JPH1088250A - Method for recovering valuable metal from used nickel-hydrogen secondary battery - Google Patents
Method for recovering valuable metal from used nickel-hydrogen secondary batteryInfo
- Publication number
- JPH1088250A JPH1088250A JP23914796A JP23914796A JPH1088250A JP H1088250 A JPH1088250 A JP H1088250A JP 23914796 A JP23914796 A JP 23914796A JP 23914796 A JP23914796 A JP 23914796A JP H1088250 A JPH1088250 A JP H1088250A
- Authority
- JP
- Japan
- Prior art keywords
- sieve
- nickel
- secondary battery
- valuable metals
- used nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/84—Recycling of batteries or fuel cells
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Secondary Cells (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、使用済みニッケル
水素2次電池からニッケル、コバルトなどの有価金属を
回収する方法に関する。The present invention relates to a method for recovering valuable metals such as nickel and cobalt from a used nickel-metal hydride secondary battery.
【0002】[0002]
【従来の技術】ニッケル水素2次電池は、1)活物質で
ある水酸化ニッケル、水素吸蔵合金、2)活物質の支持
体である多孔性ニッケル、3)セパレーターなどの有機
物、4)KOH水溶液などの電解液、5)鉄製の電池容
器からなり、優れた特性を有している。そのため、ニッ
ケル水素2次電池は、ニッケルカドミウム2次電池に代
わる2次電池として使用量が増加しており、今後、使用
済みのニッケル水素2次電池の発生量も増大する可能性
が大きい。2. Description of the Related Art Nickel-metal hydride rechargeable batteries include 1) nickel hydroxide as an active material, a hydrogen storage alloy, 2) porous nickel as a support for the active material, 3) an organic material such as a separator, and 4) an aqueous KOH solution. 5) It is composed of an iron battery container and has excellent characteristics. Therefore, the usage of nickel-metal hydride secondary batteries has increased as a secondary battery that replaces nickel-cadmium secondary batteries, and it is highly likely that the amount of used nickel-metal hydride secondary batteries will increase in the future.
【0003】ニッケルカドミウム2次電池は、負極活物
質にカドミウム化合物が使用されている。したがって、
使用済みニッケルカドミウム2次電池から有価金属を回
収するために従来、使用済みニッケルカドミウム2次電
池をカドミウムの沸点以上に加熱してカドミウムを揮発
させた後、金属カドミウムまたは酸化カドミウムとして
回収する一方、カドミウムを揮発させた残渣を溶融して
ニッケル−鉄混合スクラップとして回収する、いわゆる
蒸留回収法が行われていた。In a nickel cadmium secondary battery, a cadmium compound is used as a negative electrode active material. Therefore,
Conventionally, in order to recover valuable metals from used nickel cadmium secondary batteries, used nickel cadmium secondary batteries are heated above the boiling point of cadmium to volatilize cadmium, and then recovered as metal cadmium or cadmium oxide. A so-called distillation recovery method has been performed in which a residue obtained by volatilizing cadmium is melted and recovered as a nickel-iron mixed scrap.
【0004】ところで、ニッケル水素2次電池の負極活
物質には、水素吸蔵合金が使用され、カドミウムは使用
されていないために、前述のカドミウムを揮発させる工
程は不要である。By the way, since a hydrogen storage alloy is used as a negative electrode active material of a nickel-metal hydride secondary battery and cadmium is not used, the above-mentioned step of volatilizing cadmium is unnecessary.
