[go: up one dir, main page]

JPH1096020A - Manufacture of ts780mpa class high tensile-strength steel excellent in resistance to hot dip galvanizing crack - Google Patents

Manufacture of ts780mpa class high tensile-strength steel excellent in resistance to hot dip galvanizing crack

Info

Publication number
JPH1096020A
JPH1096020A JP25182896A JP25182896A JPH1096020A JP H1096020 A JPH1096020 A JP H1096020A JP 25182896 A JP25182896 A JP 25182896A JP 25182896 A JP25182896 A JP 25182896A JP H1096020 A JPH1096020 A JP H1096020A
Authority
JP
Japan
Prior art keywords
less
steel
dip galvanizing
strength
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25182896A
Other languages
Japanese (ja)
Inventor
Noriki Wada
典己 和田
Toshifumi Kojima
敏文 小嶋
Takekazu Arakawa
武和 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP25182896A priority Critical patent/JPH1096020A/en
Publication of JPH1096020A publication Critical patent/JPH1096020A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a steel having >=TS781MPa strength and free from the occurrence of galvanizing crack in a weld zone. SOLUTION: A continuously cast slab, having a composition where one or >=2 kinds among 0.04-0.08%, by weight, C, 0.1-0.6% So, 0.8-0.6% Mn, <=0.02% P, <=0.002% S, 0.8-0.8% Cu, 0.4-1.0%Ni, 0.01-0.04% Nb, 0.01-0.05% To, 0.001-0.005% Ca, 0.002-0.006% N, 0.005-0.1% Al, <=0.0002% B, <=0.005% O, <=0.5% Cr, <=0.4% Mo, and <=0.08% V are added and which has the valance consisting of iron with impurities, is heated to <=1100 deg.C. After rolling is finished at 950-720 deg.C, water cooling is performed without delay and stopped at <=250 deg.C. Then, aging treatment is carried out at 450-650 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉄塔、橋梁、建築
物などの防錆のために、溶接後、溶融亜鉛メッキを施さ
れる低合金高張力鋼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-alloy, high-strength steel that is hot-dip galvanized after welding for the purpose of preventing rust on steel towers, bridges, buildings, and the like.

【0002】[0002]

【従来の技術】鉄塔、橋梁、建築物の防錆のため、それ
らに用いられる鋼材を構造部材に溶接した後、溶融亜鉛
メッキするという方法が広く使用されてきた。その際、
溶接熱影響部に割れが発生する場合がある。いわゆる、
液体金属脆化によるものである。
2. Description of the Related Art In order to prevent rust on steel towers, bridges, and buildings, a method has been widely used in which steel used for them is welded to a structural member and then hot-dip galvanized. that time,
Cracks may occur in the heat affected zone. So-called,
This is due to liquid metal embrittlement.

【0003】この割れを防止するために、精力的な研究
がなされてきた。それらの成果が鉄と鋼vol.79
(1993)p.1108−p.1114にまとめられ
ている。この文献はファブリケーターと鉄鋼4社で共同
執筆されたものであり、現在のところ公表された技術の
中で信頼がおける最先端のものと位置づけられている。
この論文では、鋼中の混入ボロンの影響について詳細に
述べており、Bは2ppm以下で、かつCEZmod=
C+Si/17+Mn/7.5+Cu/13+Ni/1
7+Cr/4.5+Mo/3+V/1.5+Nb/2+
Ti/4.5+420B≦0.44%を満たせば引張強
度(TS)590MPa級の鋼では、溶接後の溶融亜鉛
メッキ割れが発生しないということを明らかにしてい
る。
[0003] In order to prevent this cracking, intensive research has been made. Those achievements are iron and steel vol. 79
(1993) p. 1108-p. 1114. This document was co-authored by a fabricator and four steel companies and is currently considered the most reliable and cutting-edge technology published.
This paper describes in detail the effect of boron contamination in steel, B is less than 2 ppm, and CEZmod =
C + Si / 17 + Mn / 7.5 + Cu / 13 + Ni / 1
7 + Cr / 4.5 + Mo / 3 + V / 1.5 + Nb / 2 +
It has been clarified that, if Ti / 4.5 + 420B ≦ 0.44% is satisfied, hot-dip galvanizing cracking does not occur after welding in a steel having a tensile strength (TS) of 590 MPa.

【0004】[0004]

【発明が解決しようとする課題】高張力鋼の成分設計で
は、一般に焼入性を高める元素や析出強化する元素が添
加されている。しかし、CEZmodの式でもわかるよ
うに、添加元素のほとんどすべては耐溶融亜鉛メッキ割
れ性を劣化させてしまうので、TS780MPa以上の
強度を確保し、且つ溶接部で亜鉛メッキ割れが発生しな
い鋼を開発するのは不可能視されてきた。
In the composition design of high-strength steels, elements that enhance hardenability and elements that strengthen precipitation are generally added. However, as can be seen from the CEZmod equation, almost all of the added elements deteriorate the hot-dip galvanizing cracking resistance, so a steel with a strength of at least TS780 MPa and no galvanizing cracking in the weld zone has been developed. It has been considered impossible to do so.

【0005】本発明の課題は、TS780MPa以上の
強度と溶接部で耐亜鉛メッキ割れ性が発生しない鋼の製
造方法を提供するものである。
[0005] An object of the present invention is to provide a method for producing steel which has a strength of TS780 MPa or more and does not cause galvanizing cracking resistance in a welded portion.

