JPH1092470A - Lithium ion battery and manufacture of it - Google Patents
Lithium ion battery and manufacture of itInfo
- Publication number
- JPH1092470A JPH1092470A JP8282830A JP28283096A JPH1092470A JP H1092470 A JPH1092470 A JP H1092470A JP 8282830 A JP8282830 A JP 8282830A JP 28283096 A JP28283096 A JP 28283096A JP H1092470 A JPH1092470 A JP H1092470A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- positive electrode
- gel
- electrolyte
- ion battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Cell Separators (AREA)
- Secondary Cells (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はリチウムイオン電池
およびその製造法に関し、特に安全性と耐久性に優れた
新規な電解液を用いたリチウムイオン電池およびその製
造法に関するものである。The present invention relates to a lithium ion battery and a method for producing the same, and more particularly to a lithium ion battery using a novel electrolyte having excellent safety and durability, and a method for producing the same.
【0002】[0002]
【従来の技術】リチウムイオン電池はそのエネルギー密
度が高いことから、携帯用電子機器の電源として盛んに
使われており、更に電気自動車用の電源としても開発が
進められている。この種の電池では、負極にはリチウム
のインターカーレーションの起こるカーボンを用い、正
極にはCo、Ni、Mn等の酸化物とリチウムとの複合
酸化物を用い、この間に多孔質の膜状のセパレーターを
挟み、この3者を有機溶剤であるエチレンカーボネート
等に電解質であるLiPF6等を溶かした電解液中に浸
した構成になっている。しかしながら、この電池は可燃
性の有機溶媒を電解質の溶剤として用いており、電池が
破損したり、シールが不完全で有ったりした場合には、
この有機溶媒が容器の外に流出して引火し、火災になる
危険性がある欠点が有った。2. Description of the Related Art Because of its high energy density, lithium ion batteries are widely used as power sources for portable electronic devices, and are also being developed as power sources for electric vehicles. In this type of battery, carbon that causes lithium intercalation is used for the negative electrode, and a composite oxide of lithium such as Co, Ni, Mn and the like is used for the positive electrode, and a porous film-shaped The separator is sandwiched, and the three members are immersed in an electrolytic solution in which LiPF 6 or the like as an electrolyte is dissolved in ethylene carbonate or the like as an organic solvent. However, this battery uses a flammable organic solvent as the electrolyte solvent, and if the battery is damaged or the seal is incomplete,
There is a drawback that the organic solvent flows out of the container and ignites, which may cause a fire.
【0003】また、電池の充放電に伴い、正極物質や負
極物質が僅かに体積変化を起こし、これに伴い両極間に
空隙が生じたり、セパレーターの目詰まりを生じたりし
て電池の容量や内部抵抗が劣化する問題が有った。[0003] Further, as the battery is charged and discharged, the positive electrode material and the negative electrode material slightly change in volume, and as a result, a gap is formed between the two electrodes and the separator is clogged, so that the capacity and internal capacity of the battery are reduced. There was a problem that the resistance deteriorated.
【0004】有機溶媒の替わりにイオン伝導性のポリマ
ーのシートを両極間のセパレーターとして用いるいわゆ
るポリマー電池が開発されているが、電極活物質との接
触が不十分となるために内部抵抗が高い、セパレーター
の体積が余分に必要となる等の欠点が有った。A so-called polymer battery using an ion-conductive polymer sheet as a separator between both electrodes instead of an organic solvent has been developed, but the internal resistance is high due to insufficient contact with the electrode active material. There were drawbacks such as an extra volume of the separator.
【0005】[0005]
【発明が解決しようとする課題】本発明は、かかる問題
点に鑑み、電池が破損した場合でも有機溶媒が容器の外
に流出する可能性が小さく、従って安全性が高く、且つ
充放電に伴う劣化が少なく、体積エネルギー密度の大き
いリチウムイオン電池を提供することを目的とする。SUMMARY OF THE INVENTION In view of the above problems, the present invention has a low possibility that an organic solvent will flow out of a container even when a battery is damaged, and therefore has high safety and is accompanied by charge and discharge. It is an object of the present invention to provide a lithium ion battery which has little deterioration and a large volume energy density.
