JPH1087311A - Fine graphite particles, their production and lithium battery using the same - Google Patents
Fine graphite particles, their production and lithium battery using the sameInfo
- Publication number
- JPH1087311A JPH1087311A JP8239348A JP23934896A JPH1087311A JP H1087311 A JPH1087311 A JP H1087311A JP 8239348 A JP8239348 A JP 8239348A JP 23934896 A JP23934896 A JP 23934896A JP H1087311 A JPH1087311 A JP H1087311A
- Authority
- JP
- Japan
- Prior art keywords
- fine particles
- reaction
- reaction chamber
- graphite fine
- carbonate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 118
- 229910002804 graphite Inorganic materials 0.000 title claims abstract description 77
- 239000010439 graphite Substances 0.000 title claims abstract description 77
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 38
- 239000002245 particle Substances 0.000 title claims abstract description 32
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 title claims description 25
- 238000006243 chemical reaction Methods 0.000 claims abstract description 92
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims abstract description 21
- 238000007654 immersion Methods 0.000 claims abstract description 17
- 230000000694 effects Effects 0.000 claims abstract description 15
- 239000007769 metal material Substances 0.000 claims abstract description 14
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000010419 fine particle Substances 0.000 claims description 45
- 229910000288 alkali metal carbonate Inorganic materials 0.000 claims description 15
- 150000008041 alkali metal carbonates Chemical class 0.000 claims description 15
- 229910052723 transition metal Inorganic materials 0.000 claims description 15
- 150000003624 transition metals Chemical class 0.000 claims description 15
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 9
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 claims description 8
- 238000001556 precipitation Methods 0.000 claims description 8
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 6
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 6
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 5
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 claims description 4
- 229910000024 caesium carbonate Inorganic materials 0.000 claims description 4
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical group [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 4
- 229910052808 lithium carbonate Inorganic materials 0.000 claims description 4
- 229910000027 potassium carbonate Inorganic materials 0.000 claims description 4
- WPFGFHJALYCVMO-UHFFFAOYSA-L rubidium carbonate Chemical compound [Rb+].[Rb+].[O-]C([O-])=O WPFGFHJALYCVMO-UHFFFAOYSA-L 0.000 claims description 4
- 229910000026 rubidium carbonate Inorganic materials 0.000 claims description 4
- 238000001947 vapour-phase growth Methods 0.000 claims description 4
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- QHMGJGNTMQDRQA-UHFFFAOYSA-N n-Dotriacontane Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC QHMGJGNTMQDRQA-UHFFFAOYSA-N 0.000 claims description 3
- 239000011148 porous material Substances 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 2
- 239000012808 vapor phase Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 claims 2
- 230000008021 deposition Effects 0.000 abstract description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 11
- 238000005087 graphitization Methods 0.000 abstract description 8
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 abstract description 5
- 238000010744 Boudouard reaction Methods 0.000 abstract description 4
- 239000002904 solvent Substances 0.000 abstract description 3
- 239000002344 surface layer Substances 0.000 abstract description 2
- 239000003513 alkali Substances 0.000 abstract 1
- 230000007704 transition Effects 0.000 abstract 1
- 229910052799 carbon Inorganic materials 0.000 description 34
- 238000000151 deposition Methods 0.000 description 21
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- 238000002441 X-ray diffraction Methods 0.000 description 10
- 229910052759 nickel Inorganic materials 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 6
- 229910052783 alkali metal Inorganic materials 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- 150000001340 alkali metals Chemical class 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000007773 negative electrode material Substances 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910007857 Li-Al Inorganic materials 0.000 description 2
- 229910008447 Li—Al Inorganic materials 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical group [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000004861 thermometry Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Carbon And Carbon Compounds (AREA)
- Inorganic Fibers (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、リチウムイオン
型電池などに使用されるに好適な黒鉛微粒子およびその
製造法並びにそれを用いたリチウム電池に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to graphite fine particles suitable for use in lithium ion batteries and the like, a method for producing the same, and a lithium battery using the same.
【0002】[0002]
【従来の技術】従来、黒鉛の製造に関しては、易黒鉛化
材料を用いても、2600℃程度の昇温が必要であっ
た。例えば、ロンザ社の人造黒鉛(型名、KS−6)は
上記温度域で製造されており、平均粒子径6μm程度の
大きさであるが、SEM(走査型電子顕微鏡)写真によ
る観察結果からによれば、底面(C面)が大きく発達し
た薄片状の粒子であり、柱面(エッジ面)はそれほど発
達していない。2. Description of the Related Art Conventionally, in the production of graphite, it has been necessary to raise the temperature to about 2600 ° C. even if a graphitizable material is used. For example, Lonza's artificial graphite (model name, KS-6) is manufactured in the above temperature range and has a size of about 6 μm in average particle size. According to this, the bottom surface (C-plane) is a flaky particle with a large development, and the columnar surface (edge surface) is not so developed.
【0003】従って、上記薄片状の粒子を用いた成型体
は、成型における圧力によって配向しやすく、圧力のか
かる方向と底面とが垂直となる。また、リチウム電池に
使用する場合を考えると、リチウム原子は柱面側から出
入りを繰り返すので、柱面が発達していない薄片状特徴
は非常に不利となる。すなわち、粒子全体でみれば、リ
チウムを出入りさせる能力を有するのであるが、柱面か
らしかリチウム原子が出入りできないため、リチウム原
子の入り口が非常に狭いと言わねばならない。そのた
め、時間当たりに出入りできるリチウム原子の数が制約
されるだけでなく、粒子の内部にリチウム原子が拡散し
ていく必要があり、そのための時間遅れを生じるという
問題がある。Accordingly, a molded body using the flaky particles is easily oriented by the pressure during molding, and the direction in which the pressure is applied is perpendicular to the bottom surface. In addition, considering the case of using for a lithium battery, lithium atoms repeatedly enter and exit from the column surface side, so that the flaky feature where the column surface has not developed is very disadvantageous. That is, although the particles as a whole have the ability to allow lithium to enter and exit, it must be said that the entrance of lithium atoms is extremely narrow because lithium atoms can enter and exit only from the pillar surface. Therefore, there is a problem that not only the number of lithium atoms that can enter and exit per time is restricted, but also that the lithium atoms need to diffuse inside the particles, which causes a time delay.
【0004】また、リチウム原子の入り口付近でなんら
かの事情により出ることのできないリチウム原子(死蔵
リチウム原子)が生じると、即、放電容量の低下につな
がるという問題がある。[0004] In addition, if lithium atoms (dead lithium atoms) which cannot be emitted due to some reason near the entrance of lithium atoms are generated, there is a problem that the discharge capacity is immediately reduced.
【0005】従って、そうした不都合を避けるために
は、柱面/底面の面積比がほぼ等しい等方的な粒子径と
することが必要となる。[0005] Therefore, in order to avoid such inconveniences, it is necessary to have isotropic particle diameters in which the area ratio between the columnar surface and the bottom surface is substantially equal.
