[go: up one dir, main page]

JPH1087372A - Production of powdery ceramic material - Google Patents

Production of powdery ceramic material

Info

Publication number
JPH1087372A
JPH1087372A JP8257371A JP25737196A JPH1087372A JP H1087372 A JPH1087372 A JP H1087372A JP 8257371 A JP8257371 A JP 8257371A JP 25737196 A JP25737196 A JP 25737196A JP H1087372 A JPH1087372 A JP H1087372A
Authority
JP
Japan
Prior art keywords
slurry
raw material
powder
ceramic material
powdery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8257371A
Other languages
Japanese (ja)
Inventor
Norio Kataoka
伯央 片岡
Shinya Kusumi
真也 久住
Kiwa Okino
喜和 沖野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP8257371A priority Critical patent/JPH1087372A/en
Publication of JPH1087372A publication Critical patent/JPH1087372A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a powdery ceramic material free from aggregation of particles of the same kind, having an almost uniform compsn. and giving ceramic electronic parts having a high performance and high precision by adjusting a slurry to a specified pH when a powdery ceramic material is produced from plural kinds of starting materials different from each other in compsn. SOLUTION: When a slurry prepd. by wet-mixing plural kinds of powdery starting materials different from each other in compsn. is dried and the resultant powdery mixture is heat-treated to produce a powdery ceramic material, the slurry is adjusted to a pH between the isoelectric points of the starting materials. The starting materials are represented by the formula ABO3 (where A and B are titanate forming metals).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えばセラミック
誘電体材料粉末を得る際に組成の異なる複数の原料粉末
を湿式混合して得られるスラリーにおけるこれら粉末の
凝集状態を改善したセラミック材料粉末の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a ceramic dielectric material powder in which a plurality of raw material powders having different compositions are wet-mixed to obtain a ceramic dielectric material powder. About the method.

【0002】[0002]

【従来の技術】セラミックスは電子部品に幅広く用いら
れているが、そのセラミックスを得るには、例えはセラ
ミックコンデンサの場合にはセラミック誘電体材料が製
造される。例えばセラミック誘電体材料は、例えば炭酸
バリウム(BaCO3 )、酸化チタン(TiO2 )等の
複数の誘電体原料粉末を所定の比率で混合粉砕し、つい
でこれを仮焼し、BaTiO3 の組成の金属酸化物の材
料粉末を得る。このセラミック誘電体材料粉末に有機バ
インダーを加えてボールミル等により解砕してスラリー
を調整し、このスラリーを乾燥させて造粒し、この造粒
物を例えば板状に圧縮成形するいわゆる乾式成形を行な
い、その得られた成形物を焼成し、さらにこの焼成体に
電極を形成してセラミックコンデンサを作成したり、あ
るいはその材料粉末に有機バインダー等を含有させてボ
ールミル等により解砕して分散させたスラリーを用いて
シート状体を作成するいわゆる湿式成形を行って多数の
グリーンシートを形成し、それぞれのグリーンシートに
内部電極材料ペースト膜を形成して積層し、焼成し、さ
らに外部電極を形成することにより積層セラミックコン
デンサを作成している。
2. Description of the Related Art Ceramics are widely used in electronic components. To obtain such ceramics, for example, in the case of a ceramic capacitor, a ceramic dielectric material is manufactured. For example, a ceramic dielectric material is obtained by mixing and pulverizing a plurality of dielectric material powders such as barium carbonate (BaCO 3 ) and titanium oxide (TiO 2 ) at a predetermined ratio, and then calcining the mixture to obtain a BaTiO 3 composition. A metal oxide material powder is obtained. An organic binder is added to the ceramic dielectric material powder and crushed by a ball mill or the like to prepare a slurry, and the slurry is dried and granulated. Then, the obtained molded product is fired, and further, electrodes are formed on the fired body to produce a ceramic capacitor, or the material powder is mixed with an organic binder or the like and crushed and dispersed by a ball mill or the like to be dispersed. The slurry is used to form a sheet-like body, so-called wet forming is performed to form a large number of green sheets, an internal electrode material paste film is formed on each green sheet, laminated, fired, and further, external electrodes are formed. By doing so, a multilayer ceramic capacitor is created.