【0006】[0006]
【課題を解決するための手段】本発明は、(1)正極お
よび負極をそれぞれ箔状の集電体の表面に形成し、両者
を互いに対向せしめた状態でらせん状に巻き、この両者
間に有機溶媒と、ゲル化剤またはその原料とからなる液
を含浸せしめ、これをゲル化させた後該ゲル中にリチウ
ムを含む電解質を拡散させるリチウムイオン電池の製造
法、および、(2)正極および負極をそれぞれ箔状の集
電体の表面に形成し、両者を互いに対向せしめた状態で
らせん状に巻き、この両者間にリチウムを含む電解質
と、該電解質を溶解した有機溶媒と、ゲル化剤またはそ
の原料とからなる電解液を含浸せしめ、これをゲル化さ
せるリチウムイオン電池の製造法、および、(3)正極
および負極をそれぞれ箔状の集電体の表面に形成し、更
にそれらの表面または両極の間の介在するセパレーター
の少なくとも一部にゲル化剤またはその原料を存在せし
め、前記正極および負極を互いに対向せしめた状態でら
せん状に巻き、この両者間に有機溶媒を含浸せしめて前
記ゲル化剤またはその原料を溶解し、この溶液をゲル化
させた後該ゲル中にリチウムを含む電解質を拡散させる
リチウムイオン電池の製造法、および、(4)正極およ
び負極をそれぞれ箔状の集電体の表面に形成し、更にそ
れらの表面または両極の間の介在するセパレーターの少
なくとも一部にゲル化剤またはその原料を存在せしめ、
前記正極および負極を互いに対向せしめた状態でらせん
状に巻き、この両者間にリチウムを含む電解質と、該電
解質を溶解した有機溶媒とからなる電解液を含浸せしめ
て前記ゲル化剤またはその原料を溶解し、この溶液をゲ
ル化させるリチウムイオン電池の製造法、および、
(5)正極および負極をそれぞれ箔状の集電体の表面に
形成し、更にそれらの表面または両極の間の介在するセ
パレーターの少なくとも一部に有機溶媒と高分子からな
るゲルを存在せしめ、前記正極および負極を互いに対向
せしめた状態でらせん状に巻き、この両者間にリチウム
を含む電解質を含浸せしめるリチウムイオン電池の製造
法、および、(6)正極および負極をそれぞれ箔状の集
電体の表面に形成し、更にそれらの表面または両極の間
の介在するセパレーターの少なくとも一部に有機溶媒
と、高分子と、リチウムを含む電解質とからなるゲルを
存在せしめ、前記正極および負極を互いに対向せしめた
状態でらせん状に巻くリチウムイオン電池の製造法、お
よび、(7)正極および負極がそれぞれ箔状の集電体の
表面に形成され、両者が互いに対向した状態でらせん状
に巻かれており、この両者間に熱重合反応で生成したゲ
ル状電解液が介在し、該ゲル状電解液中にはリチウムを
含む電解質と、該電解質を溶解した有機溶媒とが含浸せ
しめられているリチウムイオン電池である。According to the present invention, there are provided (1) a positive electrode and a negative electrode which are respectively formed on the surface of a foil-like current collector, and are spirally wound in a state where both are opposed to each other; A method for producing a lithium ion battery in which a liquid comprising an organic solvent and a gelling agent or a raw material thereof is impregnated, gelled, and then an electrolyte containing lithium is diffused in the gel; A negative electrode is formed on the surface of the foil-like current collector, and the two are spirally wound in a state where both are opposed to each other. An electrolyte containing lithium, an organic solvent in which the electrolyte is dissolved, a gelling agent, Alternatively, a method for producing a lithium ion battery in which an electrolyte solution comprising the raw material is impregnated and gelled, and (3) forming a positive electrode and a negative electrode on the surface of a foil-shaped current collector, respectively, Also A gelling agent or a raw material thereof is present in at least a part of a separator interposed between the two electrodes, and the positive electrode and the negative electrode are spirally wound in a state where the positive electrode and the negative electrode are opposed to each other, and an organic solvent is impregnated between the two to form the gel. A method for producing a lithium ion battery in which an agent or a raw material thereof is dissolved, the solution is gelled, and then an electrolyte containing lithium is diffused into the gel; and (4) a positive electrode and a negative electrode each having a foil-like current collector Formed on the surface of the body, and further present a gelling agent or its raw material on at least a part of the separator interposed between those surfaces or both electrodes,
The positive electrode and the negative electrode are spirally wound in a state where they are opposed to each other, and an electrolyte containing lithium and an organic solvent in which the electrolyte is dissolved is impregnated between the two to impregnate the gelling agent or the raw material thereof. A method for producing a lithium ion battery that dissolves and gels the solution, and
(5) forming a positive electrode and a negative electrode respectively on the surface of the foil-shaped current collector, and further causing a gel comprising an organic solvent and a polymer to be present on at least a part of the surface or a separator interposed between both electrodes; A method of manufacturing a lithium ion battery in which a positive electrode and a negative electrode are spirally wound in a state where they are opposed to each other, and an electrolyte containing lithium is impregnated between the two; and (6) the positive electrode and the negative electrode are each formed of a foil-like current collector. A gel formed of an organic solvent, a polymer, and an electrolyte containing lithium is present on at least a part of the separator formed on the surface or between the electrodes or between the electrodes, and the positive electrode and the negative electrode are opposed to each other. And (7) forming a positive electrode and a negative electrode on the surface of a foil-shaped current collector, respectively. Are spirally wound in a state where they face each other, and a gel electrolyte formed by a thermal polymerization reaction is interposed between the two, and an electrolyte containing lithium and a solution of the electrolyte are contained in the gel electrolyte. A lithium ion battery impregnated with an organic solvent.
【0007】(1)の方法は電解質による重合反応の妨
害を考慮する必要が無く、ゲルの種類の選択範囲が比較
的広く、良好な特性のゲルを得やすいが、工程が複雑と
なり、且つ、電解質の含浸に長時間を要する。(2)の
方法はゲルの選択範囲が狭いが従来の製造工程を少し変
更するだけで生産が可能であり、生産性が高い。(3)
および(4)の方法はゲル化剤の原料溶液が高粘度の場
合に特に有効であり、均一な濃度のゲルを短時間で作る
ことかできる。(5)および(6)の方法はゲルの分布
が最も均一となり、品質のばらつきの少ない電池が得ら
れるものである。In the method (1), there is no need to consider interference with the polymerization reaction caused by the electrolyte, the selection range of the type of gel is relatively wide, and a gel having good characteristics is easily obtained, but the process becomes complicated and It takes a long time to impregnate the electrolyte. In the method (2), the selection range of the gel is narrow, but the production is possible by slightly changing the conventional production process, and the productivity is high. (3)
The methods (4) and (4) are particularly effective when the raw material solution of the gelling agent has a high viscosity, and can produce a gel having a uniform concentration in a short time. In the methods (5) and (6), the distribution of the gel becomes the most uniform, and a battery with less variation in quality can be obtained.
