立つ。このため、低レベル
放射性固体廃棄物の溶融処理技術を実現させるためにも
セシウムの捕捉方法の確立が望まれる。However, in order to establish a technique for melting low-level radioactive waste, it is necessary to suppress volatilization of cesium (Cs) in radioactive waste and stably capture cesium (Cs) in the melt. It is necessary to develop the technology to keep it In particular, cesium is a radionuclide that is easy to volatilize, and capturing cesium in the melt is effective from the viewpoint of radiation protection and is an indicator for confirming the residual radioactivity of waste before storage. Also helps. Therefore, it is desired to establish a method for capturing cesium in order to realize a low-level radioactive solid waste melting technique.
【0006】また、火力発電所から発生する石炭灰につ
いては、セメント混和材などとしてその有効利用が図ら
れているものの、再利用率は60%程度に止まってい
る。[0006] Coal ash generated from a thermal power plant has been effectively used as a cement admixture, but its recycling rate is only about 60%.
【0007】このことから、低レベル放射性廃棄物の処
理においては溶融処理時におけるセシウムの安全な捕捉
技術が、また石炭灰の有効利用については再利用率の向
上が望まれている。[0007] Therefore, in the treatment of low-level radioactive waste, there is a demand for a technique for safely capturing cesium during melting, and for an effective use of coal ash, an improvement in the recycling rate.
【0008】本発明は、廃棄物としての石炭灰を有効利
用し、かつ溶融体中へのセシウム捕捉率を向上させるこ
とが可能な低レベル放射性固体廃棄物の溶融処理方法を
提供することを目的とする。An object of the present invention is to provide a low-level radioactive solid waste melting method capable of effectively utilizing coal ash as waste and improving the cesium capture rate in the melt. And
【0009】[0009]
【課題を解決するための手段】かかる目的を達成するた
めに、本発明者等が種々研究した結果、低レベル放射性
固体廃棄物を溶融処理する場合に、揮発性核種の一つで
あるCsを溶融体中に安定的に捕捉するためには、溶融
体中のスラグ層の成分の内、SiO2 濃度またはAl2
O3濃度を高めることが効果的であることを確認した。
一方、石炭灰(フライアッシュを含む)の成分は、火力
発電所で使用する石炭の種類や燃焼条件等により異なる
ものの、SiO2 やAl2O3を多く含んでいる。In order to achieve the above object, the present inventors have conducted various studies. As a result, when melting low-level radioactive solid waste, Cs, which is one of volatile nuclides, is used. In order to stably capture in the melt, the SiO 2 concentration or Al 2
It was confirmed that increasing the O 3 concentration was effective.
On the other hand, the components of coal ash (including fly ash) vary depending on the type of coal used in the thermal power plant, the combustion conditions, and the like, but contain a large amount of SiO 2 and Al 2 O 3 .
【0010】本発明の低レベル放射性廃棄物の溶融処理
方法は、かかる知見に基づいて成されたものであり、石
炭灰を添加して低レベル放射性廃棄物を溶融処理するよ
うにしたものである。この場合、石炭灰が溶融体中のス
ラグ層に取り込まれ、スラグ層のSiO2 濃度を高める
ばかりかAl2O3濃度も高めて塩基度を下げている。し
たがって、溶融温度がセシウムの沸点を遥かに越えた高
温になっても、セシウムの揮発が抑制されて効果的に溶
融体中に捕捉される。The method for melting low-level radioactive waste of the present invention has been made based on such knowledge, and is intended to melt-process low-level radioactive waste by adding coal ash. . In this case, coal ash is taken into the slag layer in the melt, and not only increases the SiO 2 concentration of the slag layer but also increases the Al 2 O 3 concentration to lower the basicity. Therefore, even when the melting temperature becomes a high temperature far exceeding the boiling point of cesium, volatilization of cesium is suppressed and the cesium is effectively captured in the melt.
【0011】ここで、石炭灰としては火力発電所等から
排出される石炭灰を使用することが好ましい。この場
合、火力発電所等の廃棄物である石炭灰の再利用率をも
高めることができる。Here, it is preferable to use coal ash discharged from a thermal power plant or the like as the coal ash. In this case, the recycling rate of coal ash, which is waste such as thermal power plants, can be increased.