【0005】しかしながら、使用済みニッケル水素2次
電池からの有価金属の回収方法について具体的な提案は
現在までほとんどなく、上記従来の使用済みニッケルカ
ドミウム2次電池からの有価金属の回収方法を使用済み
ニッケル水素2次電池に適用している。そのため次のよ
うな問題があった。すなわち、 (1)負極活物質として使用されている水素吸蔵合金中
の希土類元素が、溶融して回収されるニッケル−鉄混合
スクラップ中に混入する。希土類元素が混入したニッケ
ル−鉄混合スクラップを例えばステンレス原料として使
用する場合、製品ステンレス中にも希土類元素が混入し
て製品ステンレスの耐酸化性を低下させ、またステンレ
ス製造工程において希土類元素を除去する工程を設ける
とステンレスの生産効率を低下させる。However, there have been few concrete proposals on the method of recovering valuable metals from used nickel-metal hydride secondary batteries, and the above-mentioned conventional methods for recovering valuable metals from used nickel-cadmium secondary batteries have been used. Applied to nickel-metal hydride secondary batteries. Therefore, there were the following problems. That is, (1) The rare earth element in the hydrogen storage alloy used as the negative electrode active material is mixed into the nickel-iron mixed scrap which is melted and recovered. When a nickel-iron mixed scrap mixed with a rare earth element is used, for example, as a raw material for stainless steel, the rare earth element is also mixed in the product stainless steel to reduce the oxidation resistance of the product stainless steel, and also remove the rare earth element in the stainless steel manufacturing process. Providing a step lowers the production efficiency of stainless steel.
【0006】(2)ニッケルをニッケル−鉄混合スクラ
ップとして回収するので、回収されたニッケル−鉄混合
スクラップはステンレスなどの鉄鋼向け原料に主な用途
が限られてしまうという問題があった。(2) Since nickel is recovered as nickel-iron mixed scrap, there has been a problem that the recovered nickel-iron mixed scrap is mainly limited to raw materials for steel such as stainless steel.
【0007】なお、使用済みニッケル水素2次電池から
コバルト、ニッケルなどの有価金属を回収するために、
焙焼・破砕・篩別する技術が特開平6−346160号
公報、特開平7−207349号公報に開示され、また
粉砕物を磁選する技術が特開平6−322452号公
報、特開平7−245126号公報に開示されている。[0007] In order to recover valuable metals such as cobalt and nickel from used nickel-metal hydride secondary batteries,
Techniques for roasting, crushing, and sieving are disclosed in JP-A-6-346160 and JP-A-7-207349, and techniques for magnetically selecting a pulverized product are described in JP-A-6-322452 and JP-A-7-245126. No. 6,086,045.
【0008】[0008]
【発明が解決しようとする課題】本発明は、上記状況に
鑑み、使用済みニッケル水素2次電池からニッケルやコ
バルトのような有価金属を鉄や希土類元素を含まない高
品位の合金として回収する方法を提供することを目的と
する。SUMMARY OF THE INVENTION In view of the above circumstances, the present invention provides a method of recovering a valuable metal such as nickel or cobalt from a used nickel-metal hydride secondary battery as a high-grade alloy containing no iron or rare earth elements. The purpose is to provide.
【0009】[0009]
【課題を解決するための手段】上記課題を解決する本発
明の方法は、(1)含まれる有機物を除去するとともに
酸化物あるいは水酸化物として含まれるニッケルやコバ
ルトを金属ニッケルや金属コバルトに還元するために、
使用済みニッケル水素2次電池を焙焼して焙焼物を得る
工程、(2)次の篩別工程で鉄を有価金属から除去し易
くするために、該焙焼物を破砕して破砕物を得る工程、
(3)該破砕物を篩別して篩上と篩下を得る工程、
(4)希土類元素を1次的に除去するために、該篩下を
磁選して磁着物と非磁着物を得る工程、および(5)希
土類元素を2次的に除去するために、該磁着物を酸素を
含む雰囲気で溶融して、希土類元素を酸化物としてスラ
グ中に除去し、次にメタルを有価金属濃縮物として回収
する工程からなる使用済みニッケル水素2次電池からの
有価金属の回収方法である。The method of the present invention for solving the above-mentioned problems comprises the following steps: (1) to remove organic substances contained therein and to reduce nickel or cobalt contained as oxides or hydroxides to metallic nickel or metallic cobalt; To do
A step of roasting the used nickel-metal hydride secondary battery to obtain a roasted product; (2) crushing the roasted product to obtain a crushed product in order to easily remove iron from valuable metals in the next sieving step Process,
(3) a step of sieving the crushed material to obtain an upper sieve and a lower sieve;
(4) a step of magnetically separating the undersize of the sieve to temporarily remove the rare earth element to obtain a magnetically adhered substance and a non-magnetically adhered substance; and (5) a step of secondary removing the rare earth element. Melting the kimono in an atmosphere containing oxygen, removing rare earth elements as oxides in the slag, and then recovering valuable metals from used nickel-metal hydride rechargeable batteries comprising recovering metals as valuable metal concentrates Is the way.
