[go: up one dir, main page]

JPH1086051A - Grinding method - Google Patents

Grinding method

Info

Publication number
JPH1086051A
JPH1086051A JP26554196A JP26554196A JPH1086051A JP H1086051 A JPH1086051 A JP H1086051A JP 26554196 A JP26554196 A JP 26554196A JP 26554196 A JP26554196 A JP 26554196A JP H1086051 A JPH1086051 A JP H1086051A
Authority
JP
Japan
Prior art keywords
polishing
speed
workpiece
low
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26554196A
Other languages
Japanese (ja)
Inventor
Manabu Ando
学 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP26554196A priority Critical patent/JPH1086051A/en
Publication of JPH1086051A publication Critical patent/JPH1086051A/en
Pending legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To grind even a complicated-shaped surface to be ground of a work to a supersmooth surface with high precision of shape. SOLUTION: A work W is fixed on a work table in a state in which the periphery of the work W is surrounded by a dummy material 22. And, the grinding face of a grinding tool 11 of a small diameter is abutted to the surface to be ground of the work W, the work is made to sweep at a low speed and a predetermined stroke in the generator direction by a work linear moving mechanism 40 while a grinding liquid is supplied in a state in which a predetermined machining pressure is applied by a ornamental hairpin 10, and the grinding tool 11 of a small diameter is oscillated at a high speed and a predetermined stroke in the meridian direction by a grinding tool linear moving mechanism 30 to perform grinding.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、回転楕円面、楕円
筒面、子線と母線の曲率半径差が比較的大きくかつ母線
の曲率半径も比較的短いトロイダル面等の複雑な面形状
の光学面を有する光学素子の研磨方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical system having a complicated surface shape such as a spheroidal surface, an elliptic cylindrical surface, a toroidal surface having a relatively large radius of curvature difference between a sagittal line and a generatrix and a relatively short radius of curvature of a generatrix. The present invention relates to a method for polishing an optical element having a surface.

【0002】[0002]

【従来の技術】従来、回転楕円面、楕円筒面、子線と母
線の曲率半径差が比較的大きくかつ母線の曲率半径も比
較的短いトロイダル面等の複雑な面形状の光学面を有す
る光学素子の研磨方法としては、次に説明するような研
磨方法が採用されている。
2. Description of the Related Art Conventionally, optics having complicated surface shapes such as a spheroidal surface, an elliptic cylindrical surface, and a toroidal surface having a relatively large curvature radius difference between a sagittal line and a busbar and a relatively short radius of curvature of a busbar. As a method for polishing the element, a polishing method as described below is employed.

【0003】例えば、CVD−SiC材からなる短波長
光用ミラーのシリンドリカル面を創成する場合、前記シ
リンドリカル面とほぼ同じ大きさの絶対値が同じで符号
が反対(凹凸が逆)の曲率半径の研磨面を有する全面皿
研磨工具を用い、前加工されたCVD−SiC材からな
る短波長光用ミラーのシリンドリカル面(以下、「被加
工面」という。)に前記全面皿研磨工具の研磨面を所定
の加工圧を与えた状態で当接させ、酸化クロム微粉、シ
リカ微粉、ダイヤモンド微粉等の砥粒を水に分散させた
研磨液を前記被加工面と前記研磨工具の研磨面との間に
介在させて相対的に揺動することにより研磨を行なって
いる。
For example, when a cylindrical surface of a mirror for short-wavelength light made of a CVD-SiC material is created, the absolute value of the same size as that of the cylindrical surface is the same, and the sign of the curvature is opposite to that of the sign (the unevenness is reversed). Using a full-surface polishing tool having a polished surface, the polishing surface of the full-surface polishing tool is formed on a cylindrical surface (hereinafter, referred to as a “work surface”) of a short-wavelength light mirror made of a pre-processed CVD-SiC material. Abrasion liquid in which abrasive grains such as chromium oxide fine powder, silica fine powder, and diamond fine powder are dispersed in water is applied between the surface to be processed and the polishing surface of the polishing tool. Polishing is performed by relatively swinging with the interposition.

【0004】[0004]

【発明が解決しようとする課題】しかし上記従来の技術
では、例えば、被加工面がトロイダル面の場合には、そ
の面の形状と全面皿研磨工具の研磨面の形状が一致する
のはごく限られた位置関係にあるときだけである。その
ために、揺動のストロークを大きくすると全面皿研磨工
具の研磨面と被加工面とが部分的に干渉を起こして全面
皿研磨工具の研磨面の不均一な接触が生じてしまい、そ
のまま研磨を続けると全面皿研磨工具の研磨面が不均一
に接触している部分の研磨除去量が多くなり被加工面の
形状精度が悪くなる。逆に揺動のストロークを小さくす
ると、全面皿研磨工具の研磨面の面形状が被加工面に転
写されてしまいうねりが生じる。
However, according to the above-mentioned prior art, for example, when the surface to be processed is a toroidal surface, it is extremely limited that the shape of the surface matches the shape of the polishing surface of the entire surface polishing tool. Only when they are in the specified positional relationship. Therefore, if the swing stroke is increased, the polished surface of the entire surface polishing tool and the work surface partially interfere with each other, causing uneven contact of the polished surface of the entire surface polishing tool. If the continuation is continued, the polishing removal amount of the portion where the polished surface of the full-surface dish polishing tool is unevenly contacted is increased, and the shape accuracy of the processed surface is deteriorated. Conversely, if the swing stroke is reduced, the surface shape of the polished surface of the full-surface dish polishing tool is transferred to the surface to be machined, causing undulation.

【0005】特に、CVD−SiC材の場合、被加工面
の研磨除去レートを大きくすると、ピット(モザイク状
の微細な段差)の発生は低減するが表面粗さが粗くなっ
てしまう。逆に被加工面の研磨除去レートを小さくする
と、表面粗さは悪化しなくなるが、ピットが発生してし
まうという問題点があった。
In particular, in the case of a CVD-SiC material, if the polishing removal rate of the surface to be processed is increased, the generation of pits (microscopic mosaic steps) is reduced, but the surface roughness is increased. Conversely, when the polishing removal rate of the surface to be processed is reduced, the surface roughness does not deteriorate, but pits are generated.