【0006】[0006]

【課題を解決するための手段】本発明者は、上記の状況
を鑑み、耐溶融亜鉛メッキ割れ性を上昇させる添加元素
は無いか、また、TS780MPa以上の強度と耐亜鉛
メッキ割れ性を両立する成分設計はいかなるものかと鋭
意研究した。その結果、0.8%以上のCuを添加しε
−Cuの析出強化を利用することで焼き入れ性をあげる
C等の元素を極力低減し、さらにTi−Ca添加を行う
ことで耐溶融亜鉛メッキ割れ性が著しく改善され、TS
780MPa以上の強度と耐亜鉛メッキ割れ性を両立で
きることを発見した。
In view of the above-mentioned situation, the present inventor has determined that there is no additional element for increasing the hot-dip galvanizing cracking resistance, and to achieve both the strength of TS780 MPa or more and the galvanizing cracking resistance. I did intensive research on what kind of ingredient design was. As a result, 0.8% or more of Cu was added and ε
-The use of precipitation strengthening of Cu minimizes elements such as C, which enhance hardenability, and further improves the hot-dip galvanizing cracking resistance by adding Ti-Ca.
It has been discovered that strength of 780 MPa or more and galvanizing crack resistance can be achieved at the same time.

【0007】本発明は、重量%で、C:0.04%以上
0.08%以下、Si:0.1%以上0.6%以下、M
n:0.8%以上1.6%以下、P:0.02%以下、
S:0.002%以下、Cu:0.8%以上1.8%以
下、Ni:0.4%以上1.0%以下、Nb:0.01
%以上0.04%以下、Ti:0.01%以上0.05
%以下、Ca:0.001%以上0.005%以下、
N:0.002%以上0.006%以下、Al:0.0
05%以上0.1%以下、B:0.0002%以下、
O:0.005%以下、さらに、Cr:0.5%以下、
Mo:0.4%以下、V:0.08%以下を1種または
2種以上が添加され、残部が鉄および不純物からなる組
成を有する連続鋳造スラブを、1100℃以上に加熱し
950℃以下720℃以上で圧延を終了し、ただちに水
冷し250℃以下で水冷を停止した後、450℃以上6
50℃以下で時効処理することを特徴とする溶接熱影響
部の耐溶融亜鉛メッキ割れ性に優れた引張強度780M
Pa以上の高張力鋼の製造方法である。
In the present invention, C: 0.04% to 0.08%, Si: 0.1% to 0.6%, M
n: 0.8% or more and 1.6% or less, P: 0.02% or less,
S: 0.002% or less, Cu: 0.8% or more and 1.8% or less, Ni: 0.4% or more and 1.0% or less, Nb: 0.01
% To 0.04%, Ti: 0.01% to 0.05
% Or less, Ca: 0.001% or more and 0.005% or less,
N: 0.002% to 0.006%, Al: 0.0
05% or more and 0.1% or less, B: 0.0002% or less,
O: 0.005% or less, Cr: 0.5% or less,
Mo: 0.4% or less, V: 0.08% or less, one or two or more kinds are added, and a continuous cast slab having a composition composed of iron and impurities is heated to 1100 ° C or more and 950 ° C or less. Finish rolling at 720 ° C or higher, immediately cool with water and stop water cooling at 250 ° C or lower.
Tensile strength of 780M with excellent hot-dip galvanizing crack resistance in the heat affected zone of welding characterized by aging at 50 ° C or less
This is a method for producing high-tensile steel of Pa or higher.

【0008】[0008]

【発明の実施の形態】以下に本発明の詳細を示す。ま
ず、成分範囲限定理由について述べる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below. First, the reasons for limiting the component ranges will be described.

【0009】0.8%≦Cu≦1.8% 溶接部熱影響部の組織が明瞭な旧オーステナイト粒界を
持つ硬化組織ほど、亜鉛メッキ割れが発生しやすい。母
材の引張強度を780MPa以上確保するには、従来、
C,Mn,Cr,Moなどの焼き入れ性を高める元素の
多量の添加が必要なため、溶接部熱影響部の組織が明瞭
な旧オーステナイト粒界を持つ硬化組織になり、亜鉛メ
ッキ割れが発生してしまう。
0.8% ≦ Cu ≦ 1.8% A hardened structure having a prior austenite grain boundary in which the structure of the heat-affected zone in the weld zone is clearer is more likely to cause galvanization cracking. Conventionally, in order to secure the tensile strength of the base material of 780 MPa or more,
Since a large amount of elements such as C, Mn, Cr, and Mo, which enhance hardenability, must be added, the structure of the heat-affected zone of the weld becomes a hardened structure with a prior austenite grain boundary, and galvanization cracks occur. Resulting in.

【0010】本発明では、ε−Cuの析出強化を利用す
ることで焼き入れ性をあげる元素を低減する。0.8%
未満のCu添加では母材の引張強度を780MPa以上
確保するだけのε−Cuの析出強化が得られず、1.8
%を超えるCu添加は母材の靱性劣化、Cu割れの危険
性が高まる。したがって、Cu量を0.8%以上1.8
%以下に限定した。
In the present invention, elements that enhance hardenability are reduced by utilizing precipitation strengthening of ε-Cu. 0.8%
If less Cu is added, the precipitation strengthening of ε-Cu that can secure the tensile strength of the base material of 780 MPa or more cannot be obtained, so that 1.8
%, The risk of deterioration of the toughness of the base material and Cu cracking increases. Therefore, the amount of Cu is set to 0.8% or more to 1.8%.
% Or less.