【0003】上記のセラミック誘電体材料粉末が得られ
る製造工程においては、上述したように、BaTiO3
となるように、これを一般式ABO3 で表せばAサイト
を構成するBaの炭酸塩と、Bサイトを構成するTiの
酸化物の原料粉末を混合する等、組成の異なる複数の原
料粉末を混合することが行われるが、これらの混合は水
を溶媒にしてボールミル等で機械的に行なわれ、その得
られた原料の粉砕混合粉末のスラリーはスプレードライ
ヤー等により乾燥され、その乾燥した混合粉末が仮焼等
の熱処理を施されてセラミック誘電体材料粉末が得られ
る。
In the manufacturing process for obtaining the above ceramic dielectric material powder, as described above, BaTiO 3
If this is represented by the general formula ABO 3 , a plurality of raw material powders having different compositions such as a mixture of a raw material powder of a carbonate of Ba constituting the A site and a titanium oxide constituting the B site are obtained. Mixing is carried out, and the mixing is performed mechanically with a ball mill or the like using water as a solvent, and the obtained slurry of the crushed mixed powder of the raw material is dried by a spray dryer or the like, and the dried mixed powder is dried. Is subjected to a heat treatment such as calcination to obtain a ceramic dielectric material powder.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな原料の粉砕混合粉末のスラリーは、上記のAサイト
を構成するBaの炭酸塩の粉砕粉末と、Bサイトを構成
するTiの酸化物の粉砕粉末とがそれぞれスラリー中で
電荷を有するが、同種の粉末同士がスラリー中で凝集を
起こす。このように凝集すると、ボールミル等の粉砕機
の能力を高めても原料粉末の混合には限界があり、その
粉砕混合粉末の粉体粒子の組成は不均一になり、上述し
た仮焼を行ったときに、粒子が反応して反応物が得られ
る際にその隣接する成分比が一定にならず、例えば得ら
れるチタン酸塩の組成が異なるというような問題も起こ
り、高性能、高精度のセラミック素体、ひいてはセラミ
ック電子部品が得られないという問題がある。
However, such a slurry of the pulverized mixed powder of the raw materials is composed of the pulverized powder of Ba carbonate constituting the A site and the pulverized Ti oxide constituting the B site. Each of the powders has a charge in the slurry, but the same kind of powder agglomerates in the slurry. With such agglomeration, there is a limit to the mixing of the raw material powder even if the performance of a pulverizer such as a ball mill is increased, and the composition of the powder particles of the pulverized mixed powder becomes non-uniform. Sometimes, when the reactants are obtained by reacting the particles, the ratio of the adjacent components is not constant, and for example, a problem such that the composition of the obtained titanate is different occurs, and a high-performance, high-precision ceramic There is a problem that a base body and, consequently, a ceramic electronic component cannot be obtained.

