JPH1080637A - Composite ultrafine particles, method for producing the same, and catalyst for synthesizing and reforming methanol using the same - Google Patents
Composite ultrafine particles, method for producing the same, and catalyst for synthesizing and reforming methanol using the sameInfo
- Publication number
- JPH1080637A JPH1080637A JP8260351A JP26035196A JPH1080637A JP H1080637 A JPH1080637 A JP H1080637A JP 8260351 A JP8260351 A JP 8260351A JP 26035196 A JP26035196 A JP 26035196A JP H1080637 A JPH1080637 A JP H1080637A
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- ultrafine particles
- particles
- catalyst
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 title claims abstract description 117
- 239000003054 catalyst Substances 0.000 title claims abstract description 58
- 239000011882 ultra-fine particle Substances 0.000 title claims description 105
- 239000002131 composite material Substances 0.000 title claims description 61
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 230000002194 synthesizing effect Effects 0.000 title claims description 10
- 238000002407 reforming Methods 0.000 title claims description 7
- 239000010949 copper Substances 0.000 claims abstract description 79
- 239000011651 chromium Substances 0.000 claims abstract description 69
- 239000007789 gas Substances 0.000 claims abstract description 60
- 239000011701 zinc Substances 0.000 claims abstract description 54
- 239000002245 particle Substances 0.000 claims abstract description 48
- 229910052802 copper Inorganic materials 0.000 claims abstract description 45
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 33
- 238000000034 method Methods 0.000 claims abstract description 33
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 33
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 28
- 239000000956 alloy Substances 0.000 claims abstract description 28
- 239000000203 mixture Substances 0.000 claims abstract description 28
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 21
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 19
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 18
- 230000001590 oxidative effect Effects 0.000 claims abstract description 16
- 239000011261 inert gas Substances 0.000 claims abstract description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 15
- 229910017518 Cu Zn Inorganic materials 0.000 claims description 11
- 229910017752 Cu-Zn Inorganic materials 0.000 claims description 11
- 229910017943 Cu—Zn Inorganic materials 0.000 claims description 11
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 claims description 11
- 239000002994 raw material Substances 0.000 claims description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 5
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims description 3
- 229910000423 chromium oxide Inorganic materials 0.000 claims description 3
- 229910000765 intermetallic Inorganic materials 0.000 claims description 3
- 230000003197 catalytic effect Effects 0.000 abstract description 23
- 238000003786 synthesis reaction Methods 0.000 abstract description 16
- 238000002844 melting Methods 0.000 abstract description 15
- 230000015572 biosynthetic process Effects 0.000 abstract description 7
- 239000010419 fine particle Substances 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 5
- 238000005245 sintering Methods 0.000 abstract description 3
- 239000011362 coarse particle Substances 0.000 abstract 1
- 239000011364 vaporized material Substances 0.000 abstract 1
- 238000001704 evaporation Methods 0.000 description 24
- 238000006243 chemical reaction Methods 0.000 description 14
- 230000008018 melting Effects 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 11
- 230000008020 evaporation Effects 0.000 description 11
- 229910052760 oxygen Inorganic materials 0.000 description 11
- 239000001301 oxygen Substances 0.000 description 11
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 230000035484 reaction time Effects 0.000 description 7
- 239000001569 carbon dioxide Substances 0.000 description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 description 6
- 238000000629 steam reforming Methods 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 238000006555 catalytic reaction Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 229910001873 dinitrogen Inorganic materials 0.000 description 5
- 239000007791 liquid phase Substances 0.000 description 5
- 239000011787 zinc oxide Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 description 4
- 229910052734 helium Inorganic materials 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000000975 co-precipitation Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- 239000005751 Copper oxide Substances 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- 229910000431 copper oxide Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010891 electric arc Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- DOTMOQHOJINYBL-UHFFFAOYSA-N molecular nitrogen;molecular oxygen Chemical compound N#N.O=O DOTMOQHOJINYBL-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 238000006057 reforming reaction Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910002058 ternary alloy Inorganic materials 0.000 description 2
- 229910017813 Cu—Cr Inorganic materials 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000012018 catalyst precursor Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000007734 materials engineering Methods 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Physical Vapour Deposition (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、銅、亜鉛、クロム
もしくはそれらの酸化物からなる超微粒子がnmレベル
で複合(混合又は接合)したCu−Zn−Cr系複合超
微粒子、及びその製造方法並びにそれを用いたメタノー
ルの合成・改質用触媒に関する。The present invention relates to Cu-Zn-Cr-based composite ultrafine particles in which ultrafine particles of copper, zinc, chromium or their oxides are composited (mixed or bonded) at the nm level, and a method for producing the same. And a catalyst for synthesizing and reforming methanol using the same.
【0002】[0002]
【従来の技術】メタノールは、触媒及び水蒸気の存在下
で、下記反応式(1)に示すように、比較的容易に水素
含有量の高いガスに改質される。 CH3 OH + H2 O → 3H2 + CO2 … (1) 得られる改質ガスは、水素を分離して燃料電池、発電用
燃料等のエネルギー源として利用される他、化学工業用
の原料としても利用される。一方、上記メタノールの水
蒸気改質反応と逆の反応、すなわち下記反応式(2)で
示されるように、二酸化炭素と水素とによりメタノール
を得るメタノール合成反応(もしくは二酸化炭素固定化
反応)は、二酸化炭素の再資源化法の一つとして注目さ
れている。 3H2 + CO2 → CH3 OH + H2 O … (2) すなわち、近年の経済活動の活発化に伴い、CO2 排出
量は年と共に増加の傾向にあり、このCO2 の蓄積によ
る地球温暖化が最近深刻化し、CO2 排出量の削減が地
球的規模で急務となっている。その解決策として種々の
CO2 削減法が検討されているが、中でも有力な方法と
してCO2 とH2 とを反応させてメタノールなどのアル
コール原料に変換し、再資源化する方法がある。この方
法により得られるメタノールは、エネルギー源として利
用することもできるが、化学品合成の際の基幹原料でも
あるため、この方法が確立できればCO2 排出量の削減
が可能となるだけでなく、石油資源の節約にも貢献でき
る。2. Description of the Related Art Methanol is relatively easily reformed into a gas having a high hydrogen content in the presence of a catalyst and steam, as shown in the following reaction formula (1). CH 3 OH + H 2 O → 3H 2 + CO 2 (1) The obtained reformed gas is used as an energy source for fuel cells, fuels for power generation, etc. by separating hydrogen and as a raw material for the chemical industry. Also used as. On the other hand, a reaction opposite to the steam reforming reaction of methanol, that is, as shown by the following reaction formula (2), a methanol synthesis reaction for obtaining methanol from carbon dioxide and hydrogen (or a carbon dioxide fixing reaction) is It is attracting attention as one of the carbon recycling methods. 3H 2 + CO 2 → CH 3 OH + H 2 O (2) That is, with the recent economic activity, CO 2 emissions tend to increase with the year, and global warming due to the accumulation of CO 2 of recent serious reduction of CO 2 emissions is an urgent need on a global scale. Various CO 2 reduction methods are being studied as a solution to this problem. Among them, a prominent method is a method of reacting CO 2 with H 2 to convert it into an alcohol raw material such as methanol and recycling the same. Methanol obtained by this method can be used as an energy source, but it is also a key raw material in the synthesis of chemicals, so if this method can be established, not only can CO 2 emissions be reduced, but also petroleum It can also contribute to resource saving.
【0003】前記メタノールの水蒸気改質反応やその逆
反応であるメタノール合成反応の触媒としては、酸化物
系触媒(特開平6−178938号、特開平4−122
450号、特公平5−67336号等参照)、金属系触
媒(特開平3−258738号、特公平4−30383
号等参照)及び合金系触媒が知られており、これらの中
では酸化物系触媒の性能が良いと考えられている。酸化
物の粉末は一般に共沈法を利用した液相法(湿式法)に
より製造されている。しかしながら、液相中で製造する
ために、不純物が粉末中に残留してしまい、高純度な粉
末が得られ難いという欠点がある。また、この液相法に
より製造した酸化物粉末を触媒材料として利用する場
合、得られる酸化物は触媒前駆体であるため、使用に先
立って還元処理によって触媒の活性化を施す必要がある
と共に、不純物の影響により充分な触媒活性が得られ難
いという問題もある。As a catalyst for the methanol reforming reaction which is the steam reforming reaction of methanol or its reverse reaction, oxide catalysts (JP-A-6-178938 and JP-A-4-122) are used.
No. 450, Japanese Patent Publication No. 5-67336, etc.), metal-based catalysts (JP-A-3-25838, Japanese Patent Publication No. 4-30383).