【0011】0.01%≦Ti≦0.05% 0.001%≦Ca≦0.005% 本発明の第2特徴は、Ti−Caの複合添加である。溶
接部の亜鉛メッキ割れを防止するには、溶接加熱時の熱
影響部のオーステナイト粒径を細くし、溶接後の冷却
時、旧オーステナイト粒径にフェライトを析出させるこ
とが重要である。CaとTiを複合添加すると、TiN
が著しく細くなり、溶接加熱時の溶接熱影響部のオース
テナイト粒の成長抑制し、溶接後の冷却時には、フェラ
イトの核生成サイトとして作用し、溶接熱影響部の組織
は粒界フェライトが析出した細い組織が得られることが
判明した。Tiが0.01%未満では上記のような溶接
熱影響部の組織が得るだけの十分な数のTiNがえられ
ず、0.05%を超える添加をしてもTiNの数の増加
にはつながらずTiCを生成し溶接熱影響部の脆化を招
く。よって、Ti量を0.01以上0.05以下に限定
した。また、0.001%未満のCa添加では上記Ti
Nの微細化効果が十分でなく粒界フェライトが析出した
細い組織を有する熱影響部が得られない。また、0.0
05%を超えるCaの添加は鋼の清浄度を低下させ靱性
劣化を招く。よって、Caは0.001%以上0.00
5%以下に限定した。
0.01% ≦ Ti ≦ 0.05% 0.001% ≦ Ca ≦ 0.005% The second feature of the present invention is a composite addition of Ti—Ca. In order to prevent galvanized cracks in the weld, it is important to reduce the austenite grain size in the heat-affected zone during welding heating and to precipitate ferrite in the old austenite grain size during cooling after welding. When Ca and Ti are added in combination, TiN
Significantly reduces the growth of austenite grains in the weld heat affected zone during welding heating, and acts as a nucleation site for ferrite during cooling after welding.The structure of the weld heat affected zone is thin with grain boundary ferrite precipitated. It turned out that the tissue was obtained. If Ti is less than 0.01%, a sufficient number of TiNs to obtain the above-described structure of the heat affected zone cannot be obtained. It generates TiC and leads to embrittlement of the heat affected zone. Therefore, the amount of Ti is limited to 0.01 or more and 0.05 or less. Also, if less than 0.001% of Ca is added, the above Ti
The effect of N refinement is not sufficient, and a heat-affected zone having a fine structure in which grain boundary ferrite is precipitated cannot be obtained. Also, 0.0
Addition of Ca exceeding 0.05% lowers the cleanliness of the steel and causes deterioration of toughness. Therefore, Ca is 0.001% or more and 0.001% or more.
Limited to 5% or less.

【0012】Cu且つTi−Ca添加の効果を図1にま
とめる。縦軸のSLM400(後述する)は耐亜鉛メッ
キ割れ指数であり、高い程、優れた耐亜鉛メッキ性を有
することを意味する。従来の焼き入れ性をあげる元素で
あるCやMnやCrやMoを多量に含有した鋼に比較
し、Cu添加によりC等の元素の添加を極力抑えた鋼は
SLM400とTSのバランスが向上している。さらに
Ti−Gaを添加した鋼は、一層のSLMの向上が確認
された。
FIG. 1 summarizes the effects of adding Cu and Ti—Ca. SLM400 (described later) on the vertical axis is a galvanization resistance cracking index. The higher the value, the more excellent the galvanization resistance. Compared to conventional steels containing a large amount of C, Mn, Cr, and Mo, which are elements that improve hardenability, steels with the addition of elements such as C minimized by adding Cu improve the balance between SLM400 and TS. ing. Further, it was confirmed that the steel further added with Ti-Ga further improved the SLM.

【0013】0.04%≦C≦0.08% Cは、強度を高めるのに必須の元素であるが、著しく溶
接熱影響部を硬化させる。本発明では、ε−Cuの析出
強化を利用するので、TS780MPa以上を確保する
のに0.08%を超えるCの添加は不要である。また、
0.04%未満のC量ではTS780MPa以上を確保
するのが困難である。0.04%以上0.08%以下の
添加でTS780MPa以上の強度が得られ、溶接熱影
響部の硬さも亜鉛メッキ割れを引き起こすまでには硬化
しない。
0.04% ≦ C ≦ 0.08% C is an essential element for increasing the strength, but remarkably hardens the heat affected zone by welding. In the present invention, since precipitation strengthening of ε-Cu is used, addition of C exceeding 0.08% is not necessary to secure TS780 MPa or more. Also,
If the amount of C is less than 0.04%, it is difficult to secure TS780 MPa or more. With an addition of 0.04% or more and 0.08% or less, a strength of TS780MPa or more can be obtained, and the hardness of the heat affected zone does not harden until zinc plating cracks are caused.

【0014】0.1%≦Si≦0.6% Siは、メッキ後の外観状況と関係しており、0.1%
未満0.6%超えではメッキ焼けが発生し易くなる。よ
って、0.1%以上0.6%以下に限定した。
0.1% ≦ Si ≦ 0.6% Si is related to the appearance after plating, and 0.1% ≦ Si ≦ 0.6%.
If it is less than 0.6% and the plating is burnt easily. Therefore, it is limited to 0.1% or more and 0.6% or less.