【0006】一方、天然黒鉛を洗浄して不純物を取り除
きつつ粉砕し、微粒子黒鉛を製造する工業的方法におい
ては、確かに10μm程度以下の等方的な粒子径のもの
を得ることができる。しかし、本発明者らが有機溶媒の
浸漬熱測定から明らかにしたように、この工業的方法に
よる黒鉛粒子の表面は粉砕にともなう機械的ダメージを
相当受けており、理想的な黒鉛構造からは遠く隔たって
いる。いわば、その黒鉛粒子の表面はハードカーボン
(難黒鉛化カーボン)化している(熱測定学会’95年
10月発表)。On the other hand, in an industrial method for producing fine graphite by washing and pulverizing natural graphite while removing impurities, it is possible to surely obtain particles having an isotropic particle diameter of about 10 μm or less. However, as clarified by the present inventors from the measurement of the immersion heat of the organic solvent, the surface of the graphite particles by this industrial method is considerably damaged by the grinding, and is far from the ideal graphite structure. Separated. In other words, the surface of the graphite particles is turned into hard carbon (hardly graphitized carbon) (published by the Society of Thermometry in October 1995).
【0007】従って、上記工業的方法による黒鉛粒子を
リチウム電池の負極に用いた場合には、黒鉛の理想容量
(372mAh/g)を越える特性が得られることがあ
るが、その特性は初期だけに限られ、長続きしない。す
なわち、リチウム原子の出入りできる付近の黒鉛構造が
乱れているので、死蔵リチウム原子が発生しやすく、ま
た、充放電サイクルを繰り返しても構造の乱れが元通り
に回復する可能性は皆無であるという問題がある。Therefore, when graphite particles obtained by the above-mentioned industrial method are used for a negative electrode of a lithium battery, characteristics exceeding the ideal capacity (372 mAh / g) of graphite may be obtained. Limited and does not last long. That is, since the graphite structure near where lithium atoms can enter and exit is disordered, dead lithium atoms are likely to be generated, and there is no possibility that the disorder of the structure will be restored to its original state even after repeated charge and discharge cycles. There's a problem.
【0008】また、その黒鉛構造が乱れた表面状態は、
各種有機溶媒に対して非常に活性が高いので、リチウム
電池用電解質に用いられる有機溶媒とも各種相互作用を
引き起こしやすく、電解質溶媒との相性の問題などを生
じる。[0008] The surface state of the graphite structure is disordered.
Since it has a very high activity with respect to various organic solvents, it easily causes various interactions with an organic solvent used for an electrolyte for a lithium battery, and causes a problem of compatibility with the electrolyte solvent.
【0009】[0009]
【発明が解決しようとする課題】この発明は、上記のよ
うな問題を解決するためになされたもので、その表面層
に機械的なダメージが無く、リチウム電池に用いる各種
有機溶媒に対して表面活性が低く安定性の高い、そのう
え平均粒子径が10μm程度以下で等方的形状を有する
黒鉛粒子およびその製造方法を提供し、この黒鉛粒子を
リチウム電池に用いることによって、放電容量の低下が
少なく、充放電サイクルに対する耐性が大きなリチウム
電池を得るものである。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has no mechanical damage to its surface layer, and has a high surface area for various organic solvents used in lithium batteries. The present invention provides graphite particles having low activity and high stability, and further has an isotropic shape with an average particle diameter of about 10 μm or less, and a method for producing the same. And a lithium battery having high resistance to charge / discharge cycles.
【0010】[0010]
【課題を解決するための手段】請求項1に係る発明は、
700℃以下で、次式(1)または(2)で示される反
応、 2CO→CO2+C(析出)…(1) H2+CO→H2O+C(析出)…(2) によって、成長させた平均粒子径10μm以下で等方的
形状を有する黒鉛微粒子である。The invention according to claim 1 is
At 700 ° C. or lower, a reaction represented by the following formula (1) or (2), 2CO → CO 2 + C (precipitation)... (1) H 2 + CO → H 2 O + C (precipitation). Graphite fine particles having an average particle diameter of 10 μm or less and having an isotropic shape.
【0011】請求項2に係る発明は、請求項1記載の黒
鉛微粒子において、25℃において、ヘキサンとベンゼ
ンの浸漬熱がそれぞれ30mJ/m2以下、n−ブタノ
ールと三級ブタノールの浸漬熱がそれぞれ60mJ/m
2以下、ジメチルスルホキシドの浸漬熱が150mJ/
m2以下、ドトリアコンタン/ヘキサン溶液の浸漬熱が
80mJ/m2以下の熱量を持つ表面活性度の低いもの
である。According to a second aspect of the present invention, in the graphite fine particles according to the first aspect, the immersion heat of hexane and benzene is 30 mJ / m 2 or less and the immersion heat of n-butanol and tertiary butanol are each 25 ° C. 60mJ / m
2 or less, the immersion heat of dimethyl sulfoxide is 150 mJ /
m 2 or less, and the surface immersion heat of the dotriacontan / hexane solution is 80 mJ / m 2 or less, and the surface activity is low.
【0012】請求項3に係る発明は、700℃以下で、
次式(1)または(2)で示される反応、 2CO→CO2+C(析出)…(1) H2+CO→H2O+C(析出)…(2) によって、反応室内で気相成長させる黒鉛微粒子の製造
法である。The invention according to claim 3 is characterized in that at 700 ° C. or less,
By the reaction represented by the following formula (1) or (2), 2CO → CO 2 + C (deposition)... (1) H 2 + CO → H 2 O + C (deposition). This is a method for producing fine particles.
【0013】請求項4に係る発明は、請求項3記載の黒
鉛微粒子の製造法において、反応室あるいは反応室の一
部に、遷移金属材料を主成分とする材料を用いたもので
ある。According to a fourth aspect of the present invention, in the method for producing fine graphite particles according to the third aspect, a material mainly composed of a transition metal material is used in the reaction chamber or a part of the reaction chamber.
【0014】請求項5に係る発明は、請求項3または4
記載の黒鉛微粒子の製造法において、反応室内に、遷移
金属材料を主成分とする材料を配置したものである。The invention according to claim 5 is the invention according to claim 3 or 4.
In the method for producing graphite fine particles described above, a material having a transition metal material as a main component is arranged in a reaction chamber.
【0015】請求項6に係る発明は、請求項4または5
記載の黒鉛微粒子の製造法において、遷移金属材料が多
孔体のものである。The invention according to claim 6 is the invention according to claim 4 or 5.
In the method for producing graphite fine particles described above, the transition metal material is a porous material.
【0016】請求項7に係る発明は、請求項3ないし6
のいずれかに記載の黒鉛微粒子の製造法において、反応
室内にアルカリ金属炭酸塩の蒸気を共存させているもの
である。The invention according to claim 7 is the invention according to claims 3 to 6
In the method for producing graphite fine particles according to any one of the above, steam of an alkali metal carbonate coexists in the reaction chamber.
【0017】請求項8に係る発明は、請求項3ないし6
のいずれかに記載の黒鉛微粒子の製造法において、反応
室と連通する容器にアルカリ金属炭酸塩を収納し、上記
容器内で発生させた上記アルカリ金属炭酸塩の蒸気を上
記反応室内に共存させるものである。The invention according to claim 8 is the invention according to claims 3 to 6
The method for producing graphite fine particles according to any of the above, wherein the alkali metal carbonate is stored in a container communicating with the reaction chamber, and the vapor of the alkali metal carbonate generated in the container coexists in the reaction chamber. It is.