【0008】ゲル状の電解液の製法としては、熱重合反
応を使うのが、製造工程の容易さや製品の破損事故の際
のゲルの安定性の点で望ましく、例えばエチレンカーボ
ネートを溶媒として、ビニレンカルボナートとアゾビス
イソブチロニトリルを溶解し、これを正極物質、負極物
質、およびセパレーターの巻回品に減圧して含浸せし
め、窒素雰囲気中で60゜C、20時間塊重合反応を行
わせる。これにより、エチレンカーボネートを含んだ両
極およびセパレーターの微細な孔の中まで充填する様に
生成する。この後、電解質のLiPF6を溶かしたエチ
レンカーボネート溶液中の浸して拡散せしめることによ
り電解質を含んで両極間を充填したゲルが得られること
になる。また、予め電解質を溶解した非水系溶媒にモノ
マーと重合開始剤を溶解して反応させても良い。As a method for producing a gel electrolyte, it is desirable to use a thermal polymerization reaction in terms of easiness of the production process and stability of the gel in the event of a product breakage. For example, vinylene is used as a solvent using ethylene carbonate as a solvent. Dissolve carbonate and azobisisobutyronitrile, impregnate and impregnate the wound product of the cathode material, the anode material, and the separator with a reduced pressure, and perform a bulk polymerization reaction at 60 ° C. for 20 hours in a nitrogen atmosphere. . As a result, it is formed so as to fill both the electrodes containing ethylene carbonate and the fine pores of the separator. Thereafter, the electrolyte is immersed in an ethylene carbonate solution in which LiPF 6 is dissolved and diffused, whereby a gel containing the electrolyte and filled between the two electrodes is obtained. Further, the monomer and the polymerization initiator may be dissolved in a non-aqueous solvent in which an electrolyte is dissolved in advance to cause a reaction.
【0009】熱重合によるゲル化反応は組み立てた電池
の温度を制御することにより容易に制御することが出
来、たとえば、ビニル型モノマーおよびビニル型マクロ
モノマーを用いる溶液重合では反応の完結に必要な時間
は次のとおりである。ここでマクロモノマーとは別名反
応性オリゴマーと呼ばれ、その分子量が数千ダルトンで
ある。多様な化学構造の設計により目的に応じた溶解
性、ゲルの物性の制御を行うことができる。一方、マク
ロモノマーのゲル化の反応性はモノマーの反応性とほぼ
同じであり、熱重合が可能である。 (1)開始剤としてAIBNを使用した場合。 50°C 74時間 70°C 4.8時間 100°C 7.2分 (2)開始剤としてラウリルパーオキシドを使用した場
合。 50°C 47.7時間 70゜C 3.5時間 100°C 3.5分 このように、温度制御によってゲル化の時間を制御でき
るので、製造工程に最適な条件が設定できる。The gelation reaction by thermal polymerization can be easily controlled by controlling the temperature of the assembled battery. For example, in the case of solution polymerization using a vinyl-type monomer and a vinyl-type macromonomer, the time required for completing the reaction is short. Is as follows. Here, the macromonomer is also called a reactive oligomer, and its molecular weight is several thousand daltons. By designing various chemical structures, it is possible to control the solubility and physical properties of the gel according to the purpose. On the other hand, the gelation reactivity of the macromonomer is almost the same as the reactivity of the monomer, and thermal polymerization is possible. (1) When AIBN is used as an initiator. 50 ° C 74 hours 70 ° C 4.8 hours 100 ° C 7.2 minutes (2) When lauryl peroxide is used as an initiator. 50 ° C. 47.7 hours 70 ° C. 3.5 hours 100 ° C. 3.5 minutes As described above, the time for gelation can be controlled by controlling the temperature, so that optimum conditions for the manufacturing process can be set.
【0010】本発明で用いる重合反応として、反応の機
構としては、付加重合反応,重付加反応,開環重合反
応,重縮合反応のいずれかの反応によって2官能性モノ
マーと多官能性モノマーからなる分岐あるいは架橋高分
子の生成によって起こる重合反応を好適に用いることが
できる。The mechanism of the polymerization reaction used in the present invention comprises a bifunctional monomer and a polyfunctional monomer by an addition polymerization reaction, a polyaddition reaction, a ring-opening polymerization reaction, or a polycondensation reaction. A polymerization reaction caused by formation of a branched or crosslinked polymer can be suitably used.
【0011】また、本発明でゲルを構成する高分子とし
ては、ポリアクリル酸メチル、ポリメタクリル酸メチ
ル、ポリアクリロニトリル、ポリスチレン、ポリ酢酸ビ
ニル、ポリケイ皮酸ビニル、環化ゴム、ポリシラン、ポ
リシロキサン、エポキシ化ポリブタジエン、ポリエーテ
ル、ポリウレタン、ポリエステルおよびそれらの共重合
体の中の少なくとも1つを含むものを好適に用いること
ができる。The polymers constituting the gel in the present invention include polymethyl acrylate, polymethyl methacrylate, polyacrylonitrile, polystyrene, polyvinyl acetate, polyvinyl cinnamate, cyclized rubber, polysilane, polysiloxane, Those containing at least one of epoxidized polybutadiene, polyether, polyurethane, polyester and a copolymer thereof can be suitably used.