【0010】[0010]
【発明の実施の形態】本発明の使用済みニッケル水素2
次電池からの有価金属の回収方法は、(1)焙焼工程、
(2)破砕工程、(3)篩別工程、(4)磁選工程、お
よび(5)溶融工程からなる。BEST MODE FOR CARRYING OUT THE INVENTION The used nickel hydrogen 2 of the present invention
The method of recovering valuable metals from the secondary battery includes (1) a roasting step,
It comprises (2) crushing step, (3) sieving step, (4) magnetic separation step, and (5) melting step.
【0011】(1)焙焼工程 まず、使用済みニッケル水素2次電池を焙焼して焙焼物
を得る。この焙焼は、セパレーターなどに用いられてい
る有機物を分解、燃焼または揮発させて除去するために
行う。(1) Roasting Step First, a used nickel metal hydride secondary battery is roasted to obtain a roasted product. This roasting is performed in order to decompose, burn or volatilize and remove the organic substances used for the separator and the like.
【0012】焙焼の雰囲気を大気雰囲気以下の酸化性雰
囲気あるいは非酸化性雰囲気とすると、上記分解、燃焼
または揮発する有機物などの還元作用により、活物質と
して酸化物あるいは水酸化物で存在するニッケルやコバ
ルトは還元され、強磁性体である金属ニッケルや金属コ
バルトが生成する。When the roasting atmosphere is an oxidizing atmosphere or a non-oxidizing atmosphere equal to or lower than the atmospheric atmosphere, nickel present as an oxide or hydroxide as an active material is reduced by the above-mentioned reduction action of organic substances which decompose, burn or volatilize. And cobalt are reduced to produce ferromagnetic metallic nickel and metallic cobalt.
【0013】焙焼温度は、低すぎると上記還元が進ま
ず、ニッケルやコバルトの回収率が低くなり、一方、高
すぎると活物質として存在する水素吸蔵合金と金属ニッ
ケルが溶け合い、後工程での希土類元素の除去にかかる
負担が大きくなる。このため焙焼温度は350〜100
0℃とするのが好ましい。If the roasting temperature is too low, the above-mentioned reduction does not proceed, and the recovery rate of nickel and cobalt decreases. On the other hand, if the roasting temperature is too high, the hydrogen-absorbing alloy existing as an active material and the metallic nickel dissolve, and in the subsequent step, The burden on removing rare earth elements increases. Therefore, the roasting temperature is 350-100.
The temperature is preferably set to 0 ° C.
【0014】(2)破砕工程 次に、上記焙焼物を破砕して破砕物を得る。この破砕
は、ニッケル水素2次電池を構成する金属の中で鉄は電
池容器として存在するものが大部分であり、鉄製の電池
容器は他成分に比べ破砕を受けにくく、破砕後も比較的
大きな粒子として残ることを利用し、次の篩別工程で鉄
をニッケルやコバルトから除去し易くするために行う。(2) Crushing Step Next, the roasted product is crushed to obtain a crushed product. In this crushing, most of the metals constituting the nickel-metal hydride secondary battery have iron as a battery container, and the iron battery container is less susceptible to crushing than other components, and is relatively large even after crushing. Utilizing what remains as particles, it is carried out to make it easier to remove iron from nickel and cobalt in the next sieving step.