【0018】請求項9に係る発明は、請求項7または8
記載の黒鉛微粒子の製造法において、アルカリ金属炭酸
塩が、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、
炭酸ルビジウム、炭酸セシウムの単体あるいは任意の混
合比の混合物であるものである。The invention according to claim 9 is the invention according to claim 7 or 8.
In the method for producing graphite particles according to the above, the alkali metal carbonate is lithium carbonate, sodium carbonate, potassium carbonate,
It is a simple substance of rubidium carbonate or cesium carbonate or a mixture having an arbitrary mixing ratio.
【0019】請求項10に係る発明は、請求項3ないし
9のいずれかに記載の黒鉛微粒子の製造法において、気
相成長させるに先立ち、反応室内にあらかじめ成長した
黒鉛微粒子の種を入れておくものである。According to a tenth aspect of the present invention, in the method for producing graphite fine particles according to any one of the third to ninth aspects, prior to vapor phase growth, seeds of the graphite fine particles grown in advance are introduced into a reaction chamber. Things.
【0020】請求項11に係る発明は、請求項1または
2記載の黒鉛微粒子を負極に用いたするリチウム電池で
ある。An eleventh aspect of the present invention is a lithium battery using the graphite fine particles according to the first or second aspect as a negative electrode.
【0021】請求項12に係る発明は、請求項3ないし
10のいずれかに記載の黒鉛微粒子の製造法によって製
造した黒鉛微粒子を、負極に用いたリチウム電池であ
る。According to a twelfth aspect of the present invention, there is provided a lithium battery using the graphite fine particles produced by the method for producing graphite fine particles according to any one of the third to tenth aspects as a negative electrode.
【0022】[0022]
【発明の実施の形態】発明者らは、700℃以下の低温
度域で、これまでの常識に反して黒鉛微粒子が成長する
ことを見いだした。通常、この温度域ではススが生成す
ると言われている(新炭素工業、石川、長沖著 198
0年、近代編集社)。以下に、700℃以下でカーボン
を析出する反応について考察する。BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have found that graphite fine particles grow in a low temperature range of 700 ° C. or lower, contrary to common sense. It is generally said that soot is formed in this temperature range (New Carbon Industry, Ishikawa, Nagaoki, 198).
0, modern editorial company). Hereinafter, a reaction of depositing carbon at 700 ° C. or lower will be considered.
【0023】水を生成する反応(2H2+O2→2H
2O)と、COを生成する反応(2C+O2→2CO)と
は、その反応の自由エネルギーが700℃付近で交差す
る。700℃以下ではCOが不安定で、700℃以上で
は水が不安定となる。したがって、水性ガス反応(C+
H2O→CO+H2)に関して言えば、700℃以上では
水性ガスの生成反応であり、700℃以下ではカーボン
の析出反応となる。したがって、水性ガス反応の逆反応
によるカーボン析出は、700℃以下の温度域でしか起
きえない。もちろん、この析出するカーボンが黒鉛であ
る熱力学的必然性はなにもない。Reaction for producing water (2H 2 + O 2 → 2H
And 2 O), and the reaction generating CO (2C + O 2 → 2CO ), the free energy of the reaction intersect at around 700 ° C.. At 700 ° C. or lower, CO becomes unstable, and at 700 ° C. or higher, water becomes unstable. Therefore, the water gas reaction (C +
Regarding H 2 O → CO + H 2 ), at 700 ° C. or higher, a water gas generation reaction occurs, and at 700 ° C. or lower, a carbon deposition reaction occurs. Therefore, carbon deposition by the reverse reaction of the water gas reaction can occur only in a temperature range of 700 ° C. or less. Of course, there is no thermodynamic necessity that the precipitated carbon is graphite.
【0024】一方、一酸化炭素の熱分解からカーボンを
析出する反応のあることが知られている。いわゆるブー
ドア(Boudouard)反応、すなわち、2CO→
C+CO2である。On the other hand, it is known that there is a reaction of depositing carbon from the thermal decomposition of carbon monoxide. The so-called Boodouard reaction, ie, 2CO →
C + CO 2 .
【0025】このBoudouard反応の考察には、
COとCO2の安定性を考える必要があるが、CO2の安
定性は、水の安定性に非常に近いので、先に述べた水性
ガス反応のように、CO2の安定性を水の安定性で置き
換えて議論することができる。すなわち、700℃以上
ではCOが安定で、700℃以下ではCO2が安定であ
る。したがって、このBoudouard反応によるカ
ーボン析出も700℃以下でしか起きえないと言える。The consideration of this Boudouard reaction is as follows:
It is necessary to consider the stability of CO and CO 2. However, since the stability of CO 2 is very close to the stability of water, the stability of CO 2 is It can be discussed by replacing with stability. That is, at 700 ° C. or higher CO is stable, CO 2 is stable at 700 ° C. or less. Therefore, it can be said that carbon deposition due to this Boudouard reaction can only occur at 700 ° C. or lower.
【0026】これ以外の反応として、H2によるCO2の
直接還元反応も考えられないことはないが、通常は、水
−ガスシフト反応H2+CO2→H2O+COが先に生じ
て、COが生成する。なお、この水−ガスシフト反応
は、カーボンを析出する最終反応ではないが、出発ガス
組成によっては、無視できない反応と言える。As a reaction other than the above, a direct reduction reaction of CO 2 with H 2 is not conceivable, but usually, a water-gas shift reaction H 2 + CO 2 → H 2 O + CO occurs first, and CO is produced. Generate. This water-gas shift reaction is not the final reaction for depositing carbon, but it can be said that it is a reaction that cannot be ignored depending on the starting gas composition.
【0027】また、COによるCH4の還元反応(CH
4+2CO→3C+2H2O)も考えられないことはな
いが、その平衡定数は非常に小さく、カーボンは生じな
いと断定できる。The reduction reaction of CH 4 with CO (CH
4 + 2CO → 3C + 2H 2 O) is not inconceivable, but its equilibrium constant is very small and it can be concluded that no carbon is produced.
【0028】以上の考察から、700℃以下でのカーボ
ン析出反応は、水性ガス逆反応と、Boudouard
反応による、2つの可能性が大きいと言える。600℃
における両反応の平衡定数Kpは、それぞれ3.94
(=PH2O/PCO・PH2)と12.4(=PCO
2/PCO2)である。これら両反応は、カーボン析出
に際して、そのガス体積を減じる(2→1モル)ので、
出発時の圧力が高いほど、カーボン析出反応がよく進
み、カーボンの収率が向上する。また、メタン化反応
(CO+3H2→CH4+H2O)も出発ガス組成によっ
ては副反応として生じる可能性がある。しかし、その速
度はそれほど大きくない。From the above considerations, the carbon deposition reaction at a temperature of 700 ° C. or less is the reverse reaction of the water gas and the Boudouard.
It can be said that there are two possibilities depending on the reaction. 600 ° C
, The equilibrium constant Kp for both reactions was 3.94, respectively.
(= PH2O / PCOPH2) and 12.4 (= PCO
2 / PCO 2 ). Both of these reactions reduce the gas volume during carbon deposition (2 → 1 mol),
The higher the pressure at the start, the better the carbon deposition reaction proceeds, and the higher the carbon yield. Also, the methanation reaction (CO + 3H 2 → CH 4 + H 2 O) may occur as a side reaction depending on the composition of the starting gas. But its speed is not so great.