【0005】本発明の第1の目的は、組成の異なる複数
の粉末のスラリーの製造工程において同種の粉末粒子の
凝集がない混合粉末粒子を得ることができるようにした
セラミック材料粉末の製造方法を提供することにある。
本発明の第2の目的は、組成比が一定かつバラツキを少
なくできるようにしたセラミック材料粉末の製造方法を
提供することにある。本発明の第3の目的は、高性能、
高精度のセラミック電子部品が得られるようなセラミッ
ク材料粉末の製造方法を提供することにある。
A first object of the present invention is to provide a method for producing a ceramic material powder capable of obtaining mixed powder particles without agglomeration of the same type of powder particles in a process of producing a slurry of a plurality of powders having different compositions. To provide.
A second object of the present invention is to provide a method for producing a ceramic material powder in which the composition ratio is constant and variation can be reduced. A third object of the present invention is to provide high performance,
An object of the present invention is to provide a method for producing a ceramic material powder capable of obtaining a high-precision ceramic electronic component.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決するために、(1)、組成の異なる複数の原料粉末を
湿式混合して得られるスラリーを乾燥して混合粉末を得
る工程と、該混合粉末を熱処理する工程を有するセラミ
ック材料粉末の製造方法において、上記スラリーにおけ
る複数の原料粉末の等電点の中間に該スラリーのpHを
調整するセラミック材料粉末の製造方法を提供するもの
である。また、本発明は、(2)、複数の原料粉末は一
般式ABO3 であってBはTiを含有するチタン酸系化
合物におけるAサイトを構成する成分の原料及びBサイ
トを構成する成分の原料である上記(1)のセラミック
材料粉末の製造方法を提供するものである。
In order to solve the above problems, the present invention provides (1) a step of drying a slurry obtained by wet mixing a plurality of raw material powders having different compositions to obtain a mixed powder; A method for producing a ceramic material powder having a step of heat-treating the mixed powder, wherein the method comprises the step of adjusting the pH of the slurry to an intermediate value between the isoelectric points of the plurality of raw material powders in the slurry. is there. The present invention also provides (2) a plurality of raw material powders having the general formula ABO 3 , wherein B is a raw material of a component constituting the A site and a raw material of a component constituting the B site in a titanate compound containing Ti. It is intended to provide a method for producing the ceramic material powder according to the above (1).

【0007】本発明において、セラミック誘電体材料と
しては、一般式ABO3 で表され、Aサイトの元素の原
料、Bサイトの元素の原料等が原料粉末として用いられ
る。
In the present invention, the ceramic dielectric material is represented by the general formula ABO 3 , and a raw material powder of an A-site element raw material, a B-site element raw material, and the like is used.

【0008】本発明において、「スラリーにおける複数
の粉末の等電点の中間に該スラリーのpHを調整する」
とは、各組成の粉末の陰陽電荷が等しくなるpHの中間
にスラリーのpHを調整することを意味する。例えばB
aCO3 はpHが4、TiO2 はpHが6に等電点があ
るからスラリーのpHを4より大きく6より小さい任意
のpHに調整する。その他のAサイトの元素の原料、B
サイトの元素の原料もこれに準じて考えられる。原料粉
末の電荷は粒子の表面電位(ゼータ電位)により測定す
ることができ、これからその等電点を求めることができ
る。このように、Aサイトの元素の原料の等電点、Bサ
イトの元素の原料の等電点の中間にスラリーのpHを調
整すると、一般にはスラリー中の粒子間にはファンデル
ワールス力(引力)と表面電位(ゼータ電位)による静
電力(同種電荷の場合は斥力、異種電荷の場合は引力)
が働いており、その粒子の分散状態を決定するが、例え
ば上記のBaCO3 とTiO2 の混合粉末のスラリーの
場合のように、そのスラリーのpHをこれらの等電点の
中間点の例えば5にすると、BaCO3 の粒子は負に帯
電し、TiO2 の粒子は正に帯電するので、それぞれの
同種の電荷同士の粒子には斥力が働き、両者の異種の電
子の粒子同士には引力が働いてその結合が優先し、1次
粒子レベルで組成の均一なものができる。
In the present invention, "the pH of the slurry is adjusted to an intermediate value between the isoelectric points of a plurality of powders in the slurry."
This means that the pH of the slurry is adjusted to be in the middle of the pH at which the negative and positive charges of the powder of each composition are equal. For example, B
Since aCO 3 has a pH of 4 and TiO 2 has an isoelectric point at a pH of 6, the pH of the slurry is adjusted to an arbitrary pH larger than 4 and smaller than 6. Other raw materials of A site element, B
The raw materials for the elements of the site can be considered accordingly. The charge of the raw material powder can be measured by the surface potential (zeta potential) of the particles, from which the isoelectric point can be determined. As described above, when the pH of the slurry is adjusted between the isoelectric point of the raw material of the element at the site A and the isoelectric point of the raw material of the element at the site B, the van der Waals force (attractive force) is generally generated between the particles in the slurry. ) And electrostatic force by surface potential (zeta potential) (repulsive force for the same kind of charge, attractive force for different kinds of charge)
Works, and determines the dispersion state of the particles. For example, as in the case of the slurry of the mixed powder of BaCO 3 and TiO 2 , the pH of the slurry is set to, for example, 5 to the midpoint of these isoelectric points. Then, BaCO 3 particles are negatively charged and TiO 2 particles are positively charged, so that a repulsive force acts on each particle of the same kind of charge and an attractive force is exerted on particles of both kinds of different electrons. By working, the bonding takes precedence, and a uniform composition can be obtained at the primary particle level.