And alloy catalysts are known, and among these, oxide catalysts are considered to have good performance. The oxide powder is generally manufactured by a liquid phase method (wet method) utilizing a coprecipitation method. However, since it is manufactured in a liquid phase, impurities remain in the powder, and it is difficult to obtain high-purity powder. When the oxide powder produced by this liquid phase method is used as a catalyst material, the obtained oxide is a catalyst precursor, so it is necessary to activate the catalyst by a reduction treatment prior to use, There is also a problem that it is difficult to obtain sufficient catalytic activity due to the influence of impurities.
【0004】[0004]
【発明が解決しようとする課題】前記したような問題点
に鑑み、最近では気相法による酸化物系触媒の製造方法
が提案されている。例えば、林主税、上田良二、田崎明
編「超微粒子」1988年三田出版会発行、第115〜
122頁には、Heガス雰囲気中でCuとZnを高周波
誘導加熱して蒸発させ、超微粒子を作製する方法(所
謂、ガス中蒸発法)が開示されている。このようなガス
中蒸発法において、蒸発源の加熱温度を約1500℃と
推定すると、この温度においてCuとZnの蒸気圧は5
桁の差がある。すなわち、1500℃におけるCuの蒸
気圧は2Torrであるが、Znの蒸気圧は105 To
rrである。このように蒸気圧が大きく異なる2成分を
同一るつぼ内で溶解し、蒸発させると、蒸発初期には選
択的に蒸気圧の大きい元素が先に蒸発してしまい、Cu
が蒸発されずに残ってしまう。その結果、作製時間に応
じて生成された超微粒子の組成に偏りが生じてしまう。
そのため、上記ガス中蒸発法においては、特殊な装置を
用い、蒸気圧の低い方の金属であるCuをるつぼ内で溶
解し、その中にZnロッドを連続的に供給し、Znの蒸
発量を補正しながらCu−Zn系超微粒子を作製してい
る。In view of the above problems, a method for producing an oxide catalyst by a gas phase method has recently been proposed. For example, Hayashi Tax, Ryoji Ueda, Akira Tazaki, "Ultra Fine Particles", published in 1988 by Mita Press, No. 115-
On page 122, there is disclosed a method for producing ultrafine particles by evaporating Cu and Zn by induction heating in a He gas atmosphere (a so-called gas evaporation method). In such a gas evaporation method, when the heating temperature of the evaporation source is estimated to be about 1500 ° C., the vapor pressure of Cu and Zn at this temperature becomes 5 ° C.
There is a digit difference. That is, while the vapor pressure of Cu at 1500 ° C. is 2 Torr, the vapor pressure of Zn is 10 5 To
rr. When two components having greatly different vapor pressures are dissolved and evaporated in the same crucible as described above, an element having a high vapor pressure is selectively evaporated at an early stage of the evaporation, and Cu
Remains without being evaporated. As a result, the composition of the generated ultrafine particles is biased depending on the production time.
Therefore, in the above-mentioned gas evaporation method, a special device is used to melt Cu, which is a metal having a lower vapor pressure, in a crucible, and Zn rods are continuously supplied therein, so that the evaporation amount of Zn is reduced. The Cu—Zn-based ultrafine particles are produced while making corrections.
【0005】一般に、微細なCu−Zn系触媒粒子は、
当初は比較的大きな比表面積を有しているため、例えば
300℃程度までの温度環境下では比較的優れた初期触
媒活性を示すが、その温度環境下に長時間保持すると粒
子相互間に焼結現象が発生し、粒子の粗大化が起こるた
め、触媒活性が著しく低下するという問題がある。前記
ガス中蒸発法では、数百オングストローム径のCu粒子
の表面を20〜30オングストローム径のZnO粒子が
覆った2層構造の超微粒子が得られると報告されている
(前掲刊行物「超微粒子」第119頁参照)。このよう
な超微粒子の生成過程については、Cu粒子がHeガス
の流れによって運ばれている途中、Zn蒸気がCu粒子
表面に凝縮して、Cu粒子表面にZn層を形成し、この
Zn層が徐酸化処理の過程で酸化されてZnOになるも
のと推定されている。ここで、徐酸化処理とは、蒸発室
内で生成した超微粒子をそのまま大気中に出すと燃焼し
てしまうため、酸素を徐々にチャンバー内に供給して粒
子表面に酸化膜を形成して安定化する処理をいう。Generally, fine Cu-Zn catalyst particles are
Initially, it has a relatively large specific surface area, so it shows relatively good initial catalytic activity in a temperature environment up to, for example, about 300 ° C. However, if it is kept in that temperature environment for a long time, it will sinter between particles. Since a phenomenon occurs and particles are coarsened, there is a problem that the catalytic activity is significantly reduced. It has been reported that the gas evaporation method can provide ultrafine particles having a two-layer structure in which the surface of Cu particles having a diameter of several hundred angstroms is covered with ZnO particles having a diameter of 20 to 30 angstroms. See page 119). Regarding the generation process of such ultrafine particles, while the Cu particles are being carried by the flow of the He gas, Zn vapor condenses on the surfaces of the Cu particles to form a Zn layer on the surfaces of the Cu particles. It is presumed that ZnO is oxidized during the slow oxidation process. Here, the gradual oxidation treatment means that if the ultrafine particles generated in the evaporation chamber are exposed to the air as they are, they will burn, so oxygen is gradually supplied into the chamber to form an oxide film on the particle surface and stabilize. Processing.
【0006】このようにCu粒子の表面をそれよりも微
細なZnO粒子が覆った構造の超微粒子では、300〜
400℃程度の高温でのCu粒子の粒成長が起こり難
く、粒子の粗大化が比較的に抑えられるという利点は得
られるが、反面、触媒粒子中に含有される触媒活性を持
つCu量が見掛け上少なくなるため、触媒活性が低くな
るという問題がある。また、前記したようなガス中蒸発
法では、蒸発室内に配置されたるつぼ中にZnロッドを
連続的に導入するための機構を備えた特殊な装置が必要
となり、また雰囲気ガスとして高価なHeを使用してい
るためコスト高になってしまうという不利益がある。[0006] As described above, ultrafine particles having a structure in which the surface of Cu particles is covered with finer ZnO particles than that of Cu particles have a particle size of 300 to
At the high temperature of about 400 ° C., the grain growth of the Cu particles hardly occurs, and the advantage that the coarsening of the particles is relatively suppressed is obtained. However, the amount of Cu having catalytic activity contained in the catalyst particles is apparent. Therefore, there is a problem that the catalytic activity is reduced. Further, in the above-described gas evaporation method, a special device having a mechanism for continuously introducing a Zn rod into a crucible disposed in an evaporation chamber is required, and expensive He is used as an atmosphere gas. There is a disadvantage that the cost increases due to the use.
【0007】一方、前記特開平3−258738号及び
特公平4−30383号には、He、Ar、N2 等の不
活性ガス、水素、一酸化炭素、二酸化炭素及び酸素の1
種又は2種以上の混合ガスの雰囲気下で、また圧力10
-5mmHg〜大気圧でCuとZn及びCr、Al等の触
媒補強金属をタングステンボート等を用いて加熱蒸発さ
せて作製される平均粒径1nm〜1μmの超微粒子触媒
をメタノール合成反応の触媒として用いることが開示さ
れている。しかしながら、CuとZnを1つのボートに
入れて加熱蒸発を行うと、前記したようにCuとZnの
蒸気圧が異なるため、組成比のコントロールが難しい。
組成をコントロールするためには、各金属をそれぞれ別
のボートに入れて加熱するか、あるいは加熱し溶融して
いるCuにZnを供給していくといった煩わしい作業が
必要になるものと考えられる。また、酸化性ガス雰囲気
中で加熱蒸発を行うと、溶湯表面に酸化膜が形成されて
次第に超微粒子が生成しなくなる。従って、酸化物の超
微粒子を作製するのはこの手法では難しいという問題が
ある。On the other hand, JP-A-3-25838 and JP-B-4-30383 disclose inert gases such as He, Ar and N 2 , hydrogen, carbon monoxide, carbon dioxide and oxygen.
Under the atmosphere of a mixed gas of two or more species or at a pressure of 10
Ultrafine catalyst having an average particle size of 1 nm to 1 μm produced by heating and evaporating catalyst reinforcing metals such as Cu, Zn, Cr, and Al at a pressure of -5 mmHg to atmospheric pressure as a catalyst for a methanol synthesis reaction. It is disclosed for use. However, when heating and evaporating Cu and Zn in a single boat, it is difficult to control the composition ratio because the vapor pressures of Cu and Zn are different as described above.