【0012】[0012]
【発明の実施の形態】以下、本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
【0013】本発明の低レベル放射性廃棄物の溶融処理
方法は、低レベル放射性廃棄物を溶融処理する際に石炭
灰を添加することに特徴を有している。溶融処理として
は、特に限定されるものではないが、例えばプラズマ加
熱、高周波誘導加熱又はマイクロ波加熱等を熱源とした
溶融炉の使用が好ましい。いずれの加熱法による溶融処
理においても、溶融炉内に廃棄物と適宜量の石炭灰を投
入して加熱することによって、低レベル放射性廃棄物の
溶融による減容化が図られる。The method for melting low-level radioactive waste according to the present invention is characterized in that coal ash is added when melting low-level radioactive waste. The melting treatment is not particularly limited, but it is preferable to use a melting furnace using, for example, plasma heating, high-frequency induction heating, microwave heating, or the like as a heat source. In any of the heating methods, the volume of the low-level radioactive waste is reduced by melting the low-level radioactive waste by introducing the waste and an appropriate amount of coal ash into the melting furnace and heating.
【0014】石炭灰の添加は、セシウムを効率良く捕捉
するためには、低レベル放射性固体廃棄物中のセシウム
が揮発し始める前に石炭灰が溶融してスラグ層中に取り
込まれておくことが必要であることから、少なくとも低
レベル放射性固体廃棄物の温度がセシウムの沸点に達す
る前であれば特にその投入時期について限定されるもの
ではない。例えば、石炭灰と廃棄物とを混ぜてあらかじ
め溶融炉内に投入してから溶融処理を開始したり、溶融
処理中に廃棄物と一緒にあるいは廃棄物の投入に先だっ
て若しくは廃棄物の投入の後に石炭灰を投入しても良
い。In order to efficiently capture cesium, coal ash should be melted and incorporated into the slag layer before cesium in low-level radioactive solid waste starts to volatilize. Because of the necessity, there is no particular limitation on the charging time of the low-level radioactive solid waste as long as it is at least before the temperature of the low-level radioactive solid waste reaches the boiling point of cesium. For example, coal ash and waste are mixed and put into a melting furnace in advance before starting the melting process, or during the melting process together with the waste or prior to or after the input of the waste Coal ash may be charged.
【0015】溶融処理中の低レベル放射性固体廃棄物中
のセシウムの揮発は、溶融温度と溶融体中のスラグ層の
成分によって影響を受ける。一般的には、低レベル放射
性固体廃棄物の溶融温度が約800℃に達すると、セシ
ウムが盛んに揮発し始める。しかしながら、石炭灰を添
加して溶融処理を行うことで、スラグ層中のSiO2濃
度が高まり、かつ塩基度が低下するので、溶融温度が1
500℃〜1600℃程度に達してもセシウムがスラグ
層に捕捉されて揮発が抑制される。The volatilization of cesium in low-level radioactive solid waste during melt processing is affected by the melting temperature and the composition of the slag layer in the melt. Generally, when the melting temperature of low-level radioactive solid waste reaches about 800 ° C., cesium starts to volatilize vigorously. However, by adding coal ash and performing melting treatment, the concentration of SiO 2 in the slag layer increases and the basicity decreases, so that the melting temperature is 1%.
Even when the temperature reaches about 500 ° C. to 1600 ° C., cesium is trapped in the slag layer and volatilization is suppressed.