【0006】本発明は、上記従来の技術の有する問題点
に鑑みてなされたものであって、回転楕円面、楕円筒
面、子線と母線の曲率半径差が比較的大きくかつ母線の
曲率半径も比較的短いトロイダル面等の複雑な面形状の
被加工面を有する被加工物であっても、前記被加工面を
高い形状精度かつ超平滑面に研磨することができる研磨
方法を実現することを目的とするものである。
The present invention has been made in view of the above-mentioned problems of the prior art, and has a spheroidal surface, an elliptic cylindrical surface, a relatively large difference in radius of curvature between a sagittal wire and a generatrix, and a radius of curvature of a generatrix. To realize a polishing method capable of polishing a workpiece surface with a high shape accuracy and an ultra-smooth surface even if the workpiece has a workpiece surface having a complicated surface shape such as a relatively short toroidal surface. It is intended for.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明の研磨方法は、被加工物の被加工面の面積に
比較して面積の小さい研磨面を有し、しかも前記研磨面
が偏分布荷重によって大きく変形できる粘弾性材を介し
て支持された研磨工具を用い、前記研磨面を前記被加工
面に所定の加工圧を与えた状態で当接させるとともに両
者の間に研磨液を供給しつつ、前記被加工物と前記研磨
工具とを前記被加工面における母線方向と子線方向のい
ずれか一方の方向へ相対的に高速揺動させると同時に他
方の方向へ相対的に低速走査させることを特徴とするも
のである。
In order to achieve the above object, a polishing method according to the present invention has a polished surface having an area smaller than the area of a processed surface of a workpiece, and the polished surface has Using a polishing tool supported via a viscoelastic material that can be greatly deformed by an uneven distribution load, the polishing surface is brought into contact with the surface to be processed under a predetermined processing pressure, and a polishing liquid is applied between the two. While supplying, the workpiece and the polishing tool are relatively rapidly swung in one of the generatrix direction and the sagittal direction on the surface to be machined, and at the same time, relatively slowly scanned in the other direction. It is characterized by the following.

【0008】また、高速揺動の速度と低速走査の速度と
を、高速揺動1サイクルあたりの低速走査による移動量
が、低速走査方向における研磨工具の研磨面の長さ以下
に設定したり、高速揺動の速度と低速走査の速度とを、
高速揺動1サイクルあたりの低速走査による移動量が、
低速走査方向における研磨工具の研磨面の長さの1/4
ないし3/4の範囲以内に設定する。
In addition, the speed of the high-speed swing and the speed of the low-speed scan are set such that the movement amount of the low-speed scan per one cycle of the high-speed swing is equal to or less than the length of the polishing surface of the polishing tool in the low-speed scan direction. The speed of high-speed swing and the speed of low-speed scanning
The amount of movement by low-speed scanning per high-speed swing cycle is
1/4 of the length of the polishing surface of the polishing tool in the low-speed scanning direction
Set within the range of 3/4.

【0009】さらに、研磨面を、被加工面の面形状に倣
うことができるピッチにより形成する。
Further, the polished surface is formed with a pitch which can follow the surface shape of the surface to be processed.

【0010】被加工物が、複雑な面形状の光学面を有す
る光学素子である場合には、高速揺動のストロークおよ
び低速走査のストロークは、研磨工具の研磨面が前記光
学面の光線有効部から完全に外方へ出る長さにそれぞれ
設定されているとよい。
When the workpiece is an optical element having an optical surface having a complicated surface shape, the high-speed swing stroke and the low-speed scanning stroke are controlled by setting the polishing surface of the polishing tool to a beam effective portion of the optical surface. It is good to set each to the length which goes completely outside from.

【0011】また、被加工物を、その周囲をダミー材で
とり囲んだ状態で被加工物テーブルに固定したり、ダミ
ー材を、被加工物と同じ材料から構成する。
Further, the workpiece is fixed to the workpiece table with its periphery surrounded by a dummy material, or the dummy material is made of the same material as the workpiece.

【0012】加えて、被加工物の被加工面がCVD−S
iC材からなり、多結晶ダイヤモンド砥粒を水に分散さ
せた研磨液を用いる。
In addition, the processing surface of the workpiece is a CVD-S
A polishing liquid made of an iC material and having polycrystalline diamond abrasive grains dispersed in water is used.

【0013】[0013]

【作用】被加工物の被加工面の面積に比較して面積の小
さい研磨面を有し、しかも前記研磨面が偏分布荷重によ
って大きく変形できる粘弾性材を介して支持された研磨
工具を用いるため、前記研磨面が被加工物の被研磨面に
倣い易く不均一に接触することがない。また、前記研磨
面の前記加工面に対する接触時間分布が不均一になるこ
とがなくなる。
A polishing tool is used which has a polished surface having a small area compared to the area of the surface to be processed of the workpiece, and which is supported via a viscoelastic material capable of largely deforming the polished surface due to an unevenly distributed load. Therefore, the polished surface easily follows the polished surface of the workpiece and does not contact unevenly. In addition, the contact time distribution of the polished surface to the processed surface does not become uneven.

【0014】[0014]

【発明の実施の形態】本発明の実施の形態を図面に基づ
いて説明する。
Embodiments of the present invention will be described with reference to the drawings.

【0015】まず、本発明の研磨方法の実施に用いる研
磨装置の一例について説明する。
First, an example of a polishing apparatus used for carrying out the polishing method of the present invention will be described.