In order to control the composition, it is considered that a cumbersome operation such as placing each metal in a separate boat and heating or supplying Zn to the heated and molten Cu is required. Further, when heating and evaporating in an oxidizing gas atmosphere, an oxide film is formed on the surface of the molten metal, so that ultrafine particles are not gradually generated. Therefore, there is a problem that it is difficult to produce ultrafine oxide particles by this method.
【0008】従って、本発明の目的は、高純度で極めて
微細であり、メタノールの合成・改質用触媒等として有
利に用いることができる複合超微粒子を比較的簡単な方
法でかつ安価に提供することにある。さらに本発明の目
的は、極めて微細でメタノールの合成・改質用触媒とし
ての触媒活性が高く、しかも高温下においても粒子同士
の焼結現象による粒子の粗大化を抑制でき、長期にわた
って高い触媒活性を維持し得る耐久性に優れた複合超微
粒子を提供することにある。本発明の他の目的は、従来
から知られている共沈法などの液相法やガス中蒸発法な
どの気相法で得られるものよりも触媒活性が高いと共
に、選択性や触媒耐久性に優れたメタノールの合成・改
質用触媒を提供することにある。Accordingly, an object of the present invention is to provide a composite ultrafine particle of high purity and extremely fine, which can be advantageously used as a catalyst for synthesizing and reforming methanol by a relatively simple method and at a low cost. It is in. Furthermore, an object of the present invention is to provide a catalyst which is extremely fine and has high catalytic activity as a catalyst for synthesizing and reforming methanol. It is an object of the present invention to provide composite ultrafine particles having excellent durability and capable of maintaining the same. Another object of the present invention is to provide a catalyst having higher catalytic activity than those obtained by a conventionally known liquid phase method such as a coprecipitation method or a gas phase method such as a gas evaporation method, as well as selectivity and catalyst durability. An object of the present invention is to provide a catalyst for synthesizing and reforming methanol which is excellent in performance.
【0009】[0009]
【課題を解決するための手段】前記目的を達成するため
に、本発明の一つの側面によれば、銅69〜92.5原
子%、亜鉛1〜24.5原子%及びクロム6.5〜30
原子%の組成を有する合金からアークプラズマ法により
作製された銅もしくはその酸化物、亜鉛もしくはその酸
化物及びクロムもしくはその酸化物の超微粒子を含有す
るCu−Zn−Cr系複合超微粒子が提供される。この
ようなCu−Zn−Cr系複合超微粒子は、一般に、各
金属もしくはその酸化物の個々に分離した粒子と接合し
た粒子の混合物の形態で得られるが、製造条件によって
は、Zn−Cr−O系複合酸化物及び/又はCu−Cr
−O系複合酸化物を含有し、あるいはCu−Zn合金も
しくは金属間化合物、及び/又はZn17Cr、及び/又
はZn13Crを含有し、あるいはまた銅もしくはその酸
化物の略球状の超微粒子と、亜鉛もしくはその酸化物の
略球状又は略柱状の超微粒子と、クロムもしくはその酸
化物の略球状又は略板状の超微粒子とが一体的に接合さ
れた複合超微粒子を含有する。According to one aspect of the present invention, 69-92.5 at.% Copper, 1-24.5 at.% Zinc and 6.5-6.5 at.% Chromium. 30
Provided is a Cu-Zn-Cr-based composite ultrafine particle containing ultrafine particles of copper or its oxide, zinc or its oxide, and chromium or its oxide prepared from an alloy having an atomic percent composition by an arc plasma method. You. Such Cu-Zn-Cr-based composite ultrafine particles are generally obtained in the form of a mixture of particles bonded to individually separated particles of each metal or its oxide, but depending on the manufacturing conditions, Zn-Cr- O-based composite oxide and / or Cu-Cr
Containing -O-based composite oxide, or Cu-Zn alloy or intermetallic compound, and / or Zn 17 Cr, and / or contain Zn 13 Cr, or alternatively substantially spherical ultrafine particles of copper or an oxide thereof And ultrafine spherical or substantially columnar particles of zinc or oxide thereof, and ultrafine spherical or substantially plate-like particles of chromium or oxide thereof are integrally joined.
【0010】このような複合超微粒子は、メタノールの
合成反応及び水蒸気改質反応の触媒として極めて有利に
用いることができる。特に、銅もしくはその酸化物(C
uO、Cu2 O)の粒子間にCr酸化物(Cr2 O3 )
が存在していることにより、Cu又はCu酸化物粒子同
士が触媒反応の温度で融合・成長(粗大化)することが
妨げられ、長期間にわたって高い触媒活性を維持するこ
とができる。なお、Cr酸化物はCu又はCu酸化物粒
子に接合していてもよく、あるいは個々の独立した粒子
としてCu又はCu酸化物粒子間に介在していてもよ
い。Such composite ultrafine particles can be used very advantageously as a catalyst for a methanol synthesis reaction and a steam reforming reaction. In particular, copper or its oxide (C
Cr oxide (Cr 2 O 3 ) between particles of uO, Cu 2 O)
Presence prevents fusion or growth (coarsening) of Cu or Cu oxide particles at the temperature of the catalytic reaction, and can maintain high catalytic activity for a long period of time. The Cr oxide may be bonded to the Cu or Cu oxide particles, or may be interposed between the Cu or Cu oxide particles as individual independent particles.
【0011】本発明の別の側面によれば、銅69〜9
2.5原子%、亜鉛1〜24.5原子%及びクロム6.
5〜30原子%の組成を有する合金から成る原材料を、
2原子分子ガス及び酸化性ガスを含む不活性ガス雰囲気
中でアーク溶解し、蒸発した材料を該雰囲気中の酸化性
ガスと反応させ、銅もしくはその酸化物、亜鉛もしくは
その酸化物及びクロムもしくはその酸化物の超微粒子を
含有するCu−Zn−Cr系複合超微粒子を生成させる
ことを特徴とする複合超微粒子の製造方法が提供され
る。好適な態様においては、2原子分子ガスとして窒素
を、また酸化性ガスとしてO2 ,O3 及び/又はN2 O
を用いる。According to another aspect of the invention, copper 69-9
5. 2.5 atomic%, zinc 1-24.5 atomic% and chromium 6.
Raw materials consisting of an alloy having a composition of 5 to 30 atomic%,
Arc melting in an inert gas atmosphere containing a diatomic molecular gas and an oxidizing gas, and reacting the evaporated material with the oxidizing gas in the atmosphere, copper or its oxide, zinc or its oxide and chromium or its There is provided a method for producing composite ultrafine particles, which comprises producing Cu-Zn-Cr-based composite ultrafine particles containing ultrafine oxide particles. In a preferred embodiment, nitrogen is used as the diatomic molecular gas and O 2 , O 3 and / or N 2 O is used as the oxidizing gas.
Is used.
【0012】[0012]
【発明の実施の形態】一般に触媒反応は触媒表面で進行
するため、触媒粒子を高純度かつ微細にすれば、単位質
量当たりの活性点が著しく増加し、高活性が期待でき
る。また、触媒粒子を超微粒子化し、その組成比をコン
トロールすれば、さらに高活性な触媒になるものと考え
られる。しかしながら、単にCuとZnを不活性ガス雰
囲気中で加熱蒸発して超微粒子を生成させた場合、既述
したように、CuとZnの蒸気圧が異なるため、生成す
る複合超微粒子の組成比のコントロールが難しい。ま
た、酸化性ガスを含む雰囲気ガス中で加熱蒸発を行った
場合、溶湯表面に酸化膜が形成されるために超微粒子の
生成量が極めて少なくなる。これに対して、本発明によ
る複合超微粒子の製造は、出発原料として前記した組成
範囲のCu−Zn−Cr三元合金を用い、2原子分子ガ
ス及び酸化性ガスを含む雰囲気ガスを用い、しかもアー
クプラズマ法により行うものである。それによって、出
発原料と生成超微粒子との組成比にズレが生じるもの
の、そのズレかたはある規則性があり、容易に組成コン
トロールが可能であり、さらに、2原子分子ガスを使用
することによる強制蒸発の効果で、酸化膜の影響を受け
ず、容易に酸化物超微粒子が得られる。DESCRIPTION OF THE PREFERRED EMBODIMENTS In general, since a catalytic reaction proceeds on the surface of a catalyst, if the catalyst particles are made highly pure and fine, the number of active points per unit mass is remarkably increased, and high activity can be expected. Further, if the catalyst particles are made into ultrafine particles and the composition ratio is controlled, it is considered that the catalyst becomes more active. However, when the ultrafine particles are generated simply by heating and evaporating Cu and Zn in an inert gas atmosphere, as described above, since the vapor pressures of Cu and Zn are different, the composition ratio of the generated composite ultrafine particles is different. Difficult to control. Also, when heating and evaporating in an atmosphere gas containing an oxidizing gas, an oxide film is formed on the surface of the molten metal, so that the amount of generated ultrafine particles is extremely small. In contrast, the production of the composite ultrafine particles according to the present invention uses a Cu—Zn—Cr ternary alloy having the above composition range as a starting material, uses an atmosphere gas containing a diatomic molecular gas and an oxidizing gas, and This is performed by an arc plasma method. As a result, the composition ratio between the starting material and the produced ultrafine particles is shifted, but the difference is a certain regularity, the composition can be easily controlled, and the forced evaporation by using a diatomic molecular gas. By the effect described above, oxide ultrafine particles can be easily obtained without being affected by the oxide film.