【0016】そのことを確認するため、溶融体中のスラ
グ層のSiO2 濃度とセシウム捕捉率の関係およびスラ
グ層の塩基度とセシウム捕捉率との関係を実験で求め
た。その結果を図1および図2に示す。実験は、低レベ
ル放射性廃棄物に石炭灰を添加して溶融処理を行った場
合と、添加せずに溶融処理を行った場合とについて行っ
た。更に、石炭灰を添加しない場合については、低レベ
ル放射性廃棄物のSiO 2 濃度と塩基度が変わるように
成分比を調整した2種類の試料A,Bを添加剤として用
いてそれぞれ実験を行った。因みに、低レベル放射性固
体廃棄物に含まれる不燃物の主成分は、SiO2 、Al
2O3、Fe2O3、CaOである。そこで、添加剤中のこ
れらの成分比を変えてスラグ層中のSiO2 濃度と塩基
度が平均的な低レベル放射性廃棄物のものと変わらない
状態とする試料AとそれよりもSiO2 濃度が高くかつ
塩基度が低い試料Bとを作製した。また、各実験での溶
融条件は、試料A,Bの組成比および石炭灰を添加する
こと以外は同じとした。さらに、加熱手段としてはプラ
ズマ加熱を使用し、通電のために各試料A,B又は石炭
灰とともに鉄を投入し溶融処理の初期には鉄を使って電
流を流している。ただし、実験では便宜上プラズマ発生
のために鉄を加えたが、実際の溶融処理では廃棄物中に
導電体例えばSUS等が含まれていたり、溶融処理物側
に金属がなくともプラズマを発生させる炉を利用するこ
となどによって溶融処理が可能となるので、運転開始時
や可動中に鉄を投入する必要はない。In order to confirm this, the slurry in the melt was
Layer SiOTwoRelationship between concentration and cesium capture rate
The relationship between the basicity of the carbon layer and the cesium trapping rate was determined experimentally.
Was. The results are shown in FIGS. The experiment is low level
Where coal ash is added to radioactive waste for melting
And the case where melting treatment is performed without adding
Was. Furthermore, when coal ash is not added, low level
Radioactive waste SiO TwoSo that the concentration and basicity change
Using two types of samples A and B with adjusted component ratio as additives
Each experiment was carried out. By the way, low-level radioactive solid
The main component of incombustible substances contained in body waste is SiOTwo, Al
TwoOThree, FeTwoOThree, CaO. Therefore, this
By changing the ratio of these components, the SiO in the slag layerTwoConcentration and base
Degree is the same as that of average low-level radioactive waste
Sample A to be in the state and SiOTwoHigh concentration and
Sample B having a low basicity was prepared. In addition, in each experiment
As for the melting conditions, the composition ratio of samples A and B and the addition of coal ash
Other than that, it was the same. In addition, heating means
Using Zuma heating, each sample A, B or coal for energization
Iron is added together with the ash, and in the early stage of the melting process,
The current is flowing. However, plasma was generated for convenience in the experiment.
Iron was added for
Conductors such as SUS are contained,
Use a furnace that generates plasma even if there is no metal
When the operation starts,
There is no need to put iron while moving.
【0017】この実験結果を示す図1及び図2からも明
らかなように、スラグ層中のSiO 2 濃度が高くなるほ
どセシウムのスラグ層への捕捉率が向上し、また、スラ
グ層の主成分からみた塩基度が低くなるほどセシウムの
スラグ層への捕捉率が向上した。即ち、セシウムのスラ
グ層への捕捉率を向上させるためには、スラグ層のSi
O2 濃度を高くし、塩基度を低くすれば良いことがわか
る。そして、SiO2濃度の増加および塩基度の低下の
いずれにも溶融処理時の石炭灰の添加が効果的であるこ
とが明らかである。火力発電所などから排出される石炭
灰は、SiO2とAl2O3を主成分としている。したが
って、低レベル放射性固体廃棄物の溶融処理時に石炭灰
を添加することによって、スラグ層中のSiO2 濃度が
高まると共に塩基度が低くなり、セシウムの捕捉率を向
上させることができる。即ち、石炭灰は、セシウムの捕
捉率を向上させる添加剤として有用であることがわか
る。FIG. 1 and FIG. 2 show the results of this experiment.
As you can see, the SiO in the slag layer TwoThe higher the concentration
The rate of cesium trapping in the slag layer is improved,
The lower the basicity from the viewpoint of the main component of the
The capture rate in the slag layer was improved. In other words, cesium slurry
In order to improve the trapping rate in the slag layer,
OTwoIt turns out that you only need to increase the concentration and lower the basicity
You. And SiOTwoIncrease in concentration and decrease in basicity
In any case, the addition of coal ash during melting is effective.
It is clear. Coal emitted from thermal power plants
Ash is SiOTwoAnd AlTwoOThreeAs a main component. But
Therefore, coal ash is used during the melting process of low-level radioactive solid waste.