【0012】本発明では、ゲルを構成する溶媒と高分子
との溶解性パラメーター(δ)が近似していることが、
良好なゲルを得るうえで望ましい。即ち、溶解性パラメ
ーターの近いかあるいは同じ高分子と溶媒の組み合わせ
では、その溶媒が高分子を溶解する機能が最も優れてお
り、そのような溶媒を良溶媒と呼ぶ。良溶媒はゲルを最
大に膨潤させる。実在の高分子および溶媒の溶解性パラ
メーターのデータベースはほぼ完成しており、新規物質
のδ値を推定する方法も確立している。したがって、ゲ
ルを最大に膨潤させる有機電解液を探索することが可能
である。膨潤したゲル内のリチウムイオンの移動度は有
機電解液のみの値にほぼ等しい。したがって、ゲルの存
在によるイオン伝導度変化はゲル/良溶媒系では無視で
きる。ゲルを構成する高分子とその中に含まれる有機溶
媒との溶解性パラメーターの比は1対0.7ないし1対
1.3の範囲内であることが良好なゲルを得るうえで望
ましく、更に1対0.8ないし1対1.2の範囲内であ
ることがより望ましい。良溶媒の例としては、高分子が
ポリスチレン(δ=18.7 MPa1/2)、ポリメ
タクリル酸メチル(δ=18.6 MPa1/2)、ポ
リ酢酸ビニル(δ=19.6 MPa1/2)の場合、
その良溶媒はテトラヒドロフラン(δ=19.4 MP
a1/2)、ジエチルカーボネイト(δ=18.0 M
Pa1/2)である。In the present invention, the solubility parameter (δ) between the solvent constituting the gel and the polymer is similar,
Desirable for obtaining a good gel. That is, a combination of a polymer and a solvent having similar or the same solubility parameters has the best function of dissolving the polymer in the solvent, and such a solvent is called a good solvent. Good solvents swell the gel to the maximum. The database of solubility parameters of existing polymers and solvents is almost complete, and a method for estimating δ values of new substances has been established. Therefore, it is possible to search for an organic electrolyte solution that swells the gel to the maximum. The mobility of lithium ions in the swollen gel is almost equal to the value of the organic electrolyte alone. Therefore, the change in ionic conductivity due to the presence of the gel is negligible in the gel / good solvent system. The ratio of the solubility parameter between the polymer constituting the gel and the organic solvent contained therein is preferably in the range of 1: 0.7 to 1: 1.3 in order to obtain a good gel, and furthermore, More preferably, it is in the range of 1: 0.8 to 1: 1.2. Examples of good solvents include polymers having polystyrene (δ = 18.7 MPa 1/2 ), polymethyl methacrylate (δ = 18.6 MPa 1/2 ), and polyvinyl acetate (δ = 19.6 MPa 1). / 2 )
The good solvent is tetrahydrofuran (δ = 19.4 MP
a 1/2 ), diethyl carbonate (δ = 18.0 M)
Pa 1/2 ).
【0013】ゲルを予め電極の表面に薄く形成した後、
巻回する方法として、例えば、各種アクリレートおよび
メタクリレートモノマーの1種類あるいは複数のモノマ
ーとビニレンカーボネイトモノマーの混合物をAIBN
を開始剤としてDMF溶媒を用いて共重合して、生成物
をメタノールで沈殿させて、2元あるいは多元共重合体
を固体状で得る。この共重合体を有機電解質に膨潤・分
散させてゲルを得る。このゲルは高いずり応力の元では
会合構造が破壊されて良好な流動性を示す粘調な溶液と
なる。この溶液を電極上にドクターブレードを用いて薄
層状に塗布する。塗膜はゲル状態に戻る。こうして出来
た電極を巻回してゲル状電解液を有する電池とすること
ができる。After forming a thin gel on the surface of the electrode in advance,
As a winding method, for example, a mixture of one or more kinds of various acrylate and methacrylate monomers and a vinylene carbonate monomer is used as AIBN.
Is copolymerized using a DMF solvent as an initiator, and the product is precipitated with methanol to obtain a binary or multicomponent copolymer in a solid state. The copolymer is swollen and dispersed in an organic electrolyte to obtain a gel. Under high shear stress, the gel breaks the associated structure and becomes a viscous solution showing good fluidity. This solution is applied on the electrode in a thin layer using a doctor blade. The coating returns to the gel state. By winding the electrode thus formed, a battery having a gel electrolyte can be obtained.
【0014】本発明に用いる正極物質や負極物質は電池
の要求性能に応じて適宜選択することが可能であり、例
えば、正極物質としてはMn、Ni、Fe等の遷移金属
を主成分とし、リチウム、酸素からなる、充電・放電時
にリチウムを脱離・吸藏しうるリチウム複合金属酸化物
を使用できる。The positive electrode material and the negative electrode material used in the present invention can be appropriately selected according to the required performance of the battery. For example, the positive electrode material mainly contains a transition metal such as Mn, Ni, Fe, etc. A lithium composite metal oxide composed of oxygen and capable of desorbing and occluding lithium during charging and discharging can be used.
【0015】[0015]
【第一の実施例】LiCoO2をアルミニウム箔に塗布
し、プレス加工した正極と、グラファイトを銅箔に塗布
し、プレス加工した負極とを多孔質のポリエチレン層を
介してらせん状に巻き、有底円筒状の電池缶に装着し
た。この両極間に、メチルメタクリレートモノマーとビ
スフェノールAのジアリルカーボネートモノマーとの重
量比2対1からなるモノマー混合物を1MのLiBF4
を溶解したプロピレンカーボネイトと1,2ジメトキシ
エタンからなる混合有機溶媒に溶解して12%重量濃度
の溶液とし、この溶液にAIBNをモノマー総重量当た
り1.5%を添加した液を、減圧下で含浸せしめた。こ
れを窒素ガス雰囲気下で封口し、75゜Cにて30分間
加熱してゲル状電解質を有するリチウムイオン電池を得
た。[First Embodiment] LiCoO 2 is applied to an aluminum foil, and a pressed positive electrode, and graphite is applied to a copper foil and a pressed negative electrode is spirally wound through a porous polyethylene layer. It was attached to a battery can with a cylindrical bottom. Between these two electrodes, a monomer mixture consisting of a methyl methacrylate monomer and a diallyl carbonate monomer of bisphenol A having a weight ratio of 2: 1 was mixed with 1M LiBF 4
Was dissolved in a mixed organic solvent consisting of propylene carbonate and 1,2 dimethoxyethane in which 12% was dissolved to obtain a 12% by weight solution, and a solution obtained by adding 1.5% by weight of AIBN based on the total weight of the monomers to this solution was added under reduced pressure. Impregnated. This was sealed in a nitrogen gas atmosphere and heated at 75 ° C. for 30 minutes to obtain a lithium ion battery having a gel electrolyte.