【0015】0.8%≦Mn≦1.6% Mnは強度、靱性の面から必須の元素であるが、0.8
%未満では780MPa以上の強度を得るのが困難で、
1.6%を超えると溶接熱影響部を著しく硬化させるた
め、Mn:0.8%以上1.6%以下に限定した。
0.8% ≦ Mn ≦ 1.6% Mn is an essential element in view of strength and toughness.
%, It is difficult to obtain a strength of 780 MPa or more,
When the content exceeds 1.6%, the heat affected zone of the weld is significantly hardened. Therefore, the Mn content is limited to 0.8% or more and 1.6% or less.

【0016】P≦0.02% Pは溶接高温割れの発生を助長する元素であり、0.0
2%を超えて含有するとその危険性が著しく高まるので
0.02%以下に限定した。
P ≦ 0.02% P is an element that promotes the occurrence of hot cracking in the weld.
When the content exceeds 2%, the danger is significantly increased, so that the content is limited to 0.02% or less.

【0017】S≦0.002% SはCaと化合し、CaSを形成する。0.002%を
超えて含有しているとCaSのクラスターを形成し、鋼
の靱性、溶接性を著しく劣化させる。したがって、0.
002%以下に限定した。
S ≦ 0.002% S combines with Ca to form CaS. If the content exceeds 0.002%, a CaS cluster is formed, and the toughness and weldability of the steel are significantly deteriorated. Therefore, 0.
002% or less.

【0018】0.4%≦Ni≦1.0% Niは、Cu割れを防止させるのに有効で、本発明では
必須の元素である。そのためにはCu添加量の半分程度
の添加が必要なため、下限を0.4%に限定した。上限
は、経済性の観点から、1.0%に限定した。
0.4% ≦ Ni ≦ 1.0% Ni is effective for preventing Cu cracking and is an essential element in the present invention. For that purpose, it is necessary to add about half of the added amount of Cu, so the lower limit is limited to 0.4%. The upper limit was limited to 1.0% from the viewpoint of economy.

【0019】0.01%≦Nb≦0.04% Nbは直接焼き入れを前提とした本発明においては、必
須の元素である。少量添加で著しく強度上昇させ得る。
しかし、0.01%未満の添加では、780MPa以上
の強度を得るのが困難で、0.04%を超える添加は鋼
の脆化を招くので、0.01%以上0.04%以下に限
定した。
0.01% ≦ Nb ≦ 0.04% Nb is an essential element in the present invention on the premise of direct quenching. The strength can be significantly increased by adding a small amount.
However, if it is less than 0.01%, it is difficult to obtain a strength of 780 MPa or more, and if it exceeds 0.04%, it causes embrittlement of the steel, so it is limited to 0.01% or more and 0.04% or less. did.

【0020】0.002%≦N≦0.006% Nは、溶接熱影響部でTiNを生成するのに必要な元素
である。0.002%未満の含有では粒界フェライトが
析出した細い組織を有する熱影響部を得るに十分な数の
TiNが得られない。また、0.006%を超えるNの
含有は、溶接部の靱性を劣化させてしまう。よって、N
含有量は0.002%以上0.006%以下に限定し
た。
0.002% ≦ N ≦ 0.006% N is an element necessary for generating TiN in the heat affected zone. If the content is less than 0.002%, TiN cannot be obtained in a sufficient number to obtain a heat-affected zone having a fine structure with grain boundary ferrite precipitated. Further, if the content of N exceeds 0.006%, the toughness of the welded portion is deteriorated. Therefore, N
Content was limited to 0.002% or more and 0.006% or less.

【0021】0.005%≦Al≦0.1% Alは脱酸のため必須の元素である。0.005%未満
では脱酸が不十分であり、0.1%を超えると多量のア
ルミナが発生し、鋼の清浄性を著しく劣化させる。した
がって、0.005%以上0.1%以下に限定した。
0.005% ≦ Al ≦ 0.1% Al is an essential element for deoxidation. If it is less than 0.005%, deoxidation is insufficient, and if it exceeds 0.1%, a large amount of alumina is generated, and the cleanliness of the steel is significantly deteriorated. Therefore, it is limited to 0.005% or more and 0.1% or less.

【0022】B≦0.0002% Bは鋼の焼入性を著しく向上させる。0.0002%を
超えると耐溶融亜鉛メッキ割れ性が著しく劣化させるの
で、Bを0.0002%以下に限定した。
B ≦ 0.0002% B significantly improves the hardenability of steel. If it exceeds 0.0002%, the hot-dip galvanizing cracking resistance is significantly deteriorated, so B was limited to 0.0002% or less.

【0023】O≦0.005% Oは鋼の清浄度を劣化させる。Ca添加の場合、0.0
05%を超えるOを含有するとCa−O−S系介在物ク
ラスターを生成しやすくなり鋼の靱性劣化を招くので、
0.005%以下に限定した。
O ≦ 0.005% O deteriorates the cleanliness of steel. In the case of Ca addition, 0.0
When O is contained in more than 05%, Ca-OS-based inclusion clusters are easily formed, and the toughness of steel is deteriorated.
It was limited to 0.005% or less.

【0024】Cr≦0.5% Crは鋼の強度を高めるのに有効な元素であるが、0.
5%を超えて添加すると溶接熱影響部を著しく硬化させ
るため、0.5%以下に限定した。
Cr ≦ 0.5% Cr is an element effective for increasing the strength of steel.
If added in excess of 5%, the weld heat affected zone will be significantly hardened, so the content is limited to 0.5% or less.