Is added to make the SiO in the slag layerTwoConcentration
As the concentration increases, the basicity decreases, improving the capture rate of cesium.
Can be up. In other words, coal ash captures cesium.
It turns out that it is useful as an additive to improve trapping rate
You.
【0018】因みに、セシウム捕捉率は、スラグ層中の
Cs量を処理前の試料中のCs全量で除して100%を
掛けて求められる。また、塩基度は、(Fe2O3+Ca
O)の重量を(SiO2 +Al2O3)の重量で除した値
である。Incidentally, the cesium trapping rate is obtained by dividing the amount of Cs in the slag layer by the total amount of Cs in the sample before the treatment and multiplying by 100%. The basicity is (Fe 2 O 3 + Ca
O) is divided by the weight of (SiO 2 + Al 2 O 3 ).
【0019】なお、上述の形態は本発明の好適な形態の
一例ではあるがこれに限定されるものではなく本発明の
要旨を逸脱しない範囲において種々変形実施可能であ
る。The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the gist of the present invention.
【0020】[0020]
【発明の効果】以上の説明より明らかなように、本発明
の低レベル放射性廃棄物の溶融処理方法では、石炭灰を
添加して低レベル放射性廃棄物を溶融処理するようにし
ているので、石炭灰が溶融体のスラグ層に取り込まれて
スラグ層中のSiO2 濃度とAl2O3濃度を高めると共
に塩基度を下げる。したがって、揮発性核種であるセシ
ウムをスラグ層中に安定的に捕捉してその揮発を抑制す
ることができる。このため、放射線防護に寄与すること
ができ、また、低レベル放射性廃棄物を貯蔵する場合の
残留放射能の計測にも役立たせることができる。As is clear from the above description, in the method for melting low-level radioactive waste of the present invention, coal ash is added to melt-process low-level radioactive waste. The ash is taken into the slag layer of the melt to increase the SiO 2 concentration and the Al 2 O 3 concentration in the slag layer and lower the basicity. Therefore, it is possible to stably capture cesium, which is a volatile nuclide, in the slag layer and suppress its volatilization. For this reason, it can contribute to radiation protection, and can also be useful for measuring residual radioactivity when storing low-level radioactive waste.
【0021】また、請求項2記載の発明では、石炭灰と
して火力発電所からの廃棄物である石炭灰を利用してい
るので、原子力発電所からの低レベル放射性廃棄物の減
容化のための溶融処理でセシウムの揮発を抑えて捕捉率
を上げることを実現する一方、火力発電所から排出され
る石炭灰の再利用率をも向上させることができ、一挙両
得である。According to the second aspect of the present invention, since coal ash which is waste from a thermal power plant is used as coal ash, the volume of low-level radioactive waste from a nuclear power plant can be reduced. In addition to improving the capture rate by suppressing the volatilization of cesium in the melting process, the recycling rate of coal ash discharged from thermal power plants can also be improved, which is a win-win.
【図1】溶融体のスラグ層中のSiO2 濃度とセシウム
捕捉率との関係を示す図である。FIG. 1 is a diagram showing the relationship between the SiO 2 concentration in a slag layer of a melt and the cesium trapping rate.
【図2】溶融体のスラグ層中の塩基度とセシウム捕捉率
との関係を示す図である。FIG. 2 is a diagram showing a relationship between basicity in a slag layer of a melt and cesium capture rate.
Claims (2)
て溶融処理することを特徴とする低レベル放射性廃棄物
の溶融処理方法。1. A method for melting low-level radioactive waste, the method comprising adding coal ash to low-level radioactive waste for melting.