【0013】本発明により得られる複合超微粒子は、銅
及び/又は銅酸化物、亜鉛及び/又は亜鉛酸化物並びに
クロム及び/又はクロム酸化物の超微粒子を含有してお
り、nmオーダーの極めて微細な粒子であり、かつ不純
物を含まず、純度が極めて高い。従って、本発明の方法
により得られる超微粒子は、触媒活性が高く、メタノー
ルの合成反応及び改質反応の触媒として有利に用いるこ
とができる。このようなCu−Zn−Cr系複合超微粒
子は、一般に、各金属もしくはその酸化物の個々に分離
した粒子と接合した粒子の混合物の形態で得られるが、
製造条件によっては、Zn−Cr−O系複合酸化物及び
/又はCu−Cr−O系複合酸化物の超微粒子並びにC
u−Zn合金(金属間化合物を含む)及び/又はZn17
Cr及び/又はZn13Cr等の超微粒子も含み、あるい
はまた銅及び/又は銅酸化物の略球状の超微粒子と、亜
鉛及び/又は亜鉛酸化物の略球状又は略柱状の超微粒子
と、クロム及び/又はクロム酸化物の略球状又は略板状
の超微粒子とが一体的に接合された複合超微粒子を含ん
でいる。The composite ultrafine particles obtained according to the present invention contain ultrafine particles of copper and / or copper oxide, zinc and / or zinc oxide and chromium and / or chromium oxide, and are extremely fine on the order of nm. Particles, containing no impurities and having extremely high purity. Therefore, the ultrafine particles obtained by the method of the present invention have high catalytic activity and can be advantageously used as a catalyst for a methanol synthesis reaction and a reforming reaction. Such Cu-Zn-Cr-based composite ultrafine particles are generally obtained in the form of a mixture of particles bonded to individually separated particles of each metal or its oxide,
Depending on the production conditions, ultrafine particles of Zn—Cr—O-based composite oxide and / or Cu—Cr—O-based composite oxide and C
u-Zn alloy (including intermetallic compounds) and / or Zn 17
Ultra-fine particles of Cr and / or Zn 13 Cr or the like, or alternatively, approximately spherical ultra-fine particles of copper and / or copper oxide; approximately spherical or substantially columnar ultra-fine particles of zinc and / or zinc oxide; And / or composite ultrafine particles in which substantially spherical or substantially plate-like ultrafine particles of chromium oxide are integrally joined.
【0014】さらに、本発明の複合超微粒子は、Crが
添加されていることにより、Cu−Zn系複合超微粒子
の焼結が抑制され、また、高い比表面積が維持されて、
一層優れた触媒活性を有する。すなわち、Cu−Zn系
超微粒子にCrを添加することにより、後述する実施例
からも明らかなように、触媒性能が向上する。その理由
としては、Cr酸化物がCu又はCu酸化物粒子間に介
在しているためと考えられる。Cu−Zn系超微粒子を
触媒材料として用いた場合、触媒反応の温度でシンタリ
ング(Cu又はCu酸化物粒子同士の融合)によりCu
又はCu酸化物粒子が成長(粗大化)してしまい、反応
時間の経過に伴って充分な触媒活性が得られなくなる。
しかしながら、Cr酸化物粒子がCu又はCu酸化物粒
子間に存在することによって、Cu又はCu酸化物粒子
同士の融合・成長を妨げる働きをするものと考えられ
る。その結果、メタノールの合成反応や水蒸気改質反応
において触媒として使用する約150℃以上の温度に長
時間保持した場合においても、粒子の粗大化を生ずるこ
となく安定して微細な粒子状態を保持できる。従って、
本発明の複合超微粒子は、上記反応において優れた触媒
活性を示し、また長期にわたって安定した触媒活性を示
し、耐久性に優れたメタノールの合成・改質用触媒とし
て有利に用いることができる。Further, the composite ultrafine particles of the present invention, by adding Cr, suppress the sintering of the Cu—Zn composite ultrafine particles, and maintain a high specific surface area.
Has better catalytic activity. That is, by adding Cr to the Cu-Zn-based ultrafine particles, the catalytic performance is improved as is clear from the examples described later. It is considered that the reason is that Cr oxide is interposed between Cu or Cu oxide particles. When Cu-Zn based ultrafine particles are used as a catalyst material, Cu is sintered (fused of Cu or Cu oxide particles) at the temperature of the catalytic reaction.
Alternatively, Cu oxide particles grow (coarse), and sufficient catalytic activity cannot be obtained as the reaction time elapses.
However, it is considered that the presence of the Cr oxide particles between the Cu or Cu oxide particles functions to prevent fusion or growth of the Cu or Cu oxide particles. As a result, even when the temperature is maintained at about 150 ° C. or higher, which is used as a catalyst in a methanol synthesis reaction or a steam reforming reaction, for a long time, a fine particle state can be stably maintained without causing coarsening of particles. . Therefore,
The composite ultrafine particles of the present invention exhibit excellent catalytic activity in the above reaction, exhibit stable catalytic activity over a long period of time, and can be advantageously used as a catalyst for synthesizing and reforming methanol having excellent durability.
【0015】本発明の複合超微粒子は、銅、亜鉛及びク
ロムからなる三元合金を、2原子分子ガス及び酸化性ガ
スを含む不活性ガス雰囲気下においてアーク溶解するこ
とにより作製される。上記2原子分子ガスとしては窒素
ガスが好ましく、また、酸化性ガスとしては、酸素、オ
ゾン又は一酸化二窒素を好適に使用できる。なお、2原
子分子ガスとして窒素ガスを用いる場合には、窒素ガス
は不活性ガスでもあるので、He、Ar、Kr等の他の
不活性ガスを用いる必要はない。窒素−酸素混合ガスを
用いる場合、その組成としては、酸素分圧5〜50%、
窒素分圧50〜95%の範囲が好ましい。酸素分圧が上
記範囲より少ない場合、発生する超微粒子の量と比較し
て酸素の量が少なくなるため、酸化物として所望される
超微粒子が充分に酸化され難くなる。一方、酸素分圧が
上記範囲よりも高い場合、カーボン電極の消耗が激し
く、1回の作製時間に制約を受ける。また、高濃度の酸
素を含むガスを用いた場合には、爆発の危険性があり、
操業、管理が面倒になる。なお、上記窒素−酸素混合ガ
スとしては、乾燥空気も利用することができ、それによ
って複合超微粒子を安価に製造することができる。The composite ultrafine particles of the present invention are produced by arc melting a ternary alloy comprising copper, zinc and chromium in an inert gas atmosphere containing a diatomic molecular gas and an oxidizing gas. Nitrogen gas is preferred as the diatomic molecular gas, and oxygen, ozone or nitrous oxide can be suitably used as the oxidizing gas. When nitrogen gas is used as the diatomic molecular gas, since nitrogen gas is also an inert gas, it is not necessary to use another inert gas such as He, Ar, or Kr. When a nitrogen-oxygen mixed gas is used, its composition may be an oxygen partial pressure of 5 to 50%,
The range of the partial pressure of nitrogen is preferably 50 to 95%. If the oxygen partial pressure is lower than the above range, the amount of oxygen is smaller than the amount of generated ultrafine particles, so that the ultrafine particles desired as an oxide are less likely to be sufficiently oxidized. On the other hand, when the oxygen partial pressure is higher than the above range, the carbon electrode is greatly consumed and the time for one production is limited. Also, if a gas containing high concentration of oxygen is used, there is a danger of explosion,
Operation and management become troublesome. Note that dry air can also be used as the nitrogen-oxygen mixed gas, whereby composite ultrafine particles can be produced at low cost.
【0016】雰囲気ガスの圧力(全圧)は3〜200k
Paの範囲が適当である。3kPa未満ではアークプラ
ズマが不安定となり、超微粒子が発生し難くなる。一
方、200kPaを超えると、発生する超微粒子の生成
量は殆ど変化しなくなる。The pressure (total pressure) of the atmosphere gas is 3 to 200 k
The range of Pa is appropriate. If the pressure is less than 3 kPa, the arc plasma becomes unstable, and it becomes difficult to generate ultrafine particles. On the other hand, if it exceeds 200 kPa, the amount of generated ultrafine particles hardly changes.