【0009】このようにAサイト成分の原料粉末粒子の
表面電位を負、Bサイト成分の原料粉末粒子の表面電位
を正に帯電させて両者を引力により結合させることによ
りヘテロ凝集体を作ることができる。そのためには、上
述したようにスラリー中のpHを調整する必要がある
が、そのpHの調整は原料粉末を溶媒とともにZrO2
等のボールにより粉砕混合する際に行うことが好まし
く、その際分散剤等の添加剤を加えても良い。また、そ
のスラリーを得た後にもそのpHを調整することが好ま
しい。pHを調整するためには、アンモニア等の塩基、
酢酸等の酸を用いることができ、これらは後の工程の仮
焼時に揮散するものが好ましい。
As described above, it is possible to form a hetero-aggregate by negatively charging the surface potential of the raw material powder particles of the A-site component and positively charging the surface potential of the raw material powder particles of the B-site component to combine the two by attractive force. it can. For this purpose, it is necessary to adjust the pH of the slurry as described above, ZrO 2 and the adjustment of the pH of the raw material powder together with a solvent
It is preferable to carry out the grinding and mixing by using a ball such as the above, and an additive such as a dispersant may be added at that time. It is also preferable to adjust the pH after obtaining the slurry. To adjust the pH, a base such as ammonia,
Acids such as acetic acid can be used, and those which volatilize during calcination in a later step are preferable.

【0010】このようにして得られたスラリーは、上述
したように噴霧乾燥法等により乾燥され、この乾燥粉体
については上記の「従来の技術」の項で説明したと同様
にその後の処理が施され、セラミック誘電体材料粉末が
得られ、さらにセラミック素体が得られ、小型化、高性
能、高精度のセラミック電子部品とすることができる。
[0010] The slurry thus obtained is dried by the spray drying method or the like as described above, and the dried powder is subjected to the subsequent treatment in the same manner as described in the section of the "prior art" above. Is performed, a ceramic dielectric material powder is obtained, and a ceramic body is further obtained, whereby a compact, high-performance, high-precision ceramic electronic component can be obtained.

【0011】[0011]

【発明の実施の形態】以下の実施例により説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to the following embodiments.

【0012】[0012]