【0025】Mo≦0.4% Moは鋼の強度を高めるのに有効な元素であるが、0.
4%を超えて添加すると溶接熱影響部を著しく硬化させ
るため、0.4%以下に限定した。
Mo ≦ 0.4% Mo is an element effective for increasing the strength of steel.
When added in excess of 4%, the heat affected zone of the weld is significantly hardened, so the content is limited to 0.4% or less.

【0026】V≦0.08% Vは微量の添加で析出強化により鋼の強度を高めるのに
有効な元素であるが、0.08%を超えて添加すると鋼
の靱性、溶接性を著しく劣化させるため、0.08%以
下に限定した。
V ≦ 0.08% V is an element effective for increasing the strength of steel by precipitation strengthening when added in a small amount, but when added in excess of 0.08%, the toughness and weldability of the steel are significantly deteriorated. Therefore, the content is limited to 0.08% or less.

【0027】なお、前述したSLM400はNBT試験
と呼ばれる耐溶融亜鉛メッキ割れ性評価する試験から得
られる。上述した鉄と鋼vol.79(1993)p.
1108−p.1114にその方法等が記載されてい
る。各鋼板から採取された直径10mm、長さ170m
mの丸棒サンプルに、1400℃まで急速加熱後800
℃−500℃間を8秒で冷却するという溶接HAZシミ
ュレーション熱サイクルを与える。上記の熱サイクルを
与えた丸棒に深さ2mm、角度60°の円周切り欠き
(切り欠き底の曲率半径0.25mm、切り欠き肩部の
曲率半径2mm)を設けた後、切り欠き部に亜鉛を電着
させ、図3に示す熱加工サイクルを与える。そして、破
断応力と破断時間のデータを採取する。縦軸には上記試
験の破断応力そのものではなく亜鉛を電着しない時の破
断応力で除した値をとり、横軸には破断時間をとり、図
4の例のようにデータをプロットする。それらのプロッ
トを曲線回帰し、破断時間400秒と交差するところの
値がSLM400と呼ばれる耐溶融亜鉛メッキ割れ性の
指標である。因みに、上述文献では、SLM400が4
2%以上あれば、TS590MPa級の鋼の場合、溶接
継手に用いても溶融亜鉛メッキ割れは生じないとされて
いる。しかし、TS780MPa級では、溶接部の残留
応力が上昇するため、SLM400≧42%以上でも、
実溶接部では割れの発生が予想される。
The above-described SLM 400 is obtained from a test for evaluating hot-dip galvanizing cracking resistance called an NBT test. The iron and steel vol. 79 (1993) p.
1108-p. 1114 describes the method and the like. 10mm in diameter and 170m in length collected from each steel plate
After heating rapidly to 1400 ° C on a round bar sample of
A welding HAZ simulation thermal cycle of cooling between 8C and 500C in 8 seconds is provided. A round bar having a depth of 2 mm and an angle of 60 ° (a radius of curvature of the bottom of the notch of 0.25 mm and a radius of curvature of the shoulder of the notch of 2 mm) is provided on the round bar subjected to the above-described heat cycle, and then the notch is formed. Is electrodeposited with zinc to give the thermal processing cycle shown in FIG. Then, data on the rupture stress and the rupture time is collected. On the vertical axis, not the fracture stress itself in the above test but the value obtained by dividing by the fracture stress when zinc is not electrodeposited, and the horizontal axis is the fracture time, and the data is plotted as in the example of FIG. Curve regression of these plots, and the value at the intersection with the rupture time of 400 seconds is an index of hot-dip galvanizing cracking resistance called SLM400. By the way, in the above-mentioned document, SLM400 is 4
If it is 2% or more, in the case of TS590 MPa grade steel, hot-dip galvanizing cracks do not occur even when used for welded joints. However, in the TS780 MPa class, since the residual stress of the welded portion increases, even if SLM400 ≧ 42% or more,
Cracking is expected in the actual weld.

【0028】次に、製造条件について述べる。Next, the manufacturing conditions will be described.

【0029】圧延加熱温度≧1100℃ 圧延加熱温度を1100℃以上に限定した理由は、圧延
時にNbCNを固溶し、強度向上に寄与する固溶Nbを
確保するためである。本発明範囲の0.04〜0.08
%C、0.01〜0.04%Nbの場合、十分な固溶N
bを確保するためには1100℃以上の加熱が必要で、
それ未満の温度で780MPa以上の引張強度を得るの
が困難である。
Rolling heating temperature ≧ 1100 ° C. The reason why the rolling heating temperature is limited to 1100 ° C. or more is to secure solid solution Nb which dissolves NbCN during rolling and contributes to strength improvement. 0.04 to 0.08 in the range of the present invention
% C, 0.01-0.04% Nb, sufficient solid solution N
In order to secure b, heating at 1100 ° C. or more is necessary,
It is difficult to obtain a tensile strength of 780 MPa or more at a temperature lower than that.