【0016】図1および図2に示すように、ベース1の
被加工物支持部1a上にその長手方向に延在するガイド
レール12が配設されており、該ガイドレール12には
被加工物Wを保持して直線移動(往復移動)させるため
の被加工物テーブル13が直線移動自在に案内されてい
る。ガイドレール12の一端側近傍には被加工物直線移
動機構40が配設されており、該被加工物直線移動機構
40は、図示しない第1の回転駆動機構により回転され
る第1の偏心輪18と、該第1の偏心輪18に形成され
た半径方向へ延在する溝18aに遊嵌された偏心軸19
と、該偏心軸19に一端側が枢着されたリンク20を備
え、該リンク20の他端側が被加工物テーブル13の一
端側にピン21により枢着されている。
As shown in FIGS. 1 and 2, a guide rail 12 extending in the longitudinal direction is provided on a workpiece support portion 1a of the base 1, and the guide rail 12 is provided with a workpiece rail. A workpiece table 13 for linearly moving (reciprocating) while holding W is guided so as to be linearly movable. A workpiece linear movement mechanism 40 is provided near one end of the guide rail 12, and the workpiece linear movement mechanism 40 is a first eccentric wheel that is rotated by a first rotation drive mechanism (not shown). 18 and an eccentric shaft 19 loosely fitted in a radially extending groove 18 a formed in the first eccentric wheel 18.
And a link 20 having one end pivotally connected to the eccentric shaft 19, and the other end of the link 20 is pivotally connected to one end of the workpiece table 13 by a pin 21.

【0017】この被加工物直線移動機構40は、前記第
1の回転駆動機構を起動させると、第1の偏心輪18と
ともに偏心軸19が回転運動し、リンク20を介して被
加工物テーブル13をガイドレール12に沿って所定の
ストロークで往復移動させるものであり、前記ストロー
クの長さは、溝18aに沿って偏心軸19を移動させて
第1の偏心輪18の半径方向に対する固定位置を変更す
ることで簡単に変更することができる。
When the first rotary drive mechanism is started, the workpiece linear movement mechanism 40 rotates the eccentric shaft 19 together with the first eccentric wheel 18, and the workpiece table 13 via the link 20. Is reciprocated at a predetermined stroke along the guide rail 12, and the length of the stroke is determined by moving the eccentric shaft 19 along the groove 18a to set the fixed position of the first eccentric ring 18 in the radial direction. It can be changed easily by changing it.

【0018】また、ベース1の研磨工具側支持部1bに
設けられた突出部1c上面に被加工物テーブル13の直
線移動方向に対してほぼ直交方向へ延在するガイド溝7
aを有するガイド7が配設されており、該ガイド溝7a
には一端にレバー8が突設されたスライダ6が直線移動
自在に嵌挿されている。そして、レバー8の先端部には
後述する小径研磨工具11を保持するためのカンザシ1
0が軸方向へ移動自在に支持されている。一方、ガイド
7の反レバー側の近傍には研磨工具直線移動機構30が
配設されており、該研磨工具直線移動機構30は、第2
の回転駆動機構2によって回転される第2の偏心輪3
と、該第2の偏心輪3に形成された半径方向へ延在する
溝3aに遊嵌された偏心軸4に一端側が枢着されたリン
ク5を備え、該リンク5の他端側がスライダ6の他端側
にピン9により枢着されている。
A guide groove 7 extending in a direction substantially perpendicular to the direction of linear movement of the workpiece table 13 is formed on the upper surface of the protrusion 1c provided on the polishing tool side support 1b of the base 1.
a guide 7 having a guide groove 7a
, A slider 6 having a lever 8 protruding at one end is fitted so as to be linearly movable. A tip 1 for holding a small-diameter polishing tool 11 to be described later is provided at the tip of the lever 8.
0 is supported movably in the axial direction. On the other hand, a polishing tool linear moving mechanism 30 is disposed near the guide 7 on the side opposite to the lever, and the polishing tool linear moving mechanism 30
Second eccentric wheel 3 rotated by the rotary drive mechanism 2
And a link 5 having one end pivotally connected to an eccentric shaft 4 loosely fitted in a radially extending groove 3a formed in the second eccentric ring 3, and the other end of the link 5 being a slider 6 At the other end by a pin 9.

【0019】なお、加工圧は、カンザシ10の上端部に
着脱自在に取り付けることができる重量の異なる複数の
重りを準備しておき、これらの重りのうちから所定の重
量の重りを選択してカンザシ10の上端部に取り付ける
ことにより変化させることができる。また、カンザシに
押圧力を加えるための図示しない流体圧シリンダを配設
しておき、該流体圧シリンダによる押圧力を変化させる
ように構成してもよい。
The working pressure is prepared by preparing a plurality of weights having different weights which can be detachably attached to the upper end of the kansashi 10 and selecting a weigh having a predetermined weight from these weights. It can be changed by attaching it to the upper end of 10. Also, a hydraulic cylinder (not shown) for applying a pressing force to the kansashi may be provided, and the pressing force by the hydraulic cylinder may be changed.

【0020】研磨工具直線移動機構30は、第2の回転
駆動機構2を起動させると、第2の偏心輪3とともに偏
心軸4が回転運動し、リンク5を介してスライダ6と一
体にレバー8を被加工物テーブル13の直線移動(往復
移動)方向に対してほぼ直交方向へ所定のストロークで
直線移動させるものであり、前記ストロークの長さは、
溝3aに沿って偏心軸4を移動させて第2の偏心輪3の
半径方向に対する固定位置を変更することで簡単に変更
することができる。
When the second rotary drive mechanism 2 is started, the polishing tool linear movement mechanism 30 rotates the eccentric shaft 4 together with the second eccentric wheel 3, and the lever 8 is integrated with the slider 6 via the link 5. Is linearly moved at a predetermined stroke in a direction substantially orthogonal to the linear movement (reciprocating movement) direction of the workpiece table 13, and the length of the stroke is
It can be easily changed by moving the eccentric shaft 4 along the groove 3a and changing the fixed position of the second eccentric ring 3 in the radial direction.