【実施例】【Example】

実施例1 BaCO3 とTiO2 の原料粉末をBaTiO3 の組成
物になるように(BaとTiとが等モル)秤量し、水を
これら原料粉末の合計重量の1/2倍量加え、ポリカル
ボン酸アンモニウム塩からなる分散剤を原料粉末の合計
重量に対し1.5重量%加え、攪拌して原料粉末の混合
液を製造し、その得られた混合液に酢酸を加え、攪拌し
てpHを5に調整した。なお、この場合のBaCO3
子とTiO2 粒子の等電点をゼータ電位測定装置により
調べたところ前者のpHは4、後者のpHは6であっ
た。この原料粉末の混合液を直径1.5mmのZrO2
製のボールを用いて15〜20時間粉砕し、レーザー回
折法により求められる平均粒径を0.45〜0.50μ
mとした。この得られたスラリーのpHを当初調整した
と同様にpHを5に再調整した。このpHを調整したス
ラリーをスプレードライヤーで乾燥し、レーザー回折法
による平均粒径10〜150μmの原料の粉砕混合粉末
を得た。この原料の粉砕混合粉末を900〜1100℃
まで図1に示す温度で、2時間仮焼し、BaTiO3
セラミック誘電体材料を得た。仮焼前の原料の粉砕混合
粉末の粉体をEPMAによって調べたところ、偏析はほ
とんど見られなかった。それぞれの仮焼温度で得られた
粉体について、X線回折(XRD)によるBaTiO3
の(110)面のピーク強度を求めた結果を図1に示
す。Y軸は1100℃での強度を1としたときの相対値
である。
Example 1 Raw material powders of BaCO 3 and TiO 2 were weighed so as to be a composition of BaTiO 3 (equimolar amounts of Ba and Ti), and water was added in an amount 1/2 of the total weight of these raw material powders. 1.5% by weight of a dispersant composed of ammonium carboxylate is added to the total weight of the raw material powder, and the mixture is stirred to produce a mixed liquid of the raw material powder. Was adjusted to 5. When the isoelectric points of the BaCO 3 particles and the TiO 2 particles in this case were examined by a zeta potential measuring device, the pH of the former was 4 and the pH of the latter was 6. The mixed liquid of the raw material powders was ZrO 2 having a diameter of 1.5 mm.
Crushed for 15 to 20 hours using a ball made of glass, and the average particle size determined by a laser diffraction method is 0.45 to 0.50 μm.
m. The pH of the resulting slurry was readjusted to 5 as was initially adjusted. This pH-adjusted slurry was dried with a spray drier to obtain a pulverized mixed powder of raw materials having an average particle size of 10 to 150 μm by a laser diffraction method. 900-1100 ° C.
Calcination was performed for two hours at the temperature shown in FIG. 1 to obtain a ceramic dielectric material of BaTiO 3 . When the powder of the pulverized mixed powder of the raw material before calcining was examined by EPMA, almost no segregation was observed. The powder obtained at each of the calcining temperatures was subjected to BaTiO 3 by X-ray diffraction (XRD).
FIG. 1 shows the result of determining the peak intensity of the (110) plane. The Y axis is a relative value when the strength at 1100 ° C. is set to 1.

【0013】比較例1〜2 実施例1において、スラリーのpHを8、10に調整し
た以外は同様にしてそれぞれの原料の粉砕混合粉末のス
ラリー得、これらについても実施例1と同様に処理して
仮焼を行い、それぞれのBaTiO3 のセラミック誘電
体材料を得た。その仮焼前のそれぞれの原料の粉砕混合
粉末の粉体を実施例1と同様にEPMAで調べたとこ
ろ、いずれにもBaやTiの偏析が見られた。また、そ
れぞれの原料の粉砕混合粉末の粉体についてそれぞれの
仮焼温度で得られた粉体について、実施例1と同様にX
線回折により調べた結果を図1に示す。
Comparative Examples 1-2 In the same manner as in Example 1, except that the pH of the slurry was adjusted to 8 and 10, a slurry of the pulverized mixed powder of each raw material was obtained. Calcination was performed to obtain the respective BaTiO 3 ceramic dielectric materials. When the powder of the pulverized mixed powder of each raw material before the calcination was examined by EPMA in the same manner as in Example 1, segregation of Ba and Ti was found in each case. Further, the powder obtained at the respective calcining temperatures for the powders of the pulverized mixed powders of the respective raw materials was X in the same manner as in Example 1.
FIG. 1 shows the results obtained by the line diffraction.

【0014】図1の結果より、スラリーのpHを5に調
整した実施例のものは、スラリーのpHをそれぞれ8、
10にした比較例1〜2のものに比べ、仮焼温度105
0℃以下においてBaTiO3 の(110)面のピーク
強度が大きく、低温で合成反応が進むことがわかる。こ
のことは、原料の粉砕混合粉末のスラリーのpHをそれ
ぞれ使用の原料粉末の等電点の中間に設定することによ
り、BaTiO3 の合成反応が低温から進行することが
わかり、スラリー中で原料粉末は良く混合され、その混
合組成が均一であり、同種の原料の凝集がなく、全体と
して高分散状態にあり、その乾燥粉末の仮焼反応はその
状態を反映してその反応性が高まっていることがわか
る。
According to the results shown in FIG. 1, in the embodiment in which the pH of the slurry was adjusted to 5, the pH of the slurry was set to 8,
The calcining temperature was 105 compared to those of Comparative Examples 1 and 2 where
At 0 ° C. or lower, the peak intensity of the (110) plane of BaTiO 3 is large, indicating that the synthesis reaction proceeds at a low temperature. This means that by setting the pH of the slurry of the pulverized mixed powder of the raw material to an intermediate value between the isoelectric points of the raw powders used, it can be understood that the synthesis reaction of BaTiO 3 proceeds from a low temperature, Is well mixed, its mixture composition is uniform, there is no aggregation of the same kind of raw materials, it is in a highly dispersed state as a whole, and the calcination reaction of the dry powder reflects its state and its reactivity is increasing You can see that.

