[go: up one dir, main page]

JPH1087835A - Liquid crystal polymer and liquid crystal composition - Google Patents

Liquid crystal polymer and liquid crystal composition

Info

Publication number
JPH1087835A
JPH1087835A JP8267736A JP26773696A JPH1087835A JP H1087835 A JPH1087835 A JP H1087835A JP 8267736 A JP8267736 A JP 8267736A JP 26773696 A JP26773696 A JP 26773696A JP H1087835 A JPH1087835 A JP H1087835A
Authority
JP
Japan
Prior art keywords
liquid crystal
formula
liquid crystalline
crystalline polymer
halogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8267736A
Other languages
Japanese (ja)
Inventor
Kazue Ichino
和枝 市野
Shigeki Ishibashi
重喜 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP8267736A priority Critical patent/JPH1087835A/en
Publication of JPH1087835A publication Critical patent/JPH1087835A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a liquid crystal polymer having pyrimidine liquid crystal groups and being applicable to various optical elements. SOLUTION: This polymer comprises repeating units each of which is represented by formula I (wherein R<1> is formula II (wherein C* is an asymmetrical carbon atom; and R<5> is a 3C or higher alkylene); X is formula III (wherein Q is H, hydroxyl, a halogen or methyl); R<2> is formula IV (wherein k>2; Z is methyl or a halogen); R<3> is -(CH2 )m -O- or- (CH2 )n -(wherein m and n are each >2); R<4> is -O-Cp H2p+1 , or -Cq H2q+1 (wherein p and q are each >2); Y is formula V (wherein T is H, hydroxyl, a halogen or nitrile); a is 0 or an integer; and b and c are each an integer). This can be produced by effecting the addition reaction of a poly(methylhydrosiloxane) with an unsaturation- terminated highly spontaneously polarizable liquid crystal component and a lowly viscous liquid cyrstal component in the presence of a platinum catalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は各種光学素子への応
用が可能な液晶性高分子、及びそれらを含む液晶組成物
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystalline polymer applicable to various optical elements and a liquid crystal composition containing the same.

【0002】[0002]

【従来の技術】高速で電場に対して応答し、また、視野
特性、コントラストの点で優れた特長をもつ強誘電性液
晶は、高性能な液晶表示素子を実現する材料として注目
されている。しかし、この液晶は、大面積でのセルギャ
ップ制御が難しく、また、曲げや耐衝撃に弱いなどの問
題があり大面積表示、曲面表示への適応は難しい。そこ
でこの点の改善の試みの一つとして、強誘電性液晶を高
分子化して、成形加工性、形状保持能を付与することが
考えられている(特開昭55−21479号)。しか
し、この公報に開示されたアクリル酸を主鎖とした液晶
性高分子はガラス転移温度が高く、そのため液晶温度も
高温になるため適用に限界があった。そこで、ポリシロ
キサンを主鎖とした液晶性高分子が提案された(特公昭
63−47759号)。その結果、液晶の温度特性につ
いては改善がみられたが、主鎖をポリシロキサンに変え
ただけでは実用に用いられる応答速度は得られなかっ
た。ところで、強誘電性液晶の応答時間は粘度に比例
し、自発分極と印加電界に反比例することから、高速化
のためには低粘度化と高自発分極化の2通りの手法が考
えられる。そこで、本発明者らは、後者の手法に基づい
て液晶性高分子の開発を行ってきた(特開平4−134
050号)。その結果、キラルアルカノイル基と乳酸か
ら誘導されるキラル基の2つのキラル基をコアの両端に
有する側鎖構造を有する液晶性高分子は、その自発分極
が最大600nC/cm2 にも達することがわかった。
しかし、これらの液晶性高分子は自発分極は大きいが、
室温付近ではキラルスメクチックC相を示さないこと、
また粘度が高いことが問題であった。
2. Description of the Related Art Ferroelectric liquid crystals which respond to an electric field at a high speed and have excellent characteristics in view characteristics and contrast are attracting attention as materials for realizing high-performance liquid crystal display devices. However, this liquid crystal is difficult to control a cell gap in a large area, and has problems such as weakness in bending and impact resistance, so that it is difficult to adapt to a large area display and a curved surface display. Therefore, as one of attempts to improve this point, it has been considered that a ferroelectric liquid crystal is polymerized to impart moldability and shape retention (Japanese Patent Application Laid-Open No. 55-21479). However, the liquid crystalline polymer having acrylic acid as the main chain disclosed in this publication has a high glass transition temperature, and therefore has a high liquid crystal temperature, so that its application is limited. Therefore, a liquid crystalline polymer having a polysiloxane as a main chain has been proposed (JP-B-63-47759). As a result, although the temperature characteristics of the liquid crystal were improved, the response speed that can be used practically could not be obtained only by changing the main chain to polysiloxane. By the way, since the response time of the ferroelectric liquid crystal is proportional to the viscosity and inversely proportional to the spontaneous polarization and the applied electric field, two methods of lowering the viscosity and increasing the spontaneous polarization are considered to increase the speed. Then, the present inventors have developed a liquid crystalline polymer based on the latter method (Japanese Patent Laid-Open No. 4-134).
No. 050). As a result, a liquid crystalline polymer having a side chain structure having two chiral groups, a chiral alkanoyl group and a chiral group derived from lactic acid, at both ends of a core can have a spontaneous polarization of up to 600 nC / cm 2. all right.
However, these liquid crystalline polymers have large spontaneous polarization,
Do not show a chiral smectic C phase around room temperature;
Another problem is that the viscosity is high.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、2つ
のキラル基を有する液晶性高分子の温度特性と粘度を改
善することにより、室温を含む広い温度範囲に液晶相を
示し、かつ応答時間が短い液晶性高分子あるいはその液
晶組成物を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to improve the temperature characteristics and viscosity of a liquid crystalline polymer having two chiral groups, thereby exhibiting a liquid crystal phase in a wide temperature range including room temperature, and exhibiting a response. An object of the present invention is to provide a liquid crystalline polymer or a liquid crystal composition thereof having a short time.

【0004】[0004]

【課題を解決するための手段】本発明を概説すれば、本
発明の第1の発明は液晶性高分子に関する発明であっ
て、下記一般式(化1)で表される繰り返し単位を有す
ることを特徴とする。
SUMMARY OF THE INVENTION In summary, the first invention of the present invention relates to a liquid crystalline polymer, and has a repeating unit represented by the following general formula (Chemical Formula 1). It is characterized by.