【0015】ところで、上記破砕を受けにくい鉄製の電
池容器は、通常の破砕では、呼び寸法が4000μm以
下のJIS−Z8801標準篩の篩下に混入する程度ま
では破砕されにくい(「呼び寸法が4000μm以下の
JIS−Z8801標準篩」を以下、単に「4000μ
m以下の篩」という)。そのため、次の篩別工程で40
00μm以下の篩で有価金属が篩別性よく篩下に含まれ
る(すなわち、篩上への有価金属の混入をほぼなくす)
程度まで破砕を行うのが好ましい。この破砕により、次
の篩別工程で鉄分を篩別性よく篩上に含ませる(すなわ
ち、篩下への鉄分の混入をほぼなくす)ことができる。
上記程度まで破砕を行わないと、次の篩別工程で得られ
る篩下の有価金属品位が低下するか、あるいは有価金属
の篩下への配分率が低下する。この破砕方法は、特に限
定するものではなく電池容器と他成分が分別できる程度
であればよく、微粉砕する必要はない。By the way, the iron battery container which is hard to be crushed is hardly crushed by ordinary crushing until it is mixed under a JIS-Z8801 standard sieve having a nominal size of 4000 μm or less (“the nominal size is 4000 μm”). The following JIS-Z8801 standard sieve is hereinafter simply referred to as "4000 μ
m or less "). Therefore, in the next sieving step, 40
Valuable metals are contained under the sieve with a sieve of 00 μm or less with good sieving properties (that is, almost no contamination of valuable metals on the sieve)
It is preferred to perform crushing to a degree. By this crushing, iron can be contained on the sieve with good sieving properties in the next sieving step (that is, almost no mixing of iron under the sieve).
If the crushing is not performed to the above degree, the valuable metal grade under the sieve obtained in the next sieving step is reduced, or the distribution ratio of the valuable metal to the sieve is reduced. This crushing method is not particularly limited as long as the battery container and other components can be separated, and there is no need to finely crush.
【0016】(3)篩別工程 さらに、破砕物を篩別して篩上と篩下を得る。この篩下
に破砕物中の有価金属が、また篩上に破砕物中の鉄分が
篩別性よく含まれるように、4000μm以下の篩を使
用することが好ましい。4000μm以下の篩は、破砕
物の破砕状況に応じて適宜選択することができる。過度
に細かい篩は、有価金属の収率を低下させる。(3) Sieving Step Further, the crushed material is sieved to obtain an upper sieve and a lower sieve. It is preferable to use a sieve having a size of 4000 μm or less so that valuable metals in the crushed material are contained below the sieve, and iron in the crushed material is contained on the sieve with good sieving property. The sieve having a size of 4000 μm or less can be appropriately selected according to the crushing state of the crushed material. Excessively fine sieves reduce the yield of valuable metals.
【0017】なお、上記篩上は、前述した従来の技術に
おけるニッケル−鉄混合スクラップの処理工程に供給す
ることができる。The above sieve can be supplied to the nickel-iron mixed scrap processing step in the above-mentioned conventional technique.
【0018】(4)磁選工程 得られた篩下は金属ニッケル、金属コバルトおよび希土
類元素を含む水素吸蔵合金の混合物であるので希土類元
素を1次的に除去するため、磁選により強磁性体である
金属ニッケルおよび金属コバルトと、非磁性体である水
素吸蔵合金とをそれぞれ磁着物、非磁着物として分別す
る。(4) Magnetic Separation Step Since the obtained sieve is a mixture of a hydrogen storage alloy containing metallic nickel, metallic cobalt and a rare earth element, it is a ferromagnetic substance by magnetic separation in order to remove the rare earth element temporarily. Metallic nickel and metallic cobalt are separated from a non-magnetic material, a hydrogen storage alloy, as a magnetically adhered material and a non-magnetically adhered material, respectively.
【0019】水素吸蔵合金の一部は金属ニッケルからな
る電極中にあるため、磁着物中への水素吸蔵合金の混入
は避けられない。Since a part of the hydrogen storage alloy is present in the electrode made of metallic nickel, it is inevitable that the hydrogen storage alloy is mixed into the magnetic material.