【0030】720℃≦圧延仕上温度≦950℃ 圧延仕上温度を950℃以下720℃以上に限定した理
由は以下のとおりである。950℃を超える温度で圧延
を仕上げると組織が粗粒となり優れた靱性が得られず、
720℃を下回る温度で圧延を仕上げるとその後DQ−
Tを行っても、十分に焼きが入らず780MPa以上の
引張強度を得るのが困難なためである。
720 ° C. ≦ rolling finishing temperature ≦ 950 ° C. The reason for limiting the rolling finishing temperature to 950 ° C. or lower and 720 ° C. or higher is as follows. When rolling is completed at a temperature exceeding 950 ° C., the structure becomes coarse and excellent toughness cannot be obtained.
After rolling at temperatures below 720 ° C, DQ-
This is because, even if T is performed, it is difficult to obtain sufficient tensile strength of 780 MPa or more because of insufficient sintering.

【0031】直ちに水冷 その後、ただちにDQ処理するのも、十分に焼きを入れ
780MPa以上の引張強度を得るためである。もちろ
ん、圧延仕上がり温度が高い程、ただちにといっても、
多少余裕があるのは、冶金原理から言うまでもない。D
Q処理の冷媒として水に限定したのは、最も安価で冷却
能が大きいためである。また、熱処理を再加熱焼入とせ
ず直接焼入に限定したのは、再加熱焼入では通常900
℃前後の加熱温度を設定するためNbCNが固溶せず7
80MPa以上の引張強度を得るのが困難なためであ
る。
Immediately after cooling with water, the DQ treatment is performed immediately after baking sufficiently to obtain a tensile strength of 780 MPa or more. Of course, the higher the rolling finish temperature, immediately
Needless to say, there is some margin from metallurgical principles. D
The reason why the coolant for the Q treatment is limited to water is that it is the cheapest and has a large cooling capacity. In addition, the reason why the heat treatment was limited to direct quenching instead of reheating quenching is that in reheating quenching, 900
NbCN does not form a solid solution because the heating temperature is set to around ℃ 7
This is because it is difficult to obtain a tensile strength of 80 MPa or more.

【0032】水冷停止温度≦250℃ DQ処理の水冷停止温度を250℃以下に限定した理由
もマルテンサイト変態を板厚中央まで起こさせ、780
MPa以上の引張強度を得るためである。
Water cooling stop temperature ≦ 250 ° C. The reason why the water cooling stop temperature of the DQ treatment is limited to 250 ° C. or less is that martensitic transformation is caused to the center of the sheet thickness, and 780
This is for obtaining a tensile strength of not less than MPa.

【0033】450℃≦時効処理温度≦650℃ 時効条件として、450℃以上650℃以下に限定した
理由は以下のとおりである。ε−Cuはフェライト域で
加熱時効を行うと析出する。しかし、時効温度が450
℃未満の温度では、著しく長時間の保持が必要なため、
時効の下限温度を450℃とした。また、650℃を超
える温度で時効すると、すぐにε−Cuの粗大化が起こ
り、目的の強度が得られにくい。いわゆる、過時効にな
り易い。したがって、時効温度として、450℃以上6
50℃以下に限定した。
450 ° C. ≦ aging temperature ≦ 650 ° C. The reason for limiting the aging condition to 450 ° C. or more and 650 ° C. or less is as follows. ε-Cu precipitates when heat aging is performed in the ferrite region. However, the aging temperature is 450
At temperatures below ℃, it is necessary to maintain for a very long time,
The lower limit temperature of aging was set to 450 ° C. Further, when aging is performed at a temperature exceeding 650 ° C., ε-Cu coarsens immediately, and it is difficult to obtain a desired strength. It is so-called overaging. Therefore, the aging temperature is 450 ° C. or more and 6
The temperature was limited to 50 ° C or lower.

【0034】[0034]

【実施例】表1に示す化学組成の鋼を溶解し、連続鋳造
にて220〜300mmのスラブとした。表2には熱間
圧延条件、DQ−T条件を示している。表2の鋼板N
o.のアルファベットは表1の鋼No.と対応してい
る。たとえば、鋼板No.FP,FP*とも第1表の鋼
No.FPと同一の化学組成を有する。
EXAMPLE Steel having the chemical composition shown in Table 1 was melted and continuously cast into a slab of 220 to 300 mm. Table 2 shows hot rolling conditions and DQ-T conditions. Steel plate N in Table 2
o. Are the steel No. in Table 1. It corresponds to. For example, the steel sheet No. For both FP and FP *, steel No. It has the same chemical composition as FP.

【0035】これらの鋼板に対し、引張試験、拘束継手
亜鉛メッキ割れ試験を実施した。
These steel sheets were subjected to a tensile test and a galvanization cracking test of restraint joints.

【0036】拘束継手亜鉛メッキ割れ試験は、図3に示
す十字継手を作成後、470℃の亜鉛浴中に浸漬、メッ
キ後、試験ビード1のトウ部における割れの有無を調べ
る試験である。拘束ビード2のパス数は18パスであ
り、この拘束ビードにより、試験ビード1のトウ部に母
材の降伏応力相当の非常に高い残留応力が作用している
ことを確認している。したがって、この試験体で割れの
発生しない場合、実構造溶接部材の溶融亜鉛メッキにお
いても割れは発生しないと判断できる。
The galvanized crack test of the restraint joint is a test for examining the toe of the test bead 1 for cracks after preparing the cross joint shown in FIG. The number of passes of the constraining bead 2 was 18 and it was confirmed that a very high residual stress equivalent to the yield stress of the base material was acting on the toe portion of the test bead 1 by the constraining bead. Therefore, when no crack occurs in this test piece, it can be determined that no crack occurs even in hot-dip galvanizing of the welded member having the actual structure.