【0016】[0016]
【第二の実施例】LiCoO2をアルミニウム箔に塗布
し、プレス加工した正極と、グラファイトを銅箔に塗布
し、プレス加工した負極とを多孔質のポリエチレン層よ
りなるセパレーターを介してらせん状に巻き、有底円筒
状の電池缶に装着した。この両極間に、ポリスチレンモ
ノマー180g、ジビニルベンゼン5g、ベンゼンパー
オキシド1.5g、をテトラヒドロフラン150gに溶
解した溶液を減圧下で含浸せしめた後、窒素雰囲気中で
60゜Cにて2時間加熱して重合反応をおこなわせた。
これに窒素雰囲気下で1MのLiPF6をエチレンカー
ボネイトとジメトキシエタンとの混合液に溶解した溶液
を加えて膨潤させ、良好なゲル状電解液とし、封口し、
リチウムイオン電池を得た。[Second Embodiment] LiCoO 2 is applied to an aluminum foil and pressed to form a positive electrode, and graphite is applied to a copper foil to form a pressed negative electrode in a spiral manner through a separator made of a porous polyethylene layer. It was wound and attached to a cylindrical battery can with a bottom. A solution obtained by dissolving 180 g of polystyrene monomer, 5 g of divinylbenzene, and 1.5 g of benzene peroxide in 150 g of tetrahydrofuran was impregnated under reduced pressure between the two electrodes, and then heated at 60 ° C. for 2 hours in a nitrogen atmosphere. A polymerization reaction was performed.
Under a nitrogen atmosphere, a solution of 1 M LiPF 6 dissolved in a mixture of ethylene carbonate and dimethoxyethane was added to swell the mixture to form a good gel electrolyte, which was then sealed.
A lithium ion battery was obtained.
【0017】[0017]
【第三の実施例】LiCoO2をアルミニウム箔に塗布
し、プレス加工した正極と、グラファイトを銅箔に塗布
し、プレス加工した負極と、多孔質のポリエチレン層か
らなるセパレーターとに、酢酸ビニル100g、ケイ皮
酸ビニル10g、AIBN2gをテトラヒドロフラン1
50gに溶解した液を、減圧下で含浸せしめた。これら
をそれぞれ液から取り出し、窒素ガス雰囲気下で60°
Cにて30分間加熱してゲルとした。この様にして得た
ゲルが空隙中に充填された正極、セパレーター、負極を
巻回し、有底円筒状の電池缶に装着した。この両極間
に、窒素雰囲気下で1MのLiPF6をエチレンカーボ
ネイトとジメトキシエタンとの混合液に溶解した溶液を
加えてゲル中に拡散させ、良好なゲル状電解液とし、封
口し、リチウムイオン電池を得た。Third Embodiment LiCoO 2 was applied to an aluminum foil and pressed to form a positive electrode, graphite was applied to a copper foil and pressed to form a negative electrode, and a separator made of a porous polyethylene layer was charged with 100 g of vinyl acetate. , Vinyl cinnamate 10 g and AIBN 2 g in tetrahydrofuran 1
The solution dissolved in 50 g was impregnated under reduced pressure. Each of them is taken out of the liquid, and is placed in a nitrogen gas atmosphere at 60 °
C for 30 minutes to form a gel. The positive electrode, the separator, and the negative electrode in which the gel thus obtained was filled in the voids were wound and mounted on a bottomed cylindrical battery can. Between the two electrodes, a solution of 1M LiPF 6 dissolved in a mixture of ethylene carbonate and dimethoxyethane was added under a nitrogen atmosphere and allowed to diffuse into the gel to form a good gel electrolyte, which was then sealed and sealed with a lithium ion battery. I got
【0018】[0018]
【第四の実施例】スチレンモノマー100g、ジビニル
ベンゼン2.5g、を乳化剤1gと過硫酸カリウム1g
を含む水1リットルに分散させ、60゜Cで1時間攪拌
してポリスチレンラテックスを得る。このラテックスを
凍結乾燥して粉末状とした後、ポリスチレンの良溶媒で
あるクロロホルムあるいはジメチルホルムアミドに分散
させて膨潤ミクロゲルを得た。このミクロゲルを三酸化
イオウイオウによって表面スルホン化(スルホン化度
0.1〜15%)を行った。ミクロゲルは回収後水に分
散させ、LiOHで完全に中和した後凍結乾燥してミク
ロゲル粉末を得た。こうして得た表面スルホン化ミクロ
ゲル粉末を,1MのLiPF6のエチレンカーボネー
ト、メチルエチルカーボネート(体積比1:3)溶液に
て膨潤させてゲルとし、このゲルを正極、セパレータ
ー、負極のそれぞれの表面に薄く塗布し、それぞれを重
ねてらせん状に巻き、有底円筒状の電池缶に装着した。
これを窒素雰囲気中で封口し、リチウムイオン電池を得
た。Fourth Embodiment 100 g of a styrene monomer and 2.5 g of divinylbenzene are mixed with 1 g of an emulsifier and 1 g of potassium persulfate.
And stirred at 60 ° C. for 1 hour to obtain a polystyrene latex. This latex was freeze-dried to a powder, and then dispersed in chloroform or dimethylformamide, which is a good solvent for polystyrene, to obtain a swollen microgel. This microgel was subjected to surface sulfonation (sulfonation degree: 0.1 to 15%) with sulfur trioxide. The microgel was recovered, dispersed in water, completely neutralized with LiOH, and lyophilized to obtain a microgel powder. The surface sulfonated microgel powder thus obtained is swollen with a 1 M solution of LiPF 6 in ethylene carbonate and methyl ethyl carbonate (volume ratio 1: 3) to form a gel. The gel is applied to the surfaces of the positive electrode, the separator and the negative electrode. It was applied thinly, and each was overlapped and spirally wound, and mounted on a cylindrical battery can with a bottom.