【0021】被加工物の被加工面面積に比較して面積の
小さい研磨面を有する研磨具である小径研磨工具11
は、図4に示すように、片面側にカンザシ10の先端部
が当接される当接部11dが設けられた工具シャンク1
1aと、該工具シャンク11aの反当接部側面に一体的
に設けられた発泡体11bを備え、発泡体11bの表面
に付着されたピッチ(アスファルト)11cにより研磨
面が形成されている。
A small-diameter polishing tool 11 which is a polishing tool having a polished surface whose area is smaller than the area of the surface to be processed of the workpiece.
As shown in FIG. 4, a tool shank 1 provided with a contact portion 11d on one side of which a tip portion of a kansashi 10 contacts.
1a and a foam 11b integrally provided on a side surface of the tool shank 11a opposite the abutting portion. A polished surface is formed by a pitch (asphalt) 11c attached to the surface of the foam 11b.

【0022】本発明において、発泡体11bは、ポリビ
ニルアルコール系の発泡体、ポリクロロプレン発泡体等
の偏分布荷重によって大きく変形可能な粘弾性材から構
成することが好ましい。
In the present invention, the foam 11b is preferably made of a viscoelastic material which can be largely deformed by an unevenly distributed load such as a polyvinyl alcohol foam or a polychloroprene foam.

【0023】また、ピッチ11cとしては、針入度が5
ないし20の範囲以内のものが好ましい。針入度が5よ
り小さいと、ピッチ11cによって形成された研磨面の
形状が被加工面の形状に倣わなくなり、被加工面に対し
て局所的な接触しか行なえず研磨が進まない。逆に針入
度が20よりも大きいと、粘性流動により研磨面の形状
がつぶれて工具シャンクの周辺にはみ出してしまい、研
磨不能となるおそれがある。
As the pitch 11c, the penetration is 5
Those within the range of from 20 to 20 are preferred. When the penetration is smaller than 5, the shape of the polished surface formed by the pitch 11c does not follow the shape of the surface to be processed, so that only local contact can be made with the surface to be processed and polishing does not proceed. On the other hand, if the penetration is larger than 20, the shape of the polished surface is crushed by viscous flow, and the polished surface protrudes around the tool shank, which may make polishing impossible.

【0024】さらに、研磨剤としては、酸化セリウム、
酸化ジルコニウム等の金属酸化物砥粒や、ダイヤモンド
砥粒を用いる。これらのうちいずれの砥粒を用いた場合
でも、精製水中に分散された砥粒の重量に対して1ない
し2重量%の範囲以内のヘキサメタリン酸ナトリウム等
の分散剤を加えることが好ましい。
Further, cerium oxide,
A metal oxide abrasive such as zirconium oxide or a diamond abrasive is used. When using any of these abrasive grains, it is preferable to add a dispersant such as sodium hexametaphosphate in the range of 1 to 2% by weight based on the weight of the abrasive grains dispersed in the purified water.

【0025】特に、CVD−SiC材からなる被加工物
の研磨には多結晶ダイヤモンド砥粒を用いることが好ま
しい。
In particular, it is preferable to use polycrystalline diamond abrasive grains for polishing a workpiece made of a CVD-SiC material.

【0026】次に、本発明の研磨方法の一実施例につい
て説明する。
Next, one embodiment of the polishing method of the present invention will be described.

【0027】 図1および図2に示した研磨装置の被
加工物テーブル13上に、予め前加工された複雑な面形
状の被加工面を有する被加工物Wを、その周辺をダミー
材22でとり囲んだ状態で複数の固定具16を用いて固
定する。そののち、被加工物Wの被加工面上にノズル1
5より上述した研磨液を供給し、容器14に流下した研
磨液をドレン管路17を通して研磨材供給部(不図示)
へ返戻させる。
On the workpiece table 13 of the polishing apparatus shown in FIG. 1 and FIG. 2, a workpiece W having a complex surface shape which has been pre-processed in advance, and a dummy material 22 around the workpiece W. It is fixed using a plurality of fixing tools 16 in the surrounding state. After that, the nozzle 1 is placed on the work surface of the work W.
5, the above-mentioned polishing liquid is supplied, and the polishing liquid flowing down to the container 14 is passed through a drain pipe 17 to an abrasive supply unit (not shown).
Return to.

【0028】 上記ののち、上述した小径研磨工具
11のピッチ11c(図4参照)によって形成された研
磨面を被加工物Wの被加工面に当接させ、カンザシ10
の先端部を当接部11dに当接させて所定の加工圧を加
え、被加工物直線移動機構40により所定のストローク
で被加工物テーブル13と一体に被加工物Wを低速走査
させると同時に、研磨工具直線移動機構30によりスラ
イダ6の先端に突設されたレバー8と一体にカンザシ1
0の先端に保持された小径研磨工具11を所定のストロ
ークで高速揺動させて研磨を行なう。
After the above, the polishing surface formed by the pitch 11c (see FIG. 4) of the small-diameter polishing tool 11 is brought into contact with the processing surface of the workpiece W, and
The workpiece W is made to scan at a low speed integrally with the workpiece table 13 by a predetermined stroke by the workpiece linear movement mechanism 40 by contacting the leading end of the workpiece with the contact portion 11d to apply a predetermined processing pressure. And the lever 1 protruding from the tip of the slider 6 by the polishing tool linear moving mechanism 30,
The polishing is performed by swinging the small-diameter polishing tool 11 held at the leading end of the “0” at a predetermined stroke at a high speed.

【0029】ここで、上述した被加工物Wの低速走査と
小径研磨工具の高速揺動のストロークおよび速度の相対
関係について図5を参照しつつ説明する。
Here, the relative relationship between the above-described low-speed scanning of the workpiece W and the stroke and speed of the high-speed swing of the small-diameter polishing tool will be described with reference to FIG.