【0020】非磁着物はほとんどが水素吸蔵合金である
ため、水素吸蔵合金の母原料としての再利用が可能であ
る。それのみならずこの磁選工程でほとんどが水素吸蔵
合金である非磁着物を分別するので、次の溶融工程で磁
着物から希土類元素を2次的に除去する負担を大幅に小
さくすることができる。Since most of the non-magnetically adhered material is a hydrogen storage alloy, it can be reused as a base material of the hydrogen storage alloy. In addition, the magnetic separation step separates non-magnetically adhered substances which are mostly hydrogen storage alloys, so that the burden of secondary removal of rare earth elements from the magnetically adhered substances in the next melting step can be greatly reduced.
【0021】(5)溶融工程 上記のように、磁着物は金属ニッケル、金属コバルト、
および希土類元素とニッケルとを主成分とする水素吸蔵
合金からなるため、電気炉などの酸素を含む雰囲気で該
磁着物を溶融し、希土類元素を酸化物としてスラグ中に
除去することにより、希土類元素を2次的に除去する。(5) Melting Step As described above, the magnetic substance is made of metallic nickel, metallic cobalt,
And a hydrogen storage alloy containing a rare earth element and nickel as main components, so that the magnetized material is melted in an oxygen-containing atmosphere such as an electric furnace, and the rare earth element is removed as an oxide in the slag to remove the rare earth element. Is secondarily removed.
【0022】希土類元素は非常に酸素との親和力が強い
ので、酸素を含む雰囲気が単に大気中での溶融でも十分
スラグとして希土類元素を除去することが可能である
が、酸素を含む雰囲気を酸素または空気を吹き込んで調
製することにより、希土類元素をより迅速に除去するこ
とが可能である。Since the rare earth element has a very strong affinity for oxygen, it is possible to sufficiently remove the rare earth element as slag even if the atmosphere containing oxygen is simply melted in the atmosphere. By adjusting the composition by blowing air, the rare earth element can be more quickly removed.
【0023】また、ニッケルの融点、コバルトの融点お
よびニッケル−希土類元素合金の融点がそれぞれ145
5℃、1495℃、1300〜1400℃であることか
ら、溶融温度は1500℃以上が必要であり、熱効率、
炉の保守の面から2000℃以下が望ましい。The melting point of nickel, the melting point of cobalt, and the melting point of nickel-rare earth element alloy are each 145.
Since it is 5 ° C., 1495 ° C., and 1300 ° C. to 1400 ° C., the melting temperature needs to be 1500 ° C. or higher,
2000 ° C. or less is desirable from the viewpoint of furnace maintenance.
【0024】有価金属濃縮物として回収したメタル(ニ
ッケル−コバルト合金)は、鉄と希土類元素の含有量が
少なく、既存の工程で精製ニッケルや精製コバルトを生
産する原料として有効に利用することが可能である。ま
た除去した希土類元素を含むスラグは、希土類元素を回
収する工程に供給して処理することが可能である。The metal (nickel-cobalt alloy) recovered as a valuable metal concentrate has a low content of iron and rare earth elements, and can be effectively used as a raw material for producing purified nickel and purified cobalt in existing processes. It is. Further, the slag containing the removed rare earth element can be supplied to a step of recovering the rare earth element and treated.
【0025】[0025]
【実施例】直径20mm、高さ50mmの円筒型の使用
済みニッケル水素2次電池10個を窒素雰囲気の管状炉
内に静置し、800℃で30分焙焼した。つぎに、得ら
れた焙焼物をせん断破砕機の一種である(株)氏家製作
所製グッドカッターを用い、刃幅10mm、刃隙間0m
mで破砕した。破砕物は、呼び寸法が4000μmのJ
IS−Z8801標準篩で篩別した。EXAMPLE Ten used cylindrical nickel-metal hydride secondary batteries having a diameter of 20 mm and a height of 50 mm were allowed to stand in a tubular furnace in a nitrogen atmosphere and calcined at 800 ° C. for 30 minutes. Next, the obtained roasted product was cut using a good cutter manufactured by Ujiie Seisakusho, a kind of shear crusher, with a blade width of 10 mm and a blade gap of 0 m.
m. The crushed material has a nominal size of 4000 μm J
It was sieved with an IS-Z8801 standard sieve.