This was sealed in a nitrogen atmosphere to obtain a lithium ion battery.
【0019】[0019]
【第五の実施例】メタクリレート200gとジビニルベ
ンゼン1gに過酸化ベンゾイル1gを300mlの有機
電解液で希釈して、60°C、3時間攪拌して高分子溶
液を得た。これを両極の表面に薄層状に塗布し、多孔質
プラスチックスペーサーを挟んで巻回して、有底円筒状
の電池缶に装着した。これを窒素雰囲気中で封口し、リ
チウムイオン電池を得た。Fifth Embodiment 200 g of methacrylate and 1 g of divinylbenzene were diluted with 1 g of benzoyl peroxide with 300 ml of an organic electrolyte and stirred at 60 ° C. for 3 hours to obtain a polymer solution. This was applied in a thin layer on the surfaces of both electrodes, wound around a porous plastic spacer, and attached to a bottomed cylindrical battery can. This was sealed in a nitrogen atmosphere to obtain a lithium ion battery.
【0020】[0020]
【第六の実施例】LiCoO2をアルミニウム箔に塗布
し、プレス加工した正極と、グラファイトを銅箔に塗布
し、プレス加工した負極とを多孔質のポリエチレン層よ
りなるセパレーターを介してらせん状に巻き、有底円筒
状の電池缶に装着した。この両極間に、スチレンモノマ
ー10ml、アクリレートまたはメタクリレートモノマ
ー10mlの混合物とジビニルベンゼン1mlを有機電
解質100mlに加え、ジクミルペルオキシド60ml
を混合した溶液を浸透させた。これを70°Cで3時間
熱処理することにより、重合反応を行わせた結果、浸透
した溶液は濃厚高分子溶液となり、流動性が著しく低減
した。[Sixth Embodiment] LiCoO 2 is applied to an aluminum foil and pressed to form a positive electrode, and graphite is applied to a copper foil and pressed to form a negative electrode through a separator made of a porous polyethylene layer in a spiral manner. It was wound and attached to a cylindrical battery can with a bottom. Between these two electrodes, a mixture of 10 ml of styrene monomer, 10 ml of acrylate or methacrylate monomer and 1 ml of divinylbenzene were added to 100 ml of organic electrolyte, and 60 ml of dicumyl peroxide was added.
The mixed solution was infiltrated. This was heat-treated at 70 ° C. for 3 hours to cause a polymerization reaction. As a result, the permeated solution became a concentrated polymer solution, and the fluidity was significantly reduced.
【0021】[0021]
【第七の実施例】ポリビニルアルコール0.5gを熱湯
30mlに溶解して後500mlに希釈し、この溶液に
スチレンモノマー15g、ジビニルベンゼン2g、過酸
化ベンゾイル0.2gを加え、90°Cにて4時間攪拌
してラテックス粒子を得た。この粒子をテトラヒドロフ
ランにて膨潤させ、有機電解液にて分散させてスラリー
状としたものをリチウムイオン電池の両極の表面に塗布
し、巻回して電池とした。Seventh Embodiment 0.5 g of polyvinyl alcohol is dissolved in 30 ml of hot water and then diluted to 500 ml. To this solution, 15 g of styrene monomer, 2 g of divinylbenzene and 0.2 g of benzoyl peroxide are added. After stirring for 4 hours, latex particles were obtained. The particles were swelled with tetrahydrofuran, dispersed in an organic electrolyte to form a slurry, applied to both surfaces of a lithium ion battery, and wound to form a battery.
【0022】[0022]
【発明の効果】第一ないし第四の実施例で作成した電池
について、円筒状の電池の側面から釘をさしこむ破壊試
験(釘さし試験)を行った。その際の状況は表1に示す
様に、本発明の方法で作った電池では炎の発生は極めて
小さいか認められず、これに対して電解質にゲルを使わ
なかった電池では電解液が流出し大きな炎となった。The batteries prepared in the first to fourth embodiments were subjected to a destructive test (a nail insertion test) in which a nail was inserted from the side of the cylindrical battery. As shown in Table 1, as shown in Table 1, the generation of flame was extremely small or not recognized in the battery made by the method of the present invention. It became a big flame.
【0023】[0023]
【表1】 [Table 1]
【0024】以上の説明から明らかな通り、本発明によ
れば、両極の巻回品に電解液を含浸させた後、該電解液
をゲル状とするか、両極の表面に電解液を含んだゲルを
存在せしめて巻回するか、あるいは両極の巻回品中に存
在するゲルに電解質を含浸させることにより、電池の容
器が破損した際の電解液の流出が殆ど無い為、安全性に
優れ、且つ充放電に伴う劣化も少ないリチウムイオン電
池が得られるものであり、産業上極めて有用である。As is clear from the above description, according to the present invention, after the wound product of both electrodes is impregnated with the electrolytic solution, the electrolytic solution is made into a gel state or the surface of both electrodes contains the electrolytic solution. Excellent safety because there is almost no outflow of electrolyte when the battery container is damaged by winding the gel in the presence of the gel or impregnating the gel in the wound product of both electrodes with the electrolyte. In addition, a lithium-ion battery with less deterioration due to charge and discharge can be obtained, which is extremely useful in industry.
Claims (11)
表面に形成し、両者を互いに対向せしめた状態でらせん
状に巻き、この両者間に有機溶媒と、ゲル化剤またはそ
の原料とからなる液を含浸せしめ、これをゲル化させた
後該ゲル中にリチウムを含む電解質を拡散させることを
特徴とするリチウムイオン電池の製造法。A positive electrode and a negative electrode are respectively formed on the surface of a foil-shaped current collector, and spirally wound in a state where both are opposed to each other, and an organic solvent, a gelling agent or a raw material thereof are interposed therebetween. A method for producing a lithium-ion battery, comprising: impregnating a solution consisting of: and then gelling the solution, and then diffusing an electrolyte containing lithium into the gel.