【0017】出発原料の合金としては、銅69〜92.
5原子%、亜鉛1〜24.5原子%及びクロム6.5〜
30原子%の組成範囲内の合金を用いる。図1は、本発
明の複合超微粒子をメタノール合成反応の触媒として用
いたときの、触媒1kg当りにおける単位時間当りのメ
タノール収量STY(g−CH3OH/kg・hr)と
出発材料の合金組成との関係を示す三角図表である。図
1中、符号STY−580は580g−CH3 OH/k
g・hrのメタノール収量が得られる組成範囲、STY
−620は620g−CH3 OH/kg・hr、STY
−660は660g−CH3 OH/kg・hr、STY
−700は700g−CH3 OH/kg・hrのメタノ
ール収量が得られる組成範囲をそれぞれ示している。な
お、それぞれの組成範囲(原子%で表示)は以下のとお
りである。STY−580は(1)Cu:69%、Z
n:1%、Cr:30%、(2)Cu:92.5%、Z
n:1%、Cr:6.5%、(3)Cu:69%、Z
n:24.5%、Cr:6.5%の3点で囲まれた範
囲。STY−620は(1)Cu:71.5%、Zn:
7%、Cr:21.5%、(2)Cu:84.5%、Z
n:7%、Cr:8.5%、(3)Cu:71.5%、
Zn:20%、Cr:8.5%の3点で囲まれた範囲。
STY−660は(1)Cu:74%、Zn:9.5
%、Cr:16.5%、(2)Cu:81.5%、Z
n:9.5%、Cr:9%、(3)Cu:74%、Z
n:17%、Cr:9%の3点で囲まれた範囲。STY
−700は(1)Cu:74.5%、Zn:12%、C
r:13.5%、(2)Cu:78.5%、Zn:12
%、Cr:9.5%、(3)Cu:76%、Zn:1
4.5%、Cr:9.5%の3点で囲まれた範囲。As the starting material alloy, copper 69-92.
5 atomic%, zinc 1-24.5 atomic% and chromium 6.5-
An alloy within a composition range of 30 atomic% is used. FIG. 1 shows the STY (g-CH 3 OH / kg · hr) of methanol per unit time per kg of catalyst and the alloy composition of the starting material when the composite ultrafine particles of the present invention are used as a catalyst for a methanol synthesis reaction. It is a triangular chart showing the relationship with. In FIG. 1, the symbol STY-580 is 580 g-CH 3 OH / k.
g / hr methanol composition range, STY
-620 is 620 g-CH 3 OH / kg · hr, STY
-660 is 660 g-CH 3 OH / kg · hr, STY
-700 indicates a composition range in which a methanol yield of 700 g-CH 3 OH / kg · hr can be obtained. The respective composition ranges (expressed in atomic%) are as follows. STY-580 is (1) Cu: 69%, Z
n: 1%, Cr: 30%, (2) Cu: 92.5%, Z
n: 1%, Cr: 6.5%, (3) Cu: 69%, Z
A range surrounded by three points of n: 24.5% and Cr: 6.5%. STY-620 is (1) Cu: 71.5%, Zn:
7%, Cr: 21.5%, (2) Cu: 84.5%, Z
n: 7%, Cr: 8.5%, (3) Cu: 71.5%,
A range surrounded by three points of Zn: 20% and Cr: 8.5%.
STY-660 is (1) Cu: 74%, Zn: 9.5
%, Cr: 16.5%, (2) Cu: 81.5%, Z
n: 9.5%, Cr: 9%, (3) Cu: 74%, Z
A range surrounded by three points of n: 17% and Cr: 9%. STY
-700 is (1) Cu: 74.5%, Zn: 12%, C
r: 13.5%, (2) Cu: 78.5%, Zn: 12
%, Cr: 9.5%, (3) Cu: 76%, Zn: 1
A range surrounded by three points of 4.5% and Cr: 9.5%.
【0018】以下、本発明による複合超微粒子の作製に
ついて、好適な複合超微粒子作製装置を示す図2を参照
しながら説明する。図2は、本発明に従ってアーク溶解
により複合超微粒子を作製するのに好適な装置の一例を
示し、後述する実施例において使用した装置の概略構成
図である。この装置1は、溶解室2とグローブボックス
3とからなる。溶解室2内には、原料(母合金)Aを配
置するハース4がモータ12により回転自在に配設され
ている。また、溶解室2内のハース4上部には、ハース
4に配置された母合金Aに接近自在にアーク電極5が配
設されている。溶解室2とグローブボックス3は収集管
6によって連通されており、該収集管6のグローブボッ
クス3内に位置する収集管後端7にはフィルター8が着
脱自在に取り付けられている。符号9はガス混合器であ
り、所定濃度の2原子分子ガス及び酸化性ガスを含む不
活性ガスを溶解室2中へ供給する。符号10はターボ分
子ポンプ、11はメカニカルブースターポンプとロータ
リーポンプであり、これらによって溶解室2とグローブ
ボックス3との間の差圧が制御される。Hereinafter, the production of composite ultrafine particles according to the present invention will be described with reference to FIG. 2 showing a preferred apparatus for producing composite ultrafine particles. FIG. 2 shows an example of an apparatus suitable for producing composite ultrafine particles by arc melting according to the present invention, and is a schematic configuration diagram of an apparatus used in Examples described later. This apparatus 1 includes a dissolution chamber 2 and a glove box 3. In the melting chamber 2, a hearth 4 in which a raw material (master alloy) A is disposed is rotatably provided by a motor 12. An arc electrode 5 is arranged above the hearth 4 in the melting chamber 2 so as to be accessible to the mother alloy A arranged in the hearth 4. The dissolving chamber 2 and the glove box 3 are communicated with each other by a collection tube 6, and a filter 8 is detachably attached to a rear end 7 of the collection tube 6 located in the glove box 3. Reference numeral 9 denotes a gas mixer which supplies an inert gas containing a predetermined concentration of a diatomic molecular gas and an oxidizing gas into the melting chamber 2. Reference numeral 10 denotes a turbo molecular pump, 11 denotes a mechanical booster pump and a rotary pump, and these control the differential pressure between the melting chamber 2 and the glove box 3.
【0019】次に、操作手順について説明する。まず、
所定濃度の2原子分子ガス及び酸化性ガスを含む不活性
ガスを所定の流量で溶解室2内へ供給し、溶解室2内の
ガス圧を所定の圧力に設定する。この際、雰囲気ガスと
して大気を用いる場合以外は、一旦、装置内を真空引き
しておいた方が好ましい。その後、通常のアーク溶解と
同様、母合金Aとアーク電極5との間でアーク放電を起
こしてアークプラズマCを発生させることにより、母合
金Aが高温になり、蒸発し、超微粒子Bが発生する。こ
の母合金Aから発生した超微粒子Bは、雰囲気中の酸化
性ガスと反応し、溶解室2とグローブボックス3との間
の差圧によって生ずるガスの流れに乗って収集管6に吸
引され、その後端に設置されたフィルター8により捕集
される。Next, the operation procedure will be described. First,
An inert gas containing a predetermined concentration of a diatomic molecular gas and an oxidizing gas is supplied into the melting chamber 2 at a predetermined flow rate, and the gas pressure in the melting chamber 2 is set to a predetermined pressure. At this time, it is preferable that the inside of the apparatus is once evacuated, except when the atmosphere is used as the atmospheric gas. After that, as in ordinary arc melting, an arc discharge is generated between the mother alloy A and the arc electrode 5 to generate an arc plasma C, so that the mother alloy A becomes high temperature, evaporates, and ultrafine particles B are generated. I do. The ultrafine particles B generated from the mother alloy A react with the oxidizing gas in the atmosphere, and are sucked into the collecting pipe 6 on the gas flow generated by the pressure difference between the melting chamber 2 and the glove box 3, It is collected by a filter 8 installed at the rear end.