【0026】篩上は王水に溶解し原子吸光分析法により
ニッケル、コバルト、鉄、および希土類元素を分析した
(以後の成分分析も同様の方法で行った)。The sieve was dissolved in aqua regia and analyzed by atomic absorption spectrometry for nickel, cobalt, iron and rare earth elements (subsequent component analysis was carried out in the same manner).
【0027】篩下は、(株)鷹羽科学工業製のソレノイ
ド式磁力選別機を用い、磁力選別した。磁力は920エ
ルステッドに設定した。非磁着物は成分分析を行い、磁
着物はアルミナるつぼに入れ1500℃で溶融し、1リ
ットル/分の酸素を吹き込みつつ1時間反応させた。反
応終了後、冷却した溶融体をスラグ分とメタル分に分離
し成分分析を行った。表1に成分分析結果を示す。[0027] The sieve was screened using a solenoid type magnetic screener manufactured by Takaha Kagaku Kogyo Co., Ltd. The magnetic force was set at 920 Oersted. The non-magnetic material was subjected to component analysis, and the magnetic material was put in an alumina crucible, melted at 1500 ° C., and reacted for 1 hour while blowing 1 liter / min of oxygen. After the reaction was completed, the cooled melt was separated into a slag component and a metal component, and the components were analyzed. Table 1 shows the results of the component analysis.
【0028】[0028]
【表1】 [Table 1]
【0029】得られたニッケルおよびコバルトを含有す
るメタル分は、鉄、およびLa、Ce、Prなどの希土
類不純物含有量が少なく、既存の工程で容易に精製ニッ
ケルおよび精製コバルトを得ることができる。The obtained metal component containing nickel and cobalt has a low content of iron and rare earth impurities such as La, Ce, and Pr, so that purified nickel and purified cobalt can be easily obtained by an existing process.
【0030】[0030]
【発明の効果】本発明によれば、使用済みニッケル水素
2次電池からニッケルやコバルトのような有価金属を簡
便に効率良く回収できる。According to the present invention, valuable metals such as nickel and cobalt can be easily and efficiently recovered from used nickel-metal hydride secondary batteries.
Claims (6)
て焙焼物を得る工程、該焙焼物を破砕して破砕物を得る
工程、該破砕物を篩別して篩上と篩下を得る工程、該篩
下を磁選して磁着物と非磁着物を得る工程、および該磁
着物を酸素を含む雰囲気で溶融して、これにより生成す
るスラグを除去し、次にメタルを有価金属濃縮物として
回収する工程からなる使用済みニッケル水素2次電池か
らの有価金属の回収方法。1. A step of roasting a used nickel-metal hydride secondary battery to obtain a roasted product, a step of crushing the roasted product to obtain a crushed product, and a step of sieving the crushed product to obtain an upper sieve and a lower sieve. A step of magnetically filtering under the sieve to obtain a magnetically adhered material and a non-magnetically adhered material, and melting the magnetically adhered material in an atmosphere containing oxygen to remove slag generated thereby, and then converting the metal into a valuable metal concentrate A method for recovering valuable metals from a used nickel-metal hydride secondary battery, comprising the step of recovering.
酸化性雰囲気あるいは非酸化性雰囲気、および焙焼温度
が350〜1000℃である請求項1に記載の使用済み
ニッケル水素2次電池からの有価金属の回収方法。2. The used nickel-hydrogen secondary battery according to claim 1, wherein the roasting is performed in an oxidizing atmosphere or a non-oxidizing atmosphere in which the roasting atmosphere is equal to or lower than the atmospheric atmosphere, and the roasting temperature is 350 to 1000 ° C. For recovering valuable metals from coal.