表面に形成し、両者を互いに対向せしめた状態でらせん
状に巻き、この両者間にリチウムを含む電解質と、該電
解質を溶解した有機溶媒と、ゲル化剤またはその原料と
からなる電解液を含浸せしめ、これをゲル化させること
を特徴とするリチウムイオン電池の製造法。2. A positive electrode and a negative electrode are respectively formed on the surface of a foil-shaped current collector, spirally wound in a state where both are opposed to each other, and an electrolyte containing lithium and an electrolyte dissolved between the two. A method for producing a lithium ion battery, comprising impregnating an electrolytic solution comprising an organic solvent and a gelling agent or a raw material thereof and gelling the same.
表面に形成し、更にそれらの表面または両極の間の介在
するセパレーターの少なくとも一部にゲル化剤またはそ
の原料を存在せしめ、前記正極および負極を互いに対向
せしめた状態でらせん状に巻き、この両者間に有機溶媒
を含浸せしめて前記ゲル化剤またはその原料を溶解し、
この溶液をゲル化させた後該ゲル中にリチウムを含む電
解質を拡散させることを特徴とするリチウムイオン電池
の製造法。3. The method according to claim 1, wherein the positive electrode and the negative electrode are formed on the surface of a foil-shaped current collector, and a gelling agent or a raw material thereof is present on at least a part of the surface or a separator interposed between the electrodes. The positive electrode and the negative electrode are spirally wound in a state where they face each other, and the gelling agent or the raw material is dissolved by impregnating an organic solvent between the two,
A method for producing a lithium ion battery, comprising: gelling the solution; and then diffusing an electrolyte containing lithium into the gel.
表面に形成し、更にそれらの表面または両極の間の介在
するセパレーターの少なくとも一部にゲル化剤またはそ
の原料を存在せしめ、前記正極および負極を互いに対向
せしめた状態でらせん状に巻き、この両者間にリチウム
を含む電解質と、該電解質を溶解した有機溶媒とからな
る電解液を含浸せしめて前記ゲル化剤またはその原料を
溶解し、この溶液をゲル化させることを特徴とするリチ
ウムイオン電池の製造法。4. A positive electrode and a negative electrode are formed on the surface of a foil-shaped current collector, and a gelling agent or its raw material is present on at least a part of the surface or at least a part of a separator interposed between both electrodes. The positive electrode and the negative electrode are spirally wound in a state where they are opposed to each other, and an electrolyte containing an electrolyte containing lithium and an organic solvent in which the electrolyte is dissolved is impregnated between the two to dissolve the gelling agent or its raw material. And a method for producing a lithium ion battery, wherein the solution is gelled.
表面に形成し、更にそれらの表面または両極の間の介在
するセパレーターの少なくとも一部に有機溶媒と高分子
からなるゲルを存在せしめ、前記正極および負極を互い
に対向せしめた状態でらせん状に巻き、この両者間にリ
チウムを含む電解質を含浸せしめることを特徴とするリ
チウムイオン電池の製造法。5. A positive electrode and a negative electrode are formed on the surface of a foil-shaped current collector, and a gel comprising an organic solvent and a polymer is present on at least a part of the surface or a separator interposed between the electrodes. A method of manufacturing a lithium ion battery, comprising: spirally winding the positive electrode and the negative electrode so as to face each other, and impregnating an electrolyte containing lithium therebetween.
表面に形成し、更にそれらの表面または両極の間の介在
するセパレーターの少なくとも一部に有機溶媒と、高分
子と、リチウムを含む電解質とからなるゲルを存在せし
め、前記正極および負極を互いに対向せしめた状態でら
せん状に巻くことを特徴とするリチウムイオン電池の製
造法。6. A positive electrode and a negative electrode are respectively formed on the surface of a foil-like current collector, and at least a part of a separator interposed between the surfaces or both electrodes contains an organic solvent, a polymer, and lithium. A method for producing a lithium-ion battery, comprising: a gel comprising an electrolyte; and spirally winding the positive electrode and the negative electrode in a state of facing each other.
し請求項6のいずれかに記載のリチウムイオン電池の製
造法。7. The method for producing a lithium ion battery according to claim 1, wherein gelation occurs by a thermal polymerization reaction.
重合反応,重縮合反応のいずれかの反応によって2官能
性モノマーと多官能性モノマーからなる分岐あるいは架
橋高分子の生成によって起こる請求項1ないし請求項6
のいずれかに記載のリチウムイオン電池の製造法。8. The gelation is caused by the formation of a branched or crosslinked polymer composed of a bifunctional monomer and a polyfunctional monomer by any of an addition polymerization reaction, a polyaddition reaction, a ring-opening polymerization reaction and a polycondensation reaction. Claims 1 to 6
The method for producing a lithium ion battery according to any one of the above.
チル、ポリメタクリル酸メチル、ポリアクリロニトリ
ル、ポリスチレン、ポリ酢酸ビニル、ポリケイ皮酸ビニ
ル、環化ゴム、ポリシラン、ポリシロキサン、エポキシ
化ポリブタジエン、ポリエーテル、ポリウレタン、ポリ
エステルおよびそれらの共重合体の中の少なくとも1つ
を含む請求項1ないし請求項のいずれかに6記載のリチ
ウムイオン電池の製造法。9. The polymer constituting the gel is polymethyl acrylate, polymethyl methacrylate, polyacrylonitrile, polystyrene, polyvinyl acetate, polyvinyl cinnamate, cyclized rubber, polysilane, polysiloxane, epoxidized polybutadiene, poly The method for producing a lithium ion battery according to any one of claims 1 to 6, comprising at least one of ether, polyurethane, polyester, and a copolymer thereof.