【0020】Cu−Zn−Cr系酸化物超微粒子を作製
する場合、2つの大きな問題点がある。まず、1つは、
雰囲気ガスとしてアルゴンやヘリウム等の不活性ガスを
用いたアークプラズマ法では、超微粒子の発生量が非常
に少ないことであり、アーク放電を数10分行っても回
収される量は本発明の方法の1/10〜1/4しか得ら
れない。またもう1つの問題は、Cu、CrとZnの蒸
気圧が非常に異なるため(1500℃でCu:2Tor
r,Zn:105 Torr)、Ar+O2 雰囲気でのア
ークプラズマ法では、蒸発初期にはZn酸化物のみが選
択的に生成され、Cu、Crが蒸発されず残ってしまう
点である。その結果、作製時間に応じて生成された超微
粒子の組成に偏りが生じてしまう。つまりアルゴンやヘ
リウム等の不活性ガスと酸素との混合ガスを用いた場
合、超微粒子の発生要因は熱による蒸発が主となるた
め、母合金を構成するそれぞれの金属の蒸気圧の差だけ
でそれぞれの金属の蒸発量が決定される。There are two major problems in producing Cu-Zn-Cr-based oxide ultrafine particles. First, one is
In the arc plasma method using an inert gas such as argon or helium as an atmosphere gas, the amount of generation of ultrafine particles is very small, and the amount recovered even after performing arc discharge for several tens of minutes is determined by the method of the present invention. Only 1/10 to 1/4. Another problem is that the vapor pressures of Cu, Cr and Zn are very different (at 1500 ° C., Cu: 2 Torr).
In the arc plasma method in an atmosphere of Ar + O 2 ( r, Zn: 10 5 Torr), only Zn oxide is selectively generated at the beginning of evaporation, and Cu and Cr remain without being evaporated. As a result, the composition of the generated ultrafine particles is biased depending on the production time. In other words, when a mixed gas of an inert gas such as argon or helium and oxygen is used, the main cause of generation of ultrafine particles is evaporation by heat, so that only the difference between the vapor pressures of the respective metals constituting the master alloy is used. The amount of evaporation of each metal is determined.
【0021】このような問題を解決するために、本発明
に係る方法は、窒素ガス等の2原子分子ガスによる強制
蒸発の作用を利用している。例えば、雰囲気ガスとして
窒素と酸素の混合ガスを用いると、窒素ガスは溶融金属
を強制蒸発させる性質があるため、合金元素の蒸気圧の
影響に左右されず、Cu超微粒子とZn超微粒子とCr
超微粒子を共に蒸発させることが可能となる。強制蒸発
の機構について説明すると、まず、アークC(図2参
照)の中で雰囲気中の窒素は原子状になり、溶融金属に
溶け込む。溶け込んだ窒素原子同士は結合して分子とな
り、溶融金属からはじけ飛ぶ。この際、溶融金属を巻き
込み、スパッタ粒子のように発生させるものと推定され
る。このようにして発生した銅や亜鉛、クロムの超微粒
子は、雰囲気中の酸素と反応してCu酸化物やZn酸化
物、Cr酸化物になる。このように、本発明に係る複合
超微粒子の製造方法によれば、合金元素の大きな蒸気圧
差に左右されることなく、Cu−Zn−Cr系酸化物超
微粒子を高収量で得ることができる。In order to solve such a problem, the method according to the present invention utilizes the action of forced evaporation by diatomic molecular gas such as nitrogen gas. For example, when a mixed gas of nitrogen and oxygen is used as the atmosphere gas, the nitrogen gas has a property of forcibly evaporating the molten metal, and thus is not affected by the vapor pressure of the alloy element, and the Cu ultrafine particles, the Zn ultrafine particles,
The ultrafine particles can be evaporated together. Describing the mechanism of forced evaporation, first, nitrogen in the atmosphere becomes atomic in the arc C (see FIG. 2) and dissolves in the molten metal. The dissolved nitrogen atoms combine to form molecules, which fly off the molten metal. At this time, it is presumed that the molten metal is involved and generated like sputtered particles. The ultrafine particles of copper, zinc, and chromium thus generated react with oxygen in the atmosphere to become Cu oxide, Zn oxide, and Cr oxide. As described above, according to the method for producing composite ultrafine particles of the present invention, Cu-Zn-Cr-based oxide ultrafine particles can be obtained in high yield without being affected by a large difference in vapor pressure of alloy elements.
【0022】[0022]
【実施例】以下、実施例を示して本発明について具体的
に説明するが、本発明が下記実施例に限定されるもので
ないことはもとよりである。EXAMPLES Hereinafter, the present invention will be described in detail with reference to Examples, but it goes without saying that the present invention is not limited to the following Examples.
【0023】実施例1 銅76原子%、亜鉛14原子%、及びクロム10原子%
からなる母合金Cu76Zn14Cr10を用い、図2に示す
ような装置により、10%の酸素ガスを含むN2 ガス雰
囲気(ガス圧15kPa)中においてアーク溶解(アー
ク電流200A)を行い、複合超微粒子を製造した。EXAMPLE 1 76 at% copper, 14 at% zinc, and 10 at% chromium
Using a mother alloy consisting of Cu 76 Zn 14 Cr 10 and performing an arc melting (arc current 200 A) in an N 2 gas atmosphere (gas pressure 15 kPa) containing 10% oxygen gas by an apparatus as shown in FIG. Composite ultrafine particles were produced.
【0024】実施例2〜4 実施例1において、原材料の母合金の組成比率を表1に
示すように変えた以外は、実施例1と同じ操作及び条件
により複合超微粒子を製造した。Examples 2 to 4 Composite ultrafine particles were produced in the same manner as in Example 1 except that the composition ratio of the mother alloy as a raw material was changed as shown in Table 1.
【0025】なお、Cu:81at%、Zn:9at
%、Cr:10at%の組成の母合金を用いて作製した
複合超微粒子の倍率の異なる2種のTEM(透過電子顕
微鏡)写真を図3及び図4に示す。図4において、中央
部の粒子本体はCu粒子であり、それに接合している下
部の層状の部分はクロム酸化物(Cr2 O3 )と判断さ
れる。Incidentally, Cu: 81 at%, Zn: 9 at%
3 and 4 show two types of TEM (Transmission Electron Microscope) photographs of composite ultrafine particles prepared using a master alloy having a composition of 10% at% and Cr at 10% at different magnifications. In FIG. 4, the central particle body is a Cu particle, and the lower layered portion joined to the particle body is determined to be chromium oxide (Cr 2 O 3 ).
【0026】複合超微粒子の触媒特性:上記各実施例で
作製した複合超微粒子について、メタノール合成反応用
触媒としての特性評価を行った。また、比較として、母
合金の組成を表1に示すように変えた以外は実施例1と
同様にして作製したCu−Zn系複合超微粒子(比較例
1)、及び市販の共沈法により作製されたCu−Zn−
Al系触媒(比較例2)についても調査を行った。触媒
性能評価は超微粒子0.1gを充填した固定床加圧流通
式反応装置を用い、反応ガス流量50ml/min、反
応圧力50atmに設定してそれぞれ250℃における
メタノール合成反応によるSTY(空時収量)を測定し
た。その結果を表1に示す。Catalytic Properties of Composite Ultrafine Particles: The composite ultrafine particles produced in each of the above examples were evaluated for characteristics as a catalyst for a methanol synthesis reaction. For comparison, Cu-Zn-based composite ultrafine particles (Comparative Example 1) prepared in the same manner as in Example 1 except that the composition of the mother alloy was changed as shown in Table 1, and a commercially available coprecipitation method Cu-Zn-
Investigations were also made on an Al-based catalyst (Comparative Example 2). The catalyst performance was evaluated using a fixed bed pressurized flow reactor packed with 0.1 g of ultrafine particles, using a reaction gas flow rate of 50 ml / min, a reaction pressure of 50 atm, and an STY (space-time yield) by methanol synthesis at 250 ° C. ) Was measured. Table 1 shows the results.
【0027】[0027]
【表1】 表1から明らかなように、本発明により得られた実施例
1〜4のCu−Zn−Cr系複合超微粒子の触媒を用い
た場合、いずれも比較例1又は2の触媒を用いた場合よ
り高いメタノール収量が得られ、特に実施例1の触媒を
用いた場合、メタノール収量が比較例1及び2の触媒を
用いた場合よりも約30〜40%向上した。[Table 1] As is clear from Table 1, when the catalysts of the Cu—Zn—Cr-based composite ultrafine particles of Examples 1 to 4 obtained according to the present invention were used, the results were both higher than those obtained using the catalyst of Comparative Example 1 or 2. A high methanol yield was obtained, and particularly when the catalyst of Example 1 was used, the methanol yield was improved by about 30 to 40% as compared with the case where the catalysts of Comparative Examples 1 and 2 were used.