【0015】[0015]

【発明の効果】本発明によれば、組成の異なる複数の原
料粉末のスラリーのpHをそれぞれの粉末の等電点の中
間に設定したので、そのスラリー中において同種の粉末
粒子の凝集がない混合粉末粒子を得ることができ、組成
比が一定かつバラツキを少なくできるようにしたセラミ
ック材料粉末を提供でき、高性能、高精度のセラミック
電子部品が得られるようなセラミック材料粉末を提供す
ることができる。
According to the present invention, since the pH of a slurry of a plurality of raw material powders having different compositions is set at an intermediate value between the isoelectric points of the respective powders, mixing of the same kind of powder particles in the slurry is prevented. A powder particle can be obtained, a ceramic material powder having a constant composition ratio and reduced variation can be provided, and a ceramic material powder capable of obtaining a high-performance, high-precision ceramic electronic component can be provided. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明の実施例及び比較例のスラリーのpH
の相違による仮焼温度による仮焼合成反応の効果を調べ
たグラフである。
FIG. 1 shows the pH of slurries of Examples and Comparative Examples of the present invention.
5 is a graph showing the effect of the calcination synthesis reaction on the calcination temperature depending on the difference in the calcination temperature.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 組成の異なる複数の原料粉末を湿式混合
して得られるスラリーを乾燥して混合粉末を得る工程
と、該混合粉末を熱処理する工程を有するセラミック材
料粉末の製造方法において、上記スラリーを得る際に上
記複数の原料粉末の等電点の中間に該スラリーのpHを
調整するセラミック材料粉末の製造方法。
1. A method for producing a ceramic material powder, comprising: a step of drying a slurry obtained by wet-mixing a plurality of raw material powders having different compositions to obtain a mixed powder; and a step of heat-treating the mixed powder. A method for producing a ceramic material powder, wherein the pH of the slurry is adjusted to an intermediate value between the isoelectric points of the plurality of raw material powders.
【請求項2】 複数の原料粉末は一般式ABO3 であっ
てBはTiを含有するチタン酸系化合物におけるAサイ
トを構成する成分の原料及びBサイトを構成する成分の
原料である請求項1記載のセラミック材料粉末の製造方
法。
2. A plurality of raw material powders having the general formula ABO 3 , wherein B is a raw material of a component constituting the A site and a raw material of a component constituting the B site in a titanate compound containing Ti. A method for producing the ceramic material powder described above.
JP8257371A 1996-09-09 1996-09-09 Production of powdery ceramic material Pending JPH1087372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8257371A JPH1087372A (en) 1996-09-09 1996-09-09 Production of powdery ceramic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8257371A JPH1087372A (en) 1996-09-09 1996-09-09 Production of powdery ceramic material

Publications (1)

Publication Number Publication Date
JPH1087372A true JPH1087372A (en) 1998-04-07

Family

ID=17305465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8257371A Pending JPH1087372A (en) 1996-09-09 1996-09-09 Production of powdery ceramic material

Country Status (1)