【0005】[0005]

【化1】 Embedded image

【0006】〔R1 [R 1 :

【0007】[0007]

【化2】 Embedded image

【0008】(C* は不斉炭素、R5 は炭素数3以上の
アルキルレン基を示す) X:
(C * is an asymmetric carbon, R 5 is an alkylene group having 3 or more carbon atoms) X:

【0009】[0009]

【化3】 Embedded image

【0010】(Qは水素、水酸基、ハロゲン、メチル基
のいずれかを示す) R2
(Q represents any one of hydrogen, a hydroxyl group, a halogen, and a methyl group) R 2 :

【0011】[0011]

【化4】 Embedded image

【0012】(C* は不斉炭素、kは2以上の整数、Z
はメチル基又はハロゲンを示す) R3 : −(CH2 m −O− 、 −(CH2 n − (m、nは2以上の整数を示す) R4 : −O−Cp 2p+1 、 −Cq 2q+1 (p、qは2以上の整数を示す) Y:
(C * is an asymmetric carbon, k is an integer of 2 or more, Z
Represents a methyl group or a halogen) R 3: - (CH 2 ) m -O-, - (CH 2) n - (m, n is an integer of 2 or more) R 4: -O-C p H 2p +1, -C q H 2q + 1 (p, q denotes an integer of 2 or more) Y:

【0013】[0013]

【化5】 Embedded image

【0014】(Tは水素、水酸基、ハロゲン、ニトリル
基のいずれかを示す) a:零又は正数を示す b、c:正数を示す〕 本発明の第2の発明は液晶組成物に関する発明であっ
て、上記第1の発明の液晶性高分子を少なくとも1成分
含有することを特徴とする。
(T represents any one of hydrogen, hydroxyl group, halogen, and nitrile group) a: represents zero or a positive number b, c: represents a positive number The second invention of the present invention relates to a liquid crystal composition , Characterized by containing at least one component of the liquid crystalline polymer of the first invention.

【0015】本発明者らは、鋭意検討した結果、本発明
に従って、特定のピリミジン系の液晶基を、2つのキラ
ル基を有する液晶基と共重合させれば、相分離が少な
く、また温度特性と粘度を改善できることを見出した。
すなわち、本発明は、一般式(化1)で表される強誘電
性液晶共重合体及びそれを含む液晶組成物を提供するも
のである。
The present inventors have conducted intensive studies, and as a result, according to the present invention, if a specific pyrimidine-based liquid crystal group is copolymerized with a liquid crystal group having two chiral groups, phase separation is reduced and temperature characteristics are reduced. And that the viscosity can be improved.
That is, the present invention provides a ferroelectric liquid crystal copolymer represented by the general formula (Formula 1) and a liquid crystal composition containing the same.

【0016】[0016]

【発明の実施の形態】以下、本発明を具体的に説明す
る。本発明は上記一般式(化1)で表される液晶性高分
子に関するものである。また、温度特性を始めとして各
特性を改良するためには更に数種類の液晶性高分子ある
いは、低分子液晶と混合し、液晶組成物として使用する
ことが有効である。一方、この液晶性高分子の分子量は
大きくなると粘度が増加し、応答時間が低下するため、
各種光学素子に適用するためには、数平均分子量は70
0〜40,000、好ましくは700〜20,000の
ものが適当であることがわかった。式中、R5 は液晶性
発現部と主鎖部をつなぐスペーサの長さを決定するもの
である。スペーサの長さが短いとネマチック相、長いと
スメクチック相となる傾向をもつことから、ある程度長
い方がよいが、逆に長すぎるとその部分の結晶化を招き
液晶温度範囲は狭くなる。また、過度の柔軟性は液晶性
を低下させるため望ましくない。これらのことから、R
5 は、3から12の炭素数をもつアルキレン基が適当で
ある。末端基の長さkは、液晶温度範囲に関係し、炭素
数2から12の間に最適値が存在する。またm、n、
p、qはいずれも液晶の温度特性に影響を与える。共重
合体にしたときに2から12の間に温度特性の最適値を
有する。一般式(化1)で表される液晶性高分子には例
えば以下のような繰り返し単位を有する構造のものがあ
り、その共重合比を変えることによりその特性が調整で
きる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below. The present invention relates to a liquid crystalline polymer represented by the above general formula (Formula 1). Further, in order to improve each characteristic including the temperature characteristic, it is effective to further mix with several kinds of liquid crystalline polymers or low molecular liquid crystals and use it as a liquid crystal composition. On the other hand, as the molecular weight of this liquid crystalline polymer increases, the viscosity increases and the response time decreases,
For application to various optical elements, the number average molecular weight is 70
A range of 0 to 40,000, preferably 700 to 20,000 has been found to be suitable. In the formula, R 5 determines the length of the spacer connecting the liquid crystal exhibiting part and the main chain part. If the length of the spacer is short, it tends to be a nematic phase, and if the length is long, it tends to be a smectic phase. Therefore, it is preferable that the length is long to some extent. Conversely, if the length is too long, crystallization of the portion is caused, and the liquid crystal temperature range becomes narrow. Excessive flexibility is not desirable because it reduces the liquid crystallinity. From these, R
5 is suitably an alkylene group having 3 to 12 carbon atoms. The length k of the terminal group is related to the liquid crystal temperature range, and has an optimum value between 2 and 12 carbon atoms. Also, m, n,
Both p and q affect the temperature characteristics of the liquid crystal. It has an optimum value of the temperature characteristic between 2 and 12 when it is made into a copolymer. The liquid crystalline polymer represented by the general formula (Formula 1) has, for example, a structure having the following repeating unit, and its characteristics can be adjusted by changing its copolymerization ratio.

【0017】[0017]

【化6】 Embedded image

【0018】[0018]

【化7】 Embedded image

【0019】[0019]

【化8】 Embedded image

【0020】[0020]

【化9】 Embedded image

【0021】[0021]

【化10】 Embedded image

【0022】[0022]

【化11】 Embedded image

【0023】[0023]

【化12】Embedded image

【0024】[0024]

【化13】 Embedded image

【0025】[0025]