る有機溶媒との溶解性パラメーターの比が1対0.7な
いし1対1.3の範囲内である請求項1ないし請求項6
のいずれかに記載のリチウムイオン電池の製造法。10. The method according to claim 1, wherein the ratio of the solubility parameter between the polymer constituting the gel and the organic solvent contained therein is in the range of 1: 0.7 to 1: 1.3.
The method for producing a lithium ion battery according to any one of the above.
の表面に形成され、両者が互いに対向した状態でらせん
状に巻かれており、この両者間に熱重合反応で生成した
ゲル状電解液が介在し、該ゲル状電解液中にはリチウム
を含む電解質と、該電解質を溶解した有機溶媒とが含浸
せしめられていることを特徴とするリチウムイオン電
池。11. A positive electrode and a negative electrode are respectively formed on the surface of a foil-shaped current collector, and are wound spirally in a state where both are opposed to each other, and a gel electrolyte formed by a thermal polymerization reaction therebetween. A lithium-ion battery, wherein a liquid is interposed, and the gel electrolyte is impregnated with an electrolyte containing lithium and an organic solvent in which the electrolyte is dissolved.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8282830A JPH1092470A (en) | 1996-09-17 | 1996-09-17 | Lithium ion battery and manufacture of it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8282830A JPH1092470A (en) | 1996-09-17 | 1996-09-17 | Lithium ion battery and manufacture of it |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1092470A true JPH1092470A (en) | 1998-04-10 |
Family
ID=17657640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8282830A Pending JPH1092470A (en) | 1996-09-17 | 1996-09-17 | Lithium ion battery and manufacture of it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1092470A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000067906A (en) * | 1998-08-19 | 2000-03-03 | Sony Corp | Solid electrolyte battery |
JP2000082496A (en) * | 1998-09-08 | 2000-03-21 | Mitsubishi Chemicals Corp | Lithium secondary battery and its manufacture |
JP2000149905A (en) * | 1998-11-10 | 2000-05-30 | Sony Corp | Solid electrolyte battery |
US6165647A (en) * | 1999-04-09 | 2000-12-26 | Matsushita Electric Industrial Co., Ltd. | Secondary battery comprising a polymerizable material in its electrolyte solution |
JP2008310981A (en) * | 2007-06-12 | 2008-12-25 | Kagawa Industry Support Foundation | Lithium ion polymer battery |
US8083812B1 (en) | 1999-02-19 | 2011-12-27 | Sony Corporation | Solid-electrolyte battery and manufacturing method therefor |
US10403937B2 (en) | 2014-05-20 | 2019-09-03 | Dyson Technology Limited | Method of manufacturing an electrochemical cell |
-
1996
- 1996-09-17 JP JP8282830A patent/JPH1092470A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000067906A (en) * | 1998-08-19 | 2000-03-03 | Sony Corp | Solid electrolyte battery |
JP2000082496A (en) * | 1998-09-08 | 2000-03-21 | Mitsubishi Chemicals Corp | Lithium secondary battery and its manufacture |
JP2000149905A (en) * | 1998-11-10 | 2000-05-30 | Sony Corp | Solid electrolyte battery |
US8083812B1 (en) | 1999-02-19 | 2011-12-27 | Sony Corporation | Solid-electrolyte battery and manufacturing method therefor |
US6165647A (en) * | 1999-04-09 | 2000-12-26 | Matsushita Electric Industrial Co., Ltd. | Secondary battery comprising a polymerizable material in its electrolyte solution |
JP2008310981A (en) * | 2007-06-12 | 2008-12-25 | Kagawa Industry Support Foundation | Lithium ion polymer battery |
US10403937B2 (en) | 2014-05-20 | 2019-09-03 | Dyson Technology Limited | Method of manufacturing an electrochemical cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7078124B2 (en) | Positive electrode having polymer film and lithium-sulfur battery employing the positive electrode | |
US7883554B2 (en) | Lithium secondary battery with suppressed decomposition of electrolytic solution and preparation method thereof | |
Cheng et al. | Preparation of porous, chemically cross-linked, PVdF-based gel polymer electrolytes for rechargeable lithium batteries | |
EP0766329B1 (en) | Polymer electrolyte and lithium polymer battery using the same | |
US5691005A (en) | Manufacturing method of a separator for a lithium secondary battery and an organic electrolyte lithium secondary battery using the same separator | |
US6949318B2 (en) | Polymeric gel electrolyte and lithium battery employing the same | |
US6268087B1 (en) | Method of preparing lithium ion polymer battery | |
EP0893836A2 (en) | Solid polymer electrolyte and preparation method therefor | |
RU2388088C1 (en) | New polymer electrolyte and electrochemical device | |
KR20010083043A (en) | Multifunctional reactive monomers for safety protection of nonaqueous electrochemical cells | |
JP3854382B2 (en) | Polymer matrix for forming gelled solid electrolyte, solid electrolyte and battery | |
JP4418126B2 (en) | Gel polymer electrolyte and lithium battery using the same | |
JP4163295B2 (en) | Gel-like solid electrolyte battery | |
JPH1092470A (en) | Lithium ion battery and manufacture of it | |
JPH1032019A (en) | Polymer electrolyte and lithium polymer battery using polymer electrolyte | |
KR100327915B1 (en) | Polymer electrolyte, method for preparing the same, and lithium secondary battery employing the same | |
KR100327492B1 (en) | Preparation of lithium secondary battery employing gelled polymer electrolyte | |
JPH1180296A (en) | Gel form polymer electrolyte | |
JPH09270271A (en) | Nonaqueous secondary battery and manufacture thereof | |
JP4161437B2 (en) | Lithium battery | |
JPH103897A (en) | Separator for battery | |
JP2000058078A (en) | Gel polymeric electrolyte and solid electrolyte battery using the same | |
JPH1186828A (en) | Battery separator and its manufacture | |
JP4325098B2 (en) | Gel composition | |
JP2002158037A5 (en) |