Country Link
JP (1) JPH1087372A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004038744A1 (en) * 2002-10-28 2004-05-06 Matsushita Electric Industrial Co., Ltd. Method for manufacturing multilayer ceramic capacitor
JP2006096567A (en) * 2004-09-28 2006-04-13 Tdk Corp Method for producing perovskite-structure oxide powder
JP2006096583A (en) * 2004-09-28 2006-04-13 Kyocera Corp Manufacturing method of ceramics
JP2006248802A (en) * 2005-03-08 2006-09-21 Kyocera Corp Method for producing composite oxide powder, composite oxide powder, and composite oxide ceramics
JP2006298682A (en) * 2005-04-18 2006-11-02 Toyota Motor Corp Manufacturing method of heat-resistant composite oxide
JP2006298683A (en) * 2005-04-18 2006-11-02 Toyota Motor Corp Manufacturing method of heat-resistant composite oxide
JP2007080542A (en) * 2005-09-09 2007-03-29 Sumitomo Metal Mining Co Ltd Method for producing fuel electrode material for solid oxide fuel cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004038744A1 (en) * 2002-10-28 2004-05-06 Matsushita Electric Industrial Co., Ltd. Method for manufacturing multilayer ceramic capacitor
US7335328B2 (en) 2002-10-28 2008-02-26 Matsushita Electric Industrial Co., Ltd. Method for manufacturing multilayer ceramic capacitor
CN100433210C (en) * 2002-10-28 2008-11-12 松下电器产业株式会社 Manufacturing method of multilayer ceramic capacitor
JP2006096567A (en) * 2004-09-28 2006-04-13 Tdk Corp Method for producing perovskite-structure oxide powder
JP2006096583A (en) * 2004-09-28 2006-04-13 Kyocera Corp Manufacturing method of ceramics
JP2006248802A (en) * 2005-03-08 2006-09-21 Kyocera Corp Method for producing composite oxide powder, composite oxide powder, and composite oxide ceramics
JP2006298682A (en) * 2005-04-18 2006-11-02 Toyota Motor Corp Manufacturing method of heat-resistant composite oxide
JP2006298683A (en) * 2005-04-18 2006-11-02 Toyota Motor Corp Manufacturing method of heat-resistant composite oxide
JP2007080542A (en) * 2005-09-09 2007-03-29 Sumitomo Metal Mining Co Ltd Method for producing fuel electrode material for solid oxide fuel cell

Similar Documents

Publication Publication Date Title
JPH05330824A (en) Barium titanate and its production
KR20020096978A (en) Barium titanate powder, method for manufacturing and evaluating the same, dielectric ceramic, and monolithic ceramic capacitor
JP2002265278A (en) Titanium oxide powder, method for producing the same, method for producing barium titanate powder, dielectric ceramic and multilayer ceramic capacitor
JPH1087372A (en) Production of powdery ceramic material
EP1415960B1 (en) Method for making raw dielectric ceramic powder, dielectric ceramic and monolithic ceramic capacitor
KR20030059189A (en) Production of dielectric barium titanate particles
JP3154513B2 (en) Spherical barium titanate-based semiconductor ceramic material powder and method for producing the same
JPS6051664A (en) Manufacture of lead zirconate titanate ceramic
JPH0832559B2 (en) Method for producing inorganic fine powder of perovskite type compound
JP3629285B2 (en) Production method of piezoelectric ceramic
JP3163664B2 (en) Piezoelectric material
JPH03126664A (en) Perovskite type oxide porcelain and production therefor
JP2580374B2 (en) Method for producing composite perovskite type dielectric porcelain powder
JPH11292627A (en) Piezoelectric material and its production
JPS62241825A (en) Production of porcelain of lead titanate zirconate-lead niobate manganate type
JP2004299916A (en) Method for manufacturing oxide powder having perovskite structure
KR100358048B1 (en) Method of fabrication a piezoelectric ceramics
JPH05116943A (en) Production of barium titanate powder
JP3250874B2 (en) Method for producing composite oxide
JP3036094B2 (en) Method for preparing clay for extrusion molding
WO2021010368A1 (en) Me ELEMENT-SUBSTITUTED ORGANIC ACID TITANYL BARIUM, METHOD FOR PRODUCING SAME, AND METHOD FOR PRODUCING TITANIUM-BASED PEROVSKITE-TYPE CERAMIC RAW MATERIAL POWDER
JP3061224B2 (en) Bismuth layered compound polarization method
JP3371640B2 (en) Method for producing raw material powder for dielectric ceramic
JPH02197181A (en) Ferroelectric porcelain body
KR20030046281A (en) Manufacturing method for dielectric ceramic powder

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020514