【化14】 Embedded image

【0026】本発明の液晶性高分子は極性の低い液晶側
鎖の導入率を自由に変えられるため粘度と自発分極を調
整することができる。低極性液晶基であるピリミジン系
液晶基は、少量でも粘度を改善できるため、自発分極を
あまり低下させずに粘度を低下させることができ、結果
として応答時間を改善する効果が高い。また、共重合に
よりキラルスメクチックC(SmC* )相の温度範囲が
低温側に拡大され、室温を含む範囲に示すことがわかっ
た。更に、この液晶性高分子にその他の液晶性高分子、
あるいは低分子液晶を混合して双安定性、しきい値特
性、応答時間、ら旋ピッチ等を改良し、電気光学特性に
優れ、かつ成形加工の容易な液晶組成物を得ることがで
きる。混合する液晶性高分子の組成比は、液晶性高分子
の耐衝撃性、良配向性を損うことなく低分子液晶の効果
を得るため、また、使用温度範囲に融点が現れないとい
う条件を満たすためには、20〜95%の範囲にするこ
とが更に望ましい。こうして得られた液晶性高分子組成
物はディスプレイを始めとして光スイッチ、光変調素子
など種々のオプトエレクトロニクスデバイスの材料とし
て使用できる。
The liquid crystalline polymer of the present invention can adjust the viscosity and spontaneous polarization because the introduction ratio of the liquid crystal side chain having a low polarity can be freely changed. Since the pyrimidine-based liquid crystal group, which is a low-polarity liquid crystal group, can improve the viscosity even in a small amount, the viscosity can be reduced without significantly lowering the spontaneous polarization, and as a result, the effect of improving the response time is high. Further, it was found that the temperature range of the chiral smectic C (SmC * ) phase was expanded to a lower temperature side by the copolymerization, and was shown in a range including room temperature. In addition, other liquid crystalline polymer,
Alternatively, a low-molecular liquid crystal is mixed to improve the bistability, threshold characteristics, response time, helical pitch, and the like, and a liquid crystal composition excellent in electro-optical characteristics and easily formed can be obtained. The composition ratio of the liquid crystal polymer to be mixed is set so that the effect of the low molecular liquid crystal can be obtained without impairing the impact resistance and good alignment property of the liquid crystal polymer, and that the melting point does not appear in the operating temperature range. In order to satisfy the above, it is more desirable to set the range of 20 to 95%. The liquid crystalline polymer composition thus obtained can be used as a material for various optoelectronic devices such as a display, an optical switch, and an optical modulator.

【0027】〔化合物の製造方法〕一般式(化1)で表
される液晶性高分子は反応性高分子であるポリ(メチル
ヒドロシロキサン)に白金触媒を用いて不飽和結合を末
端に有する高自発分極液晶性成分と低粘度液晶性成分を
付加することで製造できる。また液晶組成物は、試料を
ジクロロメタン溶液として混合・かくはんした後、溶媒
を加熱・減圧して、除去することにより作製できる。
[Production Method of Compound] The liquid crystalline polymer represented by the general formula (Chemical Formula 1) has a poly (methylhydrosiloxane), which is a reactive polymer, having an unsaturated bond at its terminal by using a platinum catalyst. It can be produced by adding a spontaneously polarized liquid crystalline component and a low viscosity liquid crystalline component. The liquid crystal composition can be prepared by mixing and stirring a sample as a dichloromethane solution, and then removing the solvent by heating and reducing the pressure.

【0028】[0028]

【実施例】以下、本発明を実施例により更に具体的に説
明するが、本発明はこれらの実施例に限定されるもので
はない。生成物の同定はプロトン核磁気共鳴スペクトル
1H−NMR)及び赤外吸収スペクトル(IR)によ
って行った。液晶高分子の分子量はポリスチレンを標準
としたゲルパーミエーションクロマトグラフィ(GP
C)により校正して求めた。液晶相及び相転移温度は示
差走査熱量計測定と偏光顕微鏡による観察により決定し
た。各電気−光学特性の測定は、10μmのスペーサを
散布したITO付きガラス基板上に液晶性高分子、ある
いは液晶性高分子組成物を溶融させ、もう一枚のガラス
基板で挟み、シェアにより配向させてセルを作製した。
このセルに電場をかけ、自発分極は三角波法を用いて測
定した。応答時間の測定は自発分極を測定した時と同じ
セルに電場(10V/μm)を印加し、その際の透過光
量変化0〜90%に要する時間と100〜10%に要す
る時間の平均を応答時間とした。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. The identity of the product was carried out by proton nuclear magnetic resonance spectrum (1 H-NMR) and infrared absorption spectrum (IR). The molecular weight of the liquid crystal polymer is determined by gel permeation chromatography (GP
Calibrated by C). The liquid crystal phase and the phase transition temperature were determined by differential scanning calorimetry and observation with a polarizing microscope. For the measurement of each electro-optical characteristic, a liquid crystalline polymer or a liquid crystalline polymer composition is melted on a glass substrate with ITO on which a 10 μm spacer is scattered, sandwiched between another glass substrate, and oriented by shear. To produce a cell.
An electric field was applied to the cell, and spontaneous polarization was measured using a triangular wave method. The response time is measured by applying an electric field (10 V / μm) to the same cell as when measuring the spontaneous polarization, and averaging the time required for a change in transmitted light amount of 0 to 90% and the time required for 100 to 10%. Time.

【0029】実施例1 下記の式(化15)で表される液晶性高分子を合成する
方法を以下に示す。
Example 1 A method for synthesizing a liquid crystalline polymer represented by the following formula (Formula 15) is described below.

【0030】[0030]