【0030】図5に示すように、小径研磨工具11は、
矢印Bおよび反矢印B方向へ高速で揺動され、被加工物
Wは矢印Aおよび反矢印A方向へ低速で走査されるが、
この場合、小径研磨工具11の高速揺動1サイクルあた
りの被加工物Wの低速走査による移動距離はLは、小径
研磨工具11における前記走査方向(被加工物の低速走
査方向)の長さD以下、好ましくはD/4〜3D/4の
範囲以内になるように設定する。こうすることで、被加
工面の全域を均等に小径研磨工具11が通過するため、
被加工面の全域の研磨除去量が一定量となり高精度に研
磨することができる。
As shown in FIG. 5, the small-diameter polishing tool 11
The workpiece W is swung at a high speed in the direction of the arrow B and the counter-arrow B, and the workpiece W is scanned at a low speed in the direction of the arrow A and the counter-arrow A.
In this case, the moving distance L of the small-diameter polishing tool 11 in one scan cycle of the high-speed swing of the small-diameter polishing tool 11 by the low-speed scanning is the length D of the small-diameter polishing tool 11 in the scanning direction (the low-speed scanning direction of the workpiece). Hereinafter, it is preferably set to be within the range of D / 4 to 3D / 4. By doing so, the small-diameter polishing tool 11 passes uniformly over the entire area of the surface to be processed.
The removal amount of the polishing over the entire area of the surface to be processed is constant, and the polishing can be performed with high precision.

【0031】また、小径研磨工具11および被加工物W
は、ダミー材22上にオーバーハングするストロークで
高速揺動および低速走査させると、被加工面の光線有効
部から端部までの距離に比較して大きな径の小径研磨工
具11を用いた場合であっても、前記光線有効部の全域
を均等に小径研磨工具11が通過して光線有効部の全域
の研磨除去量を一定量にすることができる。
The small-diameter polishing tool 11 and the workpiece W
When a high-speed swing and a low-speed scan are performed with a stroke that overhangs on the dummy material 22, the small-diameter polishing tool 11 having a large diameter compared to the distance from the beam effective portion to the end of the surface to be processed is used. Even if there is, the small-diameter polishing tool 11 can uniformly pass through the entire area of the beam effective portion, and the polishing removal amount of the entire area of the beam effective portion can be made constant.

【0032】[0032]

【実施例】【Example】

(実施例1) 下記の被加工物、小径研磨工具、研磨液を準備し
た。
(Example 1) The following workpiece, small-diameter polishing tool, and polishing liquid were prepared.

【0033】被加工物:長さ300mm、幅100m
m、厚さ30mmで、母線曲率半径12.5m、子線曲
率半径350mmのトロイダルの光学面を備えた合成石
英ガラス材からなる軟X線用ミラー素子。
Workpiece: length 300 mm, width 100 m
m, a soft X-ray mirror element made of a synthetic quartz glass material having a toroidal optical surface having a thickness of 30 mm, a radius of curvature of a generatrix of 12.5 m and a radius of curvature of a sagittal of 350 mm.

【0034】小径研磨工具:直径30mmで、ポリビニ
ルアルコール系の発泡体の表面に、アスファルトからな
るピッチ(針入度20)により被加工面である光学面の
面形状と逆の面形状(凹凸が逆)の被研磨面を形成した
もの。
Small-diameter polishing tool: a diameter of 30 mm, a surface shape (irregularities) opposite to the surface shape of the optical surface to be processed on the surface of the polyvinyl alcohol-based foam at a pitch of asphalt (penetration of 20). (Reverse) with a polished surface formed.

【0035】研磨液:精製水40リットル中に、平均粒
径0.25μmの酸化セリウム砥粒を0.1重量%を加
えて撹拌し、これにヘキサメタリン酸ナトリウムの微粉
末0.8gを加えて24時間撹拌したもの。
Polishing liquid: 0.1% by weight of cerium oxide abrasive grains having an average particle diameter of 0.25 μm was added to 40 liters of purified water and stirred, and 0.8 g of sodium hexametaphosphate fine powder was added thereto. Stirred for 24 hours.

【0036】 上記被加工物を合成石英ガラス材から
なるダミー材でとり囲んだ状態で、図1および図2に示
した研磨装置の被加工物テーブル上に複数の固定具によ
り固定したのち、ノズルを介して上記研磨液を被加工面
である光学面上に供給し、容器のドレン管路を通して研
磨液供給部へ返戻させる。
In a state where the workpiece is surrounded by a dummy material made of a synthetic quartz glass material, the workpiece is fixed on a workpiece table of the polishing apparatus shown in FIGS. The polishing liquid is supplied onto the optical surface, which is the surface to be processed, through the container, and is returned to the polishing liquid supply section through the drain pipe of the container.

【0037】 上記についで、上記小径研磨工具を
子線方向の光線有効部の幅72mmに対してその両側に
それぞれ21mmを加えた144mmのストロークで約
24.5(サイクル/分)で高速揺動させ、被加工物を
母線方向の光線有効部の長さ280mmに対してその両
側にそれぞれ20mmを加えた320mmのストローク
で約8mm/秒で低速走査させた。
Following the above, the small-diameter polishing tool is oscillated at a high speed of about 24.5 (cycles / minute) at a stroke of 144 mm obtained by adding 21 mm to both sides of the small-diameter effective part in the sagittal direction with a width of 72 mm. Then, the workpiece was scanned at a low speed of about 8 mm / sec at a stroke of 320 mm obtained by adding 20 mm to both sides of the effective beam length in the generatrix direction with a length of 280 mm.

【0038】研磨後の光学面を観察したところ、光学面
の形状精度を崩すことなく、表面粗さ0.20nm r
ms程度の超平滑面が得られた。また、光学面にはピッ
トの発生、前加工の砥粒通過痕(潜傷)の発現、曇(研
磨ヤケ)の発生等の被研磨面の悪化は見られず、高品位
なものであった。
Observation of the polished optical surface showed that the surface roughness was 0.20 nm r without losing the shape accuracy of the optical surface.
An ultra-smooth surface of about ms was obtained. In addition, no deterioration of the surface to be polished such as generation of pits, appearance of abrasive grain passage marks (latent scratches) in the pre-processing, and generation of fogging (polishing burn) was observed on the optical surface, and the surface was of high quality. .

【0039】(実施例2) 下記の被加工物、小径研磨工具、研磨液を準備し
た。
Example 2 The following workpiece, small-diameter polishing tool, and polishing liquid were prepared.