【0028】図5は、実施例1並びに比較例1及び2の
各触媒の反応時間の経過に伴う触媒活性の変化(触媒活
性比)を示している。図5から明らかなように、実施例
1の複合超微粒子からなる触媒は、比較例1又は2の触
媒に比べて触媒活性の経時変化が少なく、長期にわたっ
て高い触媒活性が保持された。FIG. 5 shows the change in the catalytic activity (catalytic activity ratio) of the catalysts of Example 1 and Comparative Examples 1 and 2 over the reaction time. As is clear from FIG. 5, the catalyst composed of the composite ultrafine particles of Example 1 showed less change in catalytic activity with time than the catalyst of Comparative Example 1 or 2, and retained high catalytic activity for a long period of time.
【0029】さらに前記実施例1並びに比較例1及び2
の触媒について、反応時間の経過に伴う比表面積の変化
及び比表面積の減少率を測定した。その結果をそれぞれ
表2及び図6に示す。Further, Example 1 and Comparative Examples 1 and 2
With respect to the above catalyst, the change in the specific surface area and the decrease rate of the specific surface area with the passage of the reaction time were measured. The results are shown in Table 2 and FIG. 6, respectively.
【表2】 図6から明らかなように、実施例1の複合超微粒子は比
較例1又は2の触媒に比べて反応時間の経過に伴う比表
面積の減少が少なく、特に比較例1のCu−Zn系複合
超微粒子触媒の比表面積が著しく減少しているのに対
し、Crを含む母合金から作製された実施例1のCu−
Zn−Cr系複合超微粒子触媒の比表面積はほとんど減
少していない。前記したように、一般に触媒反応は触媒
表面で進行するため、上記比較例1のように反応時間の
経過と共に比表面積が減少すると、それに伴い触媒反
応、すなわちメタノール合成反応の進行が図5に示され
るように低下してしまう。[Table 2] As is clear from FIG. 6, the composite ultrafine particles of Example 1 showed less decrease in the specific surface area with the lapse of reaction time than the catalyst of Comparative Example 1 or 2, and particularly the Cu—Zn composite ultrafine particles of Comparative Example 1. While the specific surface area of the fine particle catalyst was remarkably reduced, the Cu-
The specific surface area of the Zn—Cr-based composite ultrafine particle catalyst is hardly reduced. As described above, since the catalytic reaction generally proceeds on the surface of the catalyst, when the specific surface area decreases as the reaction time elapses as in Comparative Example 1, the catalytic reaction, that is, the progress of the methanol synthesis reaction is shown in FIG. It will be lowered so that
【0030】[0030]
【発明の効果】以上のように、本発明に係るCu−Zn
−Cr系複合超微粒子は、Crが添加されていることに
よりCu−Zn系超微粒子の焼結が抑制され、触媒とし
ての耐久性が向上し、高い比表面積が維持される。従っ
て、このような複合超微粒子は、触媒として使用する比
較的高温域においても安定した触媒活性が保持される。
また、本発明の複合超微粒子は、従来の液相法により作
製された酸化物粒子とは異なり、nmオーダーの複合超
微粒子を多量に含み、粒子が極めて微細であり、かつ不
純物を含まず、純度が極めて高い。従って、本発明に係
る複合超微粒子は、メタノールの合成用及び水蒸気改質
用触媒として高活性、高選択性、高耐久性を示す。ま
た、本発明によれば、上記のような複合超微粒子を安価
にしかも比較的簡単な方法により作製できる。なお、本
発明の複合超微粒子は、前記反応式(1)で示されるメ
タノールの水蒸気改質反応や前記反応式(2)で示され
る二酸化炭素と水素からメタノールを合成する反応の他
にも、類似の反応、例えば一酸化炭素と水素からメタノ
ールを合成する反応及びその逆反応、二酸化炭素+一酸
化炭素+水素からメタノールを合成する反応(二酸化炭
素と一酸化炭素が混ざっている場合)及びその逆反応の
触媒としても有利に用いることができる。As described above, the Cu—Zn according to the present invention is
The addition of Cr suppresses sintering of the Cu-Zn-based ultrafine particles in the -Cr-based composite ultrafine particles, improves durability as a catalyst, and maintains a high specific surface area. Therefore, such composite ultrafine particles maintain stable catalytic activity even in a relatively high temperature range used as a catalyst.
Further, the composite ultrafine particles of the present invention, unlike oxide particles produced by a conventional liquid phase method, contain a large amount of composite ultrafine particles on the order of nm, the particles are extremely fine, and do not contain impurities, Extremely high purity. Therefore, the composite ultrafine particles according to the present invention exhibit high activity, high selectivity, and high durability as a catalyst for methanol synthesis and steam reforming. Further, according to the present invention, the composite ultrafine particles as described above can be produced at low cost and by a relatively simple method. In addition, the composite ultrafine particles of the present invention may be used in addition to the steam reforming reaction of methanol represented by the reaction formula (1) and the reaction of synthesizing methanol from carbon dioxide and hydrogen represented by the reaction formula (2). Similar reactions, such as the reaction of synthesizing methanol from carbon monoxide and hydrogen, and vice versa, the reaction of synthesizing methanol from carbon dioxide + carbon monoxide + hydrogen (when carbon dioxide and carbon monoxide are mixed) and the like It can be advantageously used also as a catalyst for the reverse reaction.
【図1】本発明の方法により作製されるCu−Zn−C
r系複合超微粒子の原材料として用いる母合金の組成範
囲と、それをメタノール合成触媒として用いたときのメ
タノール収量との関係を示す三角図表である。FIG. 1 shows Cu—Zn—C produced by the method of the present invention.
4 is a triangular chart showing the relationship between the composition range of a mother alloy used as a raw material of r-based composite ultrafine particles and the yield of methanol when the mother alloy is used as a methanol synthesis catalyst.
【図2】本発明に従ってアーク溶解により複合超微粒子
を作製する装置の一例の概略構成図である。FIG. 2 is a schematic configuration diagram of an example of an apparatus for producing composite ultrafine particles by arc melting according to the present invention.
【図3】Cu81Zn9 Cr10の組成を有する母合金を用
いて作製した複合超微粒子の透過電子顕微鏡写真であ
る。FIG. 3 is a transmission electron micrograph of composite ultrafine particles produced using a master alloy having a composition of Cu 81 Zn 9 Cr 10 .
【図4】Cu81Zn9 Cr10の組成を有する母合金を用
いて作製した複合超微粒子の透過電子顕微鏡写真であ
る。FIG. 4 is a transmission electron micrograph of composite ultrafine particles produced using a master alloy having a composition of Cu 81 Zn 9 Cr 10 .
【図5】実施例1並びに比較例1及び2で作製された触
媒のメタノール合成反応における反応時間の経過に伴う
触媒活性の変化を示すグラフである。FIG. 5 is a graph showing the change in catalytic activity of the catalysts prepared in Example 1 and Comparative Examples 1 and 2 over the reaction time in the methanol synthesis reaction.
【図6】実施例1並びに比較例1及び2で作製された触
媒のメタノール合成反応における反応時間の経過に伴う
比表面積の減少率の変化を示すグラフである。FIG. 6 is a graph showing a change in a specific surface area reduction rate with a lapse of reaction time in a methanol synthesis reaction of the catalysts prepared in Example 1 and Comparative Examples 1 and 2.
1 超微粒子作製装置 2 溶解室 3 グローブボックス 5 アーク電極 6 収集管 8 フィルター 9 ガス混合器 10 ターボ分子ポンプ 11 メカニカルブースターポンプ、ロータリーポンプ A 母合金 B 超微粒子 C アークプラズマ DESCRIPTION OF SYMBOLS 1 Ultrafine particle production apparatus 2 Melting chamber 3 Glove box 5 Arc electrode 6 Collection tube 8 Filter 9 Gas mixer 10 Turbo molecular pump 11 Mechanical booster pump, rotary pump A Mother alloy B Ultrafine particle C Arc plasma
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C07C 31/04 9155−4H C07C 31/04 C22C 9/04 C22C 9/04 C23C 14/24 C23C 14/24 F // C07B 61/00 300 C07B 61/00 300 (72)発明者 福井 英夫 宮城県仙台市泉区泉ケ丘4−15−19 (72)発明者 荒川 裕則 東京都千代田区霞が関1丁目3番1号 工 業技術院内 (72)発明者 岡部 清美 茨城県つくば市東1丁目1番 物質工学工 業技術研究所内 (72)発明者 佐山 和弘 茨城県つくば市東1丁目1番 物質工学工 業技術研究所内 (72)発明者 草間 仁 茨城県つくば市東1丁目1番 物質工学工 業技術研究所内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical indication location C07C 31/04 9155-4H C07C 31/04 C22C 9/04 C22C 9/04 C23C 14/24 C23C 14 / 24 F // C07B 61/00 300 C07B 61/00 300 (72) Inventor Hideo Fukui 4-15-19 Izumigaoka, Izumi-ku, Sendai, Miyagi Prefecture (72) Inventor Hironori Arakawa 1-3-3 Kasumigaseki, Chiyoda-ku, Tokyo No. 1 Inside the Industrial Technology Institute (72) Inventor Kiyomi Okabe 1-1 1-1 Higashi, Tsukuba City, Ibaraki Prefecture Inside the Institute for Materials Engineering Technology (72) Inventor Kazuhiro Sayama 1-1-1 East Higashi Tsukuba City, Ibaraki Prefecture Research on Material Engineering Industrial Technology In-house (72) Inventor Jin Kusama 1-1-1 Higashi, Tsukuba, Ibaraki Pref.