【化15】 Embedded image

【0031】5−(7−オクテニルオキシ)−2−(4
−オクチルオキシフェニル)ピリミジンの合成 (1)5−エトキシ−2−(4−ヒドロキシフェニル)
ピリミジンの合成 ナトリウムメトキシド38.9gのメタノール400m
l溶液にp−ヒドロキシベンズアミジン塩酸塩40g及
び1,3−ビス(ジメチルアミノ)−2−エトキシトリ
メチニウム過塩素酸塩62.7gを加えて5時間加熱還
流した。反応後、室温まで冷却し、純水及び酢酸を加え
て析出した結晶をろ別して、5−エトキシ−2−(4−
ヒドロキシフェニル)ピリミジン41gを得た。 (2)5−エトキシ−2−(4−オクチルオキシフェニ
ル)ピリミジンの合成 5−エトキシ−2−(4−ヒドロキシフェニル)ピリミ
ジン41gをエタノール350mlに溶解し、水酸化カ
リウム11.5gと臭化オクチル36.7gとを加え、
3時間加熱還流した。次いで、過剰なエタノールを留去
して反応液を約50mlにした後、トルエンと純水を加
えて目的物を抽出し、更に水酸化ナトリウム溶液で洗浄
し、更に水洗した。この有機層からトルエン及び低沸点
化合物を留去した残渣をエタノールから再結晶して5−
エトキシ−2−(4−オクチルオキシフェニル)ピリミ
ジン48gを得た。 (3)5−ヒドロキシ−2−(4−オクチルオキシフェ
ニル)ピリミジンの合成 5−エトキシ−2−(4−オクチルオキシフェニル)ピ
リミジン48gをジエチレングリコール300mlに溶
解し、水酸化ナトリウム58gを加えて220℃で3時
間かくはんした。室温まで冷却後、純水と酢酸を加え、
析出した結晶をろ別した。更にエタノールから再結晶に
より精製し5−ヒドロキシ−2−(4−オクチルオキシ
フェニル)ピリミジン30gを得た。 (4)5−(7−オクテニルオキシ)−2−(4−オク
チルオキシフェニル)ピリミジンの合成 5−ヒドロキシ−2−(4−オクチルオキシフェニル)
ピリミジン30gをエタノール150mlに溶解し、水
酸化カリウム6gと8−臭化オクテン−1の19.5g
を加えて6時間、加熱還流した。室温まで冷却後、トル
エンと純水を加えて分離した有機層を2N水酸化ナトリ
ウム水溶液で洗浄し、更に水洗いを繰り返した。有機層
からトルエンを留去した残渣をエタノールから再結晶し
て5−(7−オクテニルオキシ)−2−(4−オクチル
オキシフェニル)ピリミジン12gを得た。化合物のI
R及びNMRスペクトルデータは次のとおりである: IR(cm-1): 3047、2923、2854、1607、1443、128
8、1250、12401 H−NMR(CDCl3 /TMS、ppm ): 8.4 (2
H,s)、8.3 (2H,d)、7.0(2H,d)、 5.7〜5.9 (1H,m)、 4.
9〜5.1 (2H,m)、4.1 (2H,t)、4.0 (2H,t)、2.0〜2.2 (2
H,m)、 1.7〜1.9 (4H,m)、 1.2〜1.6 (16H,m) 、 0.9
(3H,t)
5- (7-octenyloxy) -2- (4
Synthesis of (octyloxyphenyl) pyrimidine (1) 5-ethoxy-2- (4-hydroxyphenyl)
Synthesis of pyrimidine Sodium methoxide 38.9g methanol 400m
40 g of p-hydroxybenzamidine hydrochloride and 62.7 g of 1,3-bis (dimethylamino) -2-ethoxytrimethinium perchlorate were added to the 1 solution, and the mixture was heated under reflux for 5 hours. After the reaction, the reaction mixture was cooled to room temperature, pure water and acetic acid were added, and the precipitated crystals were collected by filtration to give 5-ethoxy-2- (4-.
41 g of (hydroxyphenyl) pyrimidine were obtained. (2) Synthesis of 5-ethoxy-2- (4-octyloxyphenyl) pyrimidine 41 g of 5-ethoxy-2- (4-hydroxyphenyl) pyrimidine was dissolved in 350 ml of ethanol, and 11.5 g of potassium hydroxide and octyl bromide were dissolved. 36.7 g,
The mixture was heated under reflux for 3 hours. Next, excess ethanol was distilled off to make the reaction solution about 50 ml. Toluene and pure water were added to extract the desired product, which was further washed with a sodium hydroxide solution, and further washed with water. The residue obtained by distilling toluene and low boiling compounds from the organic layer was recrystallized from ethanol to give 5-
48 g of ethoxy-2- (4-octyloxyphenyl) pyrimidine were obtained. (3) Synthesis of 5-hydroxy-2- (4-octyloxyphenyl) pyrimidine 48 g of 5-ethoxy-2- (4-octyloxyphenyl) pyrimidine was dissolved in 300 ml of diethylene glycol, and 58 g of sodium hydroxide was added. And stirred for 3 hours. After cooling to room temperature, add pure water and acetic acid,
The precipitated crystals were separated by filtration. Further purification by recrystallization from ethanol gave 30 g of 5-hydroxy-2- (4-octyloxyphenyl) pyrimidine. (4) Synthesis of 5- (7-octenyloxy) -2- (4-octyloxyphenyl) pyrimidine 5-hydroxy-2- (4-octyloxyphenyl)
30 g of pyrimidine is dissolved in 150 ml of ethanol, and 6 g of potassium hydroxide and 19.5 g of 8-octene-1 bromide are dissolved.
Was added and heated to reflux for 6 hours. After cooling to room temperature, the organic layer separated by adding toluene and pure water was washed with a 2N aqueous sodium hydroxide solution, and the water washing was repeated. The residue obtained by distilling off toluene from the organic layer was recrystallized from ethanol to obtain 12 g of 5- (7-octenyloxy) -2- (4-octyloxyphenyl) pyrimidine. Compound I
The R and NMR spectral data are as follows: IR (cm -1 ): 3047, 2923, 2854, 1607, 1443, 128
8, 1250, 1240 1 H-NMR (CDCl 3 / TMS, ppm): 8.4 (2
H, s), 8.3 (2H, d), 7.0 (2H, d), 5.7-5.9 (1H, m), 4.
9 to 5.1 (2H, m), 4.1 (2H, t), 4.0 (2H, t), 2.0 to 2.2 (2
H, m), 1.7 to 1.9 (4H, m), 1.2 to 1.6 (16H, m), 0.9
(3H, t)