【0040】被加工物:図6に示す、長さ160mm、
幅160mm、厚さ23mmで、A−A線で示す子線断
面が直線であり、B−B線で示す母線断面が楕円になっ
ており、母線位置での母線曲率半径の変化が図7に示す
ように大きな、CVD−SiC材からなるなる軟X線用
ミラー素子。
Workpiece: 160 mm in length, shown in FIG.
With a width of 160 mm and a thickness of 23 mm, the sagittal section indicated by line AA is a straight line, and the generatrix section indicated by line BB is elliptical. The change in the radius of curvature of the generatrix at the generatrix position is shown in FIG. As shown, a large mirror element for soft X-rays made of a CVD-SiC material.

【0041】小径研磨工具:直径25mmで、ポリクロ
ロプレンからなる発泡体の表面にアスファルトからなる
ピッチ(針入度20)により被加工面である光学面の面
形状と逆の面形状(凹凸が逆)の研磨面を形成したも
の。
Small-diameter polishing tool: 25 mm in diameter, a surface shape of a foamed body made of polychloroprene and a surface shape opposite to the surface shape of the optical surface to be processed (the unevenness is reversed) by a pitch of asphalt (penetration 20). ) With a polished surface.

【0042】研磨液:精製水40リットル中に平均粒径
1μmの多結晶ダイヤモンド砥粒を0.05重量%を加
えて撹拌し、これにヘキサメタリン酸ナトリウムの微粉
末0.8gを加えて24時間撹拌したもの。
Polishing liquid: 0.05% by weight of polycrystalline diamond abrasive grains having an average particle diameter of 1 μm was added to 40 liters of purified water and stirred, and 0.8 g of fine powder of sodium hexametaphosphate was added thereto for 24 hours. Stirred.

【0043】 上記被加工物を図1および図2に示し
た研磨装置の被加工物テーブル上に複数の固定具により
固定したのち、ノズルを介して上記研磨液を被加工面で
ある光学面上に供給し、容器のドレン管路を通して研磨
液供給部に返戻させる。
After the workpiece is fixed on the workpiece table of the polishing apparatus shown in FIGS. 1 and 2 by a plurality of fixtures, the polishing liquid is applied via a nozzle onto the optical surface which is the workpiece. And returned to the polishing liquid supply unit through the drain line of the container.

【0044】 上記についで、上記小径研磨工具を
当初子線方向の光線有効部の幅100mmに対して両側
にそれぞれ15mmを加えた130mmをストロークと
して22(サイクル/分)で子線方向へ高速揺動させる
と同時に、被加工物を母線方向の光線有効部の幅100
mmに対して両側にそれぞれ15mmを加えた130m
mをストロークとして母線方向へ約7mm/秒で低速走
査させて研磨を行ない、そののち、小径研磨工具と被加
工物の高速揺動と低速走査を逆にした以外は同一条件で
研磨を行ない、以後両者を交互に繰り返した。
Subsequently, the small-diameter polishing tool is initially swung in the sagittal direction at a speed of 22 (cycles / min) with a stroke of 130 mm obtained by adding 15 mm on each side to the width of the effective beam portion in the sagittal direction of 100 mm. At the same time as moving the workpiece, the width of the effective ray portion in the generatrix direction is 100
130 mm with 15 mm added to each side
Polishing is performed by scanning at a low speed of about 7 mm / sec in the generatrix direction with m as a stroke, and thereafter, polishing is performed under the same conditions except that the high-speed swing and the low-speed scanning of the small-diameter polishing tool and the workpiece are reversed. Thereafter, both were alternately repeated.

【0045】本実施例において、被加工面である光学面
の研磨が進行して行く状態を図8に示す。
FIG. 8 shows a state in which polishing of the optical surface, which is the surface to be processed, proceeds in this embodiment.

【0046】図8の(a)は、光学面における図6のB
−B線で示す楕円断面における時間経過(0時間、26
時間、65時間)後のそれぞれの表面形状を表わすグラ
フ、また、図8の(b)は、光学面における図6のA−
A線で示す直線断面における時間経過(0時間、26時
間、65時間)後のそれぞれの表面形状を表わすグラフ
である。
FIG. 8A shows the optical surface of FIG.
-Time passage (0 hours, 26
FIG. 8B is a graph showing the respective surface shapes after 65 hours), and FIG.
It is a graph showing each surface shape after a lapse of time (0 hour, 26 hours, 65 hours) in a straight line section indicated by line A.

【0047】なお、このグラフは設計形状を差し引いた
誤差形状として表示したものであり、チャートが直線に
近いほど設計形状に近いことを示している。
This graph is displayed as an error shape obtained by subtracting the design shape. The closer the chart is to a straight line, the closer the design shape is.

【0048】研磨後の光学面を観察したところ、光学面
にピットの発生、前加工の砥粒通過痕(潜傷)の発現、
曇(研磨ヤケ)の発生等の被加工面の悪化は見られず、
表面粗さ0.20nm rms程度の超平滑面が得られ
ていた。
When the optical surface after polishing was observed, pits were formed on the optical surface, traces of passing abrasive grains (latent scratches) in the pre-processing were exhibited,
No deterioration of the processed surface such as generation of fogging (polishing burnt) was observed.
An ultra-smooth surface with a surface roughness of about 0.20 nm rms was obtained.

【0049】[0049]

【発明の効果】本発明は、上述のとおり構成されている
ので、次に記載するような効果を奏する。
Since the present invention is configured as described above, the following effects can be obtained.

【0050】被加工物の被加工面と研磨工具の研磨面と
が不均一に接触したり、前記研磨面の前記被加工面に対
する接触時間分布が不均一になることが無くなるため、
前記被加工面の面形状が崩れることがなく、ピットの発
生、砥粒通過痕の発現、曇(研磨ヤケ)の発生等の被加
工面の悪化もなく、均一な超平滑面を得ることができ
る。
Since the non-uniform contact between the work surface of the work and the polishing surface of the polishing tool and the non-uniform contact time distribution of the polishing surface with the work surface are eliminated.
It is possible to obtain a uniform ultra-smooth surface without deterioration of the surface to be processed such that the surface shape of the surface to be processed does not collapse, generation of pits, appearance of abrasive grain passage marks, generation of fogging (polishing burn) and the like. it can.