【0029】先に、析出するカーボンは黒鉛である必然
性は無いと述べたが、黒鉛の安定域は2000℃付近ま
では、減圧下から圧力1000気圧くらいの広い範囲に
渡っていることが知られている(結晶成長ハンドブッ
ク、共立出版、1995年、p.340)。したがっ
て、析出するカーボンは何らかの黒鉛化への駆動力さえ
あれば、黒鉛として成長し続けることができると考えら
れる。Although it has been stated earlier that the carbon to be deposited is not necessarily graphite, it is known that the stable range of graphite ranges from a reduced pressure to a pressure of about 1000 atm until around 2000 ° C. (Crystal Growth Handbook, Kyoritsu Shuppan, 1995, p. 340). Therefore, it is considered that the deposited carbon can continue to grow as graphite as long as there is some driving force for graphitization.
【0030】発明者らが確認している黒鉛化への駆動力
は、ニッケル、鉄、コバルト、クロムなどの遷移金属類
が反応時に共存することである。The driving force for graphitization confirmed by the inventors is that transition metals such as nickel, iron, cobalt and chromium coexist during the reaction.
【0031】反応室あるいは黒鉛が成長する反応室内に
共存する遷移金属材料は、水−ガスシフト反応を促進す
るものである。また、ニッケルや鉄などのCOとの化合
物カーボニールを生成しやすい遷移金属材料であること
が、反応促進に対して効果を持つものである。The transition metal material coexisting in the reaction chamber or the reaction chamber where graphite grows promotes the water-gas shift reaction. Further, a transition metal material that easily generates a compound carbonyl with CO such as nickel or iron has an effect on promoting the reaction.
【0032】また、この遷移金属材料の効果をより発揮
させるため、その表面積を大きくした多孔体を一部に使
用することも有効である。In order to further exert the effect of the transition metal material, it is effective to partially use a porous body having a large surface area.
【0033】また、反応室内にアルカリ金属炭酸塩の蒸
気を共存させることによって、黒鉛化反応をさらに促進
することができる。The coexistence of alkali metal carbonate vapor in the reaction chamber can further promote the graphitization reaction.
【0034】また、反応室と連通する容器を設け、この
容器にアルカリ金属炭酸塩を収納することによって、上
記容器の温度制御を別に行い、アルカリ金属炭酸塩の蒸
気圧を高めることによって、より黒鉛化を促進すること
ができる。Further, by providing a vessel communicating with the reaction chamber and storing the alkali metal carbonate in this vessel, the temperature of the vessel is controlled separately, and the vapor pressure of the alkali metal carbonate is increased, whereby the graphite is further increased. Can be promoted.
【0035】アルカリ金属炭酸塩は、炭酸リチウム、炭
酸ナトリウム、炭酸カリウム、炭酸ルビジウム、炭酸セ
シウムの単体あるいは任意の混合比の混合物が好まし
い。The alkali metal carbonate is preferably lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate, cesium carbonate alone or a mixture having an arbitrary mixing ratio.
【0036】また、黒鉛として成長を続けるわけである
から、成長初期に黒鉛のいわゆるタネを反応室に前もっ
て入れておけば、その上に成長が続くことになるので、
有利に、また再現性良く、品質のそろった黒鉛微粒子を
製造できる。In addition, since the growth of graphite is continued, if a so-called seed of graphite is put in the reaction chamber in advance in the early stage of growth, the growth will continue on it.
Advantageously and with good reproducibility, graphite fine particles of uniform quality can be produced.
【0037】上記の黒鉛化への駆動力を備えた条件の
下、700℃以下で、次式(1)または(2)による反
応、 2CO→CO2+C(析出) …(1) H2+CO→H2O+C(析出) …(2) により黒鉛微粒子を気相成長させ、黒鉛微粒子を製造す
ることができる。Under the above conditions with the driving force for graphitization, at 700 ° C. or lower, a reaction according to the following formula (1) or (2), 2CO → CO 2 + C (precipitation) (1) H 2 + CO → H 2 O + C (precipitation) (2) The graphite fine particles can be vapor-phase grown to produce graphite fine particles.
【0038】上記のようにして、700℃以下の反応に
より、平均粒子径10μm以下で、等方的形状の黒鉛微
粒子が得られ、リチウム電池の負極材料に用いた場合、
リチウム原子の入り口を広くし、リチウム原子の拡散を
容易にすることができるとともに、放電容量の低下を少
なくできる。As described above, isotropic graphite fine particles having an average particle diameter of 10 μm or less are obtained by the reaction at 700 ° C. or less, and when used as a negative electrode material of a lithium battery,
The entrance of lithium atoms can be widened, lithium atoms can be easily diffused, and a decrease in discharge capacity can be reduced.
【0039】また、この黒鉛微粒子は粉砕等の機械的ダ
メージを受けるものでないことはいうまでもない。従っ
て、充放電サイクルに対して大きな耐性を有するものと
なる。Needless to say, the graphite fine particles are not subjected to mechanical damage such as pulverization. Therefore, it has a large resistance to charge / discharge cycles.
【0040】また、25℃において、従来のKS−6で
は得られないような、ヘキサンとベンゼンの浸漬熱がそ
れぞれ30mJ/m2以下、n−ブタノールと三級ブタ
ノールの浸漬熱がそれぞれ60mJ/m2以下、ジメチ
ルスルホキシドの浸漬熱が150mJ/m2以下、ドト
リアコンタン/ヘキサン溶液の浸漬熱が80mJ/m2
以下の熱量を持つ、表面活性度の低い黒鉛微粒子が得ら
れ、リチウム電池の負極材料として適用した場合に、放
電容量の低下を小さくすることができる。At 25 ° C., the immersion heat of hexane and benzene is 30 mJ / m 2 or less, and the immersion heat of n-butanol and tertiary butanol is 60 mJ / m 2 , which cannot be obtained by the conventional KS-6. 2 or less, the immersion heat of dimethyl sulfoxide is 150 mJ / m 2 or less, and the immersion heat of the dotriacontan / hexane solution is 80 mJ / m 2.
Graphite fine particles having the following heat values and low surface activity are obtained, and when applied as a negative electrode material of a lithium battery, a decrease in discharge capacity can be reduced.
【0041】上記のようにして得られた、黒鉛微粒子を
加圧成型し、この加圧成型した黒鉛微粒子を負極として
用い、電解液としてEC/DME/1モルLiCl
O4、対極にはLi−Al(20wt%)を用いた二極
セルを組み立てる。The graphite fine particles obtained as described above are molded under pressure, and the molded graphite particles are used as a negative electrode, and EC / DME / 1 mol LiCl is used as an electrolyte.
Assemble a bipolar cell using O 4 and Li-Al (20 wt%) as a counter electrode.
【0042】黒鉛微粒子は、平均粒子径が10μm以
下、等方的形状で機械的ダメージを受けておらず、か
つ、表面活性度が低いので、リチウム電池の負極に用い
ることによって、放電容量の低下が少なく充放電サイク
ルに対する耐性が大きなリチウム電池が得られる。The graphite fine particles have an average particle diameter of 10 μm or less, areotropically shaped, are not mechanically damaged, and have a low surface activity. Thus, a lithium battery having low resistance and high resistance to charge / discharge cycles can be obtained.