【0032】(S)−4−(1−オキソ−2−メチルオ
クチル)フェニル (R)−4−〔4−{2−(7−オ
クテニルオキシ)プロパノイルオキシ}フェニル〕ベン
ゾエートの合成 (1)酸化銀(Ag2 O)の合成 硝酸銀100gを500mlの純水に溶解させた。この
溶液に5%の水酸化ナトリウム水溶液500mlを加え
ると直ちに酸化銀の黒色沈殿が生じた。1時間かくはん
後、この沈殿を純水で十分に洗浄した。得られた黒色固
体を5酸化2リンの存在下、減圧、50℃で2日以上乾
燥させ酸化銀を得た。 (2)(R)−2−(7−オクテニルオキシ)プロパン
酸メチルの合成 20gの8−ヨード−1−オクテン、11.6gの乳酸
メチルをメカニカルスターラをつけた三つ口フラスコに
入れた。これをよくかくはんしながら、(1)で調製し
た酸化銀12.9gを1時間で滴下した。更に室温で一
昼夜かくはん後、3時間穏やかに還流させた。反応溶液
を冷却した後、エーテルを加えて吸引ろ過した。濃縮
後、減圧蒸留により精製し、無色透明の液体を得た。収
率:9.16g(52%)、bp:85℃/10mmH
g (3)(R)−2−(7−オクテニルオキシ)プロパン
酸の合成 9.0gの(R)−2−(7−オクテニルオキシ)プロ
パン酸メチルと5%の水酸化ナトリウム水溶液44.1
gを室温で激しく1昼夜、かくはんした。無色透明の反
応溶液に希硫酸を加え、酸性(pHを4以下)にした
後、ジエチルエーテルで抽出し、純水で洗浄した。硫酸
ナトリウムで終夜乾燥した。ろ別後、濃縮し、更に減圧
下で乾燥した。収率:6.61g(79%) (4)(R)−2−(7−オクテニルオキシ)プロパン
酸塩化物の合成 5.0gの(R)−2−(7−オクテニルオキシ)プロ
パン酸と、5.9gの塩化チオニル、ジメチルホルムア
ミド2滴を60mlの乾燥したジクロロメタン中、3時
間、還流した。減圧下で溶媒を除去し、無色透明な液体
を得た。収率:5.4g(98%) (5)(R)−4−〔2−(7−オクテニルオキシ)プ
ロパノイルオキシ〕−1,1′−ビフェニル−4′−カ
ルボン酸の合成 4−ヒドロキシフェニル安息香酸5.35g、ピリジン
19.75gを100mlの四塩化炭素に溶かした。こ
の溶液に100mlの四塩化炭素に溶解した(R)−2
−(7−オクテニルオキシ)プロパン酸塩化物5.46
gを室温で滴下した。更に終夜室温でかくはんした後、
生じた白色沈殿をろ過した。ジエチルエーテルでろ別し
た沈殿を洗浄し、その洗浄液をろ液に加えた後、希塩
酸、純水で洗浄した。硫酸ナトリウムで終夜乾燥し、濃
縮して粗生成物を得た。更に、エタノールで再結晶を行
い白色結晶を得た。収率:5.18g(52%) (6)(S)−4−(1−オキソ−2−メチルオクチ
ル)フェノールの合成 アニソール8.25gを無水の1,2−ジクロロエタン
100mlに溶かし、0℃に冷却した。この溶液に9.
2gの塩化アルミニウムを少しずつ投入した。更に
(S)−(+)−2−メチル酪酸塩化物9.2gを50
mlの1,2−ジクロロエタンに溶かした溶液を滴下し
た。滴下終了後、室温で1時間かくはんした。その後、
更に9.2gの粉砕した塩化アルミニウムを加え、2時
間還流させた。室温まで冷却した後、10mlの塩酸を
含む氷上に注ぎ、クロロホルムで抽出した。抽出した有
機層を炭酸水素ナトリウム、水で洗浄した後、乾燥し
た。濃縮後、粗生成物をシリカゲルクロマトグラフィに
より精製し、(S)−4−(1−オキソ−2−メチルオ
クチル)フェノールを得た。 (7)(S)−4−(1−オキソ−2−メチルオクチ
ル)フェニル (R)−4−〔4−{2−(7−オクテ
ニルオキシ)プロパノイルオキシ}フェニル〕ベンゾエ
ートの合成 先の反応で得た、(S)−4−(1−オキソ−2−メチ
ルオクチル)フェノール1.77gと(R)−4−〔2
−(7−オクテニルオキシ)プロパノイルオキシ〕−
1,1′−ビフェニル−4′−カルボン酸3.0gを無
水ジクロロメタン100mlに溶かし、更に、4−ジメ
チルアミノピリジン0.04gとジシクロヘキシルカル
ボジイミド1.87gを加えた後、室温で一昼夜かくは
んした。生成した沈殿をろ別し、溶媒を留去した粗生成
物をシリカゲルクロマトグラフィにより精製、更に、エ
タノールから再結晶して、モノマーとなる(S)−4−
(1−オキソ−2−メチルオクチル)フェニル (R)
−4−〔4−{2−(7−オクテニルオキシ)プロパノ
イルオキシ}フェニル〕ベンゾエートを得た。収率:
2.6g(57%) 化合物のIR及びNMRスペクトルデータは次のとおり
である: IR(cm-1): 2932、1732、1680、1204、1192、10721 H−NMR(CDCl3 /TMS、ppm ): 8.30 (2
H,d) 、8.06 (2H,d) 、7.74 (2H,d) 、7.72 (2H,d) 、
7.39 (2H,d) 、7.24 (2H,d) 、 5.7〜5.9 (1H,m)、 4.9
〜5.1 (2H,m)、 4.1〜4.3 (1H,m)、 3.6〜3.8 (1H,m)、
3.4〜3.6 (2H,m)、 0.7〜2.2 (29H,m)
Synthesis of (S) -4- (1-oxo-2-methyloctyl) phenyl (R) -4- [4- {2- (7-octenyloxy) propanoyloxy} phenyl] benzoate (1) ) Synthesis of silver oxide (Ag 2 O) 100 g of silver nitrate was dissolved in 500 ml of pure water. As soon as 500 ml of a 5% aqueous sodium hydroxide solution was added to this solution, a black precipitate of silver oxide was formed. After stirring for 1 hour, the precipitate was sufficiently washed with pure water. The obtained black solid was dried at 50 ° C. under reduced pressure at 50 ° C. for 2 days or more in the presence of phosphorus pentoxide to obtain silver oxide. (2) Synthesis of methyl (R) -2- (7-octenyloxy) propanoate 20 g of 8-iodo-1-octene and 11.6 g of methyl lactate were placed in a three-necked flask equipped with a mechanical stirrer. . While stirring this well, 12.9 g of the silver oxide prepared in (1) was added dropwise over 1 hour. After stirring at room temperature for 24 hours, the mixture was refluxed gently for 3 hours. After cooling the reaction solution, ether was added and suction filtration was performed. After concentration, purification was performed by distillation under reduced pressure to obtain a colorless and transparent liquid. Yield: 9.16 g (52%), bp: 85 ° C./10 mmH
g (3) Synthesis of (R) -2- (7-octenyloxy) propanoic acid 9.0 g of methyl (R) -2- (7-octenyloxy) propanoate and 5% aqueous sodium hydroxide solution 44 .1
g was stirred vigorously day and night at room temperature. Dilute sulfuric acid was added to the colorless and transparent reaction solution to make it acidic (pH was 4 or less), extracted with diethyl ether, and washed with pure water. Dried over sodium sulfate overnight. After filtration, the mixture was concentrated and further dried under reduced pressure. Yield: 6.61 g (79%) (4) Synthesis of (R) -2- (7-octenyloxy) propane chloride 5.0 g of (R) -2- (7-octenyloxy) propane The acid, 5.9 g of thionyl chloride and 2 drops of dimethylformamide were refluxed in 60 ml of dry dichloromethane for 3 hours. The solvent was removed under reduced pressure to obtain a colorless transparent liquid. Yield: 5.4 g (98%) (5) Synthesis of (R) -4- [2- (7-octenyloxy) propanoyloxy] -1,1'-biphenyl-4'-carboxylic acid 4- 5.35 g of hydroxyphenylbenzoic acid and 19.75 g of pyridine were dissolved in 100 ml of carbon tetrachloride. (R) -2 was dissolved in 100 ml of carbon tetrachloride in this solution.
-(7-octenyloxy) propanoic acid chloride 5.46
g was added dropwise at room temperature. After stirring overnight at room temperature,
The resulting white precipitate was filtered. The precipitate separated by filtration with diethyl ether was washed, and the washed solution was added to the filtrate, followed by washing with diluted hydrochloric acid and pure water. Dried over sodium sulfate overnight and concentrated to give crude product. Furthermore, white crystals were obtained by recrystallization with ethanol. Yield: 5.18 g (52%) (6) Synthesis of (S) -4- (1-oxo-2-methyloctyl) phenol 8.25 g of anisole was dissolved in 100 ml of anhydrous 1,2-dichloroethane, and 0 ° C. And cooled. 9. In this solution
2 g of aluminum chloride were added little by little. Further, 9.2 g of (S)-(+)-2-methylbutyric chloride was added to 50
A solution dissolved in ml of 1,2-dichloroethane was added dropwise. After completion of the dropwise addition, the mixture was stirred at room temperature for 1 hour. afterwards,
An additional 9.2 g of ground aluminum chloride was added and refluxed for 2 hours. After cooling to room temperature, the mixture was poured on ice containing 10 ml of hydrochloric acid and extracted with chloroform. The extracted organic layer was washed with sodium hydrogen carbonate and water, and then dried. After concentration, the crude product was purified by silica gel chromatography to obtain (S) -4- (1-oxo-2-methyloctyl) phenol. (7) Synthesis of (S) -4- (1-oxo-2-methyloctyl) phenyl (R) -4- [4- {2- (7-octenyloxy) propanoyloxy} phenyl] benzoate 1.77 g of (S) -4- (1-oxo-2-methyloctyl) phenol obtained by the reaction and (R) -4- [2
-(7-octenyloxy) propanoyloxy]-
3.0 g of 1,1'-biphenyl-4'-carboxylic acid was dissolved in 100 ml of anhydrous dichloromethane, 0.04 g of 4-dimethylaminopyridine and 1.87 g of dicyclohexylcarbodiimide were added, and the mixture was stirred overnight at room temperature. The generated precipitate was separated by filtration, and the crude product obtained by evaporating the solvent was purified by silica gel chromatography, and further recrystallized from ethanol to obtain a monomer (S) -4-.
(1-oxo-2-methyloctyl) phenyl (R)
4- [4- {2- (7-octenyloxy) propanoyloxy} phenyl] benzoate was obtained. yield:
IR and NMR spectral data of 2.6 g (57%) compound are as follows: IR (cm -1): 2932,1732,1680,1204,1192,1072 1 H-NMR (CDCl 3 / TMS, ppm ): 8.30 (2
H, d), 8.06 (2H, d), 7.74 (2H, d), 7.72 (2H, d),
7.39 (2H, d), 7.24 (2H, d), 5.7-5.9 (1H, m), 4.9
To 5.1 (2H, m), 4.1 to 4.3 (1H, m), 3.6 to 3.8 (1H, m),
3.4-3.6 (2H, m), 0.7-2.2 (29H, m)