石炭灰であることを特徴とする請求項1記載の低レベル
放射性廃棄物の溶融処理方法。2. The method of claim 1, wherein the coal ash is coal ash discharged from a thermal power plant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25165896A JPH1096800A (en) | 1996-09-24 | 1996-09-24 | Melting processing method for low level radioactive waste |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25165896A JPH1096800A (en) | 1996-09-24 | 1996-09-24 | Melting processing method for low level radioactive waste |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1096800A true JPH1096800A (en) | 1998-04-14 |
Family
ID=17226099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25165896A Pending JPH1096800A (en) | 1996-09-24 | 1996-09-24 | Melting processing method for low level radioactive waste |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1096800A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013246081A (en) * | 2012-05-28 | 2013-12-09 | Few Technology Co Ltd | Method for processing burned ash containing radioactive material and processed solid matter |
JP2014006168A (en) * | 2012-06-26 | 2014-01-16 | Ngk Insulators Ltd | Method for treating radioactive cesium-contaminated object |
JP2014106017A (en) * | 2012-11-26 | 2014-06-09 | Taiheiyo Cement Corp | Removing method of radioactive cesium and calcined object manufacturing method |
JP2014190882A (en) * | 2013-03-28 | 2014-10-06 | Meiwa Industries Ltd | Processing method for radioactive cesium-adhered biomass |
JP2016153809A (en) * | 2016-05-02 | 2016-08-25 | 株式会社クボタ | Radioactive cesium separation/concentration method and radioactive cesium separation/concentration apparatus |
JP2017032593A (en) * | 2016-11-17 | 2017-02-09 | Jfeエンジニアリング株式会社 | Ash processing equipment containing radioactive cesium oxide |
-
1996
- 1996-09-24 JP JP25165896A patent/JPH1096800A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013246081A (en) * | 2012-05-28 | 2013-12-09 | Few Technology Co Ltd | Method for processing burned ash containing radioactive material and processed solid matter |
JP2014006168A (en) * | 2012-06-26 | 2014-01-16 | Ngk Insulators Ltd | Method for treating radioactive cesium-contaminated object |
JP2014106017A (en) * | 2012-11-26 | 2014-06-09 | Taiheiyo Cement Corp | Removing method of radioactive cesium and calcined object manufacturing method |
JP2014190882A (en) * | 2013-03-28 | 2014-10-06 | Meiwa Industries Ltd | Processing method for radioactive cesium-adhered biomass |
JP2016153809A (en) * | 2016-05-02 | 2016-08-25 | 株式会社クボタ | Radioactive cesium separation/concentration method and radioactive cesium separation/concentration apparatus |
JP2017032593A (en) * | 2016-11-17 | 2017-02-09 | Jfeエンジニアリング株式会社 | Ash processing equipment containing radioactive cesium oxide |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6250651B2 (en) | Method of consolidating radioactive material by hot isostatic pressing (HIP) | |
GB2209909A (en) | Apparatus for thermal decomposition treatment of radioactive waste | |
JPS6319231B2 (en) | ||
KR101865353B1 (en) | Method for vitrifying radioactive rare earth waste | |
JPH1096800A (en) | Melting processing method for low level radioactive waste | |
GB2141866A (en) | Method of decontamination of radioactively contaminated scrap iron and/or steel | |
CN114188061B (en) | Synergistic solidification treatment method for radioactive waste | |
KR100299100B1 (en) | Hot melting system and method for combustible and non-combustible radioactive wastes | |
KR102067563B1 (en) | Handling method of radioactive solution | |
Gombert et al. | Cold-Crucible design parameters for next generation HLW melters | |
JPS642240B2 (en) | ||
JPH05192698A (en) | Method for treating high level of environmental pollutant residue | |
JP2020186958A (en) | Method for disposing of radioactive wastes | |
JP2005164320A (en) | Fusion treatment method for radioactive incombustible solid waste | |
RU2187158C1 (en) | Method for immobilizing radioactive and toxic wastes | |
JPS6236594A (en) | Melting solidifying processing method of radioactive waste | |
JP4240959B2 (en) | How to recycle phosphate sludge | |
JPS6251440B2 (en) | ||
JP3956336B2 (en) | Method for melting radioactive waste | |
JP2004294308A (en) | Melting processing method of miscellaneous solid waste | |
JP2003084092A (en) | Method for disposal of concentrated waste liquid | |
JPS63241400A (en) | Solidifying processing method of radioactive waste | |
JP6019439B2 (en) | Treatment method for radioactive cesium contaminants | |
Song et al. | Characteristics of Melting for the Radioactive Aluminum Wastes From the Decommissioned Nuclear Facilities | |
JP2002116296A (en) | Processing method for mixed wastage including asbestos and metal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050809 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050831 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051028 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060830 |