【0051】その結果、上述した従来の技術の如く、研
磨条件や研磨工具の形状を細かく変更し、被加工面の研
磨状態を観察しながら研磨加工を進める必要が無く、研
磨条件を一定にして研磨加工できるため、加工能率が著
しく向上する。
As a result, there is no need to finely change the polishing conditions and the shape of the polishing tool as in the above-described conventional technique, and to proceed with the polishing while observing the polishing state of the surface to be processed. Since polishing can be performed, the processing efficiency is significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の研磨方法の実施に用いる研磨装置の一
例を示す模式正面図である。
FIG. 1 is a schematic front view showing an example of a polishing apparatus used for carrying out a polishing method of the present invention.

【図2】図1に示す研磨装置の模式平面図である。FIG. 2 is a schematic plan view of the polishing apparatus shown in FIG.

【図3】被加工物およびダミー材を示す模式斜視図であ
る。
FIG. 3 is a schematic perspective view showing a workpiece and a dummy material.

【図4】本発明の研磨方法の実施に用いる小径研磨工具
およびカンザシの説明図である。
FIG. 4 is an explanatory view of a small-diameter polishing tool and a kansashi used for carrying out the polishing method of the present invention.

【図5】本発明の研磨方法における小径研磨工具の研磨
軌跡を示す説明図である。
FIG. 5 is an explanatory diagram showing a polishing locus of a small-diameter polishing tool in the polishing method of the present invention.

【図6】本発明の被加工物の一例を示す模式斜視図であ
る。
FIG. 6 is a schematic perspective view showing an example of a workpiece according to the present invention.

【図7】図6に示す被加工物の母線断面での曲率半径の
変化を示すグラフである。
FIG. 7 is a graph showing a change in a radius of curvature of the workpiece shown in FIG.

【図8】本発明の研磨方法の実施例2において、被加工
物の被研磨面の研磨進行状態を示すグラフである。
FIG. 8 is a graph showing a progress of polishing of a surface to be polished of a workpiece in Example 2 of the polishing method of the present invention.

【符号の説明】[Explanation of symbols]

1 ベース 2 回転駆動機構 3,18 偏心輪 4,19 偏心軸 5,20 リンク 6 スライダ 7 ガイド 7a ガイド溝 8 レバー 9,21 ピン 10 カンザシ 11 小径研磨工具 12 ガイドレール 13 被加工物テーブル 14 容器 15 ノズル 16 固定具 17 ドレン管路 22 ダミー材 30 研磨工具直線移動機構 40 被加工物直線移動機構 DESCRIPTION OF SYMBOLS 1 Base 2 Rotation drive mechanism 3,18 Eccentric wheel 4,19 Eccentric shaft 5,20 Link 6 Slider 7 Guide 7a Guide groove 8 Lever 9,21 Pin 10 Kansashi 11 Small diameter polishing tool 12 Guide rail 13 Workpiece table 14 Container 15 Nozzle 16 Fixture 17 Drain line 22 Dummy material 30 Polishing tool linear movement mechanism 40 Workpiece linear movement mechanism

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 被加工物の被加工面の面積に比較して面
積の小さい研磨面を有し、しかも前記研磨面が偏分布荷
重によって大きく変形できる粘弾性材を介して支持され
た研磨工具を用い、前記研磨面を前記被加工面に所定の
加工圧を与えた状態で当接させるとともに両者の間に研
磨液を供給しつつ、前記被加工物と前記研磨工具とを前
記被加工面における母線方向と子線方向のいずれか一方
の方向へ相対的に高速揺動させると同時に他方の方向へ
相対的に低速走査させることを特徴とする研磨方法。
1. A polishing tool having a polished surface having a small area compared to the area of a surface to be processed of a workpiece, and the polishing surface being supported via a viscoelastic material capable of being largely deformed by an unevenly distributed load. The polishing surface is brought into contact with the surface to be processed in a state where a predetermined processing pressure is applied, and a polishing liquid is supplied between the two while the workpiece and the polishing tool are brought into contact with the surface to be processed. A relatively high-speed swing in one of the generatrix direction and the sagittal direction and a relatively low-speed scan in the other direction.
【請求項2】 高速揺動の速度と低速走査の速度とを、
高速揺動1サイクルあたりの低速走査による移動量が、
低速走査方向における研磨工具の研磨面の長さ以下に設
定したことを特徴とする請求項1記載の研磨方法。
2. The speed of the high-speed swing and the speed of the low-speed scanning,
The amount of movement by low-speed scanning per high-speed swing cycle is
2. The polishing method according to claim 1, wherein the length is set to be equal to or less than the length of the polishing surface of the polishing tool in the low-speed scanning direction.
【請求項3】 高速揺動の速度と低速走査の速度とを、
高速揺動1サイクルあたりの低速走査による移動量が、
低速走査方向における研磨工具の研磨面の長さの1/4
ないし3/4の範囲以内に設定したことを特徴とする請
求項1記載の研磨方法。
3. The speed of the high-speed swing and the speed of the low-speed scanning,
The amount of movement by low-speed scanning per high-speed swing cycle is
1/4 of the length of the polishing surface of the polishing tool in the low-speed scanning direction
2. The polishing method according to claim 1, wherein the setting is made within a range of 3/4.
【請求項4】 研磨面を、被加工面の面形状に倣うこと
ができるピッチにより形成したことを特徴とする請求項
1ないし3いずれか1項記載の研磨方法。
4. The polishing method according to claim 1, wherein the polishing surface is formed at a pitch that can follow the surface shape of the surface to be processed.
【請求項5】 ピッチが、針入度5ないし20の範囲以
内のものであることを特徴とする請求項4記載の研磨方
法。
5. The polishing method according to claim 4, wherein the pitch is within the range of a penetration of 5 to 20.
【請求項6】 被加工物が、複雑な面形状の光学面を有
する光学素子であって、高速揺動のストロークおよび低
速走査のストロークは、研磨工具の研磨面が前記光学面
の光線有効部から完全に外方へ出る長さにそれぞれ設定
したことを特徴とする請求項1ないし5いずれか1項記
載の研磨方法。
6. A workpiece is an optical element having an optical surface having a complicated surface shape, wherein a high-speed swing stroke and a low-speed scanning stroke are such that the polishing surface of the polishing tool has a beam effective portion of the optical surface. The polishing method according to any one of claims 1 to 5, wherein the length is set so as to completely exit from the surface.
【請求項7】 被加工物を、その周囲をダミー材でとり
囲んだ状態で被加工物テーブルに固定したことを特徴と
する請求項1ないし6いずれか1項記載の研磨方法。
7. The polishing method according to claim 1, wherein the workpiece is fixed to the workpiece table in a state where the workpiece is surrounded by a dummy material.
【請求項8】 ダミー材を、被加工物と同じ材料から構
成したことを特徴とする請求項7記載の研磨方法。
8. The polishing method according to claim 7, wherein the dummy material is made of the same material as the workpiece.
【請求項9】 被加工物の被加工面がCVD−SiC材
からなり、多結晶ダイヤモンド砥粒を水に分散させた研
磨液を用いることを特徴とする請求項6ないし8いずれ
か1項記載の研磨方法。
9. The polishing liquid according to claim 6, wherein a surface to be processed of the workpiece is made of a CVD-SiC material, and a polishing liquid in which polycrystalline diamond abrasive grains are dispersed in water is used. Polishing method.
JP26554196A 1996-09-13 1996-09-13 Grinding method Pending JPH1086051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26554196A JPH1086051A (en) 1996-09-13 1996-09-13 Grinding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26554196A JPH1086051A (en) 1996-09-13 1996-09-13 Grinding method