【0043】[0043]
【実施例】以下、実施例について説明する。図1は、本
実施例に用いた反応炉の模式断面図である。図におい
て、1は反応室1で、表面を遷移金属材料2でコーティ
ングしたステンレス鋼3、鉄製など、少なくとも一部に
遷移金属類を有する金属材料で形成されている。5はア
ルミナ絶縁板4で絶縁されたヒータ、6は断熱材で、反
応室1は図示しない温度制御装置によって所定の温度に
保持される。7は原料ガスの入り口、8は出口で、入り
口7から原料ガスが反応室1に導入され、出口8から排
出される。また、反応室1内には、遷移金属類からなる
多孔体9が配置できるように構成されている。なお、以
下に示す比較例においては、反応室1をアルミナで形成
している。Embodiments will be described below. FIG. 1 is a schematic sectional view of the reaction furnace used in the present embodiment. In the figure, reference numeral 1 denotes a reaction chamber 1, which is formed of a metal material having a transition metal at least partially, such as stainless steel 3 or iron made of a surface coated with a transition metal material 2. 5 is a heater insulated by an alumina insulating plate 4, 6 is a heat insulating material, and the reaction chamber 1 is maintained at a predetermined temperature by a temperature controller (not shown). Reference numeral 7 denotes an inlet of the source gas, and 8 denotes an outlet. The source gas is introduced into the reaction chamber 1 from the inlet 7 and discharged from the outlet 8. Further, the reaction chamber 1 is configured so that a porous body 9 made of transition metals can be arranged. In the following comparative examples, the reaction chamber 1 is formed of alumina.
【0044】実施例1および2.表1は、本実施例の反
応条件を比較例とともに示すもので、表2は、反応後の
出口ガス組成分析結果を示すものである。原料ガスはH
2/CO2、圧力は1気圧、温度は600〜650℃と
し、加湿しないドライガスを用いた。Embodiments 1 and 2 Table 1 shows the reaction conditions of the present example together with comparative examples, and Table 2 shows the results of outlet gas composition analysis after the reaction. The source gas is H
2 / CO 2 , pressure was 1 atm, temperature was 600 to 650 ° C., and a non-humidified dry gas was used.
【0045】[0045]
【表1】 [Table 1]
【0046】[0046]
【表2】 [Table 2]
【0047】カーボン析出はニッケル多孔体を共存させ
た反応条件で見られた。ニッケル多孔体の役割について
考察すると、表2に示すように、ニッケル多孔体が水−
ガスシフト反応を促進することがわかる。Carbon deposition was observed under the reaction conditions in which a nickel porous material coexisted. Considering the role of the nickel porous body, as shown in Table 2, the nickel porous body was
It can be seen that the gas shift reaction is promoted.
【0048】表2に示すように、水−ガスシフト反応率
は、カーボン析出のあった実施例1および2で、ほぼ1
00%に近かったが、カーボン析出のみられない比較例
1および2では、50%以下であった。したがって、カ
ーボン析出に対して、水−ガスシフト反応率が大きく関
与していることは否定できない。原料ガスがH2/CO2
であるので、この水−ガスシフト反応により、カーボン
析出の主役であるCOが生成するからである。As shown in Table 2, the water-gas shift reaction rate was almost 1 in Examples 1 and 2 where carbon was deposited.
Although it was close to 00%, it was 50% or less in Comparative Examples 1 and 2 where only carbon deposition was observed. Therefore, it cannot be denied that the water-gas shift reaction rate greatly contributes to carbon deposition. Source gas is H 2 / CO 2
Therefore, this water-gas shift reaction generates CO, which is the main role of carbon deposition.
【0049】成長したカーボンのX線回折をとり、その
結晶構造を確認したところ、図2に示すように、明瞭な
黒鉛構造を示した。特に、このカーボンで特徴的なの
は、通常の黒鉛構造のように、(002)と(004)
面からの回折が強いだけでなく、(101)と(10
2)面からの回折も強いことである。この斜め面からの
回折が強いことは、試料が十分に回折強度を生じるだけ
の大きさを持っていることを示しており、いわば等方的
(球状)であることがうかがえる。先に述べたKS−6
は板状であり、(004)面からの回折が弱いだけでな
く、(101)面からの回折がほとんど見えない。X-ray diffraction of the grown carbon was performed and its crystal structure was confirmed. As shown in FIG. 2, a clear graphite structure was shown. In particular, the characteristic features of this carbon are (002) and (004) as in a normal graphite structure.
In addition to the strong diffraction from the surface, (101) and (10
2) Diffraction from the surface is also strong. The strong diffraction from the oblique surface indicates that the sample has a size sufficient to generate sufficient diffraction intensity, which means that the sample is isotropic (spherical). KS-6 mentioned earlier
Has a plate-like shape, and the diffraction from the (004) plane is weak, and the diffraction from the (101) plane is hardly visible.
【0050】SEM写真を見ると、成長したカーボンの
平均粒子径は0.1〜0.3μmの球状で、機械的なダ
メージも見られなかった。なお、BET表面積を測定す
ると80m2/gという相当に高い値を示した。参考ま
でにKS−6のBET表面積は20m2/gであったの
で、その4倍も高い。The SEM photograph shows that the grown carbon had a spherical shape with an average particle diameter of 0.1 to 0.3 μm, and no mechanical damage was observed. When the BET surface area was measured, it showed a considerably high value of 80 m 2 / g. For reference, the BET surface area of KS-6 was 20 m 2 / g, which is four times higher than that.
【0051】この黒鉛微粒子について、双子型熱量計を
用いて、10種の有機溶媒による浸漬熱測定を行い、表
3に示す結果を得た。比較のために示したKS−6の測
定値も合わせて示したが、表面積あたりではこの黒鉛微
粒子は、KS−6では得られないような小さな浸漬熱を
示した。すなわち、表面がそれほど活性を持たない。こ
れはリチウム電池用の負極材料としては、好都合であ
る。なぜなら、活性が高いと、初期の充電容量が増加す
るものの、放電容量が激減し、結局、死蔵されるリチウ
ム量も増加するが、活性が低いので放電容量の低下を小
さくできるからである。The graphite particles were subjected to immersion heat measurement using ten kinds of organic solvents using a twin calorimeter, and the results shown in Table 3 were obtained. The measured values of KS-6 shown for comparison are also shown, but the graphite fine particles showed a small immersion heat per surface area that cannot be obtained with KS-6. That is, the surface is not very active. This is favorable as a negative electrode material for a lithium battery. This is because if the activity is high, the initial charge capacity is increased, but the discharge capacity is drastically reduced. As a result, the amount of lithium to be stored is also increased. However, since the activity is low, the decrease in the discharge capacity can be reduced.