00μm以下のJIS−Z8801標準篩で有価金属が
篩別性よく篩下に含まれるように行う請求項1または2
に記載の使用済みニッケル水素2次電池からの有価金属
の回収方法。3. The crushing is performed in the next sieving step to a nominal size of 40.
The method according to claim 1 or 2, wherein the valuation is performed with a JIS-Z8801 standard sieve having a size of 00 µm or less so that valuable metals are contained under the sieve with good sieving properties.
3. The method for recovering valuable metals from a used nickel-metal hydride secondary battery according to the item 1.
にそれぞれ篩別性よく含まれるように、呼び寸法が40
00μm以下のJIS−Z8801標準篩で行う請求項
1、2または3に記載の使用済みニッケル水素2次電池
からの有価金属の回収方法。4. The sieve has a nominal size of 40 so that valuable metals are contained below the sieve and iron is contained on the sieve with good sieving properties.
The method for recovering valuable metals from used nickel-metal hydride secondary batteries according to claim 1, 2 or 3, wherein the method is performed with a JIS-Z8801 standard sieve having a size of 00 µm or less.
℃で行う請求項1〜4のいずれかに記載の使用済みニッ
ケル水素2次電池からの有価金属の回収方法。5. The melting is performed at a melting temperature of 1500 to 2000.
The method for recovering valuable metals from a used nickel-metal hydride secondary battery according to any one of claims 1 to 4, which is performed at a temperature of 0 ° C.
気を吹き込んで調製する請求項1〜5のいずれかに記載
の使用済みニッケル水素2次電池からの有価金属の回収
方法。6. The method for recovering valuable metals from used nickel-metal hydride secondary batteries according to claim 1, wherein the oxygen-containing melting atmosphere is prepared by blowing oxygen or air.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23914796A JPH1088250A (en) | 1996-09-10 | 1996-09-10 | Method for recovering valuable metal from used nickel-hydrogen secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23914796A JPH1088250A (en) | 1996-09-10 | 1996-09-10 | Method for recovering valuable metal from used nickel-hydrogen secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1088250A true JPH1088250A (en) | 1998-04-07 |
Family
ID=17040459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23914796A Pending JPH1088250A (en) | 1996-09-10 | 1996-09-10 | Method for recovering valuable metal from used nickel-hydrogen secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1088250A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003041326A (en) * | 2001-07-27 | 2003-02-13 | Sumitomo Metal Mining Co Ltd | Method for recovering valuable metal from scrap of nickel metal hydride secondary battery |
JP2006520432A (en) * | 2003-03-14 | 2006-09-07 | ワールド・リソースィズ・カンパニー | Recovery of valuable metal from cermet |
JP2010126779A (en) * | 2008-11-28 | 2010-06-10 | Sumitomo Metal Mining Co Ltd | Method for recovering nickel concentrate from used nickel hydride battery |
JP2010255104A (en) * | 2009-03-31 | 2010-11-11 | Mitsui Mining & Smelting Co Ltd | Method for producing hydrogen storage alloy powder |
JP2011124127A (en) * | 2009-12-11 | 2011-06-23 | Toyota Motor Corp | Method and device for recycling battery pack |
JP2012057238A (en) * | 2010-09-13 | 2012-03-22 | Sumitomo Metal Mining Co Ltd | Method for recovering cobalt |
JP2012224877A (en) * | 2011-04-15 | 2012-11-15 | Sumitomo Metal Mining Co Ltd | Method for recovering valuable metal |
CN103459624A (en) * | 2011-06-03 | 2013-12-18 | 住友金属矿山株式会社 | Method for recovering valuable metals |
US20140174256A1 (en) * | 2011-02-18 | 2014-06-26 | Sumitomo Metal Mining Co., Ltd. | Valuable metal recovery method |
-
1996
- 1996-09-10 JP JP23914796A patent/JPH1088250A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003041326A (en) * | 2001-07-27 | 2003-02-13 | Sumitomo Metal Mining Co Ltd | Method for recovering valuable metal from scrap of nickel metal hydride secondary battery |