Claims (8)
4.5原子%及びクロム6.5〜30原子%の組成を有
する合金からアークプラズマ法により作製された銅もし
くはその酸化物、亜鉛もしくはその酸化物及びクロムも
しくはその酸化物の超微粒子を含有するCu−Zn−C
r系複合超微粒子。1. 69-92.5 atomic% of copper, 1-2 of zinc
It contains copper or its oxide, zinc or its oxide, and ultrafine particles of chromium or its oxide produced by an arc plasma method from an alloy having a composition of 4.5 atomic% and chromium 6.5 to 30 atomic%. Cu-Zn-C
r-based composite ultrafine particles.
Cu−Cr−O系複合酸化物を含有する請求項1に記載
のCu−Zn−Cr系複合超微粒子。2. The Cu—Zn—Cr-based composite ultrafine particles according to claim 1, comprising a Zn—Cr—O-based composite oxide and / or a Cu—Cr—O-based composite oxide.
及び/又はZn17Cr、及び/又はZn13Crを含有す
る請求項1又は2に記載のCu−Zn−Cr系複合超微
粒子。3. A Cu—Zn alloy or an intermetallic compound,
And / or Zn 17 Cr, and / or Zn 13 Cu-Zn-Cr-based composite ultrafine particles according to claim 1 or 2 containing Cr.
子と、亜鉛もしくはその酸化物の略球状又は略柱状の超
微粒子と、クロムもしくはその酸化物の略球状又は略板
状の超微粒子とが一体的に接合された複合超微粒子を含
有する請求項1乃至3のいずれか一項に記載のCu−Z
n−Cr系複合超微粒子。4. A substantially spherical ultrafine particle of copper or its oxide, a substantially spherical or substantially columnar ultrafine particle of zinc or its oxide, and a substantially spherical or substantially plate-like ultrafine particle of chromium or its oxide. Contains a composite ultrafine particle integrally bonded, Cu-Z according to any one of claims 1 to 3.
n-Cr-based composite ultrafine particles.
酸化物が介在している請求項1乃至4のいずれか一項に
記載のCu−Zn−Cr系複合超微粒子。5. The Cu—Zn—Cr-based composite ultrafine particles according to claim 1, wherein a chromium oxide is interposed between copper or oxide particles thereof.
載のCu−Zn−Cr系複合超微粒子からなるメタノー
ルの合成・改質用触媒。6. A catalyst for synthesizing and reforming methanol, comprising the Cu-Zn-Cr-based composite ultrafine particles according to any one of claims 1 to 5.
4.5原子%及びクロム6.5〜30原子%の組成を有
する合金から成る原材料を、2原子分子ガス及び酸化性
ガスを含む不活性ガス雰囲気中でアーク溶解し、蒸発し
た材料を該雰囲気中の酸化性ガスと反応させ、銅もしく
はその酸化物、亜鉛もしくはその酸化物及びクロムもし
くはその酸化物の超微粒子を含有するCu−Zn−Cr
系複合超微粒子を生成させることを特徴とする複合超微
粒子の製造方法。7. Copper of 9 to 92.5 atomic%, zinc of 1 to 2
A raw material comprising an alloy having a composition of 4.5 atomic% and chromium 6.5 to 30 atomic% is arc-melted in an inert gas atmosphere containing a diatomic molecular gas and an oxidizing gas, and the evaporated material is melted in the atmosphere. Cu-Zn-Cr containing copper or its oxide, zinc or its oxide and chromium or its oxide ultrafine particles by reacting with oxidizing gas therein
A method for producing composite ultrafine particles, comprising generating system-based composite ultrafine particles.
前記酸化性ガスがO2 ,O3 及び/又はN2 Oである請
求項7に記載の方法。8. The method according to claim 7, wherein the diatomic molecular gas is nitrogen, and the oxidizing gas is O 2 , O 3 and / or N 2 O.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8260351A JPH1080637A (en) | 1996-09-09 | 1996-09-09 | Composite ultrafine particles, method for producing the same, and catalyst for synthesizing and reforming methanol using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8260351A JPH1080637A (en) | 1996-09-09 | 1996-09-09 | Composite ultrafine particles, method for producing the same, and catalyst for synthesizing and reforming methanol using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1080637A true JPH1080637A (en) | 1998-03-31 |
Family
ID=17346762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8260351A Pending JPH1080637A (en) | 1996-09-09 | 1996-09-09 | Composite ultrafine particles, method for producing the same, and catalyst for synthesizing and reforming methanol using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1080637A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012105631A1 (en) | 2011-02-02 | 2012-08-09 | 独立行政法人産業技術総合研究所 | Noble metal-oxide joined nanoparticles and method for high-purity production of the same |
JP2018045875A (en) * | 2016-09-14 | 2018-03-22 | 東京瓦斯株式会社 | Power generation system |
-
1996
- 1996-09-09 JP JP8260351A patent/JPH1080637A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012105631A1 (en) | 2011-02-02 | 2012-08-09 | 独立行政法人産業技術総合研究所 | Noble metal-oxide joined nanoparticles and method for high-purity production of the same |
US9675964B2 (en) | 2011-02-02 | 2017-06-13 | National Institute Of Advanced Industrial Science And Technology | Noble metal-oxide combined nanoparticle, and, method of producing the same with high purity |
JP2018045875A (en) * | 2016-09-14 | 2018-03-22 | 東京瓦斯株式会社 | Power generation system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103237599B (en) | Ammonia synthesis catalyst and ammonia synthesis method | |
JP6670754B2 (en) | Composite, method for producing composite, ammonia synthesis catalyst, and ammonia synthesis method | |
JP4828986B2 (en) | Hydrogen storage alloy, hydrogen storage membrane and hydrogen storage tank | |
JP6890788B2 (en) | Methods for Producing Transition Metal-Supported Intermetallic Compounds, Supported Metal Catalysts, and Ammonia | |
JP3645931B2 (en) | Method for producing composite ultrafine particles | |
WO2015129471A1 (en) | Support metal catalyst and method for synthesizing ammonia using same catalyst | |
JPH08215576A (en) | Composite ultrafine particles, method for producing the same, and catalyst for synthesis and reforming of methanol | |
JP4443423B2 (en) | Single-walled carbon nanotube manufacturing method and manufacturing apparatus | |
JPH08215571A (en) | Composite ultrafine particles and catalyst for methanol synthesis and reforming using the same | |
Bishnoi et al. | Effect of industrial grade raw materials and its associated impurities on first hydrogenation of BCC solid solution alloys | |
JPH1080637A (en) | Composite ultrafine particles, method for producing the same, and catalyst for synthesizing and reforming methanol using the same | |
JP2008195550A (en) | Tungsten oxide fiber and manufacturing method thereof | |
JP3757248B2 (en) | Composite ultrafine particles useful as catalysts for methanol synthesis and reforming, and methods for producing the same | |
JP6737455B2 (en) | Laves phase intermetallic compound, catalyst using intermetallic compound, and ammonia production method | |
JP2006283075A (en) | Dual phase alloy for separating/refining hydrogen | |
US5800638A (en) | Ultrafine particle of quasi-crystalline aluminum alloy and process for producing aggregate thereof | |
Saito et al. | Growth of single-layer carbon tubes assisted with iron-group metal catalysts in carbon arc | |
JP2019037905A (en) | Catalytic substance for low temperature methane reforming | |
JP3819516B2 (en) | Amorphous alloy catalysts for methanation of carbon dioxide | |
JP4953337B2 (en) | Double phase alloy for hydrogen separation and purification | |
JP2004174373A (en) | Hydrogen permeable alloy membrane, member for hydrogen permeation and its production method | |
JPH02179836A (en) | Manufacture of hydrogen storage alloy and electrode | |
JP4701455B2 (en) | Catalyst for hydrogen production, method for producing the same, and method for producing hydrogen | |
AU627649B2 (en) | Amorphous alloy catalysts for conversion of carbon dioxide | |
CN115652160B (en) | Vanadium alloy membrane material for separating and purifying ammonia decomposition hydrogen and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040701 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050531 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060104 |