【0052】[0052]
【表3】 [Table 3]
【0053】実施例3〜5.原料ガスは、実施例1およ
び2と同様、H2とCO2の混合ガスであり、温度を50
0〜550℃、圧力を1〜5気圧とし、ニッケル多孔体
を設置した。反応条件と結果を表4に示した。どの反応
条件の場合にもカーボンの析出が見られたが、1気圧よ
りは5気圧の方が析出量が多く、また5気圧の時には、
炭酸塩蒸気を共存させた実施例5の方が、析出量が格段
に多かった。Embodiments 3 to 5 The source gas is a mixed gas of H 2 and CO 2 as in Examples 1 and 2, and the temperature is 50
The pressure was set to 0 to 550 ° C. and the pressure was set to 1 to 5 atm, and a nickel porous body was provided. The reaction conditions and results are shown in Table 4. Deposition of carbon was observed under any of the reaction conditions, but the deposition amount was larger at 5 atm than at 1 atm.
In Example 5 in which carbonate vapor was coexisted, the deposition amount was much larger.
【0054】[0054]
【表4】 [Table 4]
【0055】実施例5で得られた黒鉛微粒子のX線回折
結果を図3に示したが、実施例1および2の試料と大差
の無いことがわかる。FIG. 3 shows the result of X-ray diffraction of the graphite fine particles obtained in Example 5, which shows that there is no great difference from the samples of Examples 1 and 2.
【0056】なお、共存させた炭酸塩の蒸気は炭酸リチ
ウムと炭酸カリウムの混合物であり、10-5Torr以
下である。黒鉛に対しては、アルカリ金属のインターカ
レーションがよく知られており、リチウムをはじめ、ナ
トリウム、カリウムなどほとんどのアルカリ金属元素が
黒鉛構造中に侵入する。その組成は、アルカリ金属が最
高濃度に入った状態で、C6M(M:アルカリ金属)で
表される。こうしたC6MのX線回折も行われているの
で、アルカリ金属が黒鉛構造中に侵入した場合には、明
瞭に判断できるのであるが、図3に示した黒鉛試料のX
線回折結果から見る限り、リチウムやカリウムの侵入は
全然生じていないと判断できる。したがって、共存する
アルカリ金属の炭酸塩の蒸気は、黒鉛の気相成長を促進
するものの、黒鉛構造を変化させないと言える。The vapor of the coexisting carbonate is a mixture of lithium carbonate and potassium carbonate and has a pressure of 10 -5 Torr or less. For graphite, the intercalation of alkali metal is well known, and most alkali metal elements such as lithium, sodium, and potassium enter the graphite structure. The composition is represented by C 6 M (M: alkali metal) with the alkali metal in the highest concentration. Since such C 6 M X-ray diffraction is also performed, when the alkali metal enters the graphite structure, it can be clearly determined. However, the X-ray diffraction of the graphite sample shown in FIG.
From the results of the line diffraction, it can be determined that lithium and potassium do not enter at all. Therefore, it can be said that the vapor of the coexisting alkali metal carbonate promotes the vapor phase growth of graphite but does not change the graphite structure.
【0057】表4から明らかなように、炭酸塩の蒸気が
共存すると、カーボンの析出量は、共存しない場合に比
べて、20倍にも増加する。これは、実用的には大きな
効果である。As is evident from Table 4, when the carbonate vapor coexists, the amount of precipitated carbon increases by 20 times as compared with the case where no coexistence exists. This is a great effect in practical use.
【0058】実施例6.原料ガスに100%COガスを
用いて、600℃、10気圧に保持し、圧力低下を常に
保証するようガス供給を50時間続けたところ、カーボ
ン析出が認められた。X線回折を行ったところ、実施例
1〜5の結果と大差のない回折パターンが得られ、まぎ
れもなく黒鉛であることが確認された。Embodiment 6 FIG. When 100% CO gas was used as a raw material gas, the temperature was maintained at 600 ° C. and the pressure was 10 atm, and the gas supply was continued for 50 hours so as to always ensure the pressure drop, and carbon deposition was observed. When X-ray diffraction was performed, a diffraction pattern that was not much different from the results of Examples 1 to 5 was obtained, and it was confirmed that the powder was definitely graphite.
【0059】なお、反応室1は鉄製の容器とし、鉄製の
容器の底に炭酸ナトリウムを少量置くことにより、炭酸
ナトリウムの蒸気を反応室1内に共存させた。The reaction chamber 1 was an iron container, and a small amount of sodium carbonate was placed on the bottom of the iron container, so that sodium carbonate vapor coexisted in the reaction chamber 1.
【0060】また、この反応室1内に実施例1で生成し
た黒鉛試料を少量あらかじめ、入れて置いた。したがっ
て、生成したカーボンはこの黒鉛試料をタネにして、生
成したと考えられる。A small amount of the graphite sample produced in Example 1 was placed in the reaction chamber 1 in advance. Therefore, it is considered that the generated carbon was generated by using the graphite sample as a seed.
【0061】実施例7.900℃で発生させた水性ガス
を実施例6と同様の鉄製の反応室1に導入し、550
℃、3気圧に保持し、常に圧力低下を保証するよう水性
ガスの供給を続けたところ、100時間後にはカーボン
析出が見られた。Example 7 Water gas generated at 900 ° C. was introduced into the same iron reaction chamber 1 as in Example 6,
When the supply of water gas was continued at a temperature of 3 ° C. and a pressure of 3 atm to ensure a constant pressure drop, carbon deposition was observed after 100 hours.
【0062】なお、反応室1の底には、炭酸ルビジウム
と炭酸セシウムの混合物を置いて、その蒸気を反応室1
内に共存させた。生成したカーボン試料は、X線回折の
結果、実施例1〜6と同様、純粋な黒鉛であることが確
認された。A mixture of rubidium carbonate and cesium carbonate was placed at the bottom of the reaction chamber 1, and the vapor was passed through the reaction chamber 1.
Coexisted within. As a result of X-ray diffraction, it was confirmed that the produced carbon sample was pure graphite as in Examples 1 to 6.
【0063】実施例8.実施例5において、ニッケル多
孔体のかわりにクロム多孔体を用いて、実施例5と同じ
条件でカーボン析出させた。生成したカーボンはX線回
折により、純粋な黒鉛であることが確認された。Embodiment 8 FIG. In Example 5, carbon was deposited under the same conditions as in Example 5, except that a chromium porous body was used instead of the nickel porous body. X-ray diffraction confirmed that the generated carbon was pure graphite.
【0064】実施例9.図4は本実施例に用いた二連反
応器で、図1に示したステンレス製の反応室1とは独立
して、その温度制御のできる小さなステンレス製容器1
0を反応室1に連通管11で連結し、反応室の温度を6
50℃、また、ステンレス製容器10内に炭酸ナトリウ
ムを入れて、その温度を800℃に温度制御し、共存す
る炭酸塩の蒸気圧を650℃よりも高くした。Embodiment 9 FIG. FIG. 4 shows a double reactor used in the present embodiment, which is a small stainless steel vessel 1 whose temperature can be controlled independently of the stainless steel reaction chamber 1 shown in FIG.
0 is connected to the reaction chamber 1 by a communication pipe 11, and the temperature of the reaction chamber is set to 6
Sodium carbonate was put into the stainless steel container 10 at 50 ° C., and the temperature was controlled at 800 ° C., so that the vapor pressure of the coexisting carbonate was higher than 650 ° C.
【0065】この反応室1にCOガス(濃度80%以
上)を導入し、その圧力を常に5気圧に保証するよう、
ガス導入を続けた。100時間後にはカーボン析出が認
められた。生成したカーボンはX線回折により、純粋な
黒鉛であることを確認することができた。A CO gas (concentration of 80% or more) is introduced into the reaction chamber 1, and the pressure is always maintained at 5 atm.
Gas introduction was continued. After 100 hours, carbon deposition was observed. X-ray diffraction confirmed that the produced carbon was pure graphite.
【0066】実施例10.上記実施例1〜9で得られた
黒鉛微粒子を加圧成型し、この加圧成型した黒鉛微粒子
を負極として用いたリチウム電池の放電容量を確認し
た。電解液としてEC/DME/1モルLiClO4、
対極にはLi−Al(20wt%)を用い、二極セルを
組み立て、0Vまで定電流充電したのち、1Vまで放電
すると、いずれの場合も放電容量として250mAh/
gが得られた。Embodiment 10 FIG. The graphite fine particles obtained in Examples 1 to 9 were molded under pressure, and the discharge capacity of a lithium battery using the molded graphite particles as a negative electrode was confirmed. EC / DME / 1 mol LiClO 4 as electrolyte,
Using a Li-Al (20 wt%) as a counter electrode, assembling a bipolar cell, charging the battery at a constant current to 0 V, and discharging it to 1 V, the discharge capacity in each case was 250 mAh /
g was obtained.
【0067】[0067]
【発明の効果】請求項1に係る発明によれば、平均粒子
径10μm以下、等方的形状の黒鉛微粒子で、機械的ダ
メージを受けたものではないので、リチウム電池の負極
材料に用いた場合、リチウム原子の入り口を広くし、リ
チウム原子の拡散を容易にすることができるとともに、
放電容量の低下を少なくでき、さらに、充放電サイクル
に対して大きな耐性を有する。According to the first aspect of the present invention, graphite particles having an average particle diameter of 10 μm or less and having an isotropic shape are not mechanically damaged. , The entrance of lithium atoms can be widened and lithium atoms can be easily diffused,
A decrease in discharge capacity can be reduced, and furthermore, it has a large resistance to charge / discharge cycles.
【0068】請求項2に係る発明によれば、リチウム電
池に用いられる各種溶媒に対して表面活性度の低いもの
であるので、放電容量の低下を小さくすることができ
る。According to the second aspect of the present invention, since the surface activity is low with respect to various solvents used for the lithium battery, a decrease in the discharge capacity can be reduced.
【0069】請求項3、4および5に係る発明によれ
ば、平均粒子径10μm以下、等方的形状の黒鉛微粒子
で、機械的ダメージを受けない黒鉛微粒子を製造でき
る。According to the third, fourth and fifth aspects of the present invention, graphite fine particles having an average particle diameter of 10 μm or less and having an isotropic shape and not suffering mechanical damage can be produced.
【0070】請求項6に係る発明によれば、遷移金属材
料が多孔体のもので反応面積が広いので、黒鉛化反応を
より促進することができる。According to the sixth aspect of the invention, the transition metal material is porous and has a wide reaction area, so that the graphitization reaction can be further promoted.
【0071】請求項7および9に係る発明によれば、反
応室内にアルカリ金属炭酸塩の蒸気を共存させことによ
って、黒鉛化反応をさらに促進することができる。According to the seventh and ninth aspects of the present invention, the graphitization reaction can be further promoted by coexisting the vapor of the alkali metal carbonate in the reaction chamber.
【0072】請求項8に係る発明によれば、反応室内の
アルカリ金属炭酸塩の蒸気圧を高めることができるの
で、黒鉛化反応をさらに促進することができる。According to the eighth aspect of the present invention, the vapor pressure of the alkali metal carbonate in the reaction chamber can be increased, so that the graphitization reaction can be further promoted.
【0073】請求項10に係る発明によれば、気相成長
させるに先立ち、反応室内にあらかじめ成長した黒鉛微
粒子の種を入れておくことによって、その上に成長さ
せ、有利に、また再現性良く、品質のそろった黒鉛微粒
子を製造できる。According to the tenth aspect, prior to the vapor phase growth, the seeds of the graphite fine particles grown in advance are introduced into the reaction chamber, whereby the graphite fine particles are grown on the seeds. In addition, graphite particles of uniform quality can be manufactured.
【0074】請求項11および12に係る発明によれ
ば、平均粒子径が10μm以下、等方的形状で機械的ダ
メージを受けていない、かつ、表面活性度の低い黒鉛微
粒子をリチウム電池の負極に用いることによって、放電
容量の低下が少なく充放電サイクルに対する耐性が大き
なリチウム電池が得られる。According to the eleventh and twelfth aspects of the present invention, graphite fine particles having an average particle diameter of 10 μm or less, having an isotropic shape, not receiving mechanical damage, and having a low surface activity are used for a negative electrode of a lithium battery. By using the lithium battery, a lithium battery with a small decrease in discharge capacity and a high resistance to a charge / discharge cycle can be obtained.
【図1】 本発明の一実施例に用いた反応炉の模式断面
図である。FIG. 1 is a schematic sectional view of a reactor used in one embodiment of the present invention.
【図2】 実施例1及び2で得られた黒鉛微粒子のX線
回折結果である。FIG. 2 is an X-ray diffraction result of the graphite fine particles obtained in Examples 1 and 2.
【図3】 実施例5で得られた黒鉛微粒子のX線回折結
果である。FIG. 3 is an X-ray diffraction result of the graphite fine particles obtained in Example 5.
【図4】 本発明の一実施例になる二連反応器の模式図
である。FIG. 4 is a schematic view of a double reactor according to one embodiment of the present invention.
1 反応室、2 遷移金属材料、3 ステンレス鋼、4
アルミナ絶縁板、5ヒータ、6 断熱材、7 入り
口、8 出口、9 多孔体、10 小さな容器、11
連通管1 reaction chamber, 2 transition metal materials, 3 stainless steel, 4
Alumina insulating plate, 5 heater, 6 heat insulating material, 7 entrance, 8 exit, 9 porous body, 10 small container, 11
Communication pipe
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01M 10/40 H01M 10/40 Z ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01M 10/40 H01M 10/40 Z
Claims (12)
(2)で示される反応、 2CO→CO2+C(析出)…(1) H2+CO→H2O+C(析出)…(2) によって、成長させた平均粒子径10μm以下で等方的
形状を有することを特徴とする黒鉛微粒子。1. A reaction represented by the following formula (1) or (2) at 700 ° C. or lower: 2CO → CO 2 + C (precipitation) (1) H 2 + CO → H 2 O + C (precipitation) (2) Characterized by having an isotropic shape with an average particle diameter of 10 μm or less.
浸漬熱がそれぞれ30mJ/m2以下、n−ブタノール
と三級ブタノールの浸漬熱がそれぞれ60mJ/m2以
下、ジメチルスルホキシドの浸漬熱が150mJ/m2
以下、ドトリアコンタン/ヘキサン溶液の浸漬熱が80
mJ/m2以下の熱量を持つことを特徴とする表面活性
度の低い請求項1記載の黒鉛微粒子。2. At 25 ° C., the immersion heat of hexane and benzene is 30 mJ / m 2 or less, the immersion heat of n-butanol and tertiary butanol is 60 mJ / m 2 or less, and the immersion heat of dimethyl sulfoxide is 150 mJ / m 2. Two
Hereinafter, the immersion heat of the dotriacontan / hexane solution is 80
2. The graphite fine particles according to claim 1, having a calorific value of not more than mJ / m < 2 > and having a low surface activity.
(2)で示される反応、 2CO→CO2+C(析出)…(1) H2+CO→H2O+C(析出)…(2) によって、反応室内で気相成長させることを特徴とする
黒鉛微粒子の製造法。3. A reaction represented by the following formula (1) or (2) at 700 ° C. or lower: 2CO → CO 2 + C (precipitation) (1) H 2 + CO → H 2 O + C (precipitation) (2) A method for producing graphite fine particles, wherein the fine particles are grown in a vapor phase in a reaction chamber.
属材料を主成分とする材料を用いたことを特徴とする請
求項3記載の黒鉛微粒子の製造法。4. The method for producing graphite fine particles according to claim 3, wherein a material mainly composed of a transition metal material is used in the reaction chamber or a part of the reaction chamber.
る材料を配置したことを特徴とする請求項3または4記
載の黒鉛微粒子の製造法。5. The method for producing graphite fine particles according to claim 3, wherein a material mainly composed of a transition metal material is disposed in the reaction chamber.
を特徴とする請求項4または5記載の黒鉛微粒子の製造
法。6. The method for producing graphite fine particles according to claim 4, wherein the transition metal material is a porous material.
共存させることを特徴とする請求項3ないし6のいずれ
かに記載の黒鉛微粒子の製造法。7. The method for producing graphite fine particles according to claim 3, wherein vapor of alkali metal carbonate coexists in the reaction chamber.
酸塩を収納し、上記容器内で発生させた上記アルカリ金
属炭酸塩の蒸気を上記反応室内に共存させることを特徴
とする請求項3ないし6のいずれかに記載の黒鉛微粒子
の製造法。8. The method according to claim 3, wherein the alkali metal carbonate is stored in a container communicating with the reaction chamber, and the vapor of the alkali metal carbonate generated in the container coexists in the reaction chamber. 7. The method for producing graphite fine particles according to any one of 6.
炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、炭酸
セシウムの単体あるいは任意の混合比の混合物であるこ
とを特徴とする請求項7または8記載の黒鉛微粒子の製
造法。9. The alkali metal carbonate is lithium carbonate,
The method for producing graphite fine particles according to claim 7 or 8, wherein the method is a simple substance of sodium carbonate, potassium carbonate, rubidium carbonate, or cesium carbonate or a mixture having an arbitrary mixing ratio.
あらかじめ成長した黒鉛微粒子の種を入れておくことを
特徴とする請求項3ないし9のいずれかに記載の黒鉛微
粒子の製造法。10. The method for producing graphite fine particles according to claim 3, wherein seeds of the graphite fine particles grown in advance are introduced into the reaction chamber prior to the vapor phase growth.
負極に用いたことを特徴とするリチウム電池。11. A lithium battery using the graphite fine particles according to claim 1 for a negative electrode.
の黒鉛微粒子の製造法によって製造した黒鉛微粒子を、
負極に用いたことを特徴とするリチウム電池。12. The graphite fine particles produced by the method for producing graphite fine particles according to any one of claims 3 to 10,
A lithium battery used as a negative electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8239348A JPH1087311A (en) | 1996-09-10 | 1996-09-10 | Fine graphite particles, their production and lithium battery using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8239348A JPH1087311A (en) | 1996-09-10 | 1996-09-10 | Fine graphite particles, their production and lithium battery using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1087311A true JPH1087311A (en) | 1998-04-07 |
Family
ID=17043416
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8239348A Pending JPH1087311A (en) | 1996-09-10 | 1996-09-10 | Fine graphite particles, their production and lithium battery using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1087311A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008257883A (en) * | 2007-03-30 | 2008-10-23 | Nippon Chemicon Corp | Carbon material for electrode of electrochemical element, manufacturing method therefor, and electrode for electrochemical element |
WO2023058774A1 (en) * | 2021-10-08 | 2023-04-13 | Secカーボン株式会社 | Graphite particles |
-
1996
- 1996-09-10 JP JP8239348A patent/JPH1087311A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008257883A (en) * | 2007-03-30 | 2008-10-23 | Nippon Chemicon Corp | Carbon material for electrode of electrochemical element, manufacturing method therefor, and electrode for electrochemical element |
WO2023058774A1 (en) * | 2021-10-08 | 2023-04-13 | Secカーボン株式会社 | Graphite particles |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ying et al. | Preparation and characterization of high-density spherical LiCoO2 cathode material for lithium ion batteries | |
US6440610B1 (en) | Negative active material for lithium secondary battery and manufacturing method of same | |
JP5672442B2 (en) | Nickel / cobalt / manganese compound particle powder and method for producing the same, lithium composite oxide particle powder and method for producing the same, and nonaqueous electrolyte secondary battery | |
Park et al. | Structural and electrochemical characterization of lithium excess and Al-doped nickel oxides synthesized by the sol–gel method | |
EP1779460B1 (en) | Electrode for a lithium battery method for production of such an electrode and lithium battery comprising said electrode | |
CN112652748B (en) | A self-replenishing lithium-type single crystal nickel-cobalt-manganese composite ternary cathode material and preparation method thereof | |
KR102281034B1 (en) | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
CN110462894A (en) | Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery | |
JP2018519648A (en) | Negative electrode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery including the same | |
JP2022530780A (en) | Silicon composite oxide for negative electrode material of lithium secondary battery and its manufacturing method | |
JP6615431B2 (en) | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
CN104781957B (en) | Manufacturing method, electrode material and the electrical storage device for having the electrode material of electrode material | |
CN113823779A (en) | Radial nickel-based precursor and preparation method thereof | |
KR20230121645A (en) | Method for manufacturing high-entropy spinel oxide nanopowder for lithium batteries anode, and high-entropy spinel nanopowder thus obtained | |
CN101209822B (en) | Preparation method for lithium ion secondary battery positive pole active substance lithium iron phosphate | |
Sun et al. | Synthesis routes and formation rule of Ni-rich single crystal material based on the regulation of process lithium content | |
Kim et al. | Optimized Li+ ion diffusion pathways in unidirectional stacked lithium iron phosphate cathodes: Enhanced electrochemical performance and long-term stability | |
KR102051864B1 (en) | Carbon Composite and the Fabrication Method Thereof | |
JP4763884B2 (en) | Nonaqueous electrolyte secondary battery | |
JPH1087311A (en) | Fine graphite particles, their production and lithium battery using the same | |
JP2002505656A (en) | Method for preparing lithiated or perlithiated transition metal oxide, positive electrode active material containing such oxide, and battery | |
JP2011082131A (en) | Method for synthesizing cathode material | |
KR20230040322A (en) | A method for manufacturing an anode material for a lithium secondary battery containing a carbon nanotube composite and a manufacturing apparatus therefor | |
EP2894700B1 (en) | Process for producing composite material of metal oxide with conductive carbon | |
JP3954668B2 (en) | Nickel-cobalt hydroxide for non-aqueous electrolyte battery active materials |