【0033】液晶性高分子の合成 ナトリウムにより乾燥後、蒸留したベンゼン50mlに
高分子前駆体、2つのキラル基を有する液晶基となる
(S)−4−(1−オキソ−2−メチルオクチル)フェ
ニル (R)−4−〔4−{2−(7−オクテニルオキ
シ)プロパノイルオキシ}フェニル〕ベンゾエート0.
085mmolとノンキラル液晶基となる5−オクテニ
ルオキシ−2−(4−オクチルオキシフェニル)ピリミ
ジン0.015mmolの計0.1mmolと、0.1
mmolのポリ(メチルハイドロゲンシロキサン)(X
F40−A7603、重合度;約10、東芝シリコーン
製)を溶解し、触媒として0.2wt%の塩化ジシクロ
ペンタジエニル白金(II)触媒のジクロロメタン溶液
0.5mlを加えて20時間還流した。反応終了後、減
圧蒸留により溶媒を除去した後、ゲルパーミエーション
クロマトグラフィによる精製を行い、残存する高分子前
駆体と液晶性高分子を分離した。更に減圧下、40℃で
乾燥して目的とする液晶性高分子を得た。この液晶性高
分子の相転移挙動は、以下のようになった。 G10SmX65SmC* 112SmA130Iso (℃) (G:ガラス状態、SmX:未同定のスメクチック相、
SmC* ;キラルスメクチックC相、SmA:スメクチ
ックA相、Iso:等方相) また、この液晶性高分子の自発分極はSmC* 相上限温
度から10℃下で、340nC/cm2 であった。この
液晶性高分子は後記比較例1と比べると2つのキラル基
のみからなる単一重合体のSmC* 温度領域の上限、下
限の両方が8℃低温側にシフトしているが、自発分極は
十分に大きく、高速応答材料となりうる。更に後記実施
例6で挙げたように組成物化によりSm* 相の低温度化
や低粘度化は可能である。
Synthesis of Liquid Crystalline Polymer After drying with sodium, 50 ml of distilled benzene becomes a polymer precursor and becomes a liquid crystal group having two chiral groups. (S) -4- (1-oxo-2-methyloctyl) Phenyl (R) -4- [4- {2- (7-octenyloxy) propanoyloxy} phenyl] benzoate
085 mmol and 0.015 mmol of 5-octenyloxy-2- (4-octyloxyphenyl) pyrimidine serving as a non-chiral liquid crystal group in a total of 0.15 mmol;
mmol of poly (methylhydrogensiloxane) (X
F40-A7603, degree of polymerization: about 10, manufactured by Toshiba Silicone Co., Ltd.), 0.5 ml of a 0.2 wt% dicyclopentadienylplatinum (II) chloride in dichloromethane solution as a catalyst was added, and the mixture was refluxed for 20 hours. After completion of the reaction, the solvent was removed by distillation under reduced pressure, followed by purification by gel permeation chromatography to separate the remaining polymer precursor and the liquid crystalline polymer. Furthermore, it dried at 40 degreeC under reduced pressure and obtained the target liquid crystalline polymer. The phase transition behavior of this liquid crystalline polymer was as follows. G10SmX65SmC * 112SmA130Iso (° C.) (G: glassy state, SmX: unidentified smectic phase,
(SmC * ; chiral smectic C phase, SmA: smectic A phase, Iso: isotropic phase) The spontaneous polarization of this liquid crystalline polymer was 340 nC / cm 2 at 10 ° C. below the maximum temperature of the SmC * phase. Compared to Comparative Example 1 described below, this liquid crystalline polymer has a SmC * temperature range of a single polymer composed of only two chiral groups, and both the upper and lower limits of the temperature range are shifted to a lower temperature of 8 ° C., but the spontaneous polarization is sufficient. And can be a fast response material. Further, as described in Example 6 below, the composition can lower the temperature and viscosity of the Sm * phase.

【0034】実施例2 下記の液晶性高分子を得るため、実施例1において2つ
のキラル基を有する液晶基とノンキラル液晶基の前駆体
の比率を7:3にして下記の式(化16)で表される液
晶性高分子を合成した。
Example 2 In order to obtain the following liquid crystalline polymer, the ratio of the precursor of the liquid crystal group having two chiral groups to the precursor of the non-chiral liquid crystal group was set to 7: 3 in Example 1, and the following formula (Formula 16) was obtained. Was synthesized.