【0037】供試鋼の各試験結果を表2に併記する。Table 2 also shows the test results of the test steels.

【0038】0.8%以上のCuを添加し焼き入れ性を
あげるC等の元素を極力低減し、さらにTi−Ca添加
を行い、1100℃以上の圧延加熱温度を設定し、95
0℃以下720℃以上で圧延を仕上げただちに直接焼
入、250℃以下まで水冷し、その後450℃以上65
0℃以下で時効処理を施した発明鋼板FP〜F
***,JP,KP,LP〜LP,MP,NPの発
明鋼は、780MPa以上のTSを示し、且つ拘束継手
亜鉛メッキ割れ試験でも割れは発生しなかった。また,
靱性もvTs≦−60℃と良好である。
Addition of 0.8% or more of Cu to reduce the elements such as C for improving the hardenability as much as possible, further adding Ti-Ca, setting a rolling heating temperature of 1100 ° C. or more,
Rolled at 0 ° C or less and 720 ° C or more, immediately quenched, water-cooled to 250 ° C or less, and then 450 ° C or more and 65 ° C or less.
Invention steel plates FP-F aged at 0 ° C or lower
The invention steels of P *** , JP, KP, LP to LP * , MP, and NP showed TS of 780 MPa or more, and no cracks occurred in the galvanization cracking test of the restraint joint. Also,
The toughness is as good as vTs ≦ −60 ° C.

【0039】一方、焼き入れ性をあげる元素であるCや
MnやCrやMoを多量に含有した従来鋼A〜Cでは、
鋼Aは強度不足、鋼B〜Cで割れが発生している。Cu
添加によりC等の元素の添加を極力抑えてはいるがTi
−Caが添加されていない従来鋼D〜FではNb添加の
鋼Fのみ780MPa以上の引張強度が得られている
が、拘束試験で亜鉛鍍金割れが発生している。
On the other hand, in the conventional steels A to C containing a large amount of elements C, Mn, Cr and Mo, which increase the hardenability,
Steel A has insufficient strength and steels B to C have cracks. Cu
Although addition of elements such as C is suppressed as much as possible by addition, Ti
In the conventional steels D to F to which Ca was not added, only the steel F to which Nb was added had a tensile strength of 780 MPa or more, but the zinc plating crack occurred in the restraint test.

【0040】また、0.8%以上のCuを添加し焼き入
れ性をあげるC等の元素を極力低減し、さらにTi−C
a添加が図られているものの、本発明の圧延、DQ、時
効条件を逸脱した範囲で製造されたKP1,LP2,L
P3,MP1は780MPa以上の引張強度が得られて
いない。
Further, by adding 0.8% or more of Cu, elements such as C for improving the hardenability are reduced as much as possible.
KP1, LP2, L manufactured in a range that deviates from the rolling, DQ, and aging conditions of the present invention, although a is added.
P3 and MP1 do not have a tensile strength of 780 MPa or more.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【発明の効果】以上の説明から明らかなように、本発明
に従い成分設計しDQ−Tを施すと780MPa以上の
引張強度を有する鋼が得られ、鉄塔、橋梁、建築物など
の溶接構造物に使用され溶融亜鉛メッキが施されても、
割れを防止することができる。産業上、極めて大きな効
果を有する。
As is clear from the above description, when the components are designed and DQ-T is applied in accordance with the present invention, a steel having a tensile strength of 780 MPa or more can be obtained, which can be used for welding structures such as steel towers, bridges, and buildings. Even if used and hot-dip galvanized,
Cracks can be prevented. It has an extremely great effect on industry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】DQ−T処理された鋼板(表1の鋼A〜FP)
の引張強度とSLM400の関係を示した図。
FIG. 1 DQ-T treated steel sheets (Steels A to FP in Table 1)
The figure which showed the relationship between the tensile strength of SLM400.

【図2】拘束割れ試験体の大きさ、構成について示した
図。
FIG. 2 is a diagram showing the size and configuration of a restrained crack test specimen.

【図3】NBT試験における熱加工サイクルを示した
図。
FIG. 3 is a view showing a thermal processing cycle in an NBT test.

【図4】NBT試験のデータ整理の例を示した図。FIG. 4 is a diagram showing an example of data arrangement of an NBT test.

【符号の説明】[Explanation of symbols]