JP4654548B2 (en) * | 2001-07-27 | 2011-03-23 | 住友金属鉱山株式会社 | Valuable metal recovery method from nickel metal hydride secondary battery scrap |
JP2006520432A (en) * | 2003-03-14 | 2006-09-07 | ワールド・リソースィズ・カンパニー | Recovery of valuable metal from cermet |
JP2010126779A (en) * | 2008-11-28 | 2010-06-10 | Sumitomo Metal Mining Co Ltd | Method for recovering nickel concentrate from used nickel hydride battery |
JP2010255104A (en) * | 2009-03-31 | 2010-11-11 | Mitsui Mining & Smelting Co Ltd | Method for producing hydrogen storage alloy powder |
JP2011124127A (en) * | 2009-12-11 | 2011-06-23 | Toyota Motor Corp | Method and device for recycling battery pack |
JP2012057238A (en) * | 2010-09-13 | 2012-03-22 | Sumitomo Metal Mining Co Ltd | Method for recovering cobalt |
US20140174256A1 (en) * | 2011-02-18 | 2014-06-26 | Sumitomo Metal Mining Co., Ltd. | Valuable metal recovery method |
US8951331B2 (en) * | 2011-02-18 | 2015-02-10 | Sumitomo Metal Mining Co. Ltd | Valuable metal recovery method |
JP2012224877A (en) * | 2011-04-15 | 2012-11-15 | Sumitomo Metal Mining Co Ltd | Method for recovering valuable metal |
CN103459624A (en) * | 2011-06-03 | 2013-12-18 | 住友金属矿山株式会社 | Method for recovering valuable metals |
US8992662B2 (en) | 2011-06-03 | 2015-03-31 | Sumitomo Metal Mining Co. Ltd. | Method for recovering valuable metals |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3563897B2 (en) | Method for recovering nickel and cobalt from used lithium secondary battery | |
JP5651462B2 (en) | Method of recovering valuable material from lithium ion secondary battery and recovered material containing valuable material | |
JP2020064855A (en) | Method for recovering valuables from lithium ion secondary battery | |
JP6692196B2 (en) | How to recover valuables from lithium-ion secondary batteries | |
JP6676124B1 (en) | Method of recovering valuable resources from lithium ion secondary batteries | |
WO2000025382A1 (en) | Method and system for recovering valuable metal from waste storage battery | |
EP2646584A1 (en) | Magnet recycling | |
JP2018078024A (en) | Recovery method of valuables from lithium ion secondary battery | |
JP2019131871A (en) | Metal recovery method | |
JP3425206B2 (en) | Method for recovering valuable resources from used lithium secondary batteries | |
JP3443446B2 (en) | Method for recovering cobalt from used lithium secondary battery | |
JPH1088250A (en) | Method for recovering valuable metal from used nickel-hydrogen secondary battery | |
JP2000067935A (en) | Valuable matter recovering method from waste nickel- hydrogen secondary battery | |
JP3434318B2 (en) | Separation and recovery of valuable metals from used lithium secondary batteries | |
KR100438473B1 (en) | Process of recovering valuable metal | |
JP3448392B2 (en) | Method for recovering cobalt, copper and lithium from used lithium secondary batteries | |
JP3716908B2 (en) | Recovery method of rare earth elements from sludge containing rare earth elements | |
JP4418129B2 (en) | Collection method of valuable metals | |
JP4608773B2 (en) | Method of recovering valuable metals from used nickel metal hydride secondary batteries | |
JP2002339023A (en) | Method for recovering valuable metal | |
JP4700269B2 (en) | Method for recovering constituent elements of hydrogen storage alloy | |
JP4407061B2 (en) | Valuable metal recovery method from nickel metal hydride secondary battery scrap | |
JP4398021B2 (en) | Method for recovering useful metals from alkaline secondary batteries | |
JP4872168B2 (en) | Method for recovering valuable metals from used nickel metal hydride secondary batteries | |
JP2004339572A (en) | Method for recovering valuable metal |