【0035】[0035]

【化16】 Embedded image

【0036】この共重合体の相転移挙動は、以下のよう
になった。 G10SmX48SmC* 102SmA123Iso (℃) また、この液晶性高分子の自発分極はSmC* 相上限温
度から10℃下で、270nC/cm2 であった。この
液晶性高分子は比較例1と比べると2つのキラル基のみ
からなる単一重合体のSmC* 温度領域の上限が18
℃、下限が25℃低温側にシフトしているが、自発分極
は十分に大きく、高速応答材料となりうる。更に実施例
6で挙げたように組成物化によりSm* 相の低温度化や
低粘度化は可能である。
The phase transition behavior of this copolymer was as follows. G10SmX48SmC * 102SmA123Iso (° C.) The spontaneous polarization of this liquid crystalline polymer was 270 nC / cm 2 at 10 ° C. below the SmC * phase upper limit temperature. This liquid crystalline polymer has a SmC * temperature range of a single polymer composed of only two chiral groups as compared with Comparative Example 1, and the upper limit of the temperature range is 18% .
Although the lower limit is shifted to 25 ° C. and the lower limit is 25 ° C., the spontaneous polarization is sufficiently large and the material can be a high-speed response material. Further, as described in Example 6, the composition can lower the temperature and viscosity of the Sm * phase.

【0037】実施例3 実施例1において2つのキラル基を有する液晶基とノン
キラル液晶基の前駆体の比率を5:5にして下記の式
(化17)で表される液晶性高分子を合成した。
Example 3 A liquid crystal polymer represented by the following formula (Formula 17) was synthesized by setting the ratio of the precursor of the liquid crystal group having two chiral groups and the precursor of the non-chiral liquid crystal group to 5: 5 in Example 1. did.

【0038】[0038]

【化17】 Embedded image

【0039】この液晶性高分子の相転移挙動は、以下の
ように室温を含む広い範囲にSmC* が出現した。 G−7 SmC* 106 SmA110 Iso (℃) また、この液晶性高分子の自発分極はSmC* 相上限温
度から10℃下で、170nC/cm2 であった。しか
し、応答時間は30℃で350msecと低分子ネマチ
ック液晶並であった。
As for the phase transition behavior of this liquid crystalline polymer, SmC * appeared in a wide range including room temperature as follows. G-7 SmC * 106 SmA110 Iso (° C.) The spontaneous polarization of this liquid crystalline polymer was 170 nC / cm 2 at 10 ° C. below the SmC * phase upper limit temperature. However, the response time was 350 msec at 30.degree.

【0040】実施例4 実施例1において2つのキラル基を有する液晶基とノン
キラル液晶基の前駆体の比率を2.5:7.5にして下
記の式(化18)で表される液晶性高分子を合成した。
Example 4 In Example 1, the ratio of the precursor of the liquid crystal group having two chiral groups to the precursor of the non-chiral liquid crystal group was set to 2.5: 7.5, and the liquid crystallinity represented by the following formula (Formula 18) was obtained. A polymer was synthesized.

【0041】[0041]

【化18】 Embedded image

【0042】この液晶性高分子の相転移挙動は、以下の
ように室温を含む広い範囲にSmC* が出現した。 G−15 SmC* 95 Iso (℃) また、この液晶性高分子の自発分極はSmC* 相上限温
度から10℃下で、47nC/cm2 であった。
As to the phase transition behavior of this liquid crystalline polymer, SmC * appeared in a wide range including room temperature as follows. G-15 SmC * 95 Iso (° C.) The spontaneous polarization of this liquid crystalline polymer was 47 nC / cm 2 at 10 ° C. below the maximum temperature of the SmC * phase.

【0043】実施例5 実施例1において8−臭化オクテン−1の替りに10−
臭化デセン−1を用いてノンキラル液晶基の前駆体を合
成し、更に2つのキラル基を有する液晶基とノンキラル
液晶基の前駆体の比率を5:5にして下記の式(化1
9)で表される液晶性高分子を合成した。
Example 5 In Example 1, 8-brominated octene-1 was replaced with 10-brominated octene.
A precursor of a non-chiral liquid crystal group is synthesized using decene bromide-1, and the ratio of a liquid crystal group having two chiral groups to a precursor of a non-chiral liquid crystal group is set to 5: 5, and the following formula (Formula 1)
A liquid crystalline polymer represented by 9) was synthesized.

【0044】[0044]

【化19】 Embedded image

【0045】この液晶性高分子の相転移挙動は、以下の
ようになった。 G−9 SmC* 115 SmA 130 Iso (℃) また、この液晶性高分子の自発分極はSmC* 相上限温
度から10℃下で、150nC/cm2 であった。
The phase transition behavior of this liquid crystalline polymer was as follows. G-9 SmC * 115 SmA 130 Iso (° C.) The spontaneous polarization of this liquid crystalline polymer was 150 nC / cm 2 at 10 ° C. below the SmC * phase upper limit temperature.

【0046】実施例6 実施例3で合成した液晶性高分子60%に、以下の相転
移温度を示す安息香酸エステル系低分子液晶組成物40
%を混合して液晶組成物を作製した。 Cr38 SmC* 64 N82 Iso (℃) (Cr:結晶相) この液晶組成物は相分離が少なく、また相転移挙動は以
下のようになった。 G−25 SmC* 77 SmA 98 Iso (℃) また、この液晶性高分子組成物の自発分極はSmC*
上限温度から10℃下で、44nC/cm2 であった。
また、応答時間は30℃で7msecであった。このよ
うに組成物にすることでSmC* 相温度を低温側に下
げ、また低粘度化による高速応答が可能となる。よっ
て、SmC* 相温度範囲が室温よりも高温側にある実施
例1や実施例2の液晶性高分子であっても組成物化によ
り同様に改善ができる。
Example 6 A low-molecular liquid crystal composition 40 containing benzoate ester having the following phase transition temperature was added to 60% of the liquid crystalline polymer synthesized in Example 3.
% To prepare a liquid crystal composition. Cr38 SmC * 64 N82 Iso (° C.) (Cr: crystalline phase) This liquid crystal composition had little phase separation, and the phase transition behavior was as follows. G-25 SmC * 77 SmA 98 Iso (° C.) The spontaneous polarization of this liquid crystalline polymer composition was 44 nC / cm 2 at 10 ° C. below the SmC * phase upper limit temperature.
The response time was 7 msec at 30 ° C. By using such a composition, the SmC * phase temperature can be lowered to a low temperature side, and a high-speed response can be achieved by lowering the viscosity. Therefore, even the liquid crystalline polymers of Examples 1 and 2 in which the SmC * phase temperature range is higher than room temperature can be similarly improved by the composition.

【0047】比較例1 実施例1において2つのキラル基を有する液晶基のみか
ら下記式(化20)で表される構造を有する液晶性高分
子を合成した。
Comparative Example 1 A liquid crystalline polymer having a structure represented by the following formula (Formula 20) was synthesized from only the liquid crystal group having two chiral groups in Example 1.

【0048】[0048]

【化20】 Embedded image

【0049】この液晶性高分子の相転移挙動は、以下の
ようになった。 G14SmX73SmC* 120SmA146Iso (℃) このように、単一重合体はSmC* 相より低温側に高次
のスメクチック相が存在するため室温付近ではSmC*
を示さず、適用に限界があった。
The phase transition behavior of this liquid crystalline polymer was as follows. G14SmX73SmC * 120SmA146Iso (° C.) As described above, the single polymer has a higher smectic phase on the lower temperature side than the SmC * phase, so that SmC * near room temperature .
No indication was given and the application was limited.