Publications (1)

Publication Number Publication Date
JPH1086051A true JPH1086051A (en) 1998-04-07

Family

ID=17418564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26554196A Pending JPH1086051A (en) 1996-09-13 1996-09-13 Grinding method

Country Status (1)

Country Link
JP (1) JPH1086051A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007296594A (en) * 2006-04-28 2007-11-15 Topcon Corp Polishing method of optical cylindrical surface, polishing apparatus used in this polishing method, and polishing tool polishing apparatus used in this polishing apparatus
KR100983347B1 (en) * 2007-10-24 2010-09-20 김상수 Precision machine tools
WO2011092745A1 (en) * 2010-01-29 2011-08-04 エヌ・ティ・ティ・アドバンステクノロジ株式会社 Constant velocity reciprocating linear movement device and optical fiber polishing apparatus
CN105598785A (en) * 2015-10-14 2016-05-25 中国人民解放军国防科学技术大学 Combined random vibration small-bore polishing device
CN114177817A (en) * 2021-11-02 2022-03-15 中国人民解放军联勤保障部队第九六〇医院 Vibration type dissolving device with grinding mechanism for pharmaceutical reagents
CN115781494A (en) * 2022-12-01 2023-03-14 中国科学院西安光学精密机械研究所 Reciprocating type grinding and polishing processing device and optical element processing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007296594A (en) * 2006-04-28 2007-11-15 Topcon Corp Polishing method of optical cylindrical surface, polishing apparatus used in this polishing method, and polishing tool polishing apparatus used in this polishing apparatus
KR100983347B1 (en) * 2007-10-24 2010-09-20 김상수 Precision machine tools
WO2011092745A1 (en) * 2010-01-29 2011-08-04 エヌ・ティ・ティ・アドバンステクノロジ株式会社 Constant velocity reciprocating linear movement device and optical fiber polishing apparatus
CN105598785A (en) * 2015-10-14 2016-05-25 中国人民解放军国防科学技术大学 Combined random vibration small-bore polishing device
CN114177817A (en) * 2021-11-02 2022-03-15 中国人民解放军联勤保障部队第九六〇医院 Vibration type dissolving device with grinding mechanism for pharmaceutical reagents
CN114177817B (en) * 2021-11-02 2024-05-28 中国人民解放军联勤保障部队第九六〇医院 Vibration type dissolving device with grinding mechanism for pharmaceutical reagent
CN115781494A (en) * 2022-12-01 2023-03-14 中国科学院西安光学精密机械研究所 Reciprocating type grinding and polishing processing device and optical element processing method

Similar Documents

Publication Publication Date Title
EP0858381B1 (en) Deterministic magnetorheological finishing
Zhong Ductile or partial ductile mode machining of brittle materials
Dong et al. Study on removal mechanism and removal characters for SiC and fused silica by fixed abrasive diamond pellets
US4928435A (en) Apparatus for working curved surfaces on a workpiece
JP2001246539A (en) Grinding method for non-axisymmetric aspheric mirror
Walker et al. New results extending the precessions process to smoothing ground aspheres and producing freeform parts
EP1032486B1 (en) Process and device for working a workpiece
EP1512493B1 (en) A curved surface machining method
JPH1086051A (en) Grinding method
Ando et al. Super-smooth polishing on aspherical surfaces
Zhong et al. Generation of parabolic and toroidal surfaces on silicon and silicon-based compounds using diamond cup grinding wheels
JP4668872B2 (en) Grinding method and grinding apparatus
JP2002052451A (en) Polishing method, optical element and forming die for optical element
JP4702765B2 (en) Vibration polishing method and apparatus
JPS63267155A (en) Polishing device
JP2011194552A (en) Compound surface grinding apparatus with workpiece support device
JP2007276034A (en) Dress gear, and manufacturing method and apparatus therefor
JP2011036974A (en) Polishing method and polishing device
Zhong Partial-ductile grinding, lapping, and polishing of aspheric and spherical surfaces on glass
Jones Fabrication of a large, thin, off-axis aspheric mirror
US20050101226A1 (en) Finishing polishing method
JP2877158B2 (en) Spherical polishing device and spherical polishing method
JP2005059176A (en) Truing dressing method and its device
Hallock et al. Cycle time and cost reduction in large-size optics production
Lin et al. Development of X-ray mirrors manufacturing process with ELID-grinding and polishing methods