1…試験ビード、2…拘束ビード(18パス/1サイ
ド)、3…試験板。
1 ... test bead, 2 ... restraint bead (18 passes / 1 side), 3 ... test plate.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.04%以上0.08
%以下、Si:0.1%以上0.6%以下、Mn:0.
8%以上1.6%以下、P:0.02%以下、S:0.
002%以下、Cu:0.8%以上1.8%以下、N
i:0.4%以上1.0%以下、Nb:0.01%以上
0.04%以下、Ti:0.01%以上0.05%以
下、Ca:0.001%以上0.005%以下、N:
0.002%以上0.006%以下、Al:0.005
%以上0.1%以下、B:0.0002%以下、O:
0.005%以下、さらに、Cr:0.5%以下、M
o:0.4%以下、V:0.08%以下を1種または2
種以上が添加され、残部が鉄および不純物からなる組成
を有する連続鋳造スラブを、1100℃以上に加熱し9
50℃以下720℃以上で圧延を終了し、ただちに水冷
し250℃以下で水冷を停止した後、450℃以上65
0℃以下で時効処理することを特徴とする溶接熱影響部
の耐溶融亜鉛メッキ割れ性に優れた引張強度780MP
a以上の高張力鋼の製造方法。
1. C: 0.04% or more and 0.08% by weight
%, Si: 0.1% or more and 0.6% or less, Mn: 0.1% or less.
8% or more and 1.6% or less, P: 0.02% or less, S: 0.
002% or less, Cu: 0.8% or more and 1.8% or less, N
i: 0.4% to 1.0%, Nb: 0.01% to 0.04%, Ti: 0.01% to 0.05%, Ca: 0.001% to 0.005% Hereinafter, N:
0.002% to 0.006%, Al: 0.005
% To 0.1%, B: 0.0002% or less, O:
0.005% or less, Cr: 0.5% or less, M
o: 0.4% or less, V: 0.08% or less, one or two
A continuous cast slab having a composition containing at least one seed and the balance consisting of iron and impurities is heated to 1100 ° C. or more and heated to 9100 ° C. or more.
Rolling was completed at 50 ° C or lower and 720 ° C or higher, immediately after water cooling, and stopped at 250 ° C or lower, and then 450 ° C or higher and 65 ° C or lower.
Tensile strength of 780MP with excellent hot-dip galvanizing crack resistance in the heat affected zone of welding characterized by aging at 0 ° C or less
a. A method for producing a high-tensile steel of a or higher.
JP25182896A 1996-09-24 1996-09-24 Manufacture of ts780mpa class high tensile-strength steel excellent in resistance to hot dip galvanizing crack Pending JPH1096020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25182896A JPH1096020A (en) 1996-09-24 1996-09-24 Manufacture of ts780mpa class high tensile-strength steel excellent in resistance to hot dip galvanizing crack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25182896A JPH1096020A (en) 1996-09-24 1996-09-24 Manufacture of ts780mpa class high tensile-strength steel excellent in resistance to hot dip galvanizing crack

Publications (1)

Publication Number Publication Date
JPH1096020A true JPH1096020A (en) 1998-04-14

Family

ID=17228535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25182896A Pending JPH1096020A (en) 1996-09-24 1996-09-24 Manufacture of ts780mpa class high tensile-strength steel excellent in resistance to hot dip galvanizing crack

Country Status (1)

Country Link
JP (1) JPH1096020A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100415657B1 (en) * 1996-12-18 2004-03-31 주식회사 포스코 METHOD FOR MANUFACTURING ULTRA-HIGH TENSILE STRENGTH STEEL HAVING 220 ksi CLASS YIELD STRENGTH

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100415657B1 (en) * 1996-12-18 2004-03-31 주식회사 포스코 METHOD FOR MANUFACTURING ULTRA-HIGH TENSILE STRENGTH STEEL HAVING 220 ksi CLASS YIELD STRENGTH

Similar Documents

Publication Publication Date Title
EP3239327A1 (en) High-strength steel plate for pressure vessel having excellent toughness after post weld heat treatment and manufacturing method thereof
JP7262288B2 (en) High-strength low-yield-ratio thick steel plate with excellent toughness of base metal and weld heat-affected zone and small acoustic anisotropy, and its manufacturing method
JP4207334B2 (en) High-strength steel sheet with excellent weldability and stress corrosion cracking resistance and method for producing the same
JPH05186823A (en) Production of cu-containing high tensile strength steel with high toughness
JP2000319726A (en) Manufacturing method of high strength steel sheet with excellent weldability
JP2002047532A (en) High tensile strength steel sheet excellent in weldability and its production method
JP7076325B2 (en) Thick steel plate and its manufacturing method and welded structure
JPH06128631A (en) Method for producing high manganese ultra high strength steel with excellent low temperature toughness
JP3584742B2 (en) High strength thick steel plate excellent in weldability and toughness and method for producing the same
JPH09302445A (en) Ni-containing steel for low temperature and method for producing the same
JPH1096020A (en) Manufacture of ts780mpa class high tensile-strength steel excellent in resistance to hot dip galvanizing crack
JP3371715B2 (en) Method for producing TS780 MPa class steel excellent in hot-dip galvanizing crack resistance
JP2532176B2 (en) Method for producing high-strength steel with excellent weldability and brittle crack propagation arresting properties
JPH1096023A (en) Manufacture of ts780mpa class steel excellent in resistance to hot dip galvanizing crack
JP3371714B2 (en) Method for producing TS780 MPa class steel excellent in hot-dip galvanizing crack resistance
JP3428311B2 (en) Method for producing TS780 MPa high strength steel excellent in hot-dip galvanizing crack resistance
JPH09227937A (en) Manufacture of thick steel plate with high tensile strength
JP3428310B2 (en) Method for producing TS780 MPa class high strength steel excellent in hot-dip galvanizing crack resistance
JPH08269566A (en) Production of high strength and high toughness uoe steel pipe excellent in sr characteristic
JP3956634B2 (en) Steel sheet with excellent toughness and method for producing the same
JPH1096058A (en) High tensile strength steel excellent in hot dip galvanizing cracking resistance
JP2001335883A (en) High tensile steel sheet excellent in weldability
JP3303672B2 (en) High-strength steel excellent in hot-dip galvanizing crack resistance and method for producing the same
JPH07173532A (en) Production of low yield ratio type fire resistant architectural steel excellent in weldability
JPH07242991A (en) High toughness chromium molybdenum steel sheet with excellent weldability