【0050】実施例1〜6により、ピリミジン系の液晶
基を共重合させることにより、SmC* 相温度の低温度
化、低粘度化ができることは明らかである。よって、式
(化7)〜式(化14)についてもピリミジン系の液晶
基を共重合させることにより同様の効果が得られる。特
にベンゼン環にフッ素を導入したものは更に低粘度化の
効果が高い。
It is apparent from Examples 1 to 6 that the SmC * phase temperature can be lowered and the viscosity can be lowered by copolymerizing a pyrimidine-based liquid crystal group. Therefore, the same effects can be obtained by copolymerizing a pyrimidine-based liquid crystal group in Formulas (7) to (14). In particular, those in which fluorine is introduced into the benzene ring are more effective in lowering the viscosity.

【0051】[0051]

【発明の効果】本発明の液晶性高分子及びその組成物
は、室温を含む広い液晶温度範囲を示し、また、電場に
対する応答時間が短いため、オプトエレクトロニクス分
野における種々のデバイス用の材料として極めて有用で
ある。
The liquid crystalline polymer and its composition of the present invention exhibit a wide liquid crystal temperature range including room temperature, and have a short response time to an electric field, so that they are extremely useful as materials for various devices in the field of optoelectronics. Useful.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(化1)で表される繰り返し
単位を有することを特徴とする液晶性高分子。 【化1】 〔R1 : 【化2】 (C* は不斉炭素、R5 は炭素数3以上のアルキルレン
基を示す) X: 【化3】 (Qは水素、水酸基、ハロゲン、メチル基のいずれかを
示す) R2 : 【化4】 (C* は不斉炭素、kは2以上の整数、Zはメチル基又
はハロゲンを示す) R3 : −(CH2 m −O− 、 −(CH2 n − (m、nは2以上の整数を示す) R4 : −O−Cp 2p+1 、 −Cq 2q+1 (p、qは2以上の整数を示す) Y: 【化5】 (Tは水素、水酸基、ハロゲン、ニトリル基のいずれか
を示す) a:零又は正数を示す b、c:正数を示す〕
1. A liquid crystalline polymer having a repeating unit represented by the following general formula (Formula 1). Embedded image [R 1 : embedded image (C * represents an asymmetric carbon, and R 5 represents an alkylene group having 3 or more carbon atoms.) X: (Q represents any one of hydrogen, a hydroxyl group, a halogen, and a methyl group.) R 2 : (C * is asymmetric carbon, k is an integer of 2 or more, Z is a methyl group or a halogen) R 3: - (CH 2 ) m -O-, - (CH 2) n - (m, n is 2 more an integer) R 4: -O-C p H 2p + 1, -C q H 2q + 1 (p, q denotes an integer of 2 or more) Y: embedded image (T represents any one of hydrogen, a hydroxyl group, a halogen, and a nitrile group) a: represents zero or a positive number b, c: represents a positive number
【請求項2】 請求項1に記載の液晶性高分子を少なく
とも1成分含有することを特徴とする液晶組成物。
2. A liquid crystal composition comprising at least one component of the liquid crystalline polymer according to claim 1.
JP8267736A 1996-09-19 1996-09-19 Liquid crystal polymer and liquid crystal composition Pending JPH1087835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8267736A JPH1087835A (en) 1996-09-19 1996-09-19 Liquid crystal polymer and liquid crystal composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8267736A JPH1087835A (en) 1996-09-19 1996-09-19 Liquid crystal polymer and liquid crystal composition

Publications (1)

Publication Number Publication Date
JPH1087835A true JPH1087835A (en) 1998-04-07

Family

ID=17448867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8267736A Pending JPH1087835A (en) 1996-09-19 1996-09-19 Liquid crystal polymer and liquid crystal composition

Country Status (1)

Country Link
JP (1) JPH1087835A (en)

Similar Documents

Publication Publication Date Title
JPH0892260A (en) Liquid-crystalline silylalkyl or silylalkenyl compound,its production,and its use in liquid crystal mixture
DE68905168T2 (en) MESOMORPHIC POLYMER, MONOMER MESOMORPHIC COMPOUND, LIQUID CRYSTAL COMPOSITION AND LIQUID CRYSTAL DEVICE.
EP0295106B1 (en) Optically active polymer and liquid crystal composition containig same
US4954600A (en) Ferroelectric liquid-crystalline polymer and epoxide usable to preparation of the ferroelectric liquid-crystalline polymer
EP0267670B1 (en) Optically active liquid crystal compound having cyano group
US5252695A (en) Fast switching ferroelectric liquid crystalline polymers
EP0718274B1 (en) Two-rings-containing phenyl ester compound and anti-ferroelectric liquid crystal composition containing the same
JPH0457694B2 (en)
CA2216656A1 (en) Polycyclic compound, liquid crystal material consisting of the polycyclic compound, liquid crystal composition comprising the liquid crystal material, and liquid crystal element
DE69118154T2 (en) LIQUID CRYSTAL COPOLYMER, ITS PRODUCTION, SERVICE CONNECTION FOR PRODUCING THE COPOLYMER AND PRODUCING THIS SERVICE CONNECTION
JP3246935B2 (en) Novel polymer compound and ferroelectric liquid crystal composition using the same
DE68905563T2 (en) LIQUID CRYSTAL COMPOUNDS AND LIQUID CRYSTAL POLYMERS.
JPH1087835A (en) Liquid crystal polymer and liquid crystal composition
US5350538A (en) High polymer, ferroelectric liquid-crystalline composition containing the high polymer and raw material of the high polymer
JP3246931B2 (en) Novel polymer compound and ferroelectric liquid crystal composition using the same
JP2765942B2 (en) Liquid crystalline polymer and epoxy compound used for its production
JP3153324B2 (en) Liquid crystal copolymer, diene compound used for its production, and ferroelectric liquid crystal composition
JP2974824B2 (en) Optically active compound, synthetic intermediate thereof, and ferroelectric liquid crystal composition containing the same
JP3315198B2 (en) Novel polymer compound, ferroelectric liquid crystal composition using the same and raw material compound
US5656197A (en) Ferroelectric liquid crystal
JP3315225B2 (en) Novel polymer compound, ferroelectric liquid crystal composition using the same and raw material compound
JPH01311051A (en) Novel lactic acid derivative, liquid crystal composition containing said derivative and optical switching element
KR100446603B1 (en) Ferroelectric liquid crystal compounds, liquid crystal compositions containing them and liquid crystal display devices employing them
JP2863794B2 (en) Optically active compound, polymer liquid crystal and liquid crystal composition containing the same
JP2869236B2 (en) Fluorine-containing optically active compound and